1
|
Liao SY, Fingerlin T, Maier L. Genetic predisposition to sarcoidosis. J Autoimmun 2024; 149:103122. [PMID: 37865580 DOI: 10.1016/j.jaut.2023.103122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Sarcoidosis is a complex systemic disease with clinical heterogeneity based on varying phenotypes and natural history. The detailed etiology of sarcoidosis remains unknown, but genetic predisposition as well as environmental exposures play a significant role in disease pathogenesis. We performed a comprehensive review of germline genetic (DNA) and transcriptomic (RNA) studies of sarcoidosis, including both previous studies and more recent findings. In this review, we provide an assessment of the following: genetic variants in sarcoidosis susceptibility and phenotypes, ancestry- and sex-specific genetic variants in sarcoidosis, shared genetic architecture between sarcoidosis and other diseases, and gene-environment interactions in sarcoidosis. We also highlight the unmet needs in sarcoidosis genetic studies, including the pressing requirement to include diverse populations and have consistent definitions of phenotypes in the sarcoidosis research community to help advance the application of genetic predisposition to sarcoidosis disease risk and manifestations.
Collapse
Affiliation(s)
- Shu-Yi Liao
- National Jewish Health, Department of Medicine, Denver, CO, USA; University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA; Colorado School of Public Health, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Tasha Fingerlin
- National Jewish Health, Department of Medicine, Denver, CO, USA; University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA; Colorado School of Public Health, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; National Jewish Health, Department of Immunology and Genomic Medicine, Denver, CO, USA
| | - Lisa Maier
- National Jewish Health, Department of Medicine, Denver, CO, USA; University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA; Colorado School of Public Health, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Maharjan AS, Amjadi SS, Jaskowski TD, La'ulu SL, Lebiedz-Odrobina D, Frech TM, Tebo AE. Diagnostic performance of specific biomarkers for interstitial lung disease: a single center study. Clin Chem Lab Med 2024:cclm-2024-1048. [PMID: 39608015 DOI: 10.1515/cclm-2024-1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVES This study aimed to determine the clinical significance of Krebs von den Lungen-6 (KL-6), surfactant proteins A (SP-A) and D (SP-D) in the evaluation and management of interstitial lung disease (ILD). METHODS Serum KL-6, SP-A, SP-D levels were measured in 122 unique consecutive patients referred for connective tissue disease (CTD) associated ILD (CTD-ILD) autoantibodies and 120 "healthy" controls. Patients' charts were retrospectively reviewed and categorized as ILD and non-ILD or CTD-ILD and other ILD. All biomarkers were evaluated for diagnosis and moderate vs. severe ILD based on high-resolution computed tomography (HRCT). RESULTS ILD was diagnosed in 52 % (n=64) and non-ILD in 48 % (n=58). ILD patients were categorized as other ILD (61 %, n=39) or CTD-ILD (39 %, n=25). Patients with ILD had significantly elevated levels of SP-A (p<0.02), KL-6 or SP-D (both p<0.0001) when compared to those with non-ILD. The mean levels of all biomarkers were significantly elevated levels in the ILD compared to non-ILD group (p<0.0001). No significant difference in biomarker levels between CTD-ILD and other ILD groups (p≥0.900). Biomarkers had comparable specificities (89-93 %) however; sensitivities were variable at 75 , 77 and 17 % for KL-6, SP-D and SP-A, respectively. Combination of KL-6 and SP-D yielded comparable diagnostic accuracy to all biomarkers with median levels significantly higher in patients with severe vs. mild disease. CONCLUSIONS KL-6 and SP-D levels are elevated in ILD and therefore contribute to the diagnosis and risk stratification for patient management.
Collapse
Affiliation(s)
- Anu S Maharjan
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
- ARUP Laboratories, Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Sogol S Amjadi
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Troy D Jaskowski
- ARUP Laboratories, Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Sonia L La'ulu
- ARUP Laboratories, Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Dorota Lebiedz-Odrobina
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Tracy M Frech
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anne E Tebo
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
- ARUP Laboratories, Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Takada T. Progress in progressive pulmonary fibrosis: biomarkers of systemic sclerosis-associated interstitial lung disease. Rheumatology (Oxford) 2024; 63:2907-2908. [PMID: 38733593 DOI: 10.1093/rheumatology/keae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Affiliation(s)
- Toshinori Takada
- Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Japan
| |
Collapse
|
4
|
Araújo M, Beltrão M, Sokhatska O, Melo N, Caetano Mota P, Bastos HN, Terras A, Coelho D, Delgado L, Morais A. Serum metalloproteinase-7 as a biomarker of progressive pulmonary fibrosis. ERJ Open Res 2024; 10:00553-2024. [PMID: 39655167 PMCID: PMC11626614 DOI: 10.1183/23120541.00553-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Progressive pulmonary fibrosis (PPF) corresponds to any fibrotic interstitial lung disease (ILD) other than idiopathic pulmonary fibrosis (IPF) that presents clinical, physiological and/or radiological evidence of disease progression similar to IPF. Matrix metalloproteinases (MMPs) have been implicated in the pathogenesis of pulmonary fibrosis and are associated with disease progression and reduced survival in IPF and other fibrotic ILDs. This study aimed to investigate the role of serum levels of MMP-1 and MMP-7 in patients with fibrotic non-IPF ILD as possible biomarkers of patients at risk of developing PPF. Methods Newly diagnosed patients with fibrotic non-IPF ILD were included in this study. Serum levels of MMP-1 and MMP-7 were quantified at baseline and disease progression was monitored. PPF was defined according to the recent European Respiratory Society, American Thoracic Society, Japanese Respiratory Society and the Latin American Thoracic Society Clinical Practice Guidelines. Results 79 patients with fibrotic non-IPF ILDs were included and classified as having PPF or non-PPF. Significantly higher levels of MMP-7, but not MMP-1, were detected in the PPF group (p=0.01). MMP-7 was independently associated with PPF (adjusted OR 1.263, 95% CI 1.029-1.551; p=0.026) after adjustment for sex, age and smoking history. A cut-off value of 3.53 ng·mL-1 for serum MMP-7 levels had a sensitivity of 61% and a specificity of 74% for predicting PPF in non-IPF ILDs. Conclusions In patients with fibrotic non-IPF ILDs, serum MMP-7 levels were significantly greater in the subgroup of patients meeting the PPF criteria at follow-up. This can be considered and further investigated as a possible biomarker to identify fibrotic ILD patients at risk of PPF.
Collapse
Affiliation(s)
- Márcia Araújo
- Department of Pulmonology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Marília Beltrão
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Oksana Sokhatska
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Natália Melo
- Department of Pulmonology, Centro Hospitalar São João, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Caetano Mota
- Department of Pulmonology, Centro Hospitalar São João, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Helder Novais Bastos
- Department of Pulmonology, Centro Hospitalar São João, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - André Terras
- Department of Pulmonology, Centro Hospitalar São João, Faculty of Medicine, University of Porto, Porto, Portugal
| | - David Coelho
- Department of Pulmonology, Centro Hospitalar São João, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luís Delgado
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Centre for Research in Health Technologies and Information Systems (CINTESIS@RISE), University of Porto, Porto, Portugal
| | - António Morais
- Department of Pulmonology, Centro Hospitalar São João, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Petersen AG, Korntner SH, Bousamaki J, Oró D, Arraut AM, Pors SE, Salinas CG, Andersen MW, Madsen MR, Nie Y, Butts J, Roqueta‐Rivera M, Simonsen U, Hansen HH, Feigh M. Reproducible lung protective effects of a TGFβR1/ALK5 inhibitor in a bleomycin-induced and spirometry-confirmed model of IPF in male mice. Physiol Rep 2024; 12:e70077. [PMID: 39394052 PMCID: PMC11469938 DOI: 10.14814/phy2.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
This study comprehensively validated the bleomycin (BLEO) induced mouse model of IPF for utility in preclinical drug discovery. To this end, the model was rigorously evaluated for reproducible phenotype and TGFβ-directed treatment outcomes. Lung disease was profiled longitudinally in male C57BL6/JRJ mice receiving a single intratracheal instillation of BLEO (n = 10-12 per group). A TGFβR1/ALK5 inhibitor (ALK5i) was profiled in six independent studies in BLEO-IPF mice, randomized/stratified to treatment according to baseline body weight and non-invasive whole-body plethysmography. ALK5i (60 mg/kg/day) or vehicle (n = 10-16 per study) was administered orally for 21 days, starting 7 days after intratracheal BLEO installation. BLEO-IPF mice recapitulated functional, histological and biochemical hallmarks of IPF, including declining expiratory/inspiratory capacity and inflammatory and fibrotic lung injury accompanied by markedly elevated TGFβ levels in bronchoalveolar lavage fluid and lung tissue. Pulmonary transcriptome signatures of inflammation and fibrosis in BLEO-IPF mice were comparable to reported data in IPF patients. ALK5i promoted reproducible and robust therapeutic outcomes on lung functional, biochemical and histological endpoints in BLEO-IPF mice. The robust lung fibrotic disease phenotype, along with the consistent and reproducible lung protective effects of ALK5i treatment, makes the spirometry-confirmed BLEO-IPF mouse model highly applicable for profiling novel drug candidates for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yaohui Nie
- Enanta PharmaceuticalsWatertownMassachusettsUSA
| | | | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of HealthAarhus UniversityAarhusDenmark
| | | | | |
Collapse
|
6
|
d'Alessandro M, Conticini E, Bergantini L, Mazzei MA, Bellisai F, Selvi E, Cameli P, Frediani B, Bargagli E. Krebs von den Lungen-6 as biomarker of the new progressive fibrotic phenotype of interstitial lung disease. Tissue Cell 2024; 90:102516. [PMID: 39137538 DOI: 10.1016/j.tice.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Novel progressive fibrotic phenotype has recently been proposed characterized by progressive and inexorable worsening of the disease. Krebs von den Lungen-6 (KL-6) has been proposed as fibrotic-ILD biomarker. We aimed to assess the role of KL-6 in fibrotic-ILD and the progressive phenotype in accordance with serial serum KL-6. METHODS 107 patients were enrolled in the study (median age,IQR, 65(54-71)y/o) followed at respiratory diseases and rheumatology units of University of Siena. Thirty-five had diagnoses of IPF, 18 sarcoidosis, 10 PLCH, 5 LAM, 24 fibrotic HP(fHP), 13 RA (4/13 RA-ILD) and 22 SSc (18/22 SSc-ILD). Serial serum samples were collected before therapy (t0) and 24 months later (t1) from IPF, SSc- and RA-ILD patients. Twenty-two healthy controls (HC) were enrolled. Serum samples were assayed for KL-6 concentrations (Fujirebio Europe, Gent, Belgium). RESULTS Higher KL-6 concentrations were reported in IPF, fHP and SSc-ILD patients than HC (p<0.0001). KL-6 cut-off value of 885 U/mL identified fibrotic-ILD patients. Logistic regression analysis indicated KL-6 (p=0.004) and smoking-habit (p=0.005) affected the ILD diagnosis. The decision tree model showed KL-6>1145 U/mL, DLco≤60.15 %, FVC≤86 % to classify 86 % IPF patients. Inverse correlation between T0-KL-6 and T1-FVC%(r=-0.314, p=0.046) and T1-DLco%(r=-0.327, p=0.038) in the progressive group. CONCLUSION KL-6 proved to be a reliable marker for diagnosis and prognosis of fibrotic ILD patients with predictive value in progressive fibrotic patients and a useful marker to identify the new and similar progressive phenotype of IPF and SSc-ILD patients assessing the functional progression in accordance with serial serum KL-6 measurements.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Tuscany 53100, Italy.
| | - Edoardo Conticini
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Tuscany 53100, Italy
| | - Laura Bergantini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Tuscany 53100, Italy
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neurosciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, Siena, Tuscany 53100, Italy
| | - Francesca Bellisai
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Tuscany 53100, Italy
| | - Enrico Selvi
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Tuscany 53100, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Tuscany 53100, Italy
| | - Bruno Frediani
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Tuscany 53100, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Tuscany 53100, Italy
| |
Collapse
|
7
|
Berg J, Frix AN, Henket M, Gester F, Winandy M, Canivet P, Njock MS, Thys M, Desir C, Meunier P, Louis R, Malchair F, Guiot J. Long Term Evaluation of Quantitative Cumulative Irradiation in Patients Suffering from ILDs. Diagnostics (Basel) 2024; 14:2136. [PMID: 39410540 PMCID: PMC11476226 DOI: 10.3390/diagnostics14192136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Interstitial lung diseases (ILDs) are an heterogeneous group of infiltrating lung pathologies, for which prompt diagnosis and continuous assessment are of paramount importance. While chest CT is an established diagnostic tool for ILDs, there are no formal guidelines on the follow-up regimen, leaving the frequency and modality of follow-up largely at the clinician's discretion. METHODS The study retrospectively evaluated the indication of chest CT in a cohort of 129 ILD patients selected from the ambulatory care polyclinic at University Hospital of Liège. The aim was to determine whether the imagining acquisition had a true impact on clinical course and follow-up. We accepted three different situations for justifying the indication of the CTs: clinical deterioration, a decrease in pulmonary function tests (at least a 10% drop in a parameter), and monitoring for oncological purposes. The other indications, mainly routine follow-up, were classified as "non-justified". Radiation dose output was evaluated with Computed Tomography Dose Index (CTDI) and Dose Length Product (DLP). RESULTS The mean number of CT scans per patient per year was 1.7 ± 0.4, determining irradiation in CTDI (mGy)/year of 34.9 ± 64.9 and DLP in (mGy*cm)/year of 1095 ± 1971. The percentage of justified CT scans was 57 ± 32%, while the scans justified a posteriori were 60 ± 34%. Around 40% of the prescribed monitoring CT scans had no impact on the management of ILD and direct patient care. CONCLUSIONS Our study identifies a trend of overuse in chest CT scans at follow-up (up to 40%), outside those performed for clinical exacerbation or oncological investigation. In the particular case of ILD exacerbation, CT scan value remains high, underlying the benefit of this strategy.
Collapse
Affiliation(s)
- Julien Berg
- Department of Respiratory Medicine, University Hospital of Liège, 4000 Liège, Belgium (M.W.); (M.-S.N.)
| | - Anne-Noelle Frix
- Department of Respiratory Medicine, University Hospital of Liège, 4000 Liège, Belgium (M.W.); (M.-S.N.)
| | - Monique Henket
- Department of Respiratory Medicine, University Hospital of Liège, 4000 Liège, Belgium (M.W.); (M.-S.N.)
| | - Fanny Gester
- Department of Respiratory Medicine, University Hospital of Liège, 4000 Liège, Belgium (M.W.); (M.-S.N.)
| | - Marie Winandy
- Department of Respiratory Medicine, University Hospital of Liège, 4000 Liège, Belgium (M.W.); (M.-S.N.)
| | - Perrine Canivet
- Department of Radiology, University Hospital of Liège, 4000 Liège, Belgium
| | - Makon-Sébastien Njock
- Department of Respiratory Medicine, University Hospital of Liège, 4000 Liège, Belgium (M.W.); (M.-S.N.)
| | - Marie Thys
- Department of Biostatistics and Medico-Economic Information, University Hospital of Liège, 4000 Liège, Belgium
| | - Colin Desir
- Department of Radiology, University Hospital of Liège, 4000 Liège, Belgium
| | - Paul Meunier
- Department of Radiology, University Hospital of Liège, 4000 Liège, Belgium
| | - Renaud Louis
- Department of Respiratory Medicine, University Hospital of Liège, 4000 Liège, Belgium (M.W.); (M.-S.N.)
| | - Francoise Malchair
- Department of Clinical Science, University of Liège, 4000 Liège, Belgium
| | - Julien Guiot
- Department of Respiratory Medicine, University Hospital of Liège, 4000 Liège, Belgium (M.W.); (M.-S.N.)
| |
Collapse
|
8
|
Zhu J, Liu H, Gao R, Gong R, Wang J, Zhou D, Yu M, Li Y. Genetic-informed proteome-wide scan reveals potential causal plasma proteins for idiopathic pulmonary fibrosis. Thorax 2024; 79:878-882. [PMID: 38871465 DOI: 10.1136/thorax-2024-221398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease for which there are no reliable biomarkers or disease-modifying drugs. Here, we integrated human genomics and proteomics to investigate the causal associations between 2769 plasma proteins and IPF. Our Mendelian randomisation analysis identified nine proteins associated with IPF, of which three (FUT3, ADAM15 and USP28) were colocalised. ADAM15 emerged as the top candidate, supported by expression quantitative trait locus analysis in both blood and lung tissue. These findings provide novel insights into the aetiology of IPF and offer translational opportunities in response to the clinical challenges of this devastating disease.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Houpu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Rui Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Ruicheng Gong
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Dan Zhou
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yingjun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Wang F, Zhu M, Luo F. INTEGRIS-IPF: A New Hope for Tomorrow. Am J Respir Crit Care Med 2024; 210:374-375. [PMID: 38990732 PMCID: PMC11351801 DOI: 10.1164/rccm.202407-1295ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Affiliation(s)
- Faping Wang
- Department of Pulmonary and Critical Care Medicine
- State Key Laboratory of Respiratory Health and Multimorbidity
- Laboratory of Pulmonary Immunology and Inflammation
- Frontiers Science Center for Disease-related Molecular Network West China Hospital of Sichuan University Chengdu, People's Republic of China
| | - Min Zhu
- Department of Pulmonary and Critical Care Medicine
- State Key Laboratory of Respiratory Health and Multimorbidity
- Laboratory of Pulmonary Immunology and Inflammation
- Frontiers Science Center for Disease-related Molecular Network West China Hospital of Sichuan University Chengdu, People's Republic of China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine
- State Key Laboratory of Respiratory Health and Multimorbidity
- Laboratory of Pulmonary Immunology and Inflammation
- Frontiers Science Center for Disease-related Molecular Network West China Hospital of Sichuan University Chengdu, People's Republic of China
| |
Collapse
|
10
|
Nishioka Y, Araya J, Tanaka Y, Kumanogoh A. Pathological mechanisms and novel drug targets in fibrotic interstitial lung disease. Inflamm Regen 2024; 44:34. [PMID: 39026335 PMCID: PMC11264521 DOI: 10.1186/s41232-024-00345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Interstitial lung diseases (ILDs) are a diverse group of conditions characterized by inflammation and fibrosis in the lung. In some patients with ILD, a progressive fibrotic phenotype develops, which is associated with an irreversible decline in lung function and a poor prognosis. MAIN BODY The pathological mechanisms that underlie this process culminate in fibroblast activation, proliferation, and differentiation into myofibroblasts, which deposit extracellular matrix proteins and result in fibrosis. Upstream of fibroblast activation, epithelial cell injury and immune activation are known initiators of fibrosis progression, with multiple diverse cell types involved. Recent years have seen an increase in our understanding of the complex and interrelated processes that drive fibrosis progression in ILD, in part due to the advent of single-cell RNA sequencing technology and integrative multiomics analyses. Novel pathological mechanisms have been identified, which represent new targets for drugs currently in clinical development. These include phosphodiesterase 4 inhibitors and other molecules that act on intracellular cyclic adenosine monophosphate signaling, as well as inhibitors of the autotaxin-lysophosphatidic acid axis and α v integrins. Here, we review current knowledge and recent developments regarding the pathological mechanisms that underlie progressive fibrotic ILD, including potential therapeutic targets. CONCLUSION Knowledge of the pathological mechanisms that drive progressive fibrosis in patients with ILD has expanded, with the role of alveolar endothelial cells, the immune system, and fibroblasts better elucidated. Drugs that target novel mechanisms hold promise for expanding the future therapeutic armamentarium for progressive fibrotic ILD.
Collapse
Affiliation(s)
| | - Jun Araya
- The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshiya Tanaka
- University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Wischnewski S, Thäwel T, Ikenaga C, Kocharyan A, Lerma-Martin C, Zulji A, Rausch HW, Brenner D, Thomas L, Kutza M, Wick B, Trobisch T, Preusse C, Haeussler M, Leipe J, Ludolph A, Rosenbohm A, Hoke A, Platten M, Weishaupt JH, Sommer CJ, Stenzel W, Lloyd TE, Schirmer L. Cell type mapping of inflammatory muscle diseases highlights selective myofiber vulnerability in inclusion body myositis. NATURE AGING 2024; 4:969-983. [PMID: 38834884 PMCID: PMC11257986 DOI: 10.1038/s43587-024-00645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
Inclusion body myositis (IBM) is the most prevalent inflammatory muscle disease in older adults with no effective therapy available. In contrast to other inflammatory myopathies such as subacute, immune-mediated necrotizing myopathy (IMNM), IBM follows a chronic disease course with both inflammatory and degenerative features of pathology. Moreover, causal factors and molecular drivers of IBM progression are largely unknown. Therefore, we paired single-nucleus RNA sequencing with spatial transcriptomics from patient muscle biopsies to map cell-type-specific drivers underlying IBM pathogenesis compared with IMNM muscles and noninflammatory skeletal muscle samples. In IBM muscles, we observed a selective loss of type 2 myonuclei paralleled by increased levels of cytotoxic T and conventional type 1 dendritic cells. IBM myofibers were characterized by either upregulation of cell stress markers featuring GADD45A and NORAD or protein degradation markers including RNF7 associated with p62 aggregates. GADD45A upregulation was preferentially seen in type 2A myofibers associated with severe tissue inflammation. We also noted IBM-specific upregulation of ACHE encoding acetylcholinesterase, which can be regulated by NORAD activity and result in functional denervation of myofibers. Our results provide promising insights into possible mechanisms of myofiber degeneration in IBM and suggest a selective type 2 fiber vulnerability linked to genomic stress and denervation pathways.
Collapse
Grants
- R01 AR076390 NIAMS NIH HHS
- U41 HG002371 NHGRI NIH HHS
- European Research Council (DecOmPress ERC StG 950584), German Research Foundation grant (SCHI 1330/2-1, SCHI 1330/4-1, SCHI 1330/6-1, GRK 2727, SPP 2395), Hertie Foundation (P1180016), National Multiple Sclerosis Society (RFA-2203-39300, PA-2002-36405)
- The Myositis Association (90097118)
- German Cancer Aid
- National Human Genome Research Institute (5U41HG002371)
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01-AR076390), Muscular Dystrophy Association (MDA630399), The Peter and Carmen Lucia Buck Foundation, The Peter Frampton Myositis Research Fund
Collapse
Affiliation(s)
- Sven Wischnewski
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Thäwel
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Kocharyan
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Celia Lerma-Martin
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Amel Zulji
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Werner Rausch
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Brenner
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Leonie Thomas
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Kutza
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Brittney Wick
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Tim Trobisch
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | | | - Jan Leipe
- Division of Rheumatology, Department of Medicine V, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | | | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Jochen H Weishaupt
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Clemens J Sommer
- Institute for Neuropathology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
12
|
Enomoto T, Shirai Y, Takeda Y, Edahiro R, Shichino S, Nakayama M, Takahashi-Itoh M, Noda Y, Adachi Y, Kawasaki T, Koba T, Futami Y, Yaga M, Hosono Y, Yoshimura H, Amiya S, Hara R, Yamamoto M, Nakatsubo D, Suga Y, Naito M, Masuhiro K, Hirata H, Iwahori K, Nagatomo I, Miyake K, Koyama S, Fukushima K, Shiroyama T, Naito Y, Futami S, Natsume-Kitatani Y, Nojima S, Yanagawa M, Shintani Y, Nogami-Itoh M, Mizuguchi K, Adachi J, Tomonaga T, Inoue Y, Kumanogoh A. SFTPB in serum extracellular vesicles as a biomarker of progressive pulmonary fibrosis. JCI Insight 2024; 9:e177937. [PMID: 38855869 PMCID: PMC11382876 DOI: 10.1172/jci.insight.177937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Progressive pulmonary fibrosis (PPF), defined as the worsening of various interstitial lung diseases (ILDs), currently lacks useful biomarkers. To identify novel biomarkers for early detection of patients at risk of PPF, we performed a proteomic analysis of serum extracellular vesicles (EVs). Notably, the identified candidate biomarkers were enriched for lung-derived proteins participating in fibrosis-related pathways. Among them, pulmonary surfactant-associated protein B (SFTPB) in serum EVs could predict ILD progression better than the known biomarkers, serum KL-6 and SP-D, and it was identified as an independent prognostic factor from ILD-gender-age-physiology index. Subsequently, the utility of SFTPB for predicting ILD progression was evaluated further in 2 cohorts using serum EVs and serum, respectively, suggesting that SFTPB in serum EVs but not in serum was helpful. Among SFTPB forms, pro-SFTPB levels were increased in both serum EVs and lungs of patients with PPF compared with those of the control. Consistently, in a mouse model, the levels of pro-SFTPB, primarily originating from alveolar epithelial type 2 cells, were increased similarly in serum EVs and lungs, reflecting pro-fibrotic changes in the lungs, as supported by single-cell RNA sequencing. SFTPB, especially its pro-form, in serum EVs could serve as a biomarker for predicting ILD progression.
Collapse
Affiliation(s)
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology and
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology and
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology and
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mana Nakayama
- Department of Respiratory Medicine and Clinical Immunology and
| | | | - Yoshimi Noda
- Department of Respiratory Medicine and Clinical Immunology and
| | - Yuichi Adachi
- Department of Respiratory Medicine and Clinical Immunology and
| | | | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology and
| | - Yu Futami
- Department of Respiratory Medicine and Clinical Immunology and
- Department of Respiratory Medicine, Kinki Central Hospital of the Mutual Aid Association of Public School Teachers, Itami, Hyogo, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology and
| | - Yuki Hosono
- Department of Respiratory Medicine and Clinical Immunology and
| | | | - Saori Amiya
- Department of Respiratory Medicine and Clinical Immunology and
| | - Reina Hara
- Department of Respiratory Medicine and Clinical Immunology and
| | - Makoto Yamamoto
- Department of Respiratory Medicine and Clinical Immunology and
| | | | - Yasuhiko Suga
- Department of Respiratory Medicine and Clinical Immunology and
| | - Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology and
| | | | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology and
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology and
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology and
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology and
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology and
| | | | | | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology and
| | - Shinji Futami
- Department of Respiratory Medicine and Clinical Immunology and
| | - Yayoi Natsume-Kitatani
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu, Osaka, Japan
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | | | | | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mari Nogami-Itoh
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu, Osaka, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu, Osaka, Japan
- Laboratory for Computational Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Proteobiologics Co., Ltd., Minoh, Osaka, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, NHO Kinki Chuo Chest Medical Center, Sakai, Osaka, Japan
- Osaka Anti-tuberculosis Association, Osaka Fukujuji Hospital, Neyagawa, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology and
- Center for Infectious Diseases for Education and Research (CiDER)
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI)
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC); and
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
van der Sar IG, Wijsenbeek MS, Dumoulin DW, Jager A, van der Veldt AAM, Rossius MJP, Dingemans AMC, Moor CC. Detection of Drug-induced Interstitial Lung Disease Caused by Cancer Treatment Using Electronic Nose Exhaled Breath Analysis. Ann Am Thorac Soc 2024; 21:989-992. [PMID: 38526585 DOI: 10.1513/annalsats.202401-112rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Affiliation(s)
| | | | | | - Agnes Jager
- Erasmus University Medical Center Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Naqvi M, Hannah J, Lawrence A, Myall K, West A, Chaudhuri N. Antifibrotic therapy in progressive pulmonary fibrosis: a review of recent advances. Expert Rev Respir Med 2024; 18:397-407. [PMID: 39039699 DOI: 10.1080/17476348.2024.2375420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Progressive pulmonary fibrosis (PPF) is a manifestation of a heterogenous group of underlying interstitial lung disease (ILD) diagnoses, defined as non-idiopathic pulmonary fibrosis (IPF) progressive fibrotic ILD meeting at least two of the following criteria in the previous 12 months: worsening respiratory symptoms, absolute decline in forced vital capacity (FVC) more than or equal to 5% and/or absolute decline in diffusing capacity for carbon monoxide (DLCO) more than or equal to 10% and/or radiological progression. AREAS COVERED The authors subjectively reviewed a synthesis of literature from PubMed to identify recent advances in the diagnosis and characterisation of PPF, treatment recommendations, and management challenges. This review provides a comprehensive summary of recent advances and highlights future directions for the diagnosis, management, and treatment of PPF. EXPERT OPINION Recent advances in defining the criteria for PPF diagnosis and licensing of treatment are likely to support further characterisation of the PPF patient population and improve our understanding of prevalence. The diagnosis of PPF remains challenging with the need for a specialised ILD multidisciplinary team (MDT) approach. The evidence base supports the use of immunomodulatory therapy to treat inflammatory ILDs and antifibrotic therapy where PPF develops. Treatment needs to be tailored to the specific underlying disease and determined on a case-by-case basis.
Collapse
Affiliation(s)
- Marium Naqvi
- Guy's and St Thomas' NHS Trust, Guy's Hospital, London, UK
| | - Jennifer Hannah
- Department of Rheumatology, Kings' College Hospitals NHS Trust, Orpington Hospital, Orpington, UK
| | | | - Katherine Myall
- Department of Respiratory Medicine, King's College London, London, UK
| | - Alex West
- Guy's and St Thomas' NHS Trust, Guy's Hospital, London, UK
| | - Nazia Chaudhuri
- Department of Health and Life Sciences, School of Medicine, Ulster University, Derry-Londonderry, UK
| |
Collapse
|
15
|
Kang HK, Song JW. Progressive Pulmonary Fibrosis: Where Are We Now? Tuberc Respir Dis (Seoul) 2024; 87:123-133. [PMID: 38111100 PMCID: PMC10990610 DOI: 10.4046/trd.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Interstitial lung diseases (ILDs) are a diverse collection of lung disorders sharing similar features, such as inflammation and fibrosis. The diagnosis and management of ILD require a multidisciplinary approach using clinical, radiological, and pathological evaluation. Progressive pulmonary fibrosis (PPF) is a distinct form of progressive and fibrotic disease, occurring in ILD cases other than in idiopathic pulmonary fibrosis (IPF). It is defined based on clinical symptoms, lung function, and chest imaging, regardless of the underlying condition. The progression to PPF must be monitored through a combination of pulmonary function tests (forced vital capacity [FVC] and diffusing capacity of the lung for carbon monoxide), an assessment of symptoms, and computed tomography scans, with regular follow-up. Although the precise mechanisms of PPF remain unclear, there is evidence of shared pathogenetic mechanisms with IPF, contributing to similar disease behavior and worse prognosis compared to non-PPF ILD. Pharmacological treatment of PPF includes immunomodulatory agents to reduce inflammation and the use of antifibrotics to target progressive fibrosis. Nintedanib, a known antifibrotic agent, was found to be effective in slowing IPF progression and reducing the annual rate of decline in FVC among patients with PPF compared to placebos. Nonpharmacological treatment, including pulmonary rehabilitation, supplemental oxygen therapy, and vaccination, also play important roles in the management of PPF, leading to comprehensive care for patients with ILD. Although there is currently no cure for PPF, there are treatments that can help slow the progression of the disease and improve quality of life.
Collapse
Affiliation(s)
- Hyung Koo Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Li Y, Jiang C, Zhu W, Lu S, Yu H, Meng L. Exploring therapeutic targets for molecular therapy of idiopathic pulmonary fibrosis. Sci Prog 2024; 107:368504241247402. [PMID: 38651330 PMCID: PMC11036936 DOI: 10.1177/00368504241247402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive interstitial lung disease with a poor prognosis. Idiopathic pulmonary fibrosis is characterized by repeated alveolar epithelial damage leading to abnormal repair. The intercellular microenvironment is disturbed, leading to continuous activation of fibroblasts and myofibroblasts, deposition of extracellular matrix, and ultimately fibrosis. Moreover, pulmonary fibrosis was also found as a COVID-19 complication. Currently, two drugs, pirfenidone and nintedanib, are approved for clinical therapy worldwide. However, they can merely slow the disease's progression rather than rescue it. These two drugs have other limitations, such as lack of efficacy, adverse effects, and poor pharmacokinetics. Consequently, a growing number of molecular therapies have been actively developed. Treatment options for IPF are becoming increasingly available. This article reviews the research platform, including cell and animal models involved in molecular therapy studies of idiopathic pulmonary fibrosis as well as the promising therapeutic targets and their development progress during clinical trials. The former includes patient case/control studies, cell models, and animal models. The latter includes transforming growth factor-beta, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, lysophosphatidic acid, interleukin-13, Rho-associated coiled-coil forming protein kinase family, and Janus kinases/signal transducers and activators of transcription pathway. We mainly focused on the therapeutic targets that have not only entered clinical trials but were publicly published with their clinical outcomes. Moreover, this work provides an outlook on some promising targets for further validation of their possibilities to cure the disease.
Collapse
Affiliation(s)
- Yue Li
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- First Department of Respiratory Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Congshan Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Shemin Lu
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Hongchuan Yu
- First Department of Respiratory Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
17
|
Huang H, Wang Q, Xu Z. Advances in the identification and management of progressive pulmonary fibrosis: perspective from Chinese experts. Ther Adv Respir Dis 2024; 18:17534666241288417. [PMID: 39415340 PMCID: PMC11489892 DOI: 10.1177/17534666241288417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
Fibrosing interstitial lung diseases (FILDs) other than idiopathic pulmonary fibrosis (IPF) can develop into progressive pulmonary fibrosis (PPF) despite initial management. A substantial proportion of patients with non-IPF interstitial lung diseases (ILDs) progress to PPF, including connective tissue disease-associated ILD (such as rheumatoid arthritis-associated ILD, systemic sclerosis-associated ILD, and idiopathic inflammatory myositis-associated ILD), fibrosing hypersensitivity pneumonitis, and fibrosing occupational ILD. The concept of PPF emerged only recently and several studies have confirmed the impact of PPF on mortality. In addition to poor prognosis among patients with PPF, there remains a lack of consensus in the diagnosis and treatment of PPF across different types of ILDs. There is a need to raise awareness of PPF in FILDs and to explore measures to improve PPF diagnosis and treatment, which in turn could potentially reduce the progression from FILD to PPF. This review discusses the disease burden of PPF and recent advances in the management of PPF among patients with ILDs, including antifibrotic medications that have emerged as promising treatment options. Additionally, this review highlights the perspectives of expert Chinese physicians with regard to their experience in managing PPF in clinical practice.
Collapse
Affiliation(s)
- Hui Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zuojun Xu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Street, Dongcheng District, Beijing 100730, China
| |
Collapse
|
18
|
Okamoto M, Fujimoto K, Johkoh T, Kawaguchi A, Mukae H, Sakamoto N, Ogura T, Ikeda S, Kondoh Y, Yamano Y, Komiya K, Umeki K, Nishikiori H, Tanino Y, Tsuda T, Arai N, Komatsu M, Sakamoto S, Yatera K, Inoue Y, Miyazaki Y, Hashimoto S, Shimizu Y, Hozumi H, Ohnishi H, Handa T, Hattori N, Kishaba T, Kato M, Inomata M, Ishii H, Hamada N, Konno S, Zaizen Y, Azuma A, Suda T, Izuhara K, Hoshino T. A prospective cohort study of periostin as a serum biomarker in patients with idiopathic pulmonary fibrosis treated with nintedanib. Sci Rep 2023; 13:22977. [PMID: 38151520 PMCID: PMC10752870 DOI: 10.1038/s41598-023-49180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
This study investigated the utility of periostin, a matricellular protein, as a prognostic biomarker in patients with idiopathic pulmonary fibrosis (IPF) who received nintedanib. Monomeric and total periostin levels were measured by enzyme-linked immunosorbent assay in 87 eligible patients who participated in a multicenter prospective study. Forty-three antifibrotic drug-naive patients with IPF described in previous studies were set as historical controls. Monomeric and total periostin levels were not significantly associated with the change in forced vital capacity (FVC) or diffusing capacity of the lungs for carbon monoxide (DLCO) during any follow-up period. Higher monomeric and total periostin levels were independent risk factors for overall survival in the Cox proportional hazard model. In the analysis of nintedanib effectiveness, higher binarized monomeric periostin levels were associated with more favorable suppressive effects on decreased vital capacity (VC) and DLCO in the treatment group compared with historical controls. Higher binarized levels of total periostin were associated with more favorable suppressive effects on decreased DLCO but not VC. In conclusion, higher periostin levels were independently associated with survival and better therapeutic effectiveness in patients with IPF treated with nintedanib. Periostin assessments may contribute to determining therapeutic strategies for patients with IPF.
Collapse
Affiliation(s)
- Masaki Okamoto
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
- Department of Respirology, NHO Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-0065, Japan.
| | - Kiminori Fujimoto
- Department of Radiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Takeshi Johkoh
- Department of Radiology, Kansai Rosai Hospital, Inabasou 3-1-69, Amagasaki, Hyogo, 660-0064, Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takashi Ogura
- Division of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomiokahigashi, Yokohama, Kanagawa-ku, Kanagawa, 236-0051, Japan
| | - Satoshi Ikeda
- Division of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomiokahigashi, Yokohama, Kanagawa-ku, Kanagawa, 236-0051, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake, Seto, Aichi, 489-0065, Japan
| | - Yasuhiko Yamano
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake, Seto, Aichi, 489-0065, Japan
| | - Kosaku Komiya
- Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Kenji Umeki
- Department of Respiratory Medicine, Tenshindo Hetsugi Hospital, 5956 Nakahetsugi, Oita, 879-7761, Japan
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1-West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Toru Tsuda
- Kirigaoka Tsuda Hospital, 3-9-20 Kirigaoka, Kitakyushu, Fukuoka, 802-0052, Japan
| | - Naoki Arai
- Department of Respiratory Medicine, National Hospital Organization Ibarakihigashi National Hospital, 825 Terunuma, Tokai-mura, Ibaraki, 319-1113, Japan
| | - Masamichi Komatsu
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Susumu Sakamoto
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1 Omorinishi, Tokyo, 143-8541, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Sakai, Osaka, 591-8555, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, 113-8510, Japan
| | - Seishu Hashimoto
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho, Tenri, Nara, 632-8552, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi, 321-0293, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hiroshi Ohnishi
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University, 185-1 Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Tomohiro Handa
- Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomoo Kishaba
- Department of Respiratory Medicine, Okinawa Chubu Hospital, 281 Miyazato, Uruma, Okinawa, 904-2293, Japan
| | - Motoyasu Kato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Tokyo, 113-8421, Japan
| | - Minoru Inomata
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Tokyo, 150-8935, Japan
| | - Hiroshi Ishii
- Department of Respiratory Medicine, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyouin, Chikushino, Fukuoka, 818-8502, Japan
| | - Naoki Hamada
- Department of Respiratory Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Fukuoka, 814-0180, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoshiaki Zaizen
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Arata Azuma
- Respirology and Clinical Research Center, Mihara General Hospital and Nippon Medical School, Tokorozawa, Saitama, 359-0045, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
19
|
Koudstaal T, Funke-Chambour M, Kreuter M, Molyneaux PL, Wijsenbeek MS. Pulmonary fibrosis: from pathogenesis to clinical decision-making. Trends Mol Med 2023; 29:1076-1087. [PMID: 37716906 DOI: 10.1016/j.molmed.2023.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/18/2023]
Abstract
Pulmonary fibrosis (PF) encompasses a spectrum of chronic lung diseases that progressively impact the interstitium, resulting in compromised gas exchange, breathlessness, diminished quality of life (QoL), and ultimately respiratory failure and mortality. Various diseases can cause PF, with their underlying causes primarily affecting the lung interstitium, leading to their referral as interstitial lung diseases (ILDs). The current understanding is that PF arises from abnormal wound healing processes triggered by various factors specific to each disease, leading to excessive inflammation and fibrosis. While significant progress has been made in understanding the molecular mechanisms of PF, its pathogenesis remains elusive. This review provides an in-depth exploration of the latest insights into PF pathophysiology, diagnosis, treatment, and future perspectives.
Collapse
Affiliation(s)
- Thomas Koudstaal
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Departments of Pneumology, Mainz University Medical Center and of Pulmonary, Critical Care & Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Philip L Molyneaux
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Marlies S Wijsenbeek
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Murgo A, Bignami F, Federico G, Villetti G, Civelli M, Sala A, Miglietta D. Harnessing the translational power of bleomycin model: new insights to guide drug discovery for idiopathic pulmonary fibrosis. Front Pharmacol 2023; 14:1303646. [PMID: 38099140 PMCID: PMC10719847 DOI: 10.3389/fphar.2023.1303646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, age-related interstitial lung disease (ILD) with limited therapeutic options. Despite the wide variety of different in vivo models for IPF, these preclinical models have shown limitations that may significantly impair their translational potential. Among the most relevant limitations are the methodologies used to assess the efficacy of anti-fibrotic treatments, that are not the ones used in humans. In this scenario, the goal of the work presented in this paper is to provide translational relevance to the bleomycin (BLM)-induced pulmonary fibrosis mouse model, introducing and validating novel readouts to evaluate the efficacy of treatments for IPF. Methods: The BLM model was optimized by introducing the use of functional assessments such as the Forced Vital Capacity (FVC) and the Diffusion Factor for Carbon Monoxide (DFCO), that are respectively the primary and secondary endpoints in clinical trials for IPF, comparing them to more common readouts such as lung histology, improved by the application of Artificial Intelligence (AI) to detect and quantify fibrotic tissue deposition, and metalloproitenase-7 (MMP-7), a clinical prognostic biomarker. Results: Lung function measurement and DFCO changes well correlated with Ashcroft score, the current gold-standard for the assessment of pulmonary fibrosis in mice. The relevance and robustness of these novel readouts in the BLM model was confirmed by the results obtained testing Nintedanib and Pirfenidone, the only drugs approved for the treatment of IPF patients: in fact, both drugs administered therapeutically, significantly affected the changes in these parameters induced by BLM treatment, with results that closely reflected the efficacy observed in the clinic. Changes in biomarkers such as MMP-7 were also evaluated, and well correlated with the modifications of FVC and DFCO. Conclusion: Novel functional readouts such as FVC and DFCO can be efficiently used to assess pathology progression in the BLM-induced pulmonary fibrosis mouse model as well as compound efficacy, substantially improving its translational and predictivity potential.
Collapse
Affiliation(s)
- Annalisa Murgo
- Global Research and Early Development, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Fabio Bignami
- Global Research and Early Development, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Giuseppina Federico
- Global Research and Early Development, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Gino Villetti
- Global Research and Early Development, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Maurizio Civelli
- Global Research and Early Development, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Angelo Sala
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Daniela Miglietta
- Global Research and Early Development, Chiesi Farmaceutici S.p.A., Parma, Italy
| |
Collapse
|
21
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
22
|
Wu T, Wu S, Jiao H, Feng J, Zeng X. Overexpression of hsa_circ_0001861 inhibits pulmonary fibrosis through targeting miR-296-5p/BCL-2 binding component 3 axis. Eur J Histochem 2023; 67:3839. [PMID: 37781863 PMCID: PMC10614724 DOI: 10.4081/ejh.2023.3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Pulmonary fibrosis is a progressive lung disorder. Evidence has shown that hsa_circular (circ)RNA_0001861 is dysregulated in pulmonary fibrosis. However, the detailed function of hsa_circRNA_0001861 in pulmonary fibrosis remains unexplored. To investigate the function of hsa_circRNA_0001861 in pulmonary fibrosis, human pulmonary fibroblasts in vitro were used, and cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining were performed to assess cell viability and proliferation, respectively. Western blot analysis and reverse transcription-quantitative PCR (RT-qPCR) were used to evaluate protein and mRNA levels. Meanwhile, the relationship among hsa_circRNA_0001861, miR-296-5p and BCL-2 binding component 3 (BBC3) was investigated by RNA pull-down assays. Furthermore, an in vivo model of lung fibrosis was constructed to assess the function of hsa_circRNA_0001861 in lung fibrosis. The data revealed that TGF‑β1 significantly increased the proliferation of pulmonary fibroblasts, while this phenomenon was markedly abolished by hsa_circRNA_0001861 overexpression. hsa_circRNA_0001861 overexpression markedly inhibited TGF‑β1‑induced fibrosis in pulmonary fibroblasts through the mediation of α-smooth muscle actin, E-cadherin, collagen III and fibronectin 1. Meanwhile, hsa_circRNA_0001861 could bind with miR-296-5p, and BBC3 was identified to be the downstream mRNA of miR-296-5p. In addition, the upregulation of hsa_circRNA_0001861 clearly reversed TGF‑β1‑induced fibrosis and proliferation in pulmonary fibroblasts through the upregulation of BBC3. Furthermore, hsa_circRNA_0001861 upregulation markedly alleviated pulmonary fibrosis in vivo. Hsa_circRNA_0001861 upregulation attenuated pulmonary fibrosis by modulating the miR-296-5p/BBC3 axis. Hence, the present study may provide some insights for the discovery of new methods against pulmonary fibrosis.
Collapse
Affiliation(s)
- Tao Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Shikui Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Hailu Jiao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Jun Feng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Xiang Zeng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| |
Collapse
|
23
|
Shih PC, Chang SH, Huo AP, Wei JCC. Navigating the maze of treatment strategies for RA-ILD: Insights and innovations for better patient outcomes. Int J Rheum Dis 2023; 26:1899-1903. [PMID: 37807614 DOI: 10.1111/1756-185x.14830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 10/10/2023]
Affiliation(s)
- Po-Cheng Shih
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
- Department of Allergy, Immunology & Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Hao Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Cheng Ching Hospital, Taichung, Taiwan
| | - An-Ping Huo
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
24
|
Stoian M, Roman A, Boeriu A, Onișor D, Bandila SR, Babă DF, Cocuz I, Niculescu R, Costan A, Laszlo SȘ, Corău D, Stoian A. Long-Term Radiological Pulmonary Changes in Mechanically Ventilated Patients with Respiratory Failure due to SARS-CoV-2 Infection. Biomedicines 2023; 11:2637. [PMID: 37893011 PMCID: PMC10604756 DOI: 10.3390/biomedicines11102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
From the first reports of SARS-CoV-2, at the end of 2019 to the present, the global mortality associated with COVID-19 has reached 6,952,522 deaths as reported by the World Health Organization (WHO). Early intubation and mechanical ventilation can increase the survival rate of critically ill patients. This prospective study was carried out on 885 patients in the ICU of Mureș County Clinical Hospital, Romania. After applying inclusion and exclusion criteria, a total of 54 patients were included. Patients were monitored during hospitalization and at 6-month follow-up. We analyzed the relationship between invasive mechanical ventilation (IMV) and non-invasive mechanical ventilation (NIMV) and radiological changes on thoracic CT scans performed at 6-month follow-up and found no significant association. Regarding paraclinical analysis, there was a statistically significant association between patients grouped by IMV and ferritin level on day 1 of admission (p = 0.034), and between patients grouped by PaO2/FiO2 ratio with metabolic syndrome (p = 0.03) and the level of procalcitonin (p = 0.01). A significant proportion of patients with COVID-19 admitted to the ICU developed pulmonary fibrosis as observed at a 6-month evaluation. Patients with oxygen supplementation or mechanical ventilation require dynamic monitoring and radiological investigations, as there is a possibility of long-term pulmonary fibrosis that requires pharmacological interventions and finding new therapeutic alternatives.
Collapse
Affiliation(s)
- Mircea Stoian
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540139 Targu Mures, Romania;
| | - Adina Roman
- Gastroenterology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540142 Targu Mures, Romania; (A.B.); (D.O.)
| | - Alina Boeriu
- Gastroenterology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540142 Targu Mures, Romania; (A.B.); (D.O.)
| | - Danusia Onișor
- Gastroenterology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540142 Targu Mures, Romania; (A.B.); (D.O.)
| | - Sergio Rareș Bandila
- Orthopedic Surgery and Traumatology Service, Marina Baixa Hospital, Av. Alcade En Jaume Botella Mayor, 03570 Villajoyosa, Spain;
| | - Dragoș Florin Babă
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540142 Targu Mures, Romania;
| | - Iuliu Cocuz
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540136 Targu Mures, Romania; (I.C.); (R.N.); (A.S.)
| | - Raluca Niculescu
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540136 Targu Mures, Romania; (I.C.); (R.N.); (A.S.)
| | - Anamaria Costan
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540142 Targu Mures, Romania;
| | - Sergiu Ștefan Laszlo
- Intensive Care Unit, Mureș County Hospital, Street Gheorghe Marinescu no 1, 540136 Targu Mures, Romania;
| | - Dragoș Corău
- Intensive Care Unit, Mureș County Hospital, Street Gheorghe Marinescu no 1, 540136 Targu Mures, Romania;
| | - Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540136 Targu Mures, Romania; (I.C.); (R.N.); (A.S.)
| |
Collapse
|
25
|
Singer D, Chastek B, Sargent A, Johnson JC, Shetty S, Conoscenti C, Bernstein EJ. Impact of chronic fibrosing interstitial lung disease on healthcare use: association between fvc decline and inpatient hospitalization. BMC Pulm Med 2023; 23:337. [PMID: 37689630 PMCID: PMC10492374 DOI: 10.1186/s12890-023-02637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Many types of interstitial lung diseases (ILDs) may transition to progressive chronic-fibrosing ILDs with rapid lung function decline and a negative survival prognosis. In real-world clinical settings, forced vital capacity (FVC) measures demonstrating progressive decline may be linked to negative outcomes, including increased risks of costly healthcare resource utilization (HRU). Thus, we assessed the relationship between rate of decline in lung function and an increase in HRU, specifically inpatient hospitalization, among patients with chronic fibrosing ILD. METHODS This study utilized electronic health records from 01-Oct-2015 to 31-Oct-2019. Eligible patients (≥ 18 years old) had ≥ 2 fibrosing ILD diagnosis codes, clinical activity for ≥ 15 months, and ≥ 2 FVC tests occurring 6 months apart. Patients with missing demographic data, IPF, or use of nintedanib or pirfenidone were excluded. Two groups were defined by relative change in percent of predicted FVC (FVC% pred) from baseline to 6 months: significant decline (≥ 10%) vs. marginal decline/stable FVC (decrease < 10% or increase). The primary outcome was defined as the occurrence of an inpatient hospitalization 6 months after the first FVC value. Descriptive and multivariable analysis was conducted to examine the impact of FVC decline on occurrence of inpatient hospitalization. RESULTS The sample included 566 patients: 13% (n = 75) with significant decline and 87% (n = 491) with marginal decline/stable FVC; their mean age (SD) was 65 (13.7) years and 56% were female. Autoimmune diagnoses were observed among 40% of patients with significant decline, and 27% with marginal decline/stable FVC. The significant decline group had better lung function at baseline than the marginal/stable group. For patients with FVC% <80% at baseline, reduction of FVC% ≥10% was associated with significantly increased odds of an inpatient hospitalization (odds ratio [OR] 2.85; confidence interval [CI] 1.17, 6.94 [p = 0.021]). CONCLUSION Decline in FVC% ≥10% was associated with increased odds of inpatient hospitalization among patients with reduced lung function at baseline. These findings support the importance of preserving lung function among patients with fibrosing ILD.
Collapse
Affiliation(s)
- David Singer
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT USA
| | - Benjamin Chastek
- Optum, Health Economics and Outcomes Research, Eden Prairie, MN USA
| | - Andrew Sargent
- Optum, Health Economics and Outcomes Research, Eden Prairie, MN USA
| | | | - Sharash Shetty
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT USA
| | | | | |
Collapse
|
26
|
Mulet A, Tarrasó J, Rodríguez-Borja E, Carbonell-Asins JA, Lope-Martínez A, Martí-Martinez A, Murria R, Safont B, Fernandez-Fabrellas E, Ros JA, Rodriguez-Portal JA, Andreu AL, Soriano JB, Signes-Costa J. Biomarkers of Fibrosis in Patients with COVID-19 One Year After Hospital Discharge: A Prospective Cohort Study. Am J Respir Cell Mol Biol 2023; 69:321-327. [PMID: 36848314 PMCID: PMC10503307 DOI: 10.1165/rcmb.2022-0474oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Beyond the acute infection of coronavirus disease (COVID-19), concern has arisen about long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The aim of our study was to analyze if there is any biomarker of fibrogenesis in patients with COVID-19 pneumonia capable of predicting post-COVID-19 pulmonary sequelae. We conducted a multicenter, prospective, observational cohort study of patients admitted to a hospital with bilateral COVID-19 pneumonia. We classified patients into two groups according to severity, and blood sampling to measure matrix metalloproteinase 1 (MMP-1), MMP-7, periostin, and VEGF and respiratory function tests and high-resolution computed tomography were performed at 2 and 12 months after hospital discharge. A total of 135 patients were evaluated at 12 months. Their median age was 61 (interquartile range, 19) years, and 58.5% were men. We found between-group differences in age, radiological involvement, length of hospital stay, and inflammatory laboratory parameters. Differences were found between 2 and 12 months in all functional tests, including improvements in predicted forced vital capacity (98.0% vs. 103.9%; P = 0.001) and DlCO <80% (60.9% vs. 39.7%; P = 0.001). At 12 months, 63% of patients had complete high-resolution computed tomography resolution, but fibrotic changes persisted in 29.4%. Biomarker analysis demonstrated differences at 2 months in periostin (0.8893 vs. 1.437 ng/ml; P < 0.001) and MMP-7 (8.7249 vs. 15.2181 ng/ml; P < 0.001). No differences were found at 12 months. In multivariable analysis, only 2-month periostin was associated with 12-month fibrotic changes (odds ratio, 1.0013; 95% confidence interval, 1.0006-1.00231; P = 0.003) and 12-month DlCO impairment (odds ratio, 1.0006; 95% confidence interval, 1.0000-1.0013; P = 0.047). Our data suggest that early periostin postdischarge could predict the presence of fibrotic pulmonary changes.
Collapse
Affiliation(s)
- Alba Mulet
- Pulmonary Department, Hospital Clínico, and
| | | | - Enrique Rodríguez-Borja
- Laboratory of Biochemistry and Molecular Pathology, Hospital Clínico de Valencia, Valencia, Spain
| | | | - Amaia Lope-Martínez
- Laboratory of Biochemistry and Molecular Pathology, Hospital Clínico de Valencia, Valencia, Spain
| | - Arancha Martí-Martinez
- Laboratory of Biochemistry and Molecular Pathology, Hospital Clínico de Valencia, Valencia, Spain
| | - Rosa Murria
- Laboratory of Biochemistry and Molecular Pathology, Hospital Clínico de Valencia, Valencia, Spain
| | | | | | - José A. Ros
- Pulmonary Department, Hospital Virgen de la Arrixaca, Murcia, Spain
| | | | - Ada L. Andreu
- Pulmonary Department, Hospital los Arcos del Mar Menor, Murcia, Spain; and
| | - Joan B. Soriano
- Pulmonary Department, Hospital de La Princesa, Universidad Autónoma, Madrid, Spain
| | | |
Collapse
|
27
|
Duong-Quy S, Vo-Pham-Minh T, Tran-Xuan Q, Huynh-Anh T, Vo-Van T, Vu-Tran-Thien Q, Nguyen-Nhu V. Post-COVID-19 Pulmonary Fibrosis: Facts-Challenges and Futures: A Narrative Review. Pulm Ther 2023; 9:295-307. [PMID: 37209374 PMCID: PMC10199290 DOI: 10.1007/s41030-023-00226-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) usually suffer from post-acute sequelae of coronavirus disease 2019 (PASC). Pulmonary fibrosis (PF) has the most significant long-term impact on patients' respiratory health, called post-COVID-19 pulmonary fibrosis (PC19-PF). PC19- PF can be caused by acute respiratory distress syndrome (ARDS) or pneumonia due to COVID-19. The risk factors of PC19-PF, such as older age, chronic comorbidities, the use of mechanical ventilation during the acute phase, and female sex, should be considered. Individuals with COVID-19 pneumonia symptoms lasting at least 12 weeks following diagnosis, including cough, dyspnea, exertional dyspnea, and poor saturation, accounted for nearly all disease occurrences. PC19-PF is characterized by persistent fibrotic tomographic sequelae associated with functional impairment throughout follow-up. Thus, clinical examination, radiology, pulmonary function tests, and pathological findings should be done to diagnose PC19-PF patients. PFT indicated persistent limitations in diffusion capacity and restrictive physiology, despite the absence of previous testing and inconsistency in the timeliness of assessments following acute illness. It has been hypothesized that PC19-PF patients may benefit from idiopathic pulmonary fibrosis treatment to prevent continued infection-related disorders, enhance the healing phase, and manage fibroproliferative processes. Immunomodulatory agents might reduce inflammation and the length of mechanical ventilation during the acute phase of COVID-19 infection, and the risk of the PC19-PF stage. Pulmonary rehabilitation, incorporating exercise training, physical education, and behavioral modifications, can improve the physical and psychological conditions of patients with PC19-PF.
Collapse
Affiliation(s)
- Sy Duong-Quy
- Clinical Research Unit, Lam Dong Medical College and Bio-Medical Research Centre, Dalat, Vietnam
- Immuno-Allergology Division, Hershey Medical Center, Penn State Medical College, State College, PA, USA
- Outpatient Department, Pham Ngoc Thach Medical University, Ho Chi Minh City, Vietnam
- Department of Respiratory Functional Exploration, University Medical Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thu Vo-Pham-Minh
- Department of Internal Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Quynh Tran-Xuan
- Department of Internal Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Tuan Huynh-Anh
- Department of Respiratory Diseases, Hoan My Cuu Long Hospital, Can Tho, Vietnam
| | - Tinh Vo-Van
- Outpatient Department, Pham Ngoc Thach Medical University, Ho Chi Minh City, Vietnam
| | - Quan Vu-Tran-Thien
- Department of Respiratory Functional Exploration, University Medical Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vinh Nguyen-Nhu
- Department of Respiratory Functional Exploration, University Medical Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
28
|
Lederer C, Mayer K, Somogyi V, Kriegsmann K, Kriegsmann M, Buschulte K, Polke M, Findeisen P, Herth F, Kreuter M. Krebs von den Lungen-6 as a Potential Predictive Biomarker in Fibrosing Interstitial Lung Diseases. Respiration 2023; 102:591-600. [PMID: 37586349 DOI: 10.1159/000531945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND As fibrosing interstitial lung diseases (fILDs) are associated with high mortality, monitoring of disease activity under treatment is highly relevant. Krebs von den Lungen-6 (KL-6) is associated with the presence and severity of different fILDs, mainly in Asian patient populations. OBJECTIVES Our aim was to evaluate KL-6 as a predictive biomarker in fILDs in Caucasian patients. METHODS Consecutive patients with fILDs were recruited prospectively and serum concentrations of KL-6 were measured at baseline (BL), after 6 and 12 months (6 Months, 12 Months). Clinical characteristics including pulmonary function tests were assessed at 6-monthly visits and correlated with KL-6 BL levels as well as with KL-6 level changes. RESULTS A total of 47 fILD patients were included (mean age: 65 years, 68% male). KL-6 levels at BL were significantly higher in fILD patients than in healthy controls (n = 44, mean age: 45, 23% male) (ILD: 1,757 ± 1960 U/mL vs. control: 265 ± 107 U/mL, p < 0.0001). However, no differences were noted between ILD subgroups. KL-6 decreased significantly under therapy (6M∆BL-KL6: -486 ± 1,505 mean U/mL, p = 0.032; 12M∆BL-KL6: -547 ± 1,782 mean U/mL, p = 0.041) and KL-6 level changes were negatively correlated with changes in pulmonary function parameters (forced vital capacity [FVC]: r = -0.562, p < 0.0001; DLCOSB: r = -0.405, p = 0.013). While neither absolute KL-6 levels at BL nor KL-6 level changes were associated with ILD progression (FVC decline ≥10%, DLCOSB decline ≥15% or death), patients with a stable FVC showed significantly decreasing KL-6 levels (p = 0.022). CONCLUSIONS A decline of KL-6 under therapy correlated with a clinically relevant stabilization of lung function. Thus, KL-6 might serve as a predictive biomarker, which however must be determined by larger prospective cohorts.
Collapse
Affiliation(s)
- Christoph Lederer
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik Heidelberg, University Hospital Heidelberg and German Center for Lung Research (DZL), Heidelberg, Germany,
| | - Katharina Mayer
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik Heidelberg, University Hospital Heidelberg and German Center for Lung Research (DZL), Heidelberg, Germany
| | - Vivien Somogyi
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik Heidelberg, University Hospital Heidelberg and German Center for Lung Research (DZL), Heidelberg, Germany
- Mainz Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center and Department of Pulmonary, Critical Care & Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidleberg, Heidelberg, Germany
| | - Mark Kriegsmann
- Department of Pathology, University Hospital Heidelberg, Germany and Pathology Wiesbaden, Wiesbaden, Germany
| | - Katharina Buschulte
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik Heidelberg, University Hospital Heidelberg and German Center for Lung Research (DZL), Heidelberg, Germany
| | - Markus Polke
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik Heidelberg, University Hospital Heidelberg and German Center for Lung Research (DZL), Heidelberg, Germany
| | | | - Felix Herth
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik Heidelberg, University Hospital Heidelberg and German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik Heidelberg, University Hospital Heidelberg and German Center for Lung Research (DZL), Heidelberg, Germany
- Mainz Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center and Department of Pulmonary, Critical Care & Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| |
Collapse
|
29
|
Guo H, Sun J, Zhang S, Nie Y, Zhou S, Zeng Y. Progress in understanding and treating idiopathic pulmonary fibrosis: recent insights and emerging therapies. Front Pharmacol 2023; 14:1205948. [PMID: 37608885 PMCID: PMC10440605 DOI: 10.3389/fphar.2023.1205948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a long-lasting, continuously advancing, and irrevocable interstitial lung disorder with an obscure origin and inadequately comprehended pathological mechanisms. Despite the intricate and uncharted causes and pathways of IPF, the scholarly consensus upholds that the transformation of fibroblasts into myofibroblasts-instigated by injury to the alveolar epithelial cells-and the disproportionate accumulation of extracellular matrix (ECM) components, such as collagen, are integral to IPF's progression. The introduction of two novel anti-fibrotic medications, pirfenidone and nintedanib, have exhibited efficacy in decelerating the ongoing degradation of lung function, lessening hospitalization risk, and postponing exacerbations among IPF patients. Nonetheless, these pharmacological interventions do not present a definitive solution to IPF, positioning lung transplantation as the solitary potential curative measure in contemporary medical practice. A host of innovative therapeutic strategies are presently under rigorous scrutiny. This comprehensive review encapsulates the recent advancements in IPF research, spanning from diagnosis and etiology to pathological mechanisms, and introduces a discussion on nascent therapeutic methodologies currently in the pipeline.
Collapse
Affiliation(s)
| | | | | | | | | | - Yulan Zeng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Fields A, Potel KN, Cabuhal R, Aziri B, Stewart ID, Schock BC. Mediators of systemic sclerosis-associated interstitial lung disease (SSc-ILD): systematic review and meta-analyses. Thorax 2023; 78:799-807. [PMID: 36261273 PMCID: PMC10359532 DOI: 10.1136/thorax-2022-219226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
Abstract
Systemic sclerosis-associated interstitial lung disease (SSc-ILD) is rare, poorly understood, with heterogeneous characteristics resulting in difficult diagnosis. We aimed to systematically review evidence of soluble markers in peripheral blood or bronchoalveolar lavage fluid (BALF) as biomarkers in SSc-ILD. METHOD Five databases were screened for observational or interventional, peer-reviewed studies in adults published between January 2000 and September 2021 that assessed levels of biomarkers in peripheral blood or BALF of SSc-ILD patients compared with healthy controls. Qualitative assessment was performed using Critical Appraisal Skills Programme (CASP) checklists. Standardised mean difference (SMD) in biomarkers were combined in random-effects meta-analyses where multiple independent studies reported quantitative data. RESULTS 768 published studies were identified; 38 articles were included in the qualitative synthesis. Thirteen studies were included in the meta-analyses representing three biomarkers: KL6, SP-D and IL-8. Greater IL-8 levels were associated with SSc-ILD in both peripheral blood and BALF, overall SMD 0.88 (95% CI 0.61 to 1.15; I2=1%). Greater levels of SP-D and KL-6 were both estimated in SSc-ILD peripheral blood compared with healthy controls, at an SMD of 1.78 (95% CI 1.50 to 2.17; I2=8%) and 1.66 (95% CI 1.17 to 2.14; I2=76%), respectively. CONCLUSION We provide robust evidence that KL-6, SP-D and IL-8 have the potential to serve as reliable biomarkers in blood/BALF for supporting the diagnosis of SSc-ILD. However, while several other biomarkers have been proposed, the evidence of their independent value in diagnosis and prognosis is currently lacking and needs further investigation. PROSPERO REGISTRATION NUMBER CRD42021282452.
Collapse
Affiliation(s)
- Aislin Fields
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast Faculty of Medicine Health and Life Sciences, Belfast, UK
| | - Koray N Potel
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast Faculty of Medicine Health and Life Sciences, Belfast, UK
| | - Rhandel Cabuhal
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast Faculty of Medicine Health and Life Sciences, Belfast, UK
| | - Buena Aziri
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast Faculty of Medicine Health and Life Sciences, Belfast, UK
- Sarajevo Medical School, Sarajevo School of Science and Technology Sarajevo Medical School, Sarajevo, Bosnia and Herzegovina
| | - Iain D Stewart
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Bettina C Schock
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast Faculty of Medicine Health and Life Sciences, Belfast, UK
| |
Collapse
|
31
|
Cho EJ, Hong J, Hyun J, Lee W, Kim HS, Chun S, Min WK. Usefulness and performance evaluation of serum KL-6 and SP-A assays in healthy individuals and patients with interstitial lung disease. Clin Biochem 2023:110609. [PMID: 37414329 DOI: 10.1016/j.clinbiochem.2023.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Interstitial lung abnormalities (ILAs) are associated with the risk of progression to interstitial lung diseases (ILDs). Krebs von den Lungen 6 (KL-6) and surfactant protein (SP)-A have been used as biomarkers of ILDs. In this study, we evaluated the levels of these biomarkers and identified their clinical correlations in healthy individuals to assess their usefulness in the diagnosis of ILAs. METHODS The patient samples were categorized into three groups: healthy, disease, and ILD groups. We used the automated immunoassay HISCL KL-6 and SP-A assay kits. The analytical performance evaluation involved precision, linearity, comparison, establishment of reference intervals, and determination of the cutoff points. We also analyzed the correlations between presence of abnormalities on chest radiography and computed tomography (CT) or pulmonary function test (PFT) and serum levels in the healthy group. RESULTS KL-6 and SP-A assays showed good analytical performance. The KL-6 and SP-A cutoff values were 304 U/mL and 43.5 ng/mL between the ILD and healthy groups, respectively, which were lower than the values recommended by the manufacturer. In the clinical correlations with radiological findings, SP-A values in subjects with lung abnormalities on CT scans were significantly higher than those in normal scans. There was no significant difference in KL-6 and SP-A levels among PFT patterns; however, both serum levels in the mixed pattern showed higher values than those in the other patterns. CONCLUSIONS The results revealed a positive association between increased serum levels of SP-A and KL-6 and clinical characteristics as incidental findings on chest imaging and reduced lung function.
Collapse
Affiliation(s)
- Eun-Jung Cho
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Jinyoung Hong
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Jungwon Hyun
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Woochang Lee
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Sail Chun
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Won-Ki Min
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Wortel CM, Liem SI, van Leeuwen NM, Boonstra M, Fehres CM, Stöger L, Huizinga TW, Toes RE, De Vries-Bouwstra J, Scherer HU. Anti-topoisomerase, but not anti-centromere B cell responses in systemic sclerosis display active, Ig-secreting cells associated with lung fibrosis. RMD Open 2023; 9:e003148. [PMID: 37507206 PMCID: PMC10387632 DOI: 10.1136/rmdopen-2023-003148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVES Almost all patients with systemic sclerosis (SSc) harbour autoantibodies. Anti-topoisomerase antibodies (ATA) and anti-centromere antibodies (ACA) are most prevalent and associate with distinct clinical phenotypes. B cell responses underlying these phenotypes are ill-defined. To understand how B cell autoreactivity and disease pathology connect, we determined phenotypic and functional characteristics of autoreactive B cells in ATA-positive and ACA-positive patients. METHODS Levels and isotypes of autoantibodies secreted by ex vivo cultured peripheral blood mononuclear cells from patients with ATA-positive (n=22) and ACA-positive (n=20) SSc were determined. Antibody secreting cells (ASCs) were isolated by cell sorting and cultured separately. Correlations were studied between the degree of spontaneous autoantibody production and the presence and degree of interstitial lung disease (ILD). RESULTS Circulating B cells secreting either ATA-immunoglobulin G (IgG) or ACA-IgG on stimulation was readily detectable in patients. The ATA response, but not the ACA response, showed additional secretion of autoreactive IgA. ATA-IgG and ATA-IgA were also secreted spontaneously. Additional cell sorting confirmed the presence of ATA-secreting plasmablasts. The degree of spontaneous ATA-secretion was higher in patients with ILD than in those without (p<0.001) and correlated with the degree of pulmonary fibrosis (p<0.001). CONCLUSION In contrast to ACA-positive patients, ATA-positive patients show signs of recent activation of the B cell response that hallmarks this disease. The degree of activation correlates with the presence and severity of ILD, the most deleterious disease manifestation. This could explain differential responsiveness to B cell depleting therapy. The abundant and spontaneous secretion of ATA-IgG and ATA-IgA may point toward a continuously activating trigger.
Collapse
Affiliation(s)
- Corrie M Wortel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sophie Ie Liem
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nina M van Leeuwen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Boonstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cynthia M Fehres
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lauran Stöger
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Wj Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - René Em Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
33
|
Horan G, Ye Y, Adams M, Parton A, Cedzik D, Tang S, Brown EA, Liu L, Nissel J, Carayannopoulos LN, Gaudy A, Schafer P, Palmisano M, Ramirez-Valle F. Safety, Pharmacokinetics, and Antifibrotic Activity of CC-90001 (BMS-986360), a c-Jun N-Terminal Kinase Inhibitor, in Pulmonary Fibrosis. Clin Pharmacol Drug Dev 2023. [PMID: 37378860 DOI: 10.1002/cpdd.1294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
Approved treatments for idiopathic pulmonary fibrosis have tolerability concerns and limited efficacy. CC-90001, a c-Jun N-terminal kinase inhibitor, is under investigation as a therapy for fibrotic diseases. A Phase 1b safety, pharmacokinetics, and pharmacodynamics study of oral CC-90001 (100, 200, or 400 mg) administered once daily for 12 weeks was conducted in patients with pulmonary fibrosis (NCT02510937). Sixteen patients with a mean age of 68 years were studied. The most common treatment-emergent adverse events were nausea and headache; all events were of mild or moderate intensity. Pharmacokinetic profiles were similar between the patients in this trial and healthy adults in previous studies. Forced vital capacity increased in the 200- and 400-mg cohorts from baseline to Week 12, and dose-dependent reductions in fibrosis biomarkers were observed. Antifibrotic activity of CC-90001 was also evaluated in vitro in transforming growth factor beta 1 (TGF-β1)-stimulated cells. CC-90001 reduced in vitro profibrotic gene expression in both lung epithelial cells and fibroblasts, supporting a potential direct antifibrotic action of c-Jun N-terminal kinase inhibition in either or both cell types. Overall, CC-90001 was generally safe and well tolerated, and treatment was associated with forced vital capacity improvement and reductions in profibrotic biomarkers.
Collapse
Affiliation(s)
| | - Ying Ye
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Mary Adams
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | | - Jim Nissel
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
34
|
Rai M, Parthasarathi A, Beeraka NM, Kaleem Ullah M, Malamardi S, Padukudru S, Siddaiah JB, Uthaiah CA, Vishwanath P, Chaya SK, Ramaswamy S, Upadhyay S, Ganguly K, Mahesh PA. Circulatory Serum Krebs von Den Lungen-6 and Surfactant Protein-D Concentrations Predict Interstitial Lung Disease Progression and Mortality. Cells 2023; 12:cells12091281. [PMID: 37174681 PMCID: PMC10177381 DOI: 10.3390/cells12091281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
There is a need for biomarkers to predict outcomes, including mortality, in interstitial lung disease (ILD). Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D) are associated with lung damage and fibrosis in all ILDs and are related to important clinical outcomes. Though these two biomarkers have been associated with ILD outcomes, there are no studies that have evaluated their predictive potential in combination. This study aims to determine whether KL-6 and SP-D are linked to poor disease outcomes and mortality. Additionally, we plan to examine whether changes in KL-6 and SP-D concentrations correspond with changes in lung function and whether serial measurements improve their predictive potential to identify disease progression and mortality. Forty-four patients with ILD participated in a prospective 6-month longitudinal observational study. ILD patients who succumbed had the highest KL-6 levels (3990.4 U/mL (3490.0-4467.6)) and highest SP-D levels (256.1 ng/mL (217.9-260.0)), followed by those who deteriorated: KL-6 levels 1357.0 U/mL (822.6-1543.4) and SP-D levels 191.2 ng/mL (152.8-210.5). The generalized linear model (GLM) analysis demonstrated that changes in forced vital capacity (FVC), diffusing capacity of lungs for carbon monoxide (DLCO), forced expiratory volume in 1 s (FEV1), and partial pressure of arterial oxygen (PaO2) were correlated to changes in KL6 (p = 0.016, 0.014, 0.027, 0.047) and SP-D (p = 0.008, 0.012, 0.046, 0.020), respectively. KL-6 (odds ratio (OR): 2.87 (1.06-7.79)) and SPD (OR: 1.76 (1.05-2.97)) were independent predictors of disease progression, and KL-6 (hazard ratio (HR): 3.70 (1.46-9.41)) and SPD (HR: 2.58 (1.01-6.59)) were independent predictors of death by Cox regression analysis. Combined biomarkers (KL6 + SPD + CT + FVC) had the strongest ability to predict disease progression (AUC: 0.797) and death (AUC: 0.961), on ROC analysis. Elevated KL-6 and SPD levels are vital biomarkers for predicting the severity, progression, and outcomes of ILD. High baseline levels or an increase in levels over a six-month follow-up despite treatment indicate a poor prognosis. Combining KL6 and SPD with conventional measures yields a more potent prognostic indicator. Clinical studies are needed to test additional interventions, and future research will determine if this combined biomarker benefits different ethnicities globally.
Collapse
Affiliation(s)
- Meghna Rai
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Ashwaghosha Parthasarathi
- Allergy, Asthma, and Chest Centre, Krishnamurthypuram, Mysuru 570004, India
- Rutgers Centre for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901-1293, USA
| | - Narasimha M Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu 515721, Andhra Pradesh, India
| | - Mohammed Kaleem Ullah
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Sowmya Malamardi
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
- School of Psychology & Public Health, College of Science Health and Engineering, La Trobe University, Melbourne 3086, Australia
| | - Sunag Padukudru
- Yenepoya Medical College, Yenepoya University, Mangalore 575018, Karnataka, India
| | - Jayaraj Biligere Siddaiah
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Chinnappa A Uthaiah
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Prashant Vishwanath
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Sindaghatta Krishnarao Chaya
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Subramanian Ramaswamy
- Department of Clinical Immunology & Rheumatology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
35
|
Zheng B, Keen KJ, Fritzler MJ, Ryerson CJ, Wilcox P, Whalen BA, Sahin B, Yao I, Dunne JV. Circulating cytokine levels in systemic sclerosis related interstitial lung disease and idiopathic pulmonary fibrosis. Sci Rep 2023; 13:6647. [PMID: 37095095 PMCID: PMC10125994 DOI: 10.1038/s41598-023-31232-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/08/2023] [Indexed: 04/26/2023] Open
Abstract
Exploration of cytokine levels in systemic sclerosis-associated interstitial lung disease (SSc-ILD) and idiopathic pulmonary fibrosis (IPF) is needed to find common and diverse biomolecular pathways. Circulating levels of 87 cytokines were compared amongst 19 healthy controls and consecutive patients with SSc-ILD (n = 39), SSc without ILD (n = 29), and IPF (n = 17) recruited from a Canadian centre using a log-linear model adjusted for age, sex, baseline forced vital capacity (FVC), and immunosuppressive or anti-fibrotic treatment at time of sampling. Also examined was annualized change in FVC. Four cytokines had Holm's corrected p-values less than 0.05. Eotaxin-1 levels were increased approximately two-fold in all patient categories compared to healthy controls. Interleukin-6 levels were eight-fold higher in all ILD categories compared to healthy controls. MIG/CXCL9 levels increased two-fold more in all but one patient category compared to healthy controls. Levels of a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13, (ADAMTS13) were lower for all categories of patients compared to controls. No substantial association was found for any of the cytokines with FVC change. Observed cytokine differences suggest both common and diverse pathways leading to pulmonary fibrosis. Further studies evaluating longitudinal change of these molecules would be informative.
Collapse
Affiliation(s)
- Boyang Zheng
- Division of Rheumatology, McGill University, Montreal, QC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kevin J Keen
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Mathematics and Statistics, University of Northern British Columbia, Prince George, BC, Canada
| | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Pearce Wilcox
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Beth A Whalen
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Basak Sahin
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Iris Yao
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - James V Dunne
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
- , Suite 330, 2184 West Broadway, Vancouver, BC, V6K 2E1, Canada.
| |
Collapse
|
36
|
Rajan SK, Cottin V, Dhar R, Danoff S, Flaherty KR, Brown KK, Mohan A, Renzoni E, Mohan M, Udwadia Z, Shenoy P, Currow D, Devraj A, Jankharia B, Kulshrestha R, Jones S, Ravaglia C, Quadrelli S, Iyer R, Dhooria S, Kolb M, Wells AU. Progressive pulmonary fibrosis: an expert group consensus statement. Eur Respir J 2023; 61:2103187. [PMID: 36517177 PMCID: PMC10060665 DOI: 10.1183/13993003.03187-2021] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
This expert group consensus statement emphasises the need for standardising the definition of progressive fibrosing interstitial lung diseases (F-ILDs), with an accurate initial diagnosis being of paramount importance in ensuring appropriate initial management. Equally, case-by-case decisions on monitoring and management are essential, given the varying presentations of F-ILDs and the varying rates of progression. The value of diagnostic tests in risk stratification at presentation and, separately, the importance of a logical monitoring strategy, tailored to manage the risk of progression, are also stressed. The term "progressive pulmonary fibrosis" (PPF) exactly describes the entity that clinicians often face in practice. The importance of using antifibrotic therapy early in PPF (once initial management has failed to prevent progression) is increasingly supported by evidence. Artificial intelligence software for high-resolution computed tomography analysis, although an exciting tool for the future, awaits validation. Guidance is provided on pulmonary rehabilitation, oxygen and the use of non-invasive ventilation focused specifically on the needs of ILD patients with progressive disease. PPF should be differentiated from acute deterioration due to drug-induced lung toxicity or other forms of acute exacerbations. Referral criteria for a lung transplant are discussed and applied to patient needs in severe diseases where transplantation is not realistic, either due to access limitations or transplantation contraindications. In conclusion, expert group consensus guidance is provided on the diagnosis, treatment and monitoring of F-ILDs with specific focus on the recognition of PPF and the management of pulmonary fibrosis progressing despite initial management.
Collapse
Affiliation(s)
- Sujeet K Rajan
- Bombay Hospital Institute of Medical Sciences and Bhatia Hospital, Mumbai, India
| | - Vincent Cottin
- National French Reference Coordinating Center for Rare Pulmonary Diseases, Louis Pradel Hospital Hospices Civils de Lyon, Université Claude Bernard Lyon 1, INRAE, Member of ERN-LUNG, Lyon, France
| | | | - Sonye Danoff
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Kevin K Brown
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Anant Mohan
- All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | - Padmanabha Shenoy
- Department of Rheumatology, Centre for Arthritis and Rheumatism Excellence, Kochi, India
| | | | - Anand Devraj
- Department of Radiology, Royal Brompton Hospital, London, UK
| | | | - Ritu Kulshrestha
- Department of Pathology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Steve Jones
- European Idiopathic Pulmonary Fibrosis Federation (EU-IPFF), Peterborough, UK
| | - Claudia Ravaglia
- Pulmonology Unit, GB Morgagni Hospital/University of Bologna, Forlì, Italy
| | | | - Rajam Iyer
- Bhatia Hospital and PD Hinduja Hospital, Mumbai, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Martin Kolb
- Firestone Institute for Respiratory Heath, St Joseph's Healthcare and McMaster University, Hamilton, ON, Canada
- Co-senior authors
| | - Athol U Wells
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- Co-senior authors
| |
Collapse
|
37
|
Diagnosis of Fibrotic Hypersensitivity Pneumonitis: Is There a Role for Biomarkers? Life (Basel) 2023; 13:life13020565. [PMID: 36836922 PMCID: PMC9966605 DOI: 10.3390/life13020565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Hypersensitivity pneumonitis is a complex interstitial lung syndrome and is associated with significant morbimortality, particularly for fibrotic disease. This condition is characterized by sensitization to a specific antigen, whose early identification is associated with improved outcomes. Biomarkers measure objectively biologic processes and may support clinical decisions. These tools evolved to play a crucial role in the diagnosis and management of a wide range of human diseases. This is not the case, however, with hypersensitivity pneumonitis, where there is still great room for research in the path to find consensual diagnostic biomarkers. Gaps in the current evidence include lack of validation, validation against healthy controls alone, small sampling and heterogeneity in diagnostic and classification criteria. Furthermore, discriminatory accuracy is currently limited by overlapping mechanisms of inflammation, damage and fibrogenesis between ILDs. Still, biomarkers such as BAL lymphocyte counts and specific serum IgGs made their way into clinical guidelines, while others including KL-6, SP-D, YKL-40 and apolipoproteins have shown promising results in leading centers and have potential to translate into daily practice. As research proceeds, it is expected that the emergence of novel categories of biomarkers will offer new and thriving tools that could complement those currently available.
Collapse
|
38
|
Liu S, Liu C, Wang Q, Liu S, Min J. CC Chemokines in Idiopathic Pulmonary Fibrosis: Pathogenic Role and Therapeutic Potential. Biomolecules 2023; 13:biom13020333. [PMID: 36830702 PMCID: PMC9953349 DOI: 10.3390/biom13020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), characterized by progressive worsening of dyspnea and irreversible decline in lung function, is a chronic and progressive respiratory disease with a poor prognosis. Chronic or repeated lung injury results in inflammation and an excessive injury-repairing response that drives the development of IPF. A number of studies have shown that the development and progression of IPF are associated with dysregulated expression of several chemokines and chemokine receptors, several of which have been used as predictors of IPF outcome. Chemokines of the CC family play significant roles in exacerbating IPF progression by immune cell attraction or fibroblast activation. Modulating levels of detrimental CC chemokines and interrupting the corresponding transduction axis by neutralizing antibodies or antagonists are potential treatment options for IPF. Here, we review the roles of different CC chemokines in the pathogenesis of IPF, and their potential use as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Correspondence:
| | - Chang Liu
- Drug Clinical Trial Institution, Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
39
|
Froidure A, Bondue B, Dahlqvist C, Guiot J, Gusbin N, Wirtz G, Joos G, Cataldo D, Strens D, Slabbynck H, Wuyts WA. Correlation of BAL Cell Count and Pulmonary Function Tests in the Era of Antifibrotics: Data From the Belgium-Luxembourg Idiopathic Pulmonary Fibrosis Registry. Chest 2023; 163:358-361. [PMID: 36183786 DOI: 10.1016/j.chest.2022.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Antoine Froidure
- Pulmonology Department, Cliniques universitaires Saint-Luc, Bruxelles, Belgium.
| | | | | | - Julien Guiot
- Pulmonology Department, CHU Liège, Liège, Belgium
| | | | - Gil Wirtz
- Pulmonology Department, CHL, Luxembourg, Luxembourg
| | - Guy Joos
- Pulmonology Department, Ghent University Hospital, Gent, Belgium
| | | | | | - Hans Slabbynck
- Pulmonology Department, ZNA Middelheim, Antwerpen, Belgium
| | - Wim A Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Zhou M, Ouyang J, Zhang G, Zhu X. Prognostic value of tripartite motif (TRIM) family gene signature from bronchoalveolar lavage cells in idiopathic pulmonary fibrosis. BMC Pulm Med 2022; 22:467. [PMID: 36474231 PMCID: PMC9724366 DOI: 10.1186/s12890-022-02269-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family genes get involved in the pathogenesis and development of various biological processes; however, the prognostic value of TRIM genes for idiopathic pulmonary fibrosis (IPF) needs to be explored. METHODS We acquired gene expression based on bronchoalveolar lavage (BAL) cells and clinical data of three independent IPF cohorts in the GSE70866 dataset from the Gene expression omnibus (GEO) database. Differentially expressed TRIM genes (DETGs) between IPF patients and healthy donors were identified and used to establish a risk signature by univariate and multivariate Cox regression analysis in the training cohort. The risk signature was further validated in other IPF cohorts, and compared with previously published signatures. Moreover, we performed functional enrichment analysis to explore the potential mechanisms. Eventually, the quantitative real time PCR was conducted to validate the expressions of the key genes in BAL from 12 IPF patients and 12 non-IPF controls from our institution. RESULTS We identified 4 DETGs including TRIM7, MEFV, TRIM45 and TRIM47 significantly associated with overall survival (OS) of IPF patients (P < 0.05). A multiple stepwise Cox regression analysis was performed to construct a 4-TRIM-gene prognostic signature. We categorized IPF patients into one low-risk group and the other high-risk group as per the average risk value of the TRIM prognostic signature in the training and validation cohorts. The IPF individuals in the low-risk group demonstrated an obvious OS advantage compared with the high-risk one (P < 0.01). The time-dependent receiver operating characteristic approach facilitated the verification of the predictive value of the TRIM prognostic signature in the training and validation cohorts, compared with other published signatures. A further investigation of immune cells and IPF survival displayed that higher proportion of resting memory CD4+ T cells and resting mast cells harbored OS advantage over lower proportion, however lower proportion of neutrophils, activated dendritic cells and activated NK cells indicated worse prognosis. CONCLUSION The TRIM family genes are significant for the prognosis of IPF and our signature could serve as a robust model to predict OS.
Collapse
Affiliation(s)
- Mi Zhou
- grid.452206.70000 0004 1758 417XDepartment of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Ouyang
- grid.452206.70000 0004 1758 417XDepartment of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Guoqing Zhang
- grid.452206.70000 0004 1758 417XDepartment of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Xin Zhu
- grid.452206.70000 0004 1758 417XDepartment of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
41
|
Denis A, Henket M, Ernst M, Maes N, Thys M, Regnier C, Malaise O, Frix AN, Gester F, Desir C, Meunier P, Louis R, Malaise M, Guiot J. Progressive fibrosing interstitial lung disease in rheumatoid arthritis: A retrospective study. Front Med (Lausanne) 2022; 9:1024298. [PMID: 36530900 PMCID: PMC9748274 DOI: 10.3389/fmed.2022.1024298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Rheumatoid arthritis associated-interstitial lung disease (RA-ILD) is the most common pulmonary manifestation of rheumatoid arthritis (RA) and an important cause of mortality. In patients suffering from interstitial lung diseases (ILD) from different etiologies (including RA-ILD), a significant proportion is exhibiting a fibrotic progression despite immunosuppressive therapies, defined as progressive fibrosing interstitial lung disease (PF-ILD). Here, we report the frequency of RA-ILD and PF-ILD in all RA patients' cohort at University Hospital of Liège and compare their characteristics and outcomes. METHODS Patients were retrospectively recruited from 2010 to 2020. PF-ILD was defined based on functional, clinical and/or iconographic progression criteria within 24 months despite specific anti-RA treatment. RESULTS Out of 1,500 RA patients, about one third had high-resolution computed tomography (HRCT) performed, 89 showed RA-ILD and 48 PF-ILD. RA-ILD patients were significantly older than other RA patients (71 old of median age vs. 65, p < 0.0001), with a greater proportion of men (46.1 vs. 27.7%, p < 0.0001) and of smoking history. Non-specific interstitial pneumonia pattern was more frequent than usual interstitial pneumonia among RA-ILD (60.7 vs. 27.0%) and PF-ILD groups (60.4 vs. 31.2%). The risk of death was 2 times higher in RA-ILD patients [hazard ratio 2.03 (95% confidence interval 1.15-3.57), p < 0.01] compared to RA. CONCLUSION We identified a prevalence of PF-ILD of 3% in a general RA population. The PF-ILD cohort did not seem to be different in terms of demographic characteristics and mortality compared to RA-ILD patients who did not exhibit the progressive phenotype yet.
Collapse
Affiliation(s)
- Anna Denis
- Department of Pneumology, CHU of Liège, Liège, Belgium
| | | | - Marie Ernst
- Department of Biostatistics and Medico-Economic, CHU of Liège, Liège, Belgium
| | - Nathalie Maes
- Department of Biostatistics and Medico-Economic, CHU of Liège, Liège, Belgium
| | - Marie Thys
- Department of Biostatistics and Medico-Economic, CHU of Liège, Liège, Belgium
| | - Céline Regnier
- Department of Rheumatology, CHU of Liège, Liège, Belgium
| | | | | | - Fanny Gester
- Department of Pneumology, CHU of Liège, Liège, Belgium
| | - Colin Desir
- Department of Radiology, CHU of Liège, Liège, Belgium
| | - Paul Meunier
- Department of Radiology, CHU of Liège, Liège, Belgium
| | - Renaud Louis
- Department of Pneumology, CHU of Liège, Liège, Belgium
| | - Michel Malaise
- Department of Rheumatology, CHU of Liège, Liège, Belgium
| | - Julien Guiot
- Department of Pneumology, CHU of Liège, Liège, Belgium
| |
Collapse
|
42
|
Cambier M, Henket M, Frix AN, Gofflot S, Thys M, Tomasetti S, Peired A, Struman I, Rousseau AF, Misset B, Darcis G, Moutschen M, Louis R, Njock MS, Cavalier E, Guiot J. Increased KL-6 levels in moderate to severe COVID-19 infection. PLoS One 2022; 17:e0273107. [PMID: 36441730 PMCID: PMC9704627 DOI: 10.1371/journal.pone.0273107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The global coronavirus disease 2019 (COVID-19) has presented significant challenges and created concerns worldwide. Besides, patients who have experienced a SARS-CoV-2 infection could present post-viral complications that can ultimately lead to pulmonary fibrosis. Serum levels of Krebs von den Lungen 6 (KL-6), high molecular weight human MUC1 mucin, are increased in the most patients with various interstitial lung damage. Since its production is raised during epithelial damages, KL-6 could be a helpful non-invasive marker to monitor COVID-19 infection and predict post-infection sequelae. METHODS We retrospectively evaluated KL-6 levels of 222 COVID-19 infected patients and 70 healthy control. Serum KL-6, fibrinogen, lactate dehydrogenase (LDH), platelet-lymphocytes ratio (PLR) levels and other biological parameters were analyzed. This retrospective study also characterized the relationships between serum KL-6 levels and pulmonary function variables. RESULTS Our results showed that serum KL-6 levels in COVID-19 patients were increased compared to healthy subjects (470 U/ml vs 254 U/ml, P <0.00001). ROC curve analysis enabled us to identify that KL-6 > 453.5 U/ml was associated with COVID-19 (AUC = 0.8415, P < 0.0001). KL-6 level was positively correlated with other indicators of disease severity such as fibrinogen level (r = 0.1475, P = 0.0287), LDH level (r = 0,31, P = 0,004) and PLR level (r = 0.23, P = 0.0005). However, KL-6 levels were not correlated with pulmonary function tests (r = 0.04, P = 0.69). CONCLUSIONS KL-6 expression was correlated with several disease severity indicators. However, the association between mortality and long-term follow-up outcomes needs further investigation. More extensive trials are required to prove that KL-6 could be a marker of disease severity in COVID-19 infection.
Collapse
Affiliation(s)
- Maureen Cambier
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, Liège, Belgium
| | - Monique Henket
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
| | - Anne Noelle Frix
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
| | - Stéphanie Gofflot
- Biothèque Hospitalo-Universitaire de Liège, University Hospital of Liège, Liège, Belgium
| | - Marie Thys
- Department of Biostatistics and Medico-Economic Information, University Hospital of Liège, Liège, Belgium
| | - Sara Tomasetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - Anna Peired
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, Liège, Belgium
| | | | - Benoît Misset
- Department of Intensive Care, University Hospital of Liège, Liège, Belgium
| | - Gilles Darcis
- Department of Infectious Diseases and General Internal Medicine, Liège University Hospital, Liège, Belgium
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, Liège University Hospital, Liège, Belgium
- AIDS Reference Laboratory, Liège University, Liège, Belgium
| | - Renaud Louis
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Makon-Sébastien Njock
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Julien Guiot
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
43
|
Liu M, Xue M, Zhang T, Lin R, Guo B, Chen Y, Cheng ZJ, Sun B. Detection of interstitial pneumonia with autoimmune features and idiopathic pulmonary fibrosis are enhanced by involvement of matrix metalloproteinases levels and clinical diagnosis. J Clin Lab Anal 2022; 36:e24734. [PMID: 36250225 DOI: 10.1002/jcla.24734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Higher detection of interstitial pneumonia with autoimmune features (IPAF), and idiopathic pulmonary fibrosis (IPF), has significant diagnostic and therapeutic implications. Some matrix metalloproteinases (MMPs) have become reliable diagnostic biomarkers in IPAF and IPF in previous studies, yet relevant reliability remains to be recognized. MATERIALS AND METHODS In this study, 36 ILDs patients, including 31 IPAF patients (Mean ± SD, 50.20 ± 5.10 years; 16 [51.6%] females) and five IPF patients (Mean ± SD, 61.20 ± 6.73 years; one [20.0%] females) were retrospectively enrolled. Serial serum samples were collected from patients with IPAF and IPF between January 2019 and December 2020. Notably, Serum MMPs levels were measured by U-PLEX Biomarker Group 1(Human) Multiplex Assays (MSD, USA). RESULTS A combination of MMPs and combinatorial biomarkers was strongly associated with clinical subjects in this study (AUC, 0.597 for Stability vs. Improvement and 0.756 for Stability vs. Exacerbation). Importantly, the AUC of MMP-12 reaches 0.730 (p < 0.05, Stability AUC vs. Improvement AUC) while MMP-13 reaches 0.741 (p < 0.05, Stability AUC vs. Exacerbation AUC) showed better performance than other MMPs in two comparisons. CONCLUSIONS Clinical risk factors and MMPs are strongly associated with either stratification of the disease of progression of IPAF or in two IPAF and IPF independent cohorts. To our knowledge, this is the first to illustrate that MMP-12 and MMP-13 may be expected to become typical promising biomarkers in Improvement - IPAF and Exacerbation - IPAF, respectively.
Collapse
Affiliation(s)
- Mingtao Liu
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshan Xue
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Teng Zhang
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Runpei Lin
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baojun Guo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Zhangkai J Cheng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
44
|
Screening for idiopathic pulmonary fibrosis using comorbidity signatures in electronic health records. Nat Med 2022; 28:2107-2116. [PMID: 36175678 DOI: 10.1038/s41591-022-02010-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal fibrosing interstitial lung disease with a mean survival time of less than 5 years. Nonspecific presentation, a lack of effective early screening tools, unclear pathobiology of early-stage IPF and the need for invasive and expensive procedures for diagnostic confirmation hinder early diagnosis. In this study, we introduce a new screening tool for IPF in primary care settings that requires no new laboratory tests and does not require recognition of early symptoms. Using subtle comorbidity signatures identified from the history of medical encounters of individuals, we developed an algorithm, called the zero-burden comorbidity risk score for IPF (ZCoR-IPF), to predict the future risk of an IPF diagnosis. ZCoR-IPF was trained on a national insurance claims database and validated on three independent databases, comprising a total of 2,983,215 participants, with 54,247 positive cases. The algorithm achieved positive likelihood ratios greater than 30 at a specificity of 0.99 across different cohorts, for both sexes, and for participants with different risk states and history of confounding diseases. The area under the receiver-operating characteristic curve for ZCoR-IPF in predicting IPF exceeded 0.88 and was approximately 0.84 at 1 and 4 years before a conventional diagnosis, respectively. Thus, if adopted, ZCoR-IPF can potentially enable earlier diagnosis of IPF and improve outcomes of disease-modifying therapies and other interventions.
Collapse
|
45
|
Wijsenbeek M, Suzuki A, Maher TM. Interstitial lung diseases. Lancet 2022; 400:769-786. [PMID: 35964592 DOI: 10.1016/s0140-6736(22)01052-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/14/2022] [Accepted: 06/03/2022] [Indexed: 02/07/2023]
Abstract
Over 200 interstitial lung diseases, from ultra rare to relatively common, are recognised. Most interstitial lung diseases are characterised by inflammation or fibrosis within the interstitial space, the primary consequence of which is impaired gas exchange, resulting in breathlessness, diminished exercise tolerance, and decreased quality of life. Outcomes vary considerably for each of the different interstitial lung diseases. In some conditions, spontaneous reversibility or stabilisation can occur, but unfortunately in many people with interstitial lung disease, especially in those manifesting progressive pulmonary fibrosis, respiratory failure and death are a sad reality. Over the past 3 years, the field of interstitial lung disease has had important advances, with the approval of drugs to treat systemic sclerosis-associated interstitial lung disease, interstitial lung disease-associated pulmonary hypertension, and different forms of progressive pulmonary fibrosis. This Seminar provides an update on epidemiology, pathogenesis, presentation, diagnosis, disease course, and management of the interstitial lung diseases that are most frequently encountered in clinical practice. Furthermore, we describe how developments have led to a shift in the classification and treatment of interstitial lung diseases that exhibit progressive pulmonary fibrosis and summarise the latest practice-changing guidelines. We conclude with an outline of controversies, uncertainties, and future directions.
Collapse
Affiliation(s)
- Marlies Wijsenbeek
- Center for Interstitial Lung Diseases and Sarcoidosis, Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Atsushi Suzuki
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Toby M Maher
- Hastings Centre for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
46
|
Integration and Application of Clinical Practice Guidelines for the Diagnosis of Idiopathic Pulmonary Fibrosis and Fibrotic Hypersensitivity Pneumonitis. Chest 2022; 162:614-629. [DOI: 10.1016/j.chest.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
|
47
|
Maher TM, Nambiar AM, Wells AU. The role of precision medicine in interstitial lung disease. Eur Respir J 2022; 60:2102146. [PMID: 35115344 PMCID: PMC9449482 DOI: 10.1183/13993003.02146-2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
The management of interstitial lung disease (ILD) may benefit from a conceptual shift. Increased understanding of this complex and heterogeneous group of disorders over the past 20 years has highlighted the need for individualised treatment strategies that encompass diagnostic classification and disease behaviour. Biomarker-based approaches to precision medicine hold the greatest promise. Robust, large-scale biomarker-based technologies supporting ILD diagnosis have been developed, and future applications relating to staging, prognosis and assessment of treatment response are emerging. Artificial intelligence may redefine our ability to base prognostic evaluation on both diagnosis and underlying disease processes, sharpening individualised treatment algorithms to a level not previously achieved. Compared with therapeutic areas such as oncology, precision medicine in ILD is still in its infancy. However, the heterogeneous nature of ILD suggests that many relevant molecular, environmental and behavioural targets may serve as useful biomarkers if we are willing to invest in their identification and validation.
Collapse
Affiliation(s)
- Toby M Maher
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- NIHR Respiratory Clinical Research Facility, Royal Brompton Hospital, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, UK
| | - Anoop M Nambiar
- UT Health San Antonio Center for Interstitial Lung Disease, Division of Pulmonary and Critical Care Medicine, Dept of Medicine, University of Texas Health San Antonio and the South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Athol U Wells
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
48
|
León-Román F, Valenzuela C, Molina-Molina M. Idiopathic pulmonary fibrosis. Med Clin (Barc) 2022; 159:189-194. [PMID: 35659420 DOI: 10.1016/j.medcli.2022.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
Idiopathic pulmonary fibrosis is defined as a chronic progressive fibrosing interstitial pneumonia of unknown etiology. There are intrinsic and extrinsic risk factors that could favor the development of the disease in individuals with a genetic predisposition. The diagnosis is made by characteristic radiological and/or histological findings on high-resolution computed tomography and lung biopsy, respectively, in the absence of a specific identifiable cause. The median survival of the disease for patients without treatment is 3-5years from the onset of symptoms, although its natural history is variable and unpredictable. Currently, there are two antifibrotic drugs that reduce disease progression. The multidisciplinary approach will consider the nutritional and emotional status, physical conditioning, and treatment of comorbidities, as well as lung transplantation and palliative care in advanced stages. The following article reviews the fundamental aspects for the diagnosis and treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Claudia Valenzuela
- Unidad de Enfermedades Pulmonares Intersticiales Difusas, Servicio de Neumología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, España
| | - María Molina-Molina
- Unidad Funcional de Intersticio Pulmonar (UFIP), Servicio de Neumología, Hospital Universitario de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, España
| |
Collapse
|
49
|
Fraz MSA, Michelsen AE, Moe N, Aaløkken TM, Macpherson ME, Nordøy I, Aukrust P, Taraldsrud E, Holm AM, Ueland T, Jørgensen SF, Fevang B. Raised Serum Markers of T Cell Activation and Exhaustion in Granulomatous-Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency. J Clin Immunol 2022; 42:1553-1563. [PMID: 35789314 PMCID: PMC9255534 DOI: 10.1007/s10875-022-01318-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/05/2022]
Abstract
Purpose
About 20–30% of patients with common variable immunodeficiency (CVID) develop granulomatous-lymphocytic interstitial lung disease (GLILD) as one of several non-infectious complications to their immunodeficiency. The purpose of this study was to identify biomarkers that could distinguish GLILD from other non-infectious complications in CVID. Methods We analyzed serum biomarkers related to inflammation, pulmonary epithelium injury, fibrogenesis, and extracellular matrix (ECM) remodeling, and compared three subgroups of CVID: GLILD patients (n = 16), patients with other non-infectious complications (n = 37), and patients with infections only (n = 20). Results We found that GLILD patients had higher levels of sCD25, sTIM-3, IFN-γ, and TNF, reflecting T cell activation and exhaustion, compared to both CVID patients with other inflammatory complications and CVID with infections only. GLILD patients also had higher levels of SP-D and CC16, proteins related to pulmonary epithelium injury, as well as the ECM remodeling marker MMP-7, than patients with other non-infectious complications. Conclusion GLILD patients have elevated serum markers of T cell activation and exhaustion, pulmonary epithelium injury, and ECM remodeling, pointing to potentially important pathways in GLILD pathogenesis, novel targets for therapy, and promising biomarkers for clinical evaluation of these patients. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-022-01318-1.
Collapse
Affiliation(s)
- Mai Sasaki Aanensen Fraz
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway. .,Centre for Rare Diseases, Oslo University Hospital, Oslo, Norway.
| | - Annika Elisabet Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Natasha Moe
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Trond Mogens Aaløkken
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Magnhild Eide Macpherson
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingvild Nordøy
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Eli Taraldsrud
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Are Martin Holm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pulmonary Medicine, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Silje Fjellgård Jørgensen
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Børre Fevang
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Centre for Rare Diseases, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
50
|
Liu GY, Budinger GRS, Dematte JE. Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis. BMJ 2022; 377:e066354. [PMID: 36946547 DOI: 10.1136/bmj-2021-066354] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Similarly to idiopathic pulmonary fibrosis (IPF), other interstitial lung diseases can develop progressive pulmonary fibrosis (PPF) characterized by declining lung function, a poor response to immunomodulatory therapies, and early mortality. The pathophysiology of disordered lung repair involves common downstream pathways that lead to pulmonary fibrosis in both IPF and PPF. The antifibrotic drugs, such as nintedanib, are indicated for the treatment of IPF and PPF, and new therapies are being evaluated in clinical trials. Clinical, radiographic, and molecular biomarkers are needed to identify patients with PPF and subgroups of patients likely to respond to specific therapies. This article reviews the evidence supporting the use of specific therapies in patients with IPF and PPF, discusses agents being considered in clinical trials, and considers potential biomarkers based on disease pathogenesis that might be used to provide a personalized approach to care.
Collapse
Affiliation(s)
- Gabrielle Y Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Jane E Dematte
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|