1
|
López-Rodríguez JC, Barral P. Mucosal associated invariant T cells: Powerhouses of the lung. Immunol Lett 2024; 269:106910. [PMID: 39128630 DOI: 10.1016/j.imlet.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The lungs face constant environmental challenges from harmless molecules, airborne pathogens and harmful agents that can damage the tissue. The lungs' immune system includes numerous tissue-resident lymphocytes that contribute to maintain tissue homeostasis and to the early initiation of immune responses. Amongst tissue-resident lymphocytes, Mucosal Associated Invariant T (MAIT) cells are present in human and murine lungs and emerging evidence supports their contribution to immune responses during infections, chronic inflammatory disorders and cancer. This review explores the mechanisms underpinning MAIT cell functions in the airways, their impact on lung immunity and the potential for targeting pulmonary MAIT cells in a therapeutic context.
Collapse
Affiliation(s)
- J C López-Rodríguez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| | - P Barral
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to resolve lung infections, contributing to morbidity and eventually mortality. Paradoxically, despite a robust inflammatory response, CF lungs fail to clear bacteria and are susceptible to chronic infections. Impaired mucociliary transport plays a critical role in chronic infection but the immune mechanisms contributing to the adaptation of bacteria to the lung microenvironment is not clear. CFTR modulator therapy has advanced CF life expectancy opening up the need to understand changes in immunity as CF patients age. Here, we have summarized the current understanding of immune dysregulation in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Department of Pediatrics, Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
4
|
Abstract
Mucosal Associated Invariant T cells (MAIT) exert potent antimicrobial activity through direct recognition of metabolite-MR1 complexes and indirect activation by inflammatory cytokines. Additionally, via licensing of antigen presenting cells, MAIT cells orchestrate humoral and cellular adaptive immunity. Our recent understanding of molecular mechanisms of MAIT cell activation, and of the signals required to differentiate them in polarised subsets, pave the way for harnessing their functionality through small molecules or adoptive cell therapy.
Collapse
Affiliation(s)
- Mariolina Salio
- Immunocore LTD, 92 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, United Kingdom.
| |
Collapse
|
5
|
Gao Y, Fan Y, Yang Z, Ma Q, Zhao B, He X, Gao F, Qian L, Wang W, Chen C, Chen Y, Gao C, Ma X, Zhu F. Systems biological assessment of altered cytokine responses to bacteria and fungi reveals impaired immune functionality in schizophrenia. Mol Psychiatry 2022; 27:1205-1216. [PMID: 34728799 DOI: 10.1038/s41380-021-01362-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/24/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Evidence suggests that complex interactions between the immune system and brain have important etiological and therapeutic implications in schizophrenia. However, the detailed cellular and molecular basis of immune dysfunction in schizophrenia remains poorly characterized. To better understand the immune changes and molecular pathways, we systemically compared the cytokine responses of peripheral blood mononuclear cells (PBMCs) derived from patients with schizophrenia and controls against bacterial, fungal, and purified microbial ligands, and identified aberrant cytokine response patterns to various pathogens, as well as reduced cytokine production after stimulation with muramyl dipeptide (MDP) in schizophrenia. Subsequently, we performed single-cell RNA sequencing on unstimulated and stimulated PBMCs from patients and controls and revealed widespread suppression of antiviral and inflammatory programs as well as impaired chemokine/cytokine-receptor interaction networks in various immune cell subpopulations of schizophrenic patients after MDP stimulation. Moreover, serum MDP levels were elevated in these patients and correlated with the course of the disease, suggesting increased bacterial translocation along with disease progression. In vitro assays revealed that MDP pretreatment altered the functional response of normal PBMCs to its re-stimulation, which partially recapitulated the impaired immune function in schizophrenia. In conclusion, we delineated the molecular and cellular landscape of impaired immune function in schizophrenia, and proposed a mutual interplay between innate immune impairment, reduced pathogen clearance, increased MDP translocation along schizophrenia development, and blunted innate immune response. These findings provide new insights into the pathogenic mechanisms that drive systemic immune activation, neuroinflammation, and brain abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yajuan Fan
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zai Yang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Qingyan Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Binbin Zhao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xiaoyan He
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Fengjie Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Li Qian
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Ce Chen
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yunchun Chen
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Chengge Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
6
|
Bojanowski CM, Lu S, Kolls JK. Mucosal Immunity in Cystic Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2901-2912. [PMID: 35802761 PMCID: PMC9270582 DOI: 10.4049/jimmunol.2100424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
The highly complex and variable genotype-phenotype relationships observed in cystic fibrosis (CF) have been an area of growing interest since the discovery of the CF transmembrane conductance regulator (CFTR) gene >30 y ago. The consistently observed excessive, yet ineffective, activation of both the innate and adaptive host immune systems and the establishment of chronic infections within the lung, leading to destruction and functional decline, remain the primary causes of morbidity and mortality in CF. The fact that both inflammation and pathogenic bacteria persist despite the introduction of modulator therapies targeting the defective protein, CFTR, highlights that we still have much to discover regarding mucosal immunity determinants in CF. Gene modifier studies have overwhelmingly implicated immune genes in the pulmonary phenotype of the disease. In this context, we aim to review recent advances in our understanding of the innate and adaptive immune systems in CF lung disease.
Collapse
Affiliation(s)
- Christine M Bojanowski
- Section of Pulmonary Diseases, Critical Care, and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA;
| | - Shiping Lu
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
7
|
Soma S, Lewinsohn DA, Lewinsohn DM. Donor Unrestricted T Cells: Linking innate and adaptive immunity. Vaccine 2021; 39:7295-7299. [PMID: 34740474 DOI: 10.1016/j.vaccine.2021.10.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Donor Unrestricted T Cells (DURTs) are characterized by their use of antigen presentation molecules that are often invariant. As these cells recognize diverse mycobacterial antigens, often found in BCG, these cells have the potential to either serve as targets for vaccination, or as a means to enable the induction of traditional T and B cell immunity. Here, we will review specific DURT family members, and their relationship to BCG.
Collapse
Affiliation(s)
- Shogo Soma
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | - Deborah A Lewinsohn
- Division of Pediatric Infectious Disease, Department of Pediatrics, Oregon Health & Science University, Portland, OR. 97239, United States
| | - David M Lewinsohn
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Portland VA Medical Center, Oregon Health & Science University, United States.
| |
Collapse
|
8
|
Masina N, Bekiswa A, Shey M. Mucosal-associated invariant T cells in natural immunity and vaccination against infectious diseases in humans. Curr Opin Immunol 2021; 71:1-5. [PMID: 33773437 DOI: 10.1016/j.coi.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are subsets of T cells abundant in human mucosal tissues and in blood. These cells are activated directly by cytokines or by vitamin B metabolites antigen presentation. MAIT cells possess antimicrobial potential against viruses and bacteria through production of cytokines and cytotoxic molecules. MAIT cells generally reduce in numbers and function during viral and bacterial infections/diseases. Mice and humans lacking MAIT cells cannot effectively control bacterial infections. MAIT cells respond rapidly to infections and are rapidly recruited to the site of vaccination or infection including the lungs where they can be involved in controlling local inflammation. These characteristics of MAIT cells offer them a unique potential to be explored as potential targets for vaccines.
Collapse
Affiliation(s)
- Nomawethu Masina
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Abulele Bekiswa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Muki Shey
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa.
| |
Collapse
|
9
|
Francisella tularensis induces Th1 like MAIT cells conferring protection against systemic and local infection. Nat Commun 2021; 12:4355. [PMID: 34272362 PMCID: PMC8285429 DOI: 10.1038/s41467-021-24570-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated Invariant T (MAIT) cells are recognized for their antibacterial functions. The protective capacity of MAIT cells has been demonstrated in murine models of local infection, including in the lungs. Here we show that during systemic infection of mice with Francisella tularensis live vaccine strain results in evident MAIT cell expansion in the liver, lungs, kidney and spleen and peripheral blood. The responding MAIT cells manifest a polarised Th1-like MAIT-1 phenotype, including transcription factor and cytokine profile, and confer a critical role in controlling bacterial load. Post resolution of the primary infection, the expanded MAIT cells form stable memory-like MAIT-1 cell populations, suggesting a basis for vaccination. Indeed, a systemic vaccination with synthetic antigen 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil in combination with CpG adjuvant similarly boosts MAIT cells, and results in enhanced protection against both systemic and local infections with different bacteria. Our study highlights the potential utility of targeting MAIT cells to combat a range of bacterial pathogens.
Collapse
|
10
|
Wen X, Zhang X, Nian S, Wei G, Guo X, Yu H, Xie X, Ye Y, Yuan Q. Title of article: Mucosal-associated invariant T cells in lung diseases. Int Immunopharmacol 2021; 94:107485. [PMID: 33647824 PMCID: PMC7909906 DOI: 10.1016/j.intimp.2021.107485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
The lungs are directly connected to the external environment, which makes them more vulnerable to infection and injury. They are protected by the respiratory epithelium and immune cells to maintain a dynamic balance. Both innate and adaptive immune cells are involved in the pathogenesis of lung diseases. Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells, which have attracted increasing attention in recent years. Although MAIT cells account for a small part of the total immune cells in the lungs, evidence suggests that these cells are activated by T cell receptors and/or cytokine receptors and mediate immune response. They play an important role in immunosurveillance and immunity against microbial infection, and recent studies have shown that subsets of MAIT cells play a role in promoting pulmonary inflammation. Emerging data indicate that MAIT cells are involved in the immune response against SARS-CoV-2 and possible immunopathogenesis in COVID-19. Here, we introduce MAIT cell biology to clarify their role in the immune response. Then we review MAIT cells in human and murine lung diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, pulmonary tuberculosis and lung cancer, and discuss their possible protective and pathological effects. MAIT cells represent an attractive marker and potential therapeutic target for disease progression, thus providing new strategies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Xue Wen
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xingli Zhang
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Siji Nian
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Gang Wei
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Hong Yu
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiang Xie
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
11
|
Sortino O, Dias J, Anderson M, Laidlaw E, Leeansyah E, Lisco A, Sheikh V, Sandberg JK, Sereti I. Preserved Mucosal-Associated Invariant T-Cell Numbers and Function in Idiopathic CD4 Lymphocytopenia. J Infect Dis 2020; 224:715-725. [PMID: 34398238 DOI: 10.1093/infdis/jiaa782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells constitute a subset of unconventional, MR1-restricted T cells involved in antimicrobial responses as well as inflammatory, allergic, and autoimmune diseases. Chronic infection and inflammatory disorders as well as immunodeficiencies are often associated with decline and/or dysfunction of MAIT cells. METHODS We investigated the MAIT cells in patients with idiopathic CD4+ lymphocytopenia (ICL), a syndrome characterized by consistently low CD4 T-cell counts (<300 cell/µL) in the absence of HIV infection or other known immunodeficiency, and by susceptibility to certain opportunistic infections. RESULTS The numbers, phenotype, and function of MAIT cells in peripheral blood were preserved in ICL patients compared to healthy controls. Administration of interleukin-7 (IL-7) to ICL patients expanded the CD8+ MAIT-cell subset, with maintained responsiveness and effector functions after IL-7 treatment. CONCLUSIONS ICL patients maintain normal levels and function of MAIT cells, preserving some antibacterial responses despite the deficiency in CD4+ T cells. CLINICAL TRIALS REGISTRATION NCT00867269.
Collapse
Affiliation(s)
- Ornella Sortino
- Clinical Research Directorate/Clinical Monitoring Leidos Research Program, Leidos Biomedical Research, Inc., National Cancer Institute Campus at Frederick, Frederick, Maryland, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Megan Anderson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Laidlaw
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Virginia Sheikh
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Emerging Role for MAIT Cells in Control of Antimicrobial Resistance. Trends Microbiol 2020; 29:504-516. [PMID: 33353796 DOI: 10.1016/j.tim.2020.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance is a serious threat to global public health as antibiotics are losing effectiveness due to rapid development of resistance. The human immune system facilitates control and clearance of resistant bacterial populations during the course of antimicrobial therapy. Here we review current knowledge of mucosa-associated invariant T (MAIT) cells, an arm of the immune system on the border between innate and adaptive, and their critical place in human antibacterial immunity. We propose that MAIT cells play important roles against antimicrobial-resistant infections through their capacity to directly clear multidrug-resistant bacteria and overcome mechanisms of antimicrobial resistance. Finally, we discuss outstanding questions pertinent to the possible advancement of host-directed therapy as an alternative intervention strategy for antimicrobial-resistant bacterial infections.
Collapse
|
13
|
Parrot T, Gorin JB, Ponzetta A, Maleki KT, Kammann T, Emgård J, Perez-Potti A, Sekine T, Rivera-Ballesteros O, Gredmark-Russ S, Rooyackers O, Folkesson E, Eriksson LI, Norrby-Teglund A, Ljunggren HG, Björkström NK, Aleman S, Buggert M, Klingström J, Strålin K, Sandberg JK. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci Immunol 2020; 5:eabe1670. [PMID: 32989174 PMCID: PMC7857393 DOI: 10.1126/sciimmunol.abe1670] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
Severe COVID-19 is characterized by excessive inflammation of the lower airways. The balance of protective versus pathological immune responses in COVID-19 is incompletely understood. Mucosa-associated invariant T (MAIT) cells are antimicrobial T cells that recognize bacterial metabolites, and can also function as innate-like sensors and mediators of antiviral responses. Here, we investigated the MAIT cell compartment in COVID-19 patients with moderate and severe disease, as well as in convalescence. We show profound and preferential decline in MAIT cells in the circulation of patients with active disease paired with strong activation. Furthermore, transcriptomic analyses indicated significant MAIT cell enrichment and pro-inflammatory IL-17A bias in the airways. Unsupervised analysis identified MAIT cell CD69high and CXCR3low immunotypes associated with poor clinical outcome. MAIT cell levels normalized in the convalescent phase, consistent with dynamic recruitment to the tissues and later release back into the circulation when disease is resolved. These findings indicate that MAIT cells are engaged in the immune response against SARS-CoV-2 and suggest their possible involvement in COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Tiphaine Parrot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Emgård
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - André Perez-Potti
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Department of Clinical Interventions and Technology, Karolinska Institutet, Stockholm, Sweden
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Elin Folkesson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars I Eriksson
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
Pavlovic M, Gross C, Chili C, Secher T, Treiner E. MAIT Cells Display a Specific Response to Type 1 IFN Underlying the Adjuvant Effect of TLR7/8 Ligands. Front Immunol 2020; 11:2097. [PMID: 33013883 PMCID: PMC7509539 DOI: 10.3389/fimmu.2020.02097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells constitute a highly conserved subset of effector T cells with innate-like recognition of a wide array of bacteria and fungi in humans. Harnessing the potential of these cells could represent a major advance as a new immunotherapy approach to fight difficult-to-treat bacterial infections. However, despite recent advances in the design of potent agonistic ligands for MAIT cells, it has become increasingly evident that adjuvants are required to elicit potent antimicrobial effector functions by these cells, such as IFNγ production and cytotoxicity. Indeed, TCR triggering alone elicits mostly barrier repair functions in MAIT cells, whereas an inflammatory milieu is required to drive the antibacterial functions. Cytokines such as IL-7, IL-12 and IL-18, IL-15 or more recently type 1 IFN all display an apparently similar ability to synergize with TCR stimulation to induce IFNγ production and/or cytotoxic functions in vitro, but their mechanisms of action are not well established. Herein, we show that MAIT cells feature a build-in mechanism to respond to IFNα. We confirm that IFNα acts directly and specifically on MAIT cells and synergizes with TCR/CD3 triggering to induce maximum cytokine production and cytotoxic functions. We provide evidences suggesting that the preferential activation of the Stat4 pathway is involved in the high sensitivity of MAIT cells to IFNα stimulation. Finally, gene expression data confirm the specific responsiveness of MAIT cells to IFNα and pinpoints specific pathways that could be the target of this cytokine. Altogether, these data highlight the potential of IFNα-inducing adjuvants to maximize MAIT cells responsiveness to purified ligands in order to induce potent anti-infectious responses.
Collapse
Affiliation(s)
- Marion Pavlovic
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Christelle Gross
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Chahinaize Chili
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Thomas Secher
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Emmanuel Treiner
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France.,Paul Sabatier University Toulouse III, Toulouse, France.,Laboratory of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
15
|
Pisarska MM, Dunne MR, O'Shea D, Hogan AE. Interleukin‐17 producing mucosal associated invariant T cells ‐ emerging players in chronic inflammatory diseases? Eur J Immunol 2020; 50:1098-1108. [DOI: 10.1002/eji.202048645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Marta M. Pisarska
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth University Kildare Ireland
- National Children's Research Centre Dublin Ireland
| | - Margaret R. Dunne
- Trinity Translational Medicine Institute, Department of SurgerySt James's Hospital Dublin Ireland
- Trinity St James's Cancer InstituteSt James's Hospital Dublin Dublin Ireland
| | - Donal O'Shea
- Obesity Immunology Group, Education and Research Centre, St Vincent's University HospitalUniversity College Dublin Ireland
| | - Andrew E. Hogan
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth University Kildare Ireland
- National Children's Research Centre Dublin Ireland
- Obesity Immunology Group, Education and Research Centre, St Vincent's University HospitalUniversity College Dublin Ireland
| |
Collapse
|
16
|
Boulouis C, Gorin JB, Dias J, Bergman P, Leeansyah E, Sandberg JK. Opsonization-Enhanced Antigen Presentation by MR1 Activates Rapid Polyfunctional MAIT Cell Responses Acting as an Effector Arm of Humoral Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:67-77. [PMID: 32434941 DOI: 10.4049/jimmunol.2000003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
Mucosa-associated invariant T (MAIT) cells are innate-like antimicrobial T cells recognizing a breadth of important pathogens via presentation of microbial riboflavin metabolite Ags by MHC class Ib-related (MR1) molecules. However, the interaction of human MAIT cells with adaptive immune responses and the role they may play in settings of vaccinology remain relatively little explored. In this study we investigated the interplay between MAIT cell-mediated antibacterial effector functions and the humoral immune response. IgG opsonization of the model microbe Escherichia coli with pooled human sera markedly enhanced the capacity of monocytic APC to stimulate MAIT cells. This effect included greater sensitivity of recognition and faster response kinetics, as well as a markedly higher polyfunctionality and magnitude of MAIT cell responses involving a range of effector functions. The boost of MAIT cell responses was dependent on strongly enhanced MR1-mediated Ag presentation via increased FcγR-mediated uptake and signaling primarily mediated by FcγRI. To investigate possible translation of this effect to a vaccine setting, sera from human subjects before and after vaccination with the 13-valent-conjugated Streptococcus pneumoniae vaccine were assessed in a MAIT cell activation assay. Interestingly, vaccine-induced Abs enhanced Ag presentation to MAIT cells, resulting in more potent effector responses. These findings indicate that enhancement of Ag presentation by IgG opsonization allows innate-like MAIT cells to mount a faster, stronger, and qualitatively more complex response and to function as an effector arm of vaccine-induced humoral adaptive antibacterial immunity.
Collapse
Affiliation(s)
- Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14152 Stockholm, Sweden.,Infectious Disease Clinic, Immunodeficiency Unit, Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden; and
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden.,Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169587 Singapore
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden;
| |
Collapse
|
17
|
Giacalone VD, Dobosh BS, Gaggar A, Tirouvanziam R, Margaroli C. Immunomodulation in Cystic Fibrosis: Why and How? Int J Mol Sci 2020; 21:ijms21093331. [PMID: 32397175 PMCID: PMC7247557 DOI: 10.3390/ijms21093331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by unconventional mechanisms of inflammation, implicating a chronic immune response dominated by innate immune cells. Historically, therapeutic development has focused on the mutated cystic fibrosis transmembrane conductance regulator (CFTR), leading to the discovery of small molecules aiming at modulating and potentiating the presence and activity of CFTR at the plasma membrane. However, treatment burden sustained by CF patients, side effects of current medications, and recent advances in other therapeutic areas have highlighted the need to develop novel disease targeting of the inflammatory component driving CF lung damage. Furthermore, current issues with standard treatment emphasize the need for directed lung therapies that could minimize systemic side effects. Here, we summarize current treatment used to target immune cells in the lungs, and highlight potential benefits and caveats of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Brian S. Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
- Pulmonary Section, Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| | - Camilla Margaroli
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
| |
Collapse
|
18
|
Abstract
Tuberculosis (TB) host defense depends on cellular immunity, including macrophages and adaptively acquired CD4+ and CD8+ T cells. More recently, roles for new immune components, including neutrophils, innate T cells, and B cells, have been defined, and the understanding of the function of macrophages and adaptively acquired T cells has been advanced. Moreover, the understanding of TB immunology elucidates TB infection and disease as a spectrum. Finally, determinates of TB host defense, such as age and comorbidities, affect clinical expression of TB disease. Herein, the authors comprehensively review TB immunology with an emphasis on new advances.
Collapse
Affiliation(s)
- David M Lewinsohn
- Oregon Health and Science University, 3710 Southwest U.S. Veterans Road, Portland, OR 97239, USA
| | - Deborah A Lewinsohn
- Oregon Health and Science University, 707 Southwest Gaines Road, Portland, OR 97239, USA.
| |
Collapse
|
19
|
Emgård J, Bergsten H, McCormick JK, Barrantes I, Skrede S, Sandberg JK, Norrby-Teglund A. MAIT Cells Are Major Contributors to the Cytokine Response in Group A Streptococcal Toxic Shock Syndrome. Proc Natl Acad Sci U S A 2019; 116:25923-25931. [PMID: 31772015 PMCID: PMC6926028 DOI: 10.1073/pnas.1910883116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococcal toxic shock syndrome (STSS) is a rapidly progressing, life-threatening, systemic reaction to invasive infection caused by group A streptococci (GAS). GAS superantigens are key mediators of STSS through their potent activation of T cells leading to a cytokine storm and consequently vascular leakage, shock, and multiorgan failure. Mucosal-associated invariant T (MAIT) cells recognize MR1-presented antigens derived from microbial riboflavin biosynthesis and mount protective innate-like immune responses against the microbes producing such metabolites. GAS lack de novo riboflavin synthesis, and the role of MAIT cells in STSS has therefore so far been overlooked. Here we have conducted a comprehensive analysis of human MAIT cell responses to GAS, aiming to understand the contribution of MAIT cells to the pathogenesis of STSS. We show that MAIT cells are strongly activated and represent the major T cell source of IFNγ and TNF in the early stages of response to GAS. MAIT cell activation is biphasic with a rapid TCR Vβ2-specific, TNF-dominated response to superantigens and a later IL-12- and IL-18-dependent, IFNγ-dominated response to both bacterial cells and secreted factors. Depletion of MAIT cells from PBMC resulted in decreased total production of IFNγ, IL-1β, IL-2, and TNFβ. Peripheral blood MAIT cells in patients with STSS expressed elevated levels of the activation markers CD69, CD25, CD38, and HLA-DR during the acute compared with the convalescent phase. Our data demonstrate that MAIT cells are major contributors to the early cytokine response to GAS, and are therefore likely to contribute to the pathological cytokine storm underlying STSS.
Collapse
Affiliation(s)
- Johanna Emgård
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden
| | - Helena Bergsten
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden
| | - John K McCormick
- Department of Microbiology and Immunology, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Israel Barrantes
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden;
| |
Collapse
|
20
|
Godfrey DI, Koay HF, McCluskey J, Gherardin NA. The biology and functional importance of MAIT cells. Nat Immunol 2019; 20:1110-1128. [PMID: 31406380 DOI: 10.1038/s41590-019-0444-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/25/2023]
Abstract
In recent years, a population of unconventional T cells called 'mucosal-associated invariant T cells' (MAIT cells) has captured the attention of immunologists and clinicians due to their abundance in humans, their involvement in a broad range of infectious and non-infectious diseases and their unusual specificity for microbial riboflavin-derivative antigens presented by the major histocompatibility complex (MHC) class I-like protein MR1. MAIT cells use a limited T cell antigen receptor (TCR) repertoire with public antigen specificities that are conserved across species. They can be activated by TCR-dependent and TCR-independent mechanisms and exhibit rapid, innate-like effector responses. Here we review evidence showing that MAIT cells are a key component of the immune system and discuss their basic biology, development, role in disease and immunotherapeutic potential.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia.
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Anil N. Mucosal-associated invariant T cells: new players in CF lung disease? Inflamm Res 2019; 68:633-638. [PMID: 31201438 DOI: 10.1007/s00011-019-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022] Open
Abstract
The past decade has witnessed a surge in research centered around exploring the role of the enigmatic innate immune-like lymphocyte MAIT cell in human disease. Recent evidence has led to the elucidation of its role as a potent defender at mucosal surfaces including lungs due to its capacity to mount a formidable immediate response to bacterial pathogens. MAIT cells have a unique attribute of recognizing microbial ligands in conjunction with non-classical MHC-related protein MR1. Recent studies have demonstrated their contribution in the pathogenesis of chronic pulmonary disorders including asthma and chronic obstructive pulmonary disease. Several cellular players including innate immune cells are active contributors in the immune imbalance present in cystic fibrosis(CF) lung. This immune dysregulation serves as a central pivot in disease pathogenesis, responsible for causing immense structural damage in the CF lung. The present review focuses on understanding the role of MAIT cells in CF lung disease. Future studies directed at understanding the possible relationship between MAIT cells and regulatory T cells (Tregs) in CF lung disease could unravel a holistic picture where a combination of antimicrobial effects of MAIT cells and anti-inflammatory effects of Tregs could be exploited in synergy to alleviate the rapid deterioration of lung function in CF lung disease due to the underlying complex interplay between persistent infection and inflammation.
Collapse
Affiliation(s)
- Nidhi Anil
- Centre For Stem Cell Tissue Engineering and Biomedical Excellence, Panjab University, Chandigarh, India.
| |
Collapse
|
22
|
Weinberger T, Fuleihan R, Cunningham-Rundles C, Maglione PJ. Factors Beyond Lack of Antibody Govern Pulmonary Complications in Primary Antibody Deficiency. J Clin Immunol 2019; 39:440-447. [PMID: 31089938 DOI: 10.1007/s10875-019-00640-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/01/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE Pulmonary complications occur frequently in primary antibody deficiency (PAD). While the impact of antibody deficiency may appear implicit for certain respiratory infections, immunoglobulin replacement therapy does not completely ameliorate pulmonary complications in PAD. Thus, there may be antibody-independent factors influencing susceptibility to respiratory disease in PAD, but these remain incompletely defined. METHODS We harnessed the multicenter US Immunodeficiency Network primary immunodeficiency registry to compare prevalence of asthma, bronchiectasis, interstitial lung disease (ILD), and respiratory infections between two forms of PAD: common variable immunodeficiency (CVID) and x-linked agammaglobulinemia (XLA). We also defined the clinical and immunological characteristics associated with ILD and asthma in CVID. RESULTS Asthma, bronchiectasis, ILD, pneumonia, and upper respiratory infections were more prevalent in CVID than XLA. ILD was associated with autoimmunity, bronchiectasis, and pneumonia as well as fewer B and T cells in CVID. Asthma was the most common chronic pulmonary complication and associated with lower IgA and IgM in CVID. Age of symptom onset or CVID diagnosis was unrelated with ILD or asthma. CONCLUSION Despite having less severe immunoglobulin deficiency than XLA, respiratory infections, ILD, and asthma were more common in CVID. Among CVID patients, ILD was associated with autoimmunity and reduced lymphocytes and asthma with lower immunoglobulins. Though our results are tempered by registry limitations, they provide evidence that factors beyond lack of antibody promote pulmonary complications in PAD. Efforts to understand how genetic etiology, nature of concurrent T cell deficiency, and propensity for autoimmunity shape pulmonary disease may improve treatment of PAD.
Collapse
Affiliation(s)
- Tamar Weinberger
- Department of Medicine, Center for Allergy, Asthma, and Immune Disorders, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Ramsay Fuleihan
- Department of Pediatrics, Division of Allergy and Immunology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Maglione
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Medicine, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, School of Medicine, Boston University, Boston, MA, USA. .,Pulmonary Center, School of Medicine, Boston University, 72 East Concord Street, R304, Boston, MA, 02118, USA.
| |
Collapse
|
23
|
Karamooz E, Harriff MJ, Narayanan GA, Worley A, Lewinsohn DM. MR1 recycling and blockade of endosomal trafficking reveal distinguishable antigen presentation pathways between Mycobacterium tuberculosis infection and exogenously delivered antigens. Sci Rep 2019; 9:4797. [PMID: 30886396 PMCID: PMC6423294 DOI: 10.1038/s41598-019-41402-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/05/2019] [Indexed: 01/01/2023] Open
Abstract
The MHC-Ib molecule MR1 presents microbial metabolites to MR1-restricted T cells (MR1Ts). Given the ubiquitous expression of MR1 and the high prevalence of human MR1Ts, it is important to understand the mechanisms of MR1-dependent antigen presentation. Here, we show that MR1-dependent antigen presentation can be distinguished between intracellular Mycobacterium tuberculosis (Mtb) infection and exogenously added antigens. Although both Mtb infection and exogenously added antigens are presented by preformed MR1, only exogenously added antigens are capable of reusing MR1 that had been bound to the folic acid metabolite 6-formylpterin (6-FP). In addition, we identify an endosomal trafficking protein, Syntaxin 4, which is specifically involved in the presentation of exogenously delivered antigens but not Mtb-dependent antigen presentation. These data reveal there are multiple ways that MR1 can sample antigens and that MR1-mediated sampling of intracellular Mtb infection is distinguishable from the sampling of exogenously added antigens.
Collapse
Affiliation(s)
- Elham Karamooz
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA.
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA.
| | - Melanie J Harriff
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Gitanjali A Narayanan
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Aneta Worley
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA
| | - David M Lewinsohn
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA.
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA.
| |
Collapse
|
24
|
Malka-Ruimy C, Ben Youssef G, Lambert M, Tourret M, Ghazarian L, Faye A, Caillat-Zucman S, Houdouin V. Mucosal-Associated Invariant T Cell Levels Are Reduced in the Peripheral Blood and Lungs of Children With Active Pulmonary Tuberculosis. Front Immunol 2019; 10:206. [PMID: 30853958 PMCID: PMC6396712 DOI: 10.3389/fimmu.2019.00206] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
Mucosal associated invariant T (MAIT) cells are unconventional, semi-invariant T lymphocytes that recognize microbial-derived vitamin B2 (riboflavin) biosynthesis precursor derivatives presented by the monomorphic MHC class 1-related (MR1) molecule. Upon microbial infection, MAIT cells rapidly produce cytokines and cytotoxic effectors, and are thus important players in anti-microbial defense. MAIT cells are protective in experimental models of infection and are decreased in the blood of adult patients with bacterial infections, including Mycobacterium tuberculosis (Mtb). In children, the risk of rapid progression to active tuberculosis (TB) following Mtb infection is higher than in adults. Whether MAIT cells influence the outcome of Mtb infection in children is therefore, an important issue. We analyzed MAIT cell numbers and phenotype in 115 children investigated for pulmonary TB and determined their potential correlation with disease progression. MAIT cells were reduced in numbers and activated in the peripheral blood of children with active TB as compared to those with latent TB infection (LTBI) and healthy children. Moreover, MAIT cells did not accumulate and did not proliferate in the lung of children with active TB. These results suggest that MAIT cells may be important in preventing progression of Mtb infection to active TB in children.
Collapse
Affiliation(s)
- Clara Malka-Ruimy
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Ghada Ben Youssef
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Marion Lambert
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Marie Tourret
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Liana Ghazarian
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Albert Faye
- Service de Pédiatrie Générale, Hôpital Robert Debré, Assistance Publique Hôpitaux de Paris, Université Paris Diderot, Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France.,Laboratoire d'Immunologie, Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Véronique Houdouin
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France.,Service des Maladies Digestives et Respiratoires de l'Enfant, Hôpital Robert Debré, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
25
|
D’Souza C, Chen Z, Corbett AJ. Revealing the protective and pathogenic potential of MAIT cells. Mol Immunol 2018; 103:46-54. [DOI: 10.1016/j.molimm.2018.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022]
|