1
|
Cairns CA, Xiao L, Wang JY. Posttranscriptional Regulation of Intestinal Mucosal Growth and Adaptation by Noncoding RNAs in Critical Surgical Disorders. J INVEST SURG 2024; 37:2308809. [PMID: 38323630 PMCID: PMC11027105 DOI: 10.1080/08941939.2024.2308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
The human intestinal epithelium has an impressive ability to respond to insults and its homeostasis is maintained by well-regulated mechanisms under various pathophysiological conditions. Nonetheless, acute injury and inhibited regeneration of the intestinal epithelium occur commonly in critically ill surgical patients, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Effective therapies for the preservation of intestinal epithelial integrity and for the prevention of mucosal hemorrhage and gut barrier dysfunction are limited, primarily because of a poor understanding of the mechanisms underlying mucosal disruption. Noncoding RNAs (ncRNAs), which include microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and small vault RNAs (vtRNAs), modulate a wide array of biological functions and have been identified as orchestrators of intestinal epithelial homeostasis. Here, we feature the roles of many important ncRNAs in controlling intestinal mucosal growth, barrier function, and repair after injury-particularly in the context of postoperative recovery from bowel surgery. We review recent literature surrounding the relationships between lncRNAs, microRNAs, and RNA-binding proteins and how their interactions impact cell survival, proliferation, migration, and cell-to-cell interactions in the intestinal epithelium. With advancing knowledge of ncRNA biology and growing recognition of the importance of ncRNAs in maintaining the intestinal epithelial integrity, ncRNAs provide novel therapeutic targets for treatments to preserve the gut epithelium in individuals suffering from critical surgical disorders.
Collapse
Affiliation(s)
- Cassandra A. Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
2
|
Donald K, Finlay BB. Mechanisms of microbe-mediated immune development in the context of antibiotics and asthma. FRONTIERS IN ALLERGY 2024; 5:1469426. [PMID: 39469482 PMCID: PMC11513386 DOI: 10.3389/falgy.2024.1469426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
The gut houses 70%-80% of the body's immune cells and represents the main point of contact between the immune system and the outside world. Immune maturation occurs largely after birth and is guided by the gut microbiota. In addition to the many human clinical studies that have identified relationships between gut microbiota composition and disease outcomes, experimental research has demonstrated a plethora of mechanisms by which specific microbes and microbial metabolites train the developing immune system. The healthy maturation of the gut microbiota has been well-characterized and discreet stages marked by changes in abundance of specific microbes have been identified. Building on Chapter 8, which discusses experimental models used to study the relationship between the gut microbiota and asthma, the present review aims to dive deeper into the specific microbes and metabolites that drive key processes in immune development. The implications of microbiota maturation patterns in the context of asthma and allergies, as well as the effects of antibiotics on microbe-immune crosstalk, will also be discussed.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Departmentof Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Departmentof Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Ignacio A, Czyz S, McCoy KD. Early life microbiome influences on development of the mucosal innate immune system. Semin Immunol 2024; 73:101885. [PMID: 38788491 DOI: 10.1016/j.smim.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiota is well known to possess immunomodulatory capacities, influencing a multitude of cellular signalling pathways to maintain host homeostasis. Although the formation of the immune system initiates before birth in a sterile environment, an emerging body of literature indicates that the neonatal immune system is influenced by a first wave of external stimuli that includes signals from the maternal microbiota. A second wave of stimulus begins after birth and must be tightly regulated during the neonatal period when colonization of the host occurs concomitantly with the maturation of the immune system, requiring a fine adjustment between establishing tolerance towards the commensal microbiota and preserving inflammatory responses against pathogenic invaders. Besides integrating cues from commensal microbes, the neonatal immune system must also regulate responses triggered by other environmental signals, such as dietary antigens, which become more complex with the introduction of solid food during the weaning period. This "window of opportunity" in early life is thought to be crucial for the proper development of the immune system, setting the tone of subsequent immune responses in adulthood and modulating the risk of developing chronic and metabolic inflammatory diseases. Here we review the importance of host-microbiota interactions for the development and maturation of the immune system, particularly in the early-life period, highlighting the known mechanisms involved in such communication. This discussion is focused on recent data demonstrating microbiota-mediated education of innate immune cells and its role in the development of lymphoid tissues.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sonia Czyz
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Holbrook BC, Clemens EA, Alexander-Miller MA. Sex-Dependent Effects on Influenza-Specific Antibody Quantity and Neutralizing Activity following Vaccination of Newborn Non-Human Primates Is Determined by Adjuvants. Vaccines (Basel) 2024; 12:415. [PMID: 38675797 PMCID: PMC11054256 DOI: 10.3390/vaccines12040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
A number of studies have demonstrated the role of sex in regulating immune responses to vaccination. However, these findings have been limited to adults for both human and animal models. As a result, our understanding of the impact of sex on vaccine responses in the newborn is highly limited. Here, we probe this important question using a newborn non-human primate model. We leveraged our prior analysis of two cohorts of newborns, with one being mother-reared and one nursery-reared. This provided adequate numbers of males and females to interrogate the impact of sex on the response to inactivated influenza vaccines alone or adjuvanted with R848, flagellin, or both. We found that, in contrast to what has been reported in adults, the non-adjuvanted inactivated influenza virus vaccine induced similar levels of virus-specific IgG in male and female newborns. However, the inclusion of R848, either alone or in combination with flagellin, resulted in higher antibody titers in females compared to males. Sex-specific increases in the neutralizing antibody were only observed when both R848 and flagellin were present. These data, generated in the highly translational NHP newborn model, provide novel insights into the role of sex in the immune response of newborns.
Collapse
Affiliation(s)
| | | | - Martha A. Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Rm 2E-018 Biotech Place, 575 North Patterson Ave., Winston-Salem, NC 27101, USA; (B.C.H.); elene.a.- (E.A.C.)
| |
Collapse
|
5
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Young GR, Nelson A, Stewart CJ, Smith DL. Bacteriophage communities are a reservoir of unexplored microbial diversity in neonatal health and disease. Curr Opin Microbiol 2023; 75:102379. [PMID: 37647765 DOI: 10.1016/j.mib.2023.102379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Acquisition and development of the gut microbiome are vital for immune education in neonates, especially those born preterm. As such, microbial communities have been extensively studied in the context of postnatal health and disease. Bacterial communities have been the focus of research in this area due to the relative ease of targeted bacterial sequencing and the availability of databases to align and validate sequencing data. Recent increases in high-throughput metagenomic sequencing accessibility have facilitated research to investigate bacteriophages within the context of neonatal gut microbial communities. Focusing on unexplored viral diversity, has identified novel bacteriophage species and previously uncharacterised viral diversity. In doing so, studies have highlighted links between bacteriophages and bacterial community structure in the context of health and disease. However, much remains unknown about the complex relationships between bacteriophages, the bacteria they infect and their human host. With a particular focus on preterm infants, this review highlights opportunities to explore the influence of bacteriophages on developing microbial communities and the tripartite relationships between bacteriophages, bacteria and the neonatal human host. We suggest a focus on expanding collections of isolated bacteriophages that will further our understanding of the growing numbers of bacteriophages identified in metagenomes.
Collapse
Affiliation(s)
- Gregory R Young
- Applied Sciences, Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Andrew Nelson
- Applied Sciences, Health and Life Sciences, Northumbria University, Newcastle, UK
| | | | - Darren L Smith
- Applied Sciences, Health and Life Sciences, Northumbria University, Newcastle, UK.
| |
Collapse
|
7
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acid chains in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Torow N, Hand TW, Hornef MW. Programmed and environmental determinants driving neonatal mucosal immune development. Immunity 2023; 56:485-499. [PMID: 36921575 PMCID: PMC10079302 DOI: 10.1016/j.immuni.2023.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023]
Abstract
The mucosal immune system of neonates goes through successive, non-redundant phases that support the developmental needs of the infant and ultimately establish immune homeostasis. These phases are informed by environmental cues, including dietary and microbial stimuli, but also evolutionary developmental programming that functions independently of external stimuli. The immune response to exogenous stimuli is tightly regulated during early life; thresholds are set within this neonatal "window of opportunity" that govern how the immune system will respond to diet, the microbiota, and pathogenic microorganisms in the future. Thus, changes in early-life exposure, such as breastfeeding or environmental and microbial stimuli, influence immunological and metabolic homeostasis and the risk of developing diseases such as asthma/allergy and obesity.
Collapse
Affiliation(s)
- Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Timothy W Hand
- Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany.
| |
Collapse
|
9
|
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines 2023; 11:766. [PMID: 36979747 PMCID: PMC10045728 DOI: 10.3390/biomedicines11030766] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections-tolerance, or contribute to the progression of the inflammatory disorder-trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, D-07745 Jena, Germany
| | - Sotirios G. Zarogiannis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Thessaly, GR-41500 Larissa, Greece
| | - Esra Lajqi
- Department of Radiation Oncology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Valdrina Ajeti
- Department of Pharmacy, Alma Mater Europaea—Campus College Rezonanca, XK-10000 Pristina, Kosovo
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Ardian Demaj
- Faculty of Medical Sciences, University of Tetovo, MK-1200 Tetova, North Macedonia
| | - Janine Hebel
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Sampath V, Martinez M, Caplan M, Underwood MA, Cuna A. Necrotizing enterocolitis in premature infants-A defect in the brakes? Evidence from clinical and animal studies. Mucosal Immunol 2023; 16:208-220. [PMID: 36804483 DOI: 10.1016/j.mucimm.2023.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
A key aspect of postnatal intestinal adaptation is the establishment of symbiotic relationships with co-evolved gut microbiota. Necrotizing enterocolitis (NEC) is the most severe disease arising from failure in postnatal gut adaptation in premature infants. Although pathological activation of intestinal Toll-like receptors (TLRs) is believed to underpin NEC pathogenesis, the mechanisms are incompletely understood. We postulate that unregulated aberrant TLR activation in NEC arises from a failure in intestinal-specific mechanisms that tamponade TLR signaling (the brakes). In this review, we discussed the human and animal studies that elucidate the developmental mechanisms inhibiting TLR signaling in the postnatal intestine (establishing the brakes). We then evaluate evidence from preclinical models and human studies that point to a defect in the inhibition of TLR signaling underlying NEC. Finally, we provided a framework for the assessment of NEC risk by screening for signatures of TLR signaling and for NEC prevention by TLR-targeted therapy in premature infants.
Collapse
Affiliation(s)
- Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA.
| | - Maribel Martinez
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Michael Caplan
- Department of Pediatrics, North Shore University Health System, Evanston, Illinois, USA
| | - Mark A Underwood
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Alain Cuna
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
11
|
Yu W, Venkatraman A, Menden HL, Martinez M, Umar S, Sampath V. Short-chain fatty acids ameliorate necrotizing enterocolitis-like intestinal injury through enhancing Notch1-mediated single immunoglobulin interleukin-1-related receptor, toll-interacting protein, and A20 induction. Am J Physiol Gastrointest Liver Physiol 2023; 324:G24-G37. [PMID: 36410023 PMCID: PMC9799135 DOI: 10.1152/ajpgi.00057.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Single immunoglobulin interleukin-1-related receptor (SIGIRR), toll-interacting protein (TOLLIP), and A20 are major inhibitors of toll-like receptor (TLR) signaling induced postnatally in the neonatal intestine. Short-chain fatty acids (SCFAs), fermentation products of indigestible carbohydrates produced by symbiotic bacteria, inhibit intestinal inflammation. Herein, we investigated the mechanisms by which SCFAs regulate SIGIRR, A20, and TOLLIP expression and mitigate experimental necrotizing enterocolitis (NEC). Butyrate induced NOTCH activation by repressing sirtuin 1 (SIRT1)-mediated deacetylation of the Notch intracellular domain (NICD) in human intestinal epithelial cells (HIECs). Overexpression of NICD induced SIGIRR, A20, and TOLLIP expression. Chromatin immunoprecipitation revealed that butyrate-induced NICD binds to the SIGIRR, A20, and TOLLIP gene promoters. Notch1-shRNA suppressed butyrate-induced SIGIRR/A20 upregulation in mouse enteroids and HIEC. Flagellin (TLR5 agonist)-induced inflammation in HIEC was inhibited by butyrate in a SIGIRR-dependent manner. Neonatal mice fed butyrate had increased NICD, A20, SIGIRR, and TOLLIP expression in the ileal epithelium. Butyrate inhibited experimental NEC-induced intestinal apoptosis, cytokine expression, and histological injury. Our data suggest that SCFAs can regulate the expression of the major negative regulators of TLR signaling in the neonatal intestine through Notch1 and ameliorate experimental NEC. Enteral SCFAs supplementation in preterm infants provides a promising bacteria-free, therapeutic option for NEC.NEW & NOTEWORTHY Short-chain fatty acids (SCFAs), such as propionate and butyrate, metabolites produced by symbiotic gut bacteria are known to be anti-inflammatory, but the mechanisms by which they protect against NEC are not fully understood. In this study, we reveal that SCFAs regulate intestinal inflammation by inducing the key TLR and IL1R inhibitors, SIGIRR and A20, through activation of the pluripotent transcriptional factor NOTCH1. Butyrate-mediated SIGIRR and A20 induction represses experimental NEC in the neonatal intestine.
Collapse
MESH Headings
- Infant, Newborn
- Animals
- Mice
- Humans
- Enterocolitis, Necrotizing/drug therapy
- Enterocolitis, Necrotizing/prevention & control
- Enterocolitis, Necrotizing/genetics
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Infant, Premature
- Inflammation/metabolism
- Intestinal Mucosa/metabolism
- Fatty Acids, Volatile/pharmacology
- Fatty Acids, Volatile/metabolism
- Butyrates/metabolism
- Immunoglobulins/metabolism
- Interleukin-1/metabolism
- Receptor, Notch1/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
Collapse
Affiliation(s)
- Wei Yu
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Aparna Venkatraman
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Heather L Menden
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Maribel Martinez
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| |
Collapse
|
12
|
Jiang H, Deng S, Zhang J, Chen J, Li B, Zhu W, Zhang M, Zhang C, Meng Z. Acupuncture treatment for post-stroke depression: Intestinal microbiota and its role. Front Neurosci 2023; 17:1146946. [PMID: 37025378 PMCID: PMC10070763 DOI: 10.3389/fnins.2023.1146946] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke-induced depression is a common complication and an important risk factor for disability. Besides psychiatric symptoms, depressed patients may also exhibit a variety of gastrointestinal symptoms, and even take gastrointestinal symptoms as the primary reason for medical treatment. It is well documented that stress may disrupt the balance of the gut microbiome in patients suffering from post-stroke depression (PSD), and that disruption of the gut microbiome is closely related to the severity of the condition in depressed patients. Therefore, maintaining the balance of intestinal microbiota can be the focus of research on the mechanism of acupuncture in the treatment of PSD. Furthermore, stroke can be effectively treated with acupuncture at all stages and it may act as a special microecological regulator by regulating intestinal microbiota as well. In this article, we reviewed the studies on changing intestinal microbiota after acupuncture treatment and examined the existing problems and development prospects of acupuncture, microbiome, and poststroke depression, in order to provide new ideas for future acupuncture research.
Collapse
Affiliation(s)
- Hailun Jiang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shizhe Deng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jieying Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Boxuan Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiming Zhu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglong Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chao Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Chao Zhang,
| | - Zhihong Meng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Zhihong Meng,
| |
Collapse
|
13
|
Dhuppar S, Murugaiyan G. miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease. Trends Immunol 2022; 43:917-931. [PMID: 36220689 PMCID: PMC9617792 DOI: 10.1016/j.it.2022.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Inflammatory bowel disease (IBD) spans a range of chronic conditions affecting the gastrointestinal (GI) tract, which are marked by intermittent flare-ups and remissions. IBD results from microbial dysbiosis or a defective mucosal barrier in the gut that triggers an inappropriate immune response in a genetically susceptible person, altering the immune-microbiome axis. In this review, we discuss the regulatory roles of miRNAs, small noncoding RNAs with gene regulatory functions, in the stability and maintenance of the gut immune-microbiome axis, and detail the challenges and recent advances in the use of miRNAs as putative therapeutic agents for treating IBD.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Current address: Centre for Business Innovation, The Indian School of Business, Hyderabad 500111, India
| | - Gopal Murugaiyan
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Negi S, Hashimoto-Hill S, Alenghat T. Neonatal microbiota-epithelial interactions that impact infection. Front Microbiol 2022; 13:955051. [PMID: 36090061 PMCID: PMC9453604 DOI: 10.3389/fmicb.2022.955051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Despite modern therapeutic developments and prophylactic use of antibiotics during birth or in the first few months of life, enteric infections continue to be a major cause of neonatal mortality and morbidity globally. The neonatal period is characterized by initial intestinal colonization with microbiota and concurrent immune system development. It is also a sensitive window during which perturbations to the environment or host can significantly impact colonization by commensal microbes. Extensive research has demonstrated that these early life alterations to the microbiota can lead to enhanced susceptibility to enteric infections and increased systemic dissemination in newborns. Various contributing factors continue to pose challenges in prevention and control of neonatal enteric infections. These include alterations in the gut microbiota composition, impaired immune response, and effects of maternal factors. In addition, there remains limited understanding for how commensal microbes impact host-pathogen interactions in newborns. In this review, we discuss the recent recognition of initial microbiota-epithelial interactions that occur in neonates and can regulate susceptibility to intestinal infection. These studies suggest the development of neonatal prophylactic or therapeutic regimens that include boosting epithelial defense through microbiota-directed interventions.
Collapse
|
15
|
Bonifácio Andrade E, Lorga I, Roque S, Geraldo R, Mesquita P, Castro R, Simões-Costa L, Costa M, Faustino A, Ribeiro A, Correia-Neves M, Trieu-Cuot P, Ferreira P. Maternal vaccination against group B Streptococcus glyceraldehyde-3-phosphate dehydrogenase leads to gut dysbiosis in the offspring. Brain Behav Immun 2022; 103:186-201. [PMID: 35427758 DOI: 10.1016/j.bbi.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/27/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Group B Streptococcus (GBS) remains a major neonatal life-threatening pathogen. We initially identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a promising vaccine candidate against GBS. Since GAPDH is highly conserved, we investigate whether GBS GAPDH maternal vaccination interferes with the intestinal colonization of the offspring and the development of its mucosal immune system and central nervous system. An altered gut microbiome with increased Proteobacteria is observed in pups born from vaccinated dams during early life. These pups present decreased relative expression of IL-1β, IL-17A, RegIIIγ and MUC2 in the distal colon. They also display increased CD11b, F4/80 and MHC class II expression on microglia in early life and marked reduction of Ly6C+ cells and neutrophils. Importantly, male mice born from vaccinated mothers present behavioral abnormalities during adulthood, including decreased exploratory behavior, a subtle anxious-like phenotype and global alterations in spatial learning and memory strategies, and higher sensitivity to a stressful stimulus. Our study highlights the danger of using ubiquitous antigens in maternal human vaccines against neonatal pathogens.
Collapse
Affiliation(s)
- Elva Bonifácio Andrade
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Inês Lorga
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rafaela Geraldo
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro Mesquita
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rogério Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Simões-Costa
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, Heidelberg, Germany
| | - Madalena Costa
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; UMIB - Unit for Multidisciplinary Investigation in Biomedicine (Endocrine, Cardiovascular & Metabolic Research), University of Porto, Portugal
| | - Augusto Faustino
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Adília Ribeiro
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-positif, Centre National de la Recherche Scientifique (CNRS UMR 60647), Paris 75015, France
| | - Paula Ferreira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
16
|
George S, Aguilera X, Gallardo P, Farfán M, Lucero Y, Torres JP, Vidal R, O'Ryan M. Bacterial Gut Microbiota and Infections During Early Childhood. Front Microbiol 2022; 12:793050. [PMID: 35069488 PMCID: PMC8767011 DOI: 10.3389/fmicb.2021.793050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota composition during the first years of life is variable, dynamic and influenced by both prenatal and postnatal factors, such as maternal antibiotics administered during labor, delivery mode, maternal diet, breastfeeding, and/or antibiotic consumption during infancy. Furthermore, the microbiota displays bidirectional interactions with infectious agents, either through direct microbiota-microorganism interactions or indirectly through various stimuli of the host immune system. Here we review these interactions during childhood until 5 years of life, focusing on bacterial microbiota, the most common gastrointestinal and respiratory infections and two well characterized gastrointestinal diseases related to dysbiosis (necrotizing enterocolitis and Clostridioides difficile infection). To date, most peer-reviewed studies on the bacterial microbiota in childhood have been cross-sectional and have reported patterns of gut dysbiosis during infections as compared to healthy controls; prospective studies suggest that most children progressively return to a "healthy microbiota status" following infection. Animal models and/or studies focusing on specific preventive and therapeutic interventions, such as probiotic administration and fecal transplantation, support the role of the bacterial gut microbiota in modulating both enteric and respiratory infections. A more in depth understanding of the mechanisms involved in the establishment and maintenance of the early bacterial microbiota, focusing on specific components of the microbiota-immunity-infectious agent axis is necessary in order to better define potential preventive or therapeutic tools against significant infections in children.
Collapse
Affiliation(s)
- Sergio George
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ximena Aguilera
- School of Medicine, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pablo Gallardo
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mauricio Farfán
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yalda Lucero
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Roberto del Río Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Pablo Torres
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Miguel O'Ryan
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
17
|
Yang Y, Shi X, Du Z, Zhou G, Zhang X. Associations between genetic variations in microRNA and myocardial infarction susceptibility: a meta-analysis and systematic review. Herz 2021; 47:524-535. [PMID: 34878577 DOI: 10.1007/s00059-021-05086-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Current genetic association studies have reported conflicting results regarding the association between miRNA polymorphisms and myocardial infarction (MI) risk METHODS: Relevant studies were retrieved from the PubMed, EMBASE, ISI Web of Science, and Scopus databases. Eligible studies determining the association between miRNA polymorphisms and MI susceptibility were included and a meta-analysis was performed to quantify the associations between miRNA polymorphisms and MI risk. RESULTS A total of eight studies with 2507 MI patients and 3796 healthy controls were included, dealing with nine miRNA genes containing 11 different loci, including miR-149 (rs71428439 and rs2292832), miR-126 (rs4636297 and rs1140713), miR-146a (rs2910164), miR-218 (rs11134527), miR-196a2 (rs11614913), miR-499 (rs3746444), miR-27a (rs895819), miR-26a‑1 (rs7372209), and miR-100 (rs1834306). miR-146a rs2910164 and miR-499 rs3746444 were determined to have a significant association with MI susceptibility, a finding that was supported by the meta-analysis (rs2910164: GG/CC, odds ratio [OR]: 1.40, 95% confidence interval [95% CI]: 1.05-1.74, p < 0.001; rs3746444: AA + AG/GG, OR = 2.04, 95% CI: 1.37-2.70, p < 0.001). Limited or conflicting data were found for the relationship between the other miRNA polymorphisms (rs71428439, rs4636297, rs1140713, rs11134527, rs11614913, rs895819, rs7372209, rs1834306, rs2292832) and MI risk. CONCLUSION There was a significant association between rs2910164 and rs3746444 and MI susceptibility. Further studies are required to investigate the role of miRNA polymorphisms in MI risk.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University, 230061, Hefei, Anhui, China
| | - Xiajun Shi
- Department of Cardiology, Tongling People's Hospital, 244002, Tongling, Anhui, China
| | - Zhengxun Du
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University, 230061, Hefei, Anhui, China
| | - Gendong Zhou
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University, 230061, Hefei, Anhui, China
| | - Xiaohong Zhang
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University, 230061, Hefei, Anhui, China.
| |
Collapse
|
18
|
MicroRNA as a Potential Biomarker and Treatment Strategy for Ischemia-Reperfusion Injury. Int J Genomics 2021; 2021:9098145. [PMID: 34845433 PMCID: PMC8627352 DOI: 10.1155/2021/9098145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a progressive injury that aggravates the pathological state when the organ tissue restores blood supply after a certain period of ischemia, including the myocardial, brain, liver, kidney, and intestinal. With growing evidence that microRNAs (miRNAs) play an important role as posttranscription gene silencing mediators in many I/R injury, in this review, we highlight the microRNAs that are related to I/R injury and their regulatory molecular pathways. In addition, we discussed the potential role of miRNA as a biomarker and its role as a target in I/R injury treatment. Developing miRNAs are not without its challenges, but prudent design combined with existing clinical treatments will result in more effective therapies for I/R injury. This review is aimed at providing new research results obtained in this research field. It is hoped that new research on this topic will not only generate new insights into the pathophysiology of miRNA in I/R injury but also can provide a basis for the clinical application of miRNA in I/R.
Collapse
|
19
|
Zhang K, Huang Q, Deng S, Yang Y, Li J, Wang S. Mechanisms of TLR4-Mediated Autophagy and Nitroxidative Stress. Front Cell Infect Microbiol 2021; 11:766590. [PMID: 34746034 PMCID: PMC8570305 DOI: 10.3389/fcimb.2021.766590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pathogenic infections have badly affected public health and the development of the breeding industry. Billions of dollars are spent every year fighting against these pathogens. The immune cells of a host produce reactive oxygen species and reactive nitrogen species which promote the clearance of these microbes. In addition, autophagy, which is considered an effective method to promote the destruction of pathogens, is involved in pathological processes. As research continues, the interplay between autophagy and nitroxidative stress has become apparent. Autophagy is always intertwined with nitroxidative stress. Autophagy regulates nitroxidative stress to maintain homeostasis within an appropriate range. Intracellular oxidation, in turn, is a strong inducer of autophagy. Toll-like receptor 4 (TLR4) is a pattern recognition receptor mainly involved in the regulation of inflammation during infectious diseases. Several studies have suggested that TLR4 is also a key regulator of autophagy and nitroxidative stress. In this review, we describe the role of TLR4 in autophagy and oxidation, and focus on its function in influencing autophagy-nitroxidative stress interactions.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yecheng Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Guangdong Provincial Research Center of Gene Editing Engineering Technology, Foshan University, Foshan, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
20
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
SIGIRR Mutation in Human Necrotizing Enterocolitis (NEC) Disrupts STAT3-Dependent microRNA Expression in Neonatal Gut. Cell Mol Gastroenterol Hepatol 2021; 13:425-440. [PMID: 34563711 PMCID: PMC8688179 DOI: 10.1016/j.jcmgh.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Single immunoglobulin interleukin-1-related receptor (SIGIRR) is a major inhibitor of Toll-like receptor signaling. Our laboratory identified a novel SIGIRR stop mutation (p.Y168X) in an infant who died of severe necrotizing enterocolitis (NEC). Herein, we investigated the mechanisms by which SIGIRR mutations induce Toll-like receptor hyper-responsiveness in the neonatal gut, disrupting postnatal intestinal adaptation. METHODS Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was used to generate transgenic mice encoding the SIGIRR p.Y168X mutation. Ileal lysates, mouse intestinal epithelial cell (IEC) lysates, and intestinal sections were used to assess inflammation, signal transducer and activator of transcription 3 (STAT3) phosphorylation, microRNA (miRNA), and interleukin-1-related-associated kinase 1 (IRAK1) expression. Western blot, quantitative reverse-transcription polymerase chain reaction(qRT-PCR), and luciferase assays were performed to investigate SIGIRR-STAT3 signaling in human intestinal epithelial cells (HIEC) expressing wild-type or SIGIRR (p.Y168X) plasmids. RESULTS SigirrTg mice showed increased intestinal inflammation and nuclear factor-κB activation concomitant with decreased IEC expression of miR-146a and miR-155. Mechanistic studies in HIECs showed that although SIGIRR induced STAT3-mediated expression of miR-146a and miR-155, the p.Y168X mutation disrupted SIGIRR-mediated STAT3-dependent miRNA expression. Chromatin immunoprecipitation and luciferase assays showed that SIGIRR activation of STAT3-induced miRNA expression is dependent on IRAK1. Both in HIECs and in the mouse intestine, decreased expression of miR-146a observed with the p.Y168X mutation increased expression of IRAK1, a protein whose down-regulation is important for postnatal gut adaptation. CONCLUSIONS Our results uncover a novel pathway (SIGIRR-STAT3-miRNA-IRAK1 repression) by which SIGIRR regulates postnatal intestine adaptation, which is disrupted by a SIGIRR mutation identified in human NEC. These data provide new insights into how human genetic mutations in SIGIRR identified in NEC result in loss of postnatal intestinal immune tolerance.
Collapse
|
22
|
Establishment of a Newborn Lamb Gut-Loop Model to Evaluate New Methods of Enteric Disease Control and Reduce Experimental Animal Use. Vet Sci 2021; 8:vetsci8090170. [PMID: 34564564 PMCID: PMC8472880 DOI: 10.3390/vetsci8090170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Enteric infectious diseases are not all well controlled, which leads to animal suffering and sometimes death in the most severe cases, in addition to economic losses for farmers. Typical symptoms of enteric infections include watery diarrhea, stomach cramps or pain, dehydration, nausea, vomiting, fever and weight loss. Evaluation of new control methods against enteric infections requires the use of many animals. We aimed to develop a new method for an initial in vivo screen of promising compounds against neonatal diseases such as cryptosporidiosis while limiting experimental animal use. We therefore adapted an in vivo method of multiple consecutive but independent intestinal loops to newborn lambs delivered by cesarean section, in which endotoxin responsiveness is retained. This new method allowed for the screening of natural yeast fractions for their ability to stimulate immune responses and to limit early Cryptosporidium parvum development. This model may also be used to investigate host–pathogen interactions and immune responses in a neonatal controlled environment.
Collapse
|
23
|
Guo H, Gao J, Qian Y, Wang H, Liu J, Peng Q, Zhou Y, Wang K. miR-125b-5p inhibits cell proliferation by targeting ASCT2 and regulating the PI3K/AKT/mTOR pathway in an LPS-induced intestinal mucosa cell injury model. Exp Ther Med 2021; 22:838. [PMID: 34149884 PMCID: PMC8210225 DOI: 10.3892/etm.2021.10270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal barrier injury is an important cause of death in patients with acquired immune deficiency syndrome (AIDS). Therefore, it is of great significance to identify a therapeutic target for intestinal barrier injury to delay the progression of AIDS. microRNA (miRNA/miR)-125b-5p has an extensive role in cancer and controlling intestinal epithelial barrier function, but its role in human immunodeficiency virus-related intestinal mucosal damage remains unknown. The present study was designed to explore the effects of miR-125b-5p on lipopolysaccharide (LPS)-induced intestinal mucosal injury and the underlying mechanism. The expression of miR-125b-5p and ASCT2 mRNA was detected in colon biopsy samples of 10 patients with AIDS and 10 control healthy subjects. Human intestinal embryonic mucosa cells (CCC-HIE-2) were used to establish an LPS-induced intestinal mucosa cell injury model in vitro. Cell proliferation and apoptosis were determined by MTT assays and flow cytometry, respectively. miR-125b-5p levels and ASCT2 mRNA and protein expression levels in the LPS-induced intestinal mucosa cell injury model were detected by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. The interaction between miR-125b-5p and ASCT2 was analyzed using a dual luciferase reporter assay. The results demonstrated that miR-125b-5p levels were increased and ASCT2 mRNA expression levels were decreased in colon samples from patients with AIDS and in LPS-induced intestinal mucosa cells. In the LPS-induced intestinal mucosa cell injury model, transfection with miR-125b-5p mimic inhibited cell proliferation and promoted cell apoptosis, while transfection with a miR-125b-5p inhibitor increased cell proliferation and attenuated cell apoptosis. Furthermore, miR-125b-5p mimic transfection resulted in a decrease of ASCT2 mRNA and protein expression, whereas the inhibitor increased ASCT2 mRNA and protein expression. Dual luciferase reporter assays suggested that ASCT2 was a direct target of miR-125b-5p, and its restoration weakened the effect of miR-125b-5p on LPS-induced intestinal mucosa cell injury. Transfection with the miR-125b-5p mimic also exhibited a suppressive effect on the PI3K/AKT/mTOR pathway in the LPS-induced intestinal mucosal cell injury model. Overall, the present study indicated that miR-125b-5p accelerated LPS-induced intestinal mucosa cell injury by targeting ASCT2 and upregulating the PI3K/AKT/mTOR pathway. The current findings may provide novel targets for the treatment of intestinal barrier injury in patients with AIDS.
Collapse
Affiliation(s)
- Huiming Guo
- Department of Gynaecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jianyuan Gao
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuan Qian
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Huawei Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiang Liu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qingyan Peng
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China.,The Scientific Research Laboratory Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yong Zhou
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China.,The Scientific Research Laboratory Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
24
|
Wagner C, Torow N, Hornef MW, Lelouard H. Spatial and temporal key steps in early-life intestinal immune system development and education. FEBS J 2021; 289:4731-4757. [PMID: 34076962 DOI: 10.1111/febs.16047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Education of our intestinal immune system early in life strongly influences adult health. This education strongly relies on series of events that must occur in well-defined time windows. From initial colonization by maternal-derived microbiota during delivery to dietary changes from mother's milk to solid foods at weaning, these early-life events have indeed long-standing consequences on our immunity, facilitating tolerance to environmental exposures or, on the contrary, increasing the risk of developing noncommunicable diseases such as allergies, asthma, obesity, and inflammatory bowel diseases. In this review, we provide an outline of the recent advances in our understanding of these events and how they are mechanistically related to intestinal immunity development and education. First, we review the susceptibility of neonates to infections and inflammatory diseases, related to their immune system and microbiota changes. Then, we highlight the maternal factors involved in protection and education of the mucosal immune system of the offspring, the role of the microbiota, and the nature of neonatal immune system until weaning. We also present how the development of some immune responses is intertwined in temporal and spatial windows of opportunity. Finally, we discuss pending questions regarding the neonate particular immune status and the activation of the intestinal immune system at weaning.
Collapse
Affiliation(s)
- Camille Wagner
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | | |
Collapse
|
25
|
Nunez N, Réot L, Menu E. Neonatal Immune System Ontogeny: The Role of Maternal Microbiota and Associated Factors. How Might the Non-Human Primate Model Enlighten the Path? Vaccines (Basel) 2021; 9:584. [PMID: 34206053 PMCID: PMC8230289 DOI: 10.3390/vaccines9060584] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant's microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother-fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant's microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant's health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.
Collapse
Affiliation(s)
- Natalia Nunez
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
| | - Louis Réot
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
| | - Elisabeth Menu
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
- MISTIC Group, Department of Virology, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
26
|
Henneke P, Kierdorf K, Hall LJ, Sperandio M, Hornef M. Perinatal development of innate immune topology. eLife 2021; 10:67793. [PMID: 34032570 PMCID: PMC8149122 DOI: 10.7554/elife.67793] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
At the transition from intrauterine to postnatal life, drastic alterations are mirrored by changes in cellular immunity. These changes are in part immune cell intrinsic, originate in the replacement of fetal cells, or result from global regulatory mechanisms and adaptation to changes in the tissue microenvironment. Overall, longer developmental trajectories are intersected by events related to mother-infant separation, birth cues, acquisition of microbiota and metabolic factors. Perinatal alterations particularly affect immune niches, where structures with discrete functions meet, the intestinal mucosa, epidermis and lung. Accordingly, the following questions will be addressed in this review. How does the preprogrammed development supported by endogenous cues, steer innate immune cell differentiation, adaptation to tissue structures, and immunity to infection? How does the transition at birth impact on tissue immune make-up including its topology? How do postnatal cues guide innate immune cell differentiation and function at immunological niches?
Collapse
Affiliation(s)
- Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Intestinal Microbiome, School of Life Sciences, and ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
27
|
Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn. Front Immunol 2021; 12:683022. [PMID: 34054875 PMCID: PMC8158941 DOI: 10.3389/fimmu.2021.683022] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The innate immune system is the oldest protection strategy that is conserved across all organisms. Although having an unspecific action, it is the first and fastest defense mechanism against pathogens. Development of predominantly the adaptive immune system takes place after birth. However, some key components of the innate immune system evolve during the prenatal period of life, which endows the newborn with the ability to mount an immune response against pathogenic invaders directly after birth. Undoubtedly, the crosstalk between maternal immune cells, antibodies, dietary antigens, and microbial metabolites originating from the maternal microbiota are the key players in preparing the neonate’s immunity to the outer world. Birth represents the biggest substantial environmental change in life, where the newborn leaves the protective amniotic sac and is exposed for the first time to a countless variety of microbes. Colonization of all body surfaces commences, including skin, lung, and gastrointestinal tract, leading to the establishment of the commensal microbiota and the maturation of the newborn immune system, and hence lifelong health. Pregnancy, birth, and the consumption of breast milk shape the immune development in coordination with maternal and newborn microbiota. Discrepancies in these fine-tuned microbiota interactions during each developmental stage can have long-term effects on disease susceptibility, such as metabolic syndrome, childhood asthma, or autoimmune type 1 diabetes. In this review, we will give an overview of the recent studies by discussing the multifaceted emergence of the newborn innate immune development in line with the importance of maternal and early life microbiota exposure and breast milk intake.
Collapse
Affiliation(s)
- Cristina Kalbermatter
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nerea Fernandez Trigo
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sandro Christensen
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Lehenaff R, Tamashiro R, Nascimento MM, Lee K, Jenkins R, Whitlock J, Li EC, Sidhu G, Anderson S, Progulske-Fox A, Bubb MR, Chan EKL, Wang GP. Subgingival microbiome of deep and shallow periodontal sites in patients with rheumatoid arthritis: a pilot study. BMC Oral Health 2021; 21:248. [PMID: 33964928 PMCID: PMC8105973 DOI: 10.1186/s12903-021-01597-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Background Subgingival microbiome in disease-associated subgingival sites is known to be dysbiotic and significantly altered. In patients with rheumatoid arthritis (RA), the extent of dysbiosis in disease- and health-associated subgingival sites is not clear. Methods 8 RA and 10 non-RA subjects were recruited for this pilot study. All subjects received full oral examination and underwent collection of subgingival plaque samples from both shallow (periodontal health-associated, probing depth ≤ 3mm) and deep subgingival sites (periodontal disease-associated, probing depth ≥ 4 mm). RA subjects also had rheumatological evaluation. Plaque community profiles were analyzed using 16 S rRNA sequencing. Results The phylogenetic diversity of microbial communities in both RA and non-RA controls was significantly higher in deep subgingival sites compared to shallow sites (p = 0.022), and the overall subgingival microbiome clustered primarily according to probing depth (i.e. shallow versus deep sites), and not separated by RA status. While a large number of differentially abundant taxa and gene functions was observed between deep and shallow sites as expected in non-RA controls, we found very few differentially abundant taxa and gene functions between deep and shallow sites in RA subjects. In addition, compared to non-RA controls, the UniFrac distances between deep and shallow sites in RA subjects were smaller, suggesting increased similarity between deep and shallow subgingival microbiome in RA. Streptococcus parasanguinis and Actinomyces meyeri were overabundant in RA subjects, while Gemella morbillorum, Kingella denitrificans, Prevotella melaninogenica and Leptotrichia spp. were more abundant in non-RA subjects. Conclusions The aggregate subgingival microbiome was not significantly different between individuals with and without rheumatoid arthritis. Although the differences in the overall subgingival microbiome was driven primarily by probing depth, in contrast to the substantial microbiome differences typically seen between deep and shallow sites in non-RA patients, the microbiome of deep and shallow sites in RA patients were more similar to each other. These results suggest that factors associated with RA may modulate the ecology of subgingival microbiome and its relationship to periodontal disease, the basis of which remains unknown but warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01597-x.
Collapse
Affiliation(s)
- Ryanne Lehenaff
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Ryan Tamashiro
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Marcelle M Nascimento
- Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Kyulim Lee
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - Renita Jenkins
- Dental Clinical Research Unit, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Joan Whitlock
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Eric C Li
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Gurjit Sidhu
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Susanne Anderson
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - Michael R Bubb
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Edward K L Chan
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA.
| | - Gary P Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA. .,Medical Service, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.
| |
Collapse
|
29
|
Pritsch M, Ben Khaled N, Liegl G, Schubert S, Hoelscher M, Woischke C, Arens N, Thorn-Seshold J, Kammermeier S, Wieser A. Rapid prototyping vaccine approach in mice against multi-drug resistant Gram-negative organisms from clinical isolates based on outer membrane vesicles. Microbiol Immunol 2021; 65:214-227. [PMID: 33650163 DOI: 10.1111/1348-0421.12882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Hospital-acquired infections due to multi-drug resistant Gram-negative organisms (MDRGNO) pose a major threat to global health. A vaccine preventing colonization and consecutive infection with MDRGNO could be particularly valuable, as therapeutic options become increasingly limited. Outer membrane vesicles (OMV) of Escherichia coli strain CFT073 as well as three MDRGNO strains that had caused severe infections in humans were administered intranasally to mice, with and without cholera toxin as an adjuvant. The humoral immune responses were comparatively matched with the sera of patients, who had suffered an infection caused by the respective bacterium. Additionally, systemic and local toxicity was evaluated. Intranasal vaccination with OMV could elicit solid humoral immune responses (total IgM and IgG), specific for the respective MDRGNO in mice; decoration of vital bacterial membranes with antibodies was comparable to patients who had survived systemic infection with the respective bacterial isolate. After intranasal vaccination of mice with OMV no signs of local or systemic toxicity were observed. Intranasal vaccination with OMV may open up a rapid vaccine approach to prevent colonization and/or infection with pathogenic MDRGNOs, especially in an outbreak setting within a hospital. It may also be an option for patients who have to undergo elective interventions in centers with a high risk of infection for certain common MDRGNO. Future studies need to include challenge experiments as well as phase I trials in humans.
Collapse
Affiliation(s)
- Michael Pritsch
- Department of Bacteriology, Max von Pettenkofer-Institute (LMU), Munich, Germany.,Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,3CIHLMU Center for International Health, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Najib Ben Khaled
- Department of Bacteriology, Max von Pettenkofer-Institute (LMU), Munich, Germany.,Department of Medicine II, University Hospital Munich (LMU), Munich, Germany
| | - Gabriele Liegl
- Department of Bacteriology, Max von Pettenkofer-Institute (LMU), Munich, Germany
| | - Soeren Schubert
- Department of Bacteriology, Max von Pettenkofer-Institute (LMU), Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,3CIHLMU Center for International Health, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Christine Woischke
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Nathalie Arens
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,Department of Medicine IV, University Hospital Augsburg, Augsburg, Germany
| | | | - Stefan Kammermeier
- Department of Neurology, University Hospital Munich (LMU), Munich, Germany
| | - Andreas Wieser
- Department of Bacteriology, Max von Pettenkofer-Institute (LMU), Munich, Germany.,Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,3CIHLMU Center for International Health, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
30
|
Morris NL, Choudhry MA. Maintenance of gut barrier integrity after injury: Trust your gut microRNAs. J Leukoc Biol 2021; 110:979-986. [PMID: 33577717 DOI: 10.1002/jlb.3ru0120-090rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is a highly dynamic structure essential for digestion, nutrient absorption, and providing an interface to prevent gut bacterial translocation. In order to maintain the barrier function, the gut utilizes many defense mechanisms including proliferation, apoptosis, and apical junctional complexes. Disruption of any of these parameters due to injury or disease could negatively impact the intestinal barrier function and homeostasis resulting in increased intestine inflammation, permeability, bacterial dysbiosis, and tissue damage. MicroRNAs are small noncoding RNA sequences that are master regulators of normal cellular homeostasis. These regulatory molecules affect cellular signaling pathways and potentially serve as candidates for providing a mechanism of impaired gut barrier integrity following GI-related pathologic conditions, ethanol exposure, or trauma such as burn injury. MicroRNAs influence cellular apoptosis, proliferation, apical junction complex expression, inflammation, and the microbiome. Due to their widespread functional affiliations, altered expression of microRNAs are associated with many pathologic conditions. This review explores the role of microRNAs in regulation of intestinal barrier integrity. The studies reviewed demonstrate that microRNAs largely impact intestine barrier function and provide insight behind the observed adverse effects following ethanol and burn injury. Furthermore, these studies suggest that microRNAs are excellent candidates for therapeutic intervention or for biomarkers to manage gut barrier integrity following trauma such as burn injury and other GI-related pathologic conditions.
Collapse
Affiliation(s)
- Niya L Morris
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Current address: Department of Medicine: Pulmonary, Allergy, Critical Care and Sleep, Emory University/Atlanta VA Medical Center, Decatur, Geogia, USA
| | - Mashkoor A Choudhry
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA
| |
Collapse
|
31
|
Chen J, Chen T, Zhou J, Zhao X, Sheng Q, Lv Z. MiR-146a-5p Mimic Inhibits NLRP3 Inflammasome Downstream Inflammatory Factors and CLIC4 in Neonatal Necrotizing Enterocolitis. Front Cell Dev Biol 2021; 8:594143. [PMID: 33585442 PMCID: PMC7876392 DOI: 10.3389/fcell.2020.594143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/31/2020] [Indexed: 12/02/2022] Open
Abstract
Objective: Necrotizing enterocolitis (NEC) is a gastrointestinal emergency with a severe inflammation storm, intestinal necrosis, and perforation. MicroRNA-146a-5p (miR-146a-5p) has been reported to be a valuable anti-inflammatory factor in various intestinal inflammatory disorders. However, the role of miR-146a-5p in NEC, its effects on nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome, and its downstream inflammatory factors remain unknown. This study aimed to investigate the role of miR-146a-5p and NLRP3 inflammasome and its downstream inflammatory factors in NEC development. Methods: The expression levels of miR-146a and NLRP3 inflammasome were investigated in intestinal tissues. Next, the mechanism by which miR-146a-5p regulates NLRP3 inflammasome activation was explored in vitro in THP-1 cells. Finally, to identify the effects of miR-146a-5p on NEC in vivo, NEC mice were transinfected with miR-146a-5p overexpression adenovirus before the occurrence of NEC. Results: NLRP3 inflammasome enzymatic protein caspase-1 and its downstream inflammatory factors increased in NEC intestinal samples in both humans and mice, and miR-146a-5p expression level was increased and mainly expressed in the macrophages of the affected intestine. In vitro, only miR-146a-5p mimic inhibited NLRP3 inflammasome downstream inflammatory factors and its upstream protein chloride intracellular channel protein 4 (CLIC4) expression in cellular membrane in the THP-1 cell line, and this only occurred under mild/moderate LPS concentration. MiR-146a-5p overexpression adenovirus transfection reduced CLIC4 cellular membrane expression and inhibited NLRP3 downstream factors increasing in vivo. After the transfection of miR-146a-5p adenovirus, the survival rate of NEC mice was increased, and intestinal injury was ameliorated. Conclusion: MiR-146a-5p inhibited NLRP3 inflammasome downstream inflammatory factors and CLIC4 membrane expression in NEC. Additionally, miR-146a-5p could attenuate inflammation and intestinal injury in the NEC-affected intestine.
Collapse
Affiliation(s)
- Jianglong Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tong Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Zhou
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuhao Zhao
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Sheng
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Koren N, Zubeidat K, Saba Y, Horev Y, Barel O, Wilharm A, Heyman O, Wald S, Eli-Berchoer L, Shapiro H, Nadler C, Elinav E, Wilensky A, Prinz I, Bercovier H, Hovav AH. Maturation of the neonatal oral mucosa involves unique epithelium-microbiota interactions. Cell Host Microbe 2021; 29:197-209.e5. [PMID: 33412104 DOI: 10.1016/j.chom.2020.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Postnatal host-microbiota interplay governs mucosal homeostasis and is considered to have life-long health consequences. The intestine monolayer epithelium is critically involved in such early-life processes; nevertheless, the role of the oral multilayer epithelium remains ill defined. We demonstrate that unlike the intestine, the neonate oral cavity is immensely colonized by the microbiota that decline to adult levels during weaning. Neutrophils are present in the oral epithelium prenatally, and exposure to the microbiota postnatally further recruits them to the preamble neonatal epithelium by γδT17 cells. These neutrophils virtually disappear during weaning as the epithelium seals. The neonate and adult epithelium display distinct turnover kinetics and transcriptomic signatures, with neonate epithelium reminiscent of the signature found in germ-free mice. Microbial reduction during weaning is mediated by the upregulation of saliva production and induction of salivary antimicrobial components by the microbiota. Collectively, unique postnatal interactions between the multilayer epithelium and microbiota shape oral homeostasis.
Collapse
Affiliation(s)
- Noam Koren
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Khaled Zubeidat
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yasmin Saba
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yael Horev
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Or Barel
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Oded Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Sharon Wald
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Luba Eli-Berchoer
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Hagit Shapiro
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Nadler
- Oral Medicine Department, Hebrew University, Hadassah School of Dental Medicine, Jerusalem
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Hillel Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Avi-Hai Hovav
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
33
|
Gomart A, Vallée A, Lecarpentier Y. Necrotizing Enterocolitis: LPS/TLR4-Induced Crosstalk Between Canonical TGF-β/Wnt/β-Catenin Pathways and PPARγ. Front Pediatr 2021; 9:713344. [PMID: 34712628 PMCID: PMC8547806 DOI: 10.3389/fped.2021.713344] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Necrotizing enterocolitis (NEC) represents one of the major causes of morbidity and mortality in premature infants. Several recent studies, however, have contributed to a better understanding of the pathophysiology of this dreadful disease. Numerous intracellular pathways play a key role in NEC, namely: bacterial lipopolysaccharide (LPS), LPS toll-like receptor 4 (TLR4), canonical Wnt/β-catenin signaling and PPARγ. In a large number of pathologies, canonical Wnt/β-catenin signaling and PPARγ operate in opposition to one another, so that when one of the two pathways is overexpressed the other is downregulated and vice-versa. In NEC, activation of TLR4 by LPS leads to downregulation of the canonical Wnt/β-catenin signaling and upregulation of PPARγ. This review aims to shed light on the complex intracellular mechanisms involved in this pathophysiological profile by examining additional pathways such as the GSK-3β, NF-κB, TGF-β/Smads, and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Alexia Gomart
- Département de Pédiatrie et Médecine de l'adolescent, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| |
Collapse
|
34
|
Microbiota-mediated protection against antibiotic-resistant pathogens. Genes Immun 2021; 22:255-267. [PMID: 33947987 PMCID: PMC8497270 DOI: 10.1038/s41435-021-00129-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Colonization by the microbiota provides one of our most effective barriers against infection by pathogenic microbes. The microbiota protects against infection by priming immune defenses, by metabolic exclusion of pathogens from their preferred niches, and through direct antimicrobial antagonism. Disruption of the microbiota, especially by antibiotics, is a major risk factor for bacterial pathogen colonization. Restoration of the microbiota through microbiota transplantation has been shown to be an effective way to reduce pathogen burden in the intestine but comes with a number of drawbacks, including the possibility of transferring other pathogens into the host, lack of standardization, and potential disruption to host metabolism. More refined methods to exploit the power of the microbiota would allow us to utilize its protective power without the drawbacks of fecal microbiota transplantation. To achieve this requires detailed understanding of which members of the microbiota protect against specific pathogens and the mechanistic basis for their effects. In this review, we will discuss the clinical and experimental evidence that has begun to reveal which members of the microbiota protect against some of the most troublesome antibiotic-resistant pathogens: Klebsiella pneumoniae, vancomycin-resistant enterococci, and Clostridioides difficile.
Collapse
|
35
|
Fiala GJ, Gomes AQ, Silva‐Santos B. From thymus to periphery: Molecular basis of effector γδ-T cell differentiation. Immunol Rev 2020; 298:47-60. [PMID: 33191519 PMCID: PMC7756812 DOI: 10.1111/imr.12918] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
The contributions of γδ T cells to immune (patho)physiology in many pre-clinical mouse models have been associated with their rapid and abundant provision of two critical cytokines, interferon-γ (IFN-γ) and interleukin-17A (IL-17). These are typically produced by distinct effector γδ T cell subsets that can be segregated on the basis of surface expression levels of receptors such as CD27, CD44 or CD45RB, among others. Unlike conventional T cells that egress the thymus as naïve lymphocytes awaiting further differentiation upon activation, a large fraction of murine γδ T cells commits to either IFN-γ or IL-17 expression during thymic development. However, extrathymic signals can both regulate pre-programmed γδ T cells; and induce peripheral differentiation of naïve γδ T cells into effectors. Here we review the key cellular events of "developmental pre-programming" in the mouse thymus; and the molecular basis for effector function maintenance vs plasticity in the periphery. We highlight some of our contributions towards elucidating the role of T cell receptor, co-receptors (like CD27 and CD28) and cytokine signals (such as IL-1β and IL-23) in these processes, and the various levels of gene regulation involved, from the chromatin landscape to microRNA-based post-transcriptional control of γδ T cell functional plasticity.
Collapse
Affiliation(s)
- Gina J. Fiala
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Anita Q. Gomes
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- H&TRC Health & Technology Research CenterESTeSL—Escola Superior de Tecnologia da SaúdeInstituto Politécnico de LisboaLisbonPortugal
| | - Bruno Silva‐Santos
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| |
Collapse
|
36
|
Pirr S, Viemann D. Host Factors of Favorable Intestinal Microbial Colonization. Front Immunol 2020; 11:584288. [PMID: 33117398 PMCID: PMC7576995 DOI: 10.3389/fimmu.2020.584288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Gut microbial colonization starts with birth and initiates a complex process between the host and the microbiota. Successful co-development of both establishes a symbiotic mutual relationship and functional homeostasis, while alterations thereof predispose the individual life-long to inflammatory and metabolic diseases. Multiple data have been provided how colonizing microbes induce a reprogramming and maturation of immunity by providing crucial instructing information to the newborn immune system. Less is known about what host factors have influence on the interplay between intestinal immunity and the composition of the gut microbial ecology. Here we review existing evidence regarding host factors that contribute to a favorable development of the gut microbiome and thereby successful maturation of gut mucosal immunity.
Collapse
Affiliation(s)
- Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,PRIMAL Consortium, Hanover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,PRIMAL Consortium, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| |
Collapse
|
37
|
Yap J, McCurdy S, Alcala M, Irei J, Garo J, Regan W, Lee BH, Kitamoto S, Boisvert WA. Expression of Chitotriosidase in Macrophages Modulates Atherosclerotic Plaque Formation in Hyperlipidemic Mice. Front Physiol 2020; 11:714. [PMID: 32655419 PMCID: PMC7324766 DOI: 10.3389/fphys.2020.00714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/29/2020] [Indexed: 11/13/2022] Open
Abstract
Objective To determine whether overexpression of the chitin degrading enzyme, chitotriosidase (CHIT1), modulates macrophage function and ameliorates atherosclerosis. Approach and Results Using a mouse model that conditionally overexpresses CHIT1 in macrophages (CHIT1-Tg) crossbred with the Ldlr -/- mouse provided us with a means to investigate the effects of CHIT1 overexpression in the context of atherosclerosis. In vitro, CHIT1 overexpression by murine macrophages enhanced protein expression of IL-4, IL-8, and G-CSF by BMDM upon stimulation with a combination of lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Phosphorylation of ERK1/2 and Akt was also down regulated when exposed to the same inflammatory stimuli. Hyperlipidemic, Ldlr -/--CHIT1-Tg (CHIT1-OE) mice were fed a high-fat diet for 12 weeks in order to study CHIT1 overexpression in atherosclerosis. Although plaque size and lesion area were not affected by CHIT1 overexpression in vivo, the content of hyaluronic acid (HA) and collagen within atherosclerotic plaques of CHIT1-OE mice was significantly greater. Localization of both ECM components was markedly different between groups. Conclusions These data demonstrate that CHIT1 alters cytokine expression and signaling pathways of classically activated macrophages. In vivo, CHIT1 modifies ECM distribution and content in atherosclerotic plaques, both of which are important therapeutic targets.
Collapse
Affiliation(s)
- Jonathan Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Sara McCurdy
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Martin Alcala
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Jan Garo
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Whitney Regan
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Bog-Hieu Lee
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Seoul, South Korea
| | - Shiro Kitamoto
- Departments of Cardiovascular Medicine and Advanced Therapeutics for Cardiovascular Diseases, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
38
|
Furter M, Sellin ME, Hansson GC, Hardt WD. Mucus Architecture and Near-Surface Swimming Affect Distinct Salmonella Typhimurium Infection Patterns along the Murine Intestinal Tract. Cell Rep 2020; 27:2665-2678.e3. [PMID: 31141690 PMCID: PMC6547020 DOI: 10.1016/j.celrep.2019.04.106] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/01/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022] Open
Abstract
Mucus separates gut-luminal microbes from the tissue. It is unclear how pathogens like Salmonella Typhimurium (S.Tm) can overcome this obstacle. Using live microscopy, we monitored S.Tm interactions with native murine gut explants and studied how mucus affects the infection. A dense inner mucus layer covers the distal colon tissue, limiting direct tissue access. S.Tm performs near-surface swimming on this mucus layer, which allows probing for colon mucus heterogeneities, but can also entrap the bacterium in the dense inner colon mucus layer. In the cecum, dense mucus fills only the bottom of the intestinal crypts, leaving the epithelium between crypts unshielded and prone to access by motile and non-motile bacteria alike. This explains why the cecum is highly infection permissive and represents the primary site of S.Tm enterocolitis in the streptomycin mouse model. Our findings highlight the importance of mucus in intestinal defense and homeostasis. Live imaging of Salmonella near-surface swimming on mouse colon inner mucus layer Colon inner mucus layer traversal requires mucus breaches and flagellar propulsion The mouse cecum lacks a continuous mucus layer, leaving epithelium tips uncovered Exposed cecum epithelium tips are a hotspot for Salmonella infection
Collapse
Affiliation(s)
- Markus Furter
- Institute for Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | - Mikael E Sellin
- Institute for Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, 40530 Gothenburg, Sweden
| | | |
Collapse
|
39
|
Ganal-Vonarburg SC, Hornef MW, Macpherson AJ. Microbial-host molecular exchange and its functional consequences in early mammalian life. Science 2020; 368:604-607. [PMID: 32381716 DOI: 10.1126/science.aba0478] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecules from symbiotic microorganisms pervasively infiltrate almost every organ system of a mammalian host, marking the initiation of microbial-host mutualism in utero, long before the newborn acquires its own microbiota. Starting from in utero development, when maternal microbial molecules can penetrate the placental barrier, we follow the different phases of adaptation through the life events of birth, lactation, and weaning, as the young mammal adapts to the microbes that colonize its body surfaces. The vulnerability of early-life mammals is mitigated by maternal detoxification and excretion mechanisms, the protective effects of maternal milk, and modulation of neonatal receptor systems. Host adaptations to microbial exposure during specific developmental windows are critical to ensure organ function for development, growth, and immunity.
Collapse
Affiliation(s)
- Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Mathias W Hornef
- Institute for Medical Microbiology, RWTH University Hospital, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Andrew J Macpherson
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland.
| |
Collapse
|
40
|
Pan X, Thymann T, Gao F, Sangild PT. Rapid Gut Adaptation to Preterm Birth Involves Feeding-Related DNA Methylation Reprogramming of Intestinal Genes in Pigs. Front Immunol 2020; 11:565. [PMID: 32351501 PMCID: PMC7174650 DOI: 10.3389/fimmu.2020.00565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/12/2020] [Indexed: 01/26/2023] Open
Abstract
Following preterm birth, the immature gut function and immunology must rapidly adapt to cope with bacterial colonization and enteral milk feeding. We hypothesized that intestinal epigenetic changes are involved in the gut response to preterm birth and the first feeding. Using piglets as models for infants, preterm, and term pigs were fed total parenteral nutrition (TPN) or partial enteral feeding for 5 days, followed by exclusive enteral feeding with bovine milk until day 26 (weaning age). Intestinal structure, function, microbiome, DNA methylome, and gene expressions were compared between preterm and term pigs on days 0, 5, and 26 (n = 8 in each group). At birth, the intestine of preterm pigs showed villus atrophy and global hypermethylation, affecting genes related to the Wnt signaling pathway. Hypermethylation-associated lowered expression of lipopolysaccharide-binding protein and genes related to the Toll-like receptor 4 pathway were evident during the first 5 days of life, but most early methylation differences disappeared by day 26. Regardless, sucrase and maltase activities (adult-type brush border enzymes) remained reduced, and the gut microbiota altered (fewer Akkermansia, more Lachnoclostridia and Lactobacilli) until day 26 in preterm pigs. During the 0- to 5-day period, many new preterm–term methylation differences appeared, but mainly when no enteral feed was provided (TPN feeding). These methylation differences affected intestinal genes related to cell metabolism, including increased GCK (glucokinase) expression via promoter hypomethylation. In conclusion, the immature intestine has a remarkable capacity to adapt its gene methylation and expression after preterm birth, and only few preterm-related defects persisted until weaning. Early enteral feeding may be important to stimulate the methylation reprogramming of intestinal genes, allowing rapid intestinal adaptation to preterm birth.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fei Gao
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
41
|
Al Nabhani Z, Eberl G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol 2020; 13:183-189. [PMID: 31988466 DOI: 10.1038/s41385-020-0257-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/04/2023]
Abstract
The ontogeny and maturation of the immune system is modulated by the microbiota. During fetal life, the mother's microbiota produces compounds that are transferred to the fetus and offspring, and enhance the generation of innate immune cells. After birth, the colonizing microbiota induces the development of intestinal lymphoid tissues and maturation of myeloid and lymphoid cells, and imprints the immune system with a reactivity level that persists long after weaning into adulthood. When the cross-talk between host and microbiota is perturbed early in life, a pathological imprinting may develop that is characterized by excessive immune reactivity in adulthood, which translates into increased susceptibility to inflammatory pathologies. In this review, we discuss the recent data that demonstrate the existence of a time window of opportunity early in life during which mice and human have to be exposed to microbiota in order to develop a balanced immune system. We also discuss the factors involved in imprinting, such as the microbiota, immune cells and stromal cells, as well as the nature of imprinting.
Collapse
Affiliation(s)
- Ziad Al Nabhani
- Microenvironment and Immunity Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Gérard Eberl
- Microenvironment and Immunity Unit, Institut Pasteur, INSERM U1224, Paris, France.
| |
Collapse
|
42
|
Chen H, Zeng L, Zheng W, Li X, Lin B. Increased Expression of microRNA-141-3p Improves Necrotizing Enterocolitis of Neonates Through Targeting MNX1. Front Pediatr 2020; 8:385. [PMID: 32850524 PMCID: PMC7399201 DOI: 10.3389/fped.2020.00385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: MicroRNA-141-3p (miR-141-3p) has been investigated in various kinds of cancers. This research delves into the functions and regulatory mechanisms of miR-141-3p in necrotizing enterocolitis (NEC) of neonates. Methods: NEC tissues were obtained from neonatal mice, and subsequently, expression of miR-141-3p and motor neuron and pancreas homeobox 1 (MNX1) was assayed via RT-qPCR. Moreover, the intestinal histopathological changes and histiocytic apoptosis were observed via hematoxylin and eosin (H&E) and TUNEL staining. The correlative inflammatory factors and oxidative stress markers were evaluated to uncover the influence of miR-141-3p in NEC tissue damage. Further, the relation between MNX1 and miR-141-3p was predicated, and the functions of MNX1 in inflammatory response and cell growth of IEC-6 cells were investigated. Results: Downregulated miR-141-3p and upregulated MNX1 were discovered in NEC tissues. Moreover, miR-141-3p clearly alleviated inflammation response and oxidative stress damage in NEC, which was achieved through regulating inflammatory cytokines (IL-1β, IL-6, and TNF-α) and oxidative stress markers (MPO, MDA, and SOD) expression. MNX1 was forecasted as a target gene of miR-141-3p; meanwhile, MNX1 overexpression overturned the influence of miR-141-3p in the inflammatory response and cell growth process of IEC-6 cells. Conclusion: These explorations reveal that increased expression of miR-141-3p could improve the damage to intestinal tissues in NEC through targeting MNX1. The research might exhibit a neoteric therapeutic strategy for NEC.
Collapse
Affiliation(s)
- Hui Chen
- Department of Neonatology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Lichun Zeng
- Department of Neonatology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Wei Zheng
- Department of Neonatology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Xiaoli Li
- Department of Neonatology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Baixing Lin
- Department of Neonatology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
43
|
Hornef MW, Torow N. 'Layered immunity' and the 'neonatal window of opportunity' - timed succession of non-redundant phases to establish mucosal host-microbial homeostasis after birth. Immunology 2019; 159:15-25. [PMID: 31777069 PMCID: PMC6904599 DOI: 10.1111/imm.13149] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
The intricate host–microbial interaction and the overwhelming complexity of the mucosal immune system in the adult host raise the question of how this system is initially established. Here, we propose the implementation of the concept of the ‘postnatal window of opportunity’ into the model of a ‘layered immunity’ to explain how the newborn's mucosal immune system matures and how host–microbial immune homeostasis is established after birth. We outline the concept of a timed succession of non‐redundant phases during postnatal immune development and discuss the possible influence of external factors and conditions.
Collapse
Affiliation(s)
- Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | - Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
44
|
Prenatal and postnatal contributions of the maternal microbiome on offspring programming. Front Neuroendocrinol 2019; 55:100797. [PMID: 31574280 DOI: 10.1016/j.yfrne.2019.100797] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/15/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The maternal microbiota is positioned to regulate the development of offspring immunity, metabolism, as well as brain function and behavior. The mechanisms by which maternal microbial signals drive these processes are beginning to be elucidated. In this review, we provide a brief overview on the importance of the microbiome in brain function and behavior, define the maternal vaginal and gut microbiota as distinct influences on offspring development, and outline current concepts in microbial origins of offspring health outcomes. We propose that the maternal microbiota influences prenatal and early postnatal offspring development and health outcomes through two overlapping processes. First, during pregnancy maternal gut microbiota provide metabolites and substrates essential for fetal growth through metabolic provisioning, driving expansion and maturation of central and peripheral immune cells, and formation of neural circuits. Second, vertical transmission of maternal microbiota during birth and in the early postnatal window elicits a potent immunostimulatory effect in offspring that induces metabolic and developmental transcriptional programs, primes the immune system for subsequent microbial exposure, and provides substrates for brain metabolism. Finally, we explore the possibility that environmental factors, such as malnutrition, stress and infection, may exert programmatic effects by disrupting the functional contributions of the maternal microbiome during prenatal and postnatal development to influence offspring outcomes across the lifespan.
Collapse
|
45
|
Iacob S, Iacob DG. Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Front Microbiol 2019; 10:1676. [PMID: 31447793 PMCID: PMC6692454 DOI: 10.3389/fmicb.2019.01676] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
The ecosystem of the gut microbiota consists of diverse intestinal species with multiple metabolic and immunologic activities and it is closely connected with the intestinal epithelia and mucosal immune response, with which it builds a complex barrier against intestinal pathogenic bacteria. The microbiota ensures the integrity of the gut barrier through multiple mechanisms, either by releasing antibacterial molecules (bacteriocins) and anti-inflammatory short-chain fatty acids or by activating essential cell receptors for the immune response. Experimental studies have confirmed the role of the intestinal microbiota in the epigenetic modulation of the gut barrier through posttranslational histone modifications and regulatory mechanisms induced by epithelial miRNA in the epithelial lumen. Any quantitative or functional changes of the intestinal microbiota, referred to as dysbiosis, alter the immune response, decrease epithelial permeability and destabilize intestinal homeostasis. Consequently, the overgrowth of pathobionts (Staphylococcus, Pseudomonas, and Escherichia coli) favors intestinal translocations with Gram negative bacteria or their endotoxins and could trigger sepsis, septic shock, secondary peritonitis, or various intestinal infections. Intestinal infections also induce epithelial lesions and perpetuate the risk of bacterial translocation and dysbiosis through epithelial ischemia and pro-inflammatory cytokines. Furthermore, the decline of protective anaerobic bacteria (Bifidobacterium and Lactobacillus) and inadequate release of immune modulators (such as butyrate) affects the release of antimicrobial peptides, de-represses microbial virulence factors and alters the innate immune response. As a result, intestinal germs modulate liver pathology and represent a common etiology of infections in HIV immunosuppressed patients. Antibiotic and antiretroviral treatments also promote intestinal dysbiosis, followed by the selection of resistant germs which could later become a source of infections. The current article addresses the strong correlations between the intestinal barrier and the microbiota and discusses the role of dysbiosis in destabilizing the intestinal barrier and promoting infectious diseases.
Collapse
Affiliation(s)
- Simona Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,National Institute of Infectious Diseases "Prof. Dr. Matei Balş", Bucharest, Romania
| | - Diana Gabriela Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
46
|
Chamani E, Sargolzaei J, Tavakoli T, Rezaei Z. microRNAs: Novel Markers in Diagnostics and Therapeutics of Celiac Disease. DNA Cell Biol 2019; 38:708-717. [DOI: 10.1089/dna.2018.4561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Elham Chamani
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Javad Sargolzaei
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Tahmineh Tavakoli
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Gastroenterology Section, Department of Internal Medicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
47
|
Freudenhammer M, Henneke P, Härtel C. Mikrobiom von Risikoneugeborenen und präventive Modifikation. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-019-0684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
IL-34 Inhibits Acute Rejection of Rat Liver Transplantation by Inducing Kupffer Cell M2 Polarization. Transplantation 2019; 102:e265-e274. [PMID: 29570162 DOI: 10.1097/tp.0000000000002194] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Recent studies have demonstrated that IL-34 is implicated in the regulation of macrophage functions. However, the effect of IL-34 on Kupffer cells (KCs) in acute rejection (AR) of liver transplantation remains unclear. METHODS IL-34 expression was detected in graft and serum from allotransplantation and syngeneic transplantation groups. The adeno-associated virus-expressing IL-34 was used to assess the effect of IL-34 on AR of rat liver transplantation. The effect of IL-34 on KC polarization was evaluated by in vitro and in vivo assays. Kupffer cells in donors were depleted by clodronate treatment before transplantation, and the nontreated KCs or lipopolysaccharide-treated KCs were transferred into recipients during liver transplantation. RESULTS IL-34 expression levels in grafts and serum were decreased in the allotransplantation group compared with the syngeneic transplantation group. Adeno-associated virus-expressing IL-34 treatment induced KC M2 polarization in vivo and inhibited the AR of rat liver transplantation. Moreover, we found that IL-34 switched the phenotype of KCs from M1 to M2 by activating the PI3K/Akt pathway in vitro. In addition, the results of KC deletion and adaptive transfer experiments showed that the AR inhibition induced by IL-34 was M2 KC-dependent. CONCLUSIONS IL-34 plays an important role in KC M2 polarization-dependent AR inhibition of rat liver transplantation.
Collapse
|
49
|
Anzola A, González R, Gámez-Belmonte R, Ocón B, Aranda CJ, Martínez-Moya P, López-Posadas R, Hernández-Chirlaque C, Sánchez de Medina F, Martínez-Augustin O. miR-146a regulates the crosstalk between intestinal epithelial cells, microbial components and inflammatory stimuli. Sci Rep 2018; 8:17350. [PMID: 30478292 PMCID: PMC6255912 DOI: 10.1038/s41598-018-35338-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/14/2018] [Indexed: 12/15/2022] Open
Abstract
Regulation of miR-146a abundance and its role in intestinal inflammation and particularly in intestinal epithelial cells (IECs) has been poorly studied. Here we study the relationship between bacterial antigens and inflammatory stimuli, and miR-146a expression using IEC lines and models of colitis (trinitrobenzenesulfonic acid (TNBS), dextran sulfate sodium (DSS) and the CD4 + CD62L + T cell transfer model). Specific bacterial antigens and cytokines (LPS, flagelin and IL-1β/TNF) stimulate miR-146a expression, while peptidoglycan, muramyldipeptide and CpG DNA have no effect. Overexpression of miR-146a by LPS depends on the activation of the TLR4/MyD88/NF-kB and Akt pathways. Accordingly, the induction of miR-146a is lower in TLR4, but not in TLR2 knock out mice in both basal and colitic conditions. miR-146a overexpression in IECs induces immune tolerance, inhibiting cytokine production (MCP-1 and GROα/IL-8) in response to LPS (IEC18) or IL-1β (Caco-2). Intestinal inflammation induced by chemical damage to the epithelium (DSS and TNBS models) induces miR-146a, but no effect is observed in the lymphocyte transfer model. Finally, we found that miR-146a expression is upregulated in purified IECs from villi vs. crypts. Our results indicate that miR-146a is a key molecule in the interaction among IECs, inflammatory stimuli and the microbiota.
Collapse
Grants
- BFU2014-57736-P, SAF2011-22922 Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- AGL2014-5883-R, SAF-2011-22812 Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- SAF2017-88457-R, BFU2014-57736-P, SAF2011-22922 Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- CTS-245, CTS-6736 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- CTS-235, CTS-6736 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- CTS-245, CTS-6736 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- Ministerio de Econom&#x00ED;a y Competitividad (Ministry of Economy and Competitiveness)
- Consejer&#x00ED;a de Econom&#x00ED;a, Innovaci&#x00F3;n, Ciencia y Empleo, Junta de Andaluc&#x00ED;a (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
Collapse
Affiliation(s)
- Andrea Anzola
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Raquel González
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Reyes Gámez-Belmonte
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Borja Ocón
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Carlos J Aranda
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Patricia Martínez-Moya
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Rocío López-Posadas
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Cristina Hernández-Chirlaque
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain.
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| |
Collapse
|
50
|
Price AE, Shamardani K, Lugo KA, Deguine J, Roberts AW, Lee BL, Barton GM. A Map of Toll-like Receptor Expression in the Intestinal Epithelium Reveals Distinct Spatial, Cell Type-Specific, and Temporal Patterns. Immunity 2018; 49:560-575.e6. [PMID: 30170812 PMCID: PMC6152941 DOI: 10.1016/j.immuni.2018.07.016] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/21/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022]
Abstract
Signaling by Toll-like receptors (TLRs) on intestinal epithelial cells (IECs) is critical for intestinal homeostasis. To visualize epithelial expression of individual TLRs in vivo, we generated five strains of reporter mice. These mice revealed that TLR expression varied dramatically along the length of the intestine. Indeed, small intestine (SI) IECs expressed low levels of multiple TLRs that were highly expressed by colonic IECs. TLR5 expression was restricted to Paneth cells in the SI epithelium. Intestinal organoid experiments revealed that TLR signaling in Paneth cells or colonic IECs induced a core set of host defense genes, but this set did not include antimicrobial peptides, which instead were induced indirectly by inflammatory cytokines. This comprehensive blueprint of TLR expression and function in IECs reveals unexpected diversity in the responsiveness of IECs to microbial stimuli, and together with the associated reporter strains, provides a resource for further study of innate immunity.
Collapse
Affiliation(s)
- April E Price
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Kiarash Shamardani
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Kyler A Lugo
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jacques Deguine
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Allison W Roberts
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Bettina L Lee
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gregory M Barton
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|