1
|
Vignoli A, Luchinat C, Segata N, Renzi D, Tenori L, Calabrò AS. Serum metabolomics and lipoproteomics discriminate celiac disease and non-celiac gluten sensitivity patients. Clin Nutr 2024; 45:31-35. [PMID: 39736173 DOI: 10.1016/j.clnu.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND&AIMS Celiac disease (CD) and potential CD (pCD) are immune-mediated disorders triggered by the ingestion of gluten. In non-celiac gluten sensitivity (NCGS) neither allergic nor autoimmune mechanisms are involved. Relationships between NCGS and CD need to be further investigated. METHODS Serum metabolomics and lipoproteomics, performed via nuclear magnetic resonance spectroscopy, were used to characterize these three gluten-related disorders. Lasso regression models were calculated to discriminate the groups of interest. RESULTS Several metabolites and lipoprotein-related parameters (particularly those associated with HDL cholesterol) allowed the selective discrimination between CD (and pCD) and NCGS. This evidence pointed to possible alterations of the gut microbiota in NCGS patients. Cross-validated regression models were able to discriminate between CD and NCGS, and pCD and NCGS with AUCs of 0.90 and 0.83, respectively. CONCLUSION This pilot study suggests changes in the gut microbiota and paves the way to the elucidation of the underlying mechanisms of NCGS.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy; Giotto Biotech S.r.l., Sesto Fiorentino, Italy
| | | | - Daniela Renzi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | | |
Collapse
|
2
|
Holani R, Bar-Yoseph H, Krekhno Z, Serapio-Palacios A, Moon KM, Stacey RG, Donald KA, Deng W, Bressler B, Magaña AA, Foster LJ, Atser MG, Johnson JD, Finlay B. Bile acid-induced metabolic changes in the colon promote Enterobacteriaceae expansion and associate with dysbiosis in Crohn's disease. Sci Signal 2024; 17:eadl1786. [PMID: 39689182 DOI: 10.1126/scisignal.adl1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Bile acids (BAs) affect the growth of potentially pathogenic commensals, including those from the Enterobacteriaceae family, which are frequently overrepresented in inflammatory bowel disease (IBD). BAs are normally reabsorbed in the ileum for recycling and are often increased in the colonic lumina of patients with IBD, including those with Crohn's disease (CD). Here, we investigated the influence of BAs on gut colonization by Enterobacteriaceae. We found increased abundance of Enterobacteriaceae in the colonic mucosae of patients with CD with a concomitant decrease in the transporters that resorb BAs in the ileum. The increase in Enterobacteriaceae colonization was greater in the colons of patients who had undergone terminal ileum resection compared with those with intact ileum, leading us to hypothesize that BAs promote intestinal colonization by Enterobacteriaceae. Exposure of human colonic epithelial cell lines to BAs reduced mitochondrial respiration, increased oxygen availability, and enhanced the epithelial adherence of several Enterobacteriaceae members. In a publicly available human dataset, mucosal Enterobacteriaceae was negatively associated with the expression of genes related to mitochondrial function. In a murine model, increased intestinal BA availability enhanced colonization by Escherichia coli in a manner that depended on bacterial respiration. Together, our findings demonstrate that BAs reduce mitochondrial respiration in the colon, leading to an increase in oxygen availability that facilitates Enterobacteriaceae colonization. This identification of BAs as facilitators of host-commensal interactions may be relevant to multiple intestinal diseases.
Collapse
Affiliation(s)
- Ravi Holani
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Zakhar Krekhno
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antonio Serapio-Palacios
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard G Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine A Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Bressler
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armando A Magaña
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael G Atser
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barton Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Ubilla-Rodriguez NC, Andreas MP, Giessen TW. Structural and biochemical characterization of a widespread enterobacterial peroxidase encapsulin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625667. [PMID: 39651212 PMCID: PMC11623594 DOI: 10.1101/2024.11.27.625667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Encapsulins are self-assembling protein compartments found in prokaryotes and specifically encapsulate dedicated cargo enzymes. The most abundant encapsulin cargo class are Dye-decolorizing Peroxidases (DyPs). It has been previously suggested that DyP encapsulins are involved in oxidative stress resistance and bacterial pathogenicity due to DyPs' inherent ability to reduce and detoxify hydrogen peroxide while oxidizing a broad range of organic co-substrates. Here, we report the structural and biochemical analysis of a DyP encapsulin widely found across enterobacteria. Using bioinformatic approaches, we show that this DyP encapsulin is encoded by a conserved transposon-associated operon, enriched in enterobacterial pathogens. Through low pH and peroxide exposure experiments, we highlight the stability of this DyP encapsulin under harsh conditions and show that DyP catalytic activity is highest at low pH. We determine the structure of the DyP-loaded shell and free DyP via cryo-electron microscopy, revealing the structural basis for DyP cargo loading and peroxide preference. Our work lays the foundation to further explore the substrate range and physiological functions of enterobacterial DyP encapsulins.
Collapse
|
4
|
Palanivelu L, Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Lo YC. Investigating brain-gut microbiota dynamics and inflammatory processes in an autistic-like rat model using MRI biomarkers during childhood and adolescence. Neuroimage 2024; 302:120899. [PMID: 39461606 DOI: 10.1016/j.neuroimage.2024.120899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social interaction deficits and repetitive behaviors. Recent research has linked that gut dysbiosis may contribute to ASD-like behaviors. However, the exact developmental time point at which gut microbiota alterations affect brain function and behavior in patients with ASD remains unclear. We hypothesized that ASD-related brain microstructural changes and gut dysbiosis induce metabolic dysregulation and proinflammatory responses, which collectively contribute to the social behavioral deficits observed in early childhood. We used an autistic-like rat model that was generated via prenatal valproic acid exposure. We analyzed brain microstructural changes using diffusion tensor imaging (DTI) and examined microbiota, blood, and fecal samples for inflammation biomarkers. The ASD model rats exhibited significant brain microstructural changes in the anterior cingulate cortex, hippocampus, striatum, and thalamus; reduced microbiota diversity (Prevotellaceae and Peptostreptococcaceae); and altered metabolic signatures. The shift in microbiota diversity and density observed at postnatal day (PND) 35, which is a critical developmental period, underscored the importance of early ASD interventions. We identified a unique metabolic signature in the ASD model, with elevated formate and reduced acetate and butyrate levels, indicating a dysregulation in short-chain fatty acid (SCFA) metabolism. Furthermore, increased astrocytic and microglial activation and elevated proinflammatory cytokines-interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α)-were observed, indicating immune dysregulation. This study provided insights into the complex interplay between the brain and the gut, and indicated DTI metrics as potential imaging-based biomarkers in ASD, thus emphasizing the need for early childhood interventions.
Collapse
Affiliation(s)
- Lalitha Palanivelu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, 7F., No. 250, Wuxing St., Xinyi Dist., Taipei city 110, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University. 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan; School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University. 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan.
| |
Collapse
|
5
|
Lee JY, Bays DJ, Savage HP, Bäumler AJ. The human gut microbiome in health and disease: time for a new chapter? Infect Immun 2024; 92:e0030224. [PMID: 39347570 PMCID: PMC11556149 DOI: 10.1128/iai.00302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The gut microbiome, composed of the colonic microbiota and their host environment, is important for many aspects of human health. A gut microbiome imbalance (gut dysbiosis) is associated with major causes of human morbidity and mortality. Despite the central part our gut microbiome plays in health and disease, mechanisms that maintain homeostasis and properties that demarcate dysbiosis remain largely undefined. Here we discuss that sorting taxa into meaningful ecological units reveals that the availability of respiratory electron acceptors, such as oxygen, in the host environment has a dominant influence on gut microbiome health. During homeostasis, host functions that limit the diffusion of oxygen into the colonic lumen shelter a microbial community dominated by primary fermenters from atmospheric oxygen. In turn, primary fermenters break down unabsorbed nutrients into fermentation products that support host nutrition. This symbiotic relationship is disrupted when host functions that limit the luminal availability of host-derived electron acceptors become weakened. The resulting changes in the host environment drive alterations in the microbiota composition, which feature an elevated abundance of facultatively anaerobic microbes. Thus, the part of the gut microbiome that becomes imbalanced during dysbiosis is the host environment, whereas changes in the microbiota composition are secondary to this underlying cause. This shift in our understanding of dysbiosis provides a novel starting point for therapeutic strategies to restore microbiome health. Such strategies can either target the microbes through metabolism-based editing or strengthen the host functions that control their environment.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| | - Derek J. Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Hannah P. Savage
- Department of Pathology Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
6
|
Mukherjee SD, Batagello CA, Adler A, Agudelo J, Zampini A, Suryavanshi M, Nguyen A, Orr T, Dearing D, Monga M, Miller AW. Complex system modelling reveals oxalate homeostasis is driven by diverse oxalate-degrading bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620613. [PMID: 39553961 PMCID: PMC11565779 DOI: 10.1101/2024.10.28.620613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, animal, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, administration of the oxalate-degrading specialist, Oxalobacter formigenes, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.
Collapse
Affiliation(s)
- Sromona D. Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Carlos A. Batagello
- Division of Urology, Hospital das Clínicas, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Ava Adler
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Zampini
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Nguyen
- M Health Fairview Southdale Hospital, Edina, MN, USA
| | - Teri Orr
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Manoj Monga
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Aaron W. Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Troester A, Weaver L, Jahansouz C. The Emerging Role of the Microbiota and Antibiotics in Diverticulitis Treatment. Clin Colon Rectal Surg 2024. [DOI: 10.1055/s-0044-1791521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractDiverticular disease is the leading cause of elective colon surgery. With a rising incidence in younger populations, it continues to pose a significant burden on the health care system. Traditional etiopathogenesis implicated an infectious mechanism, while recent challenges to this theory have demonstrated the microbiome playing a significant role, along with genetic predispositions and associations with obesity and diet. Therefore, the role of antibiotics in uncomplicated disease merits reconsideration. In this review, we aim to outline the current knowledge regarding antibiotics for diverticulitis treatment, broadly define the microbiome components, functions, and modifiability, and discuss newly proposed pathogenetic mechanisms for diverticular disease that incorporate information regarding the microbiome. Analytic techniques for microbiota characterization and function continue to advance at a rapid pace. As emerging technology advances, we will continue to elucidate the role of the microbiome in diverticular disease development.
Collapse
Affiliation(s)
| | - Lauren Weaver
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Cyrus Jahansouz
- Division of Colon & Rectal Surgery, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
9
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Jeyaraman M, Mariappan T, Jeyaraman N, Muthu S, Ramasubramanian S, Santos GS, da Fonseca LF, Lana JF. Gut microbiome: A revolution in type II diabetes mellitus. World J Diabetes 2024; 15:1874-1888. [PMID: 39280189 PMCID: PMC11372632 DOI: 10.4239/wjd.v15.i9.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Type II diabetes mellitus (T2DM) has experienced a dramatic increase globally across countries of various income levels over the past three decades. The persistent prevalence of T2DM is attributed to a complex interplay of genetic and environmental factors. While numerous pharmaceutical therapies have been developed, there remains an urgent need for innovative treatment approaches that offer effectiveness without significant adverse effects. In this context, the exploration of the gut microbiome presents a promising avenue. Research has increasingly shown that the gut microbiome of individuals with T2DM exhibits distinct differences compared to healthy individuals, suggesting its potential role in the disease's pathogenesis and progression. This emerging field offers diverse applications, particularly in modifying the gut environment through the administration of prebiotics, probiotics, and fecal microbiome transfer. These inter-ventions aim to restore a healthy microbiome balance, which could potentially alleviate or even reverse the metabolic dysfunctions associated with T2DM. Although current results from clinical trials have not yet shown dramatic effects on diabetes management, the groundwork has been laid for deeper investigation. Ongoing and future clinical trials are critical to advancing our understanding of the microbiome's impact on diabetes. By further elucidating the mechanisms through which microbiome alterations influence insulin resistance and glucose metabolism, researchers can develop more targeted interventions. The potential to harness the gut microbiome in developing new therapeutic strategies offers a compelling prospect to transform the treatment landscape of T2DM, potentially reducing the disease's burden significantly with approaches that are less reliant on traditional pharmaceuticals and more focused on holistic, systemic health improvements.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Tejaswin Mariappan
- Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
11
|
Anderson CJ, Boeckaerts L, Chin P, Cardas JB, Xie W, Gonçalves A, Blancke G, Benson S, Rogatti S, Simpson MS, Davey A, Choi SM, Desmet S, Bushman SD, Goeminne G, Vandenabeele P, Desai MS, Vereecke L, Ravichandran KS. Metabolite-based inter-kingdom communication controls intestinal tissue recovery following chemotherapeutic injury. Cell Host Microbe 2024; 32:1469-1487.e9. [PMID: 39197455 DOI: 10.1016/j.chom.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Cytotoxic chemotherapies have devastating side effects, particularly within the gastrointestinal tract. Gastrointestinal toxicity includes the death and damage of the epithelium and an imbalance in the intestinal microbiota, otherwise known as dysbiosis. Whether dysbiosis is a direct contributor to tissue toxicity is a key area of focus. Here, from both mammalian and bacterial perspectives, we uncover an intestinal epithelial cell death-Enterobacteriaceae signaling axis that fuels dysbiosis. Specifically, our data demonstrate that chemotherapy-induced epithelial cell apoptosis and the purine-containing metabolites released from dying cells drive the inter-kingdom transcriptional re-wiring of the Enterobacteriaceae, including fundamental shifts in bacterial respiration and promotion of purine utilization-dependent expansion, which in turn delays the recovery of the intestinal tract. Inhibition of epithelial cell death or restriction of the Enterobacteriaceae to homeostatic levels reverses dysbiosis and improves intestinal recovery. These findings suggest that supportive therapies that maintain homeostatic levels of Enterobacteriaceae may be useful in resolving intestinal disease.
Collapse
Affiliation(s)
- Christopher J Anderson
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Laura Boeckaerts
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Priscilla Chin
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Javier Burgoa Cardas
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wei Xie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB BioImaging Core, Ghent, Belgium
| | - Gillian Blancke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Benson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sebastian Rogatti
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Mariska S Simpson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna Davey
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Summer D Bushman
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | | | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Lars Vereecke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Dong F, Hao L, Wang L, Huang Y. Clickable nanozyme enhances precise colonization of probiotics for ameliorating inflammatory bowel disease. J Control Release 2024; 373:749-765. [PMID: 39084465 DOI: 10.1016/j.jconrel.2024.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Convincing evidence suggests that aberrant gut microbiota changes play a critical role in the progression and pathogenesis of inflammatory bowel disease (IBD). Probiotic therapeutic interventions targeting the microbiota may provide alternative avenues to treat IBD, but currently available probiotics often suffer from low intestinal colonization and limited targeting capability. Here, we developed azido (N3)-modified Prussian blue nanozyme (PB@N3) spatio-temporal guidance enhances the targeted colonization of probiotics to alleviate intestinal inflammation. First, clickable PB@N3 targets intestinal inflammation, simultaneously, it scavenges reactive oxygen species (ROS). Subsequently, utilizing "click" chemistry to spatio-temporally guide targeted colonization of dibenzocyclooctyne (DBCO)-modified Lactobacillus reuteri DSM 17938 (LR@DBCO). The "click" reaction between PB@N3 and LR@DBCO has excellent specificity and efficacy both in vivo and in vitro. Despite the complex physiological environment of IBD, "click" reaction can prolong the retention time of probiotics in the intestine. Dextran sulfate sodium (DSS)-induced colitis mice model, demonstrates that the combination of PB@N3 and LR@DBCO effectively mitigates levels of ROS, enhances the colonization of probiotics, modulates intestinal flora composition and function, regulates immune profiles, restores intestinal barrier function, and alleviates intestinal inflammation. Hence, PB@N3 spatio-temporal guidance enhances targeted colonization of LR@DBCO provides a promising medical treatment strategy for IBD.
Collapse
Affiliation(s)
- Fang Dong
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Liangwen Hao
- The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Wang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ying Huang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
13
|
Kirtipal N, Seo Y, Son J, Lee S. Systems Biology of Human Microbiome for the Prediction of Personal Glycaemic Response. Diabetes Metab J 2024; 48:821-836. [PMID: 39313228 PMCID: PMC11449821 DOI: 10.4093/dmj.2024.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
The human gut microbiota is increasingly recognized as a pivotal factor in diabetes management, playing a significant role in the body's response to treatment. However, it is important to understand that long-term usage of medicines like metformin and other diabetic treatments can result in problems, gastrointestinal discomfort, and dysbiosis of the gut flora. Advanced sequencing technologies have improved our understanding of the gut microbiome's role in diabetes, uncovering complex interactions between microbial composition and metabolic health. We explore how the gut microbiota affects glucose metabolism and insulin sensitivity by examining a variety of -omics data, including genomics, transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Machine learning algorithms and genome-scale modeling are now being applied to find microbiological biomarkers associated with diabetes risk, predicted disease progression, and guide customized therapy. This study holds promise for specialized diabetic therapy. Despite significant advances, some concerns remain unanswered, including understanding the complex relationship between diabetes etiology and gut microbiota, as well as developing user-friendly technological innovations. This mini-review explores the relationship between multiomics, precision medicine, and machine learning to improve our understanding of the gut microbiome's function in diabetes. In the era of precision medicine, the ultimate goal is to improve patient outcomes through personalized treatments.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Youngchang Seo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jangwon Son
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
14
|
Ju L, Suo Z, Lin J, Liu Z. Fecal microbiota and metabolites in the pathogenesis and precision medicine for inflammatory bowel disease. PRECISION CLINICAL MEDICINE 2024; 7:pbae023. [PMID: 39381014 PMCID: PMC11459260 DOI: 10.1093/pcmedi/pbae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, and its pathogenesis is believed to be associated with an imbalance between commensal organisms and the intestinal immune system. This imbalance is significantly influenced by the intestinal microbiota and metabolites and plays a critical role in maintaining intestinal mucosal homeostasis. However, disturbances in the intestinal microbiota cause dysregulated immune responses and consequently induce intestinal inflammation. Recent studies have illustrated the roles of the intestinal microbiota in the pathogenesis of IBD and underscored the potential of precision diagnosis and therapy. This work summarises recent progress in this field and particularly focuses on the application of the intestinal microbiota and metabolites in the precision diagnosis, prognosis assessment, treatment effectiveness evaluation, and therapeutic management of IBD.
Collapse
Affiliation(s)
- Long Ju
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
- Department of Gastroenterology, Affiliated Hospital of Putian University, Putian 351100, China
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| |
Collapse
|
15
|
Uttarwar RG, Mekonnen SA, Van Beeck W, Wang A, Finnegan P, Roberts RF, Merenstein D, Slupsky CM, Marco ML. Effects of Bifidobacterium animalis subsp. lactis BB-12 and yogurt on mice during oral antibiotic administration. Microbiol Res 2024; 286:127794. [PMID: 38852301 DOI: 10.1016/j.micres.2024.127794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Probiotics have the potential to prevent disruptions to normal gastrointestinal function caused by oral antibiotic use. In this study, we examined the capacity of Bifidobacterium animalis subspecies lactis BB-12 (BB-12) and yogurt, separately and combined, to mitigate the effects of the antibiotic amoxicillin-clavulanate (AMC) on the gut microbiota and metabolomes of C57BL/6 J mice. Male and female mice were administered either BB-12, yogurt, BB-12 in yogurt, or saline for 10 days concurrent with the inclusion of AMC in the drinking water. Male mice exposed to AMC exhibited significant reductions (p<0.05) in body weight over the course of the study compared to sham (no AMC) controls whereas no such effects were observed for female mice. AMC administration resulted in rapid alterations to the intestinal microbiota in both sexes irrespective of BB-12 or yogurt treatment, including significant (p<0.05) losses in bacterial cell numbers and changes in microbial alpha-diversity and beta-diversity in the feces and cecal contents. The effects of AMC on the gut microbiota were observed within one day of administration and the bacterial contents continued to change over time, showing a succession marked by rapid reductions in Muribaculaceae and Lachnospiraceae and temporal increases in proportions of Acholeplasmataceae (day 1) and Streptococcaceae and Leuconostocaceae (day 5). By day 10 of AMC intake, high proportions of Gammaproteobacteria assigned as Erwiniaceae or Enterobacteriaceae (average of 63 %), were contained in the stools and were similarly enriched in the cecum. The cecal contents of mice given AMC harbored significantly reduced concentrations of (branched) short-chain fatty acids (SCFA), aspartate, and other compounds, whereas numerous metabolites, including formate, lactate, and several amino acids and amino acid derivatives were significantly enriched. Despite the extensive impact of AMC, starting at day 7 of the study, the body weights of male mice given yogurt or BB-12 (in saline) with AMC were similar to the healthy controls. BB-12 (in saline) and yogurt intake was associated with increased Streptococcaceae and both yogurt and BB-12 resulted in lower proportions of Erwiniaceae in the fecal and cecal contents. The cecal contents of mice fed BB-12 in yogurt contained levels of formate, glycine, and glutamine that were equivalent to the sham controls. These findings highlight the potential of BB-12 and yogurt to mitigate antibiotic-induced gut dysbiosis.
Collapse
Affiliation(s)
- Ruchita G Uttarwar
- Department of Food Science & Technology, University of California, Davis, USA
| | - Solomon A Mekonnen
- Department of Food Science & Technology, University of California, Davis, USA
| | - Wannes Van Beeck
- Department of Food Science & Technology, University of California, Davis, USA
| | - Aidong Wang
- Department of Food Science & Technology, University of California, Davis, USA; Department of Nutrition, University of California, Davis, CA, USA
| | - Peter Finnegan
- Department of Food Science & Technology, University of California, Davis, USA
| | | | - Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Carolyn M Slupsky
- Department of Food Science & Technology, University of California, Davis, USA; Department of Nutrition, University of California, Davis, CA, USA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, USA.
| |
Collapse
|
16
|
Casadei B, Conti G, Barone M, Turroni S, Guadagnuolo S, Broccoli A, Brigidi P, Argnani L, Zinzani PL. Role of gut microbiome in the outcome of lymphoma patients treated with checkpoint inhibitors-The MicroLinf Study. Hematol Oncol 2024; 42:e3301. [PMID: 39104142 DOI: 10.1002/hon.3301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Biomarkers for immune checkpoint inhibitors (ICIs) response and resistance include PD-L1 expression and other environmental factors, among which the gut microbiome (GM) is gaining increasing interest especially in lymphomas. To explore the potential role of GM in this clinical issue, feces of 30 relapsed/refractory lymphoma (Hodgkin and primary mediastinal B-cell lymphoma) patients undergoing ICIs were collected from start to end of treatment (EoT). GM was profiled through Illumina, that is, 16S rRNA sequencing, and subsequently processed through a bioinformatics pipeline. The overall response rate to ICIs was 30.5%, with no association between patients clinical characteristics and response/survival outcomes. Regarding GM, responder patients showed a peculiar significant enrichment of Lachnospira, while non-responder ones showed higher presence of Enterobacteriaceae (at baseline and maintained till EoT). Recognizing patient-related factors that may influence response to ICIs is becoming critical to optimize the treatment pathway of heavily pretreated, young patients with a potentially long-life expectancy. These preliminary results indicate potential early GM signatures of ICIs response in lymphoma, which could pave the way for future research to improve patients prognosis with new adjuvant strategies.
Collapse
Affiliation(s)
- Beatrice Casadei
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gabriele Conti
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Monica Barone
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Serafina Guadagnuolo
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Broccoli
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Lisa Argnani
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| |
Collapse
|
17
|
Furuichi M, Kawaguchi T, Pust MM, Yasuma-Mitobe K, Plichta DR, Hasegawa N, Ohya T, Bhattarai SK, Sasajima S, Aoto Y, Tuganbaev T, Yaginuma M, Ueda M, Okahashi N, Amafuji K, Kiridoshi Y, Sugita K, Stražar M, Avila-Pacheco J, Pierce K, Clish CB, Skelly AN, Hattori M, Nakamoto N, Caballero S, Norman JM, Olle B, Tanoue T, Suda W, Arita M, Bucci V, Atarashi K, Xavier RJ, Honda K. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 2024; 633:878-886. [PMID: 39294375 PMCID: PMC11424487 DOI: 10.1038/s41586-024-07960-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
Persistent colonization and outgrowth of potentially pathogenic organisms in the intestine can result from long-term antibiotic use or inflammatory conditions, and may perpetuate dysregulated immunity and tissue damage1,2. Gram-negative Enterobacteriaceae gut pathobionts are particularly recalcitrant to conventional antibiotic treatment3,4, although an emerging body of evidence suggests that manipulation of the commensal microbiota may be a practical alternative therapeutic strategy5-7. Here we isolated and down-selected commensal bacterial consortia from stool samples from healthy humans that could strongly and specifically suppress intestinal Enterobacteriaceae. One of the elaborated consortia, comprising 18 commensal strains, effectively controlled ecological niches by regulating gluconate availability, thereby re-establishing colonization resistance and alleviating Klebsiella- and Escherichia-driven intestinal inflammation in mice. Harnessing these activities in the form of live bacterial therapies may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant Enterobacteriaceae infection.
Collapse
Affiliation(s)
- Munehiro Furuichi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takaaki Kawaguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Marie-Madlen Pust
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Keiko Yasuma-Mitobe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Damian R Plichta
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Naomi Hasegawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Ohya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Satoshi Sasajima
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimasa Aoto
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Timur Tuganbaev
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
| | - Mizuki Yaginuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Ueda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Okahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Kimiko Amafuji
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kiridoshi
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Kayoko Sugita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Martin Stražar
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julian Avila-Pacheco
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kerry Pierce
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clary B Clish
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashwin N Skelly
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | - Takeshi Tanoue
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Makoto Arita
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems, Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
18
|
Avci FG. Unraveling bacterial stress responses: implications for next-generation antimicrobial solutions. World J Microbiol Biotechnol 2024; 40:285. [PMID: 39073503 PMCID: PMC11286680 DOI: 10.1007/s11274-024-04090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
The accelerated spread of antimicrobial-resistant bacteria has caused a serious health problem and rendered antimicrobial treatments ineffective. Innovative approaches are crucial to overcome the health threat posed by resistant pathogens and prevent the emergence of untreatable infections. Triggering stress responses in bacteria can diminish susceptibility to various antimicrobials by inducing resistance mechanisms. Therefore, a thorough understanding of stress response control, especially in relation to antimicrobial resistance, offers valuable perspectives for innovative and efficient therapeutic approaches to combat antimicrobial resistance. The aim of this study was to evaluate the stress responses of 8 different bacteria by analyzing reporter metabolites, around which significant alterations were observed, using a pathway-driven computational approach. For this purpose, the transcriptomic data that the bacterial pathogens were grown under 11 different stress conditions mimicking the human host environments were integrated with the genome-scale metabolic models of 8 pathogenic species (Enterococcus faecalis OG1R, Escherichia coli EPEC O127:H6 E2348/69, Escherichia coli ETEC H10407, Escherichia coli UPEC 536, Klebsiella pneumoniae MGH 78578, Pseudomonas aeruginosa PAO1, Staphylococcus aureus MRSA252, and Staphylococcus aureus MSSA476). The resulting reporter metabolites were enriched in multiple metabolic pathways, with cofactor biosynthesis being the most important. The results of this study will serve as a guide for the development of antimicrobial agents as they provide a first insight into potential drug targets.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Türkiye.
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
19
|
Kulecka M, Czarnowski P, Bałabas A, Turkot M, Kruczkowska-Tarantowicz K, Żeber-Lubecka N, Dąbrowska M, Paszkiewicz-Kozik E, Walewski J, Ługowska I, Koseła-Paterczyk H, Rutkowski P, Kluska A, Piątkowska M, Jagiełło-Gruszfeld A, Tenderenda M, Gawiński C, Wyrwicz L, Borucka M, Krzakowski M, Zając L, Kamiński M, Mikula M, Ostrowski J. Microbial and Metabolic Gut Profiling across Seven Malignancies Identifies Fecal Faecalibacillus intestinalis and Formic Acid as Commonly Altered in Cancer Patients. Int J Mol Sci 2024; 25:8026. [PMID: 39125593 PMCID: PMC11311272 DOI: 10.3390/ijms25158026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The key association between gut dysbiosis and cancer is already known. Here, we used whole-genome shotgun sequencing (WGS) and gas chromatography/mass spectrometry (GC/MS) to conduct metagenomic and metabolomic analyses to identify common and distinct taxonomic configurations among 40, 45, 71, 34, 50, 60, and 40 patients with colorectal cancer, stomach cancer, breast cancer, lung cancer, melanoma, lymphoid neoplasms and acute myeloid leukemia (AML), respectively, and compared the data with those from sex- and age-matched healthy controls (HC). α-diversity differed only between the lymphoid neoplasm and AML groups and their respective HC, while β-diversity differed between all groups and their HC. Of 203 unique species, 179 and 24 were under- and over-represented, respectively, in the case groups compared with HC. Of these, Faecalibacillus intestinalis was under-represented in each of the seven groups studied, Anaerostipes hadrus was under-represented in all but the stomach cancer group, and 22 species were under-represented in the remaining five case groups. There was a marked reduction in the gut microbiome cancer index in all case groups except the AML group. Of the short-chain fatty acids and amino acids tested, the relative concentration of formic acid was significantly higher in each of the case groups than in HC, and the abundance of seven species of Faecalibacterium correlated negatively with most amino acids and formic acid, and positively with the levels of acetic, propanoic, and butanoic acid. We found more differences than similarities between the studied malignancy groups, with large variations in diversity, taxonomic/metabolomic profiles, and functional assignments. While the results obtained may demonstrate trends rather than objective differences that correlate with different types of malignancy, the newly developed gut microbiota cancer index did distinguish most of the cancer cases from HC. We believe that these data are a promising step forward in the search for new diagnostic and predictive tests to assess intestinal dysbiosis among cancer patients.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maryla Turkot
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Kamila Kruczkowska-Tarantowicz
- Department of Internal Medicine and Hematology, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Ewa Paszkiewicz-Kozik
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Iwona Ługowska
- Early Phase Clinical Trials Unit, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Jagiełło-Gruszfeld
- Department of Breast Cancer & Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Tenderenda
- Department of Oncological Surgery and Neuroendocrine Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Cieszymierz Gawiński
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Lucjan Wyrwicz
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Magdalena Borucka
- Department of Lung and Chest Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maciej Krzakowski
- Department of Lung and Chest Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Leszek Zając
- Department of Gastrointestinal Surgical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Kamiński
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
20
|
Li Q, Zhang C, Zhu M, Shan J, Qian H, Ma Y, Wang X. W-GA nanodots restore intestinal barrier functions by regulating flora disturbance and relieving excessive oxidative stress to alleviate colitis. Acta Biomater 2024; 182:260-274. [PMID: 38777175 DOI: 10.1016/j.actbio.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) may arise due to disruption of mucosal barriers as a result of dysregulation of the intestinal flora and excessive oxidative stress. The creation of nanomaterials with only microbiota-regulating effects often leads to inadequate therapeutic outcomes caused by the disruption of a healthy microbial balance and the emergence of tissue harm caused by excessive oxidative stress. This report describes the multifunctional activity of ultrasmall W-GA nanodots, which can precisely regulate the intestinal microbiome by inhibiting the abnormal expansion of Enterobacteriaceae during colitis and alleviating the damage caused by oxidative stress to the reconstructive microflora, ultimately restoring intestinal barrier function. W-GA nanodots have been synthesized through a simple coordination reaction and can be dispersed in various solvents in vitro, demonstrating favorable safety profiles in cells, significant clearance of reactive oxygen and nitrogen species (RONS), and increased cell survival in models of oxidative stress induced by hydrogen peroxide (H2O2). Through oral or intravenous administration, the W-GA nanodots were shown to be highly safe when tested in vivo, and they effectively reduced colon damage in mice with DSS-induced colitis by restoring the integrity of the intestinal barrier. W-GA nanodots have enabled the integration of microflora reprogramming and RONS clearance, creating a potent therapeutic strategy for treating gut inflammation. Consequently, the development of W-GA nanodots represents a promising strategy for enhancing the formation and preservation of the intestinal barrier to treat IBD by suppressing the growth of Enterobacteriaceae, a type of facultative anaerobic bacterium, and facilitating the effective removal of RONS. Ultimately, this leads to the restoration of the intestinal barrier's functionality. STATEMENT OF SIGNIFICANCE: An increasing number of nanoparticles are under development for treating inflammatory bowel disease. Although they can alleviate inflammation symptoms by regulating reactive oxygen and nitrogen species (RONS) and microbiota, their understanding of the mechanism behind microbiota regulation is limited. This study synthesized W-GA nanodots using a straightforward one-pot synthesis method. Simple synthesis holds significant promise for clinical applications, as it encompasses multiple nanoenzyme functions and also exhibits Enterobacteriaceae inhibitory properties.Thus, it contributes to ameliorating the current medical landscape of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Cong Zhang
- Division of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Mengmei Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Haisheng Qian
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| | - Yan Ma
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
21
|
Hu H, Zhang P, Liu F, Pan S. Regulations of Citrus Pectin Oligosaccharide on Cholesterol Metabolism: Insights from Integrative Analysis of Gut Microbiota and Metabolites. Nutrients 2024; 16:2002. [PMID: 38999750 PMCID: PMC11243408 DOI: 10.3390/nu16132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: Recently, academic studies are demonstrating that the cholesterol-lowering effects of pectin oligosaccharides (POSs) are correlated to intestinal flora. However, the mechanisms of POS on cholesterol metabolisms are limited, and the observations of intestinal flora are lacking integrative analyses. (2) Aim and methods: To reveal the regulatory mechanisms of POS on cholesterol metabolism via an integrative analysis of the gut microbiota, the changes in gut microbiota structure and metabolite composition after POS addition were investigated using Illumina MiSeq sequencing and non-targeted metabolomics through in vitro gut microbiota fermentation. (3) Results: The composition of fecal gut flora was adjusted positively by POS. POS increased the abundances of the cholesterol-related bacterial groups Bacteroidetes, Bifidobacterium and Lactobacillus, while it decreased conditional pathogenic Escherichia coli and Enterococcus, showing good prebiotic activities. POS changed the composition of gut microbiota fermentation metabolites (P24), causing significant changes in 221 species of fermentation metabolites in a non-targeted metabolomics analysis and promoting the production of short-chain fatty acids. The abundances of four types of cholesterol metabolism-related metabolites (adenosine monophosphate, cyclic adenosine monophosphate, guanosine and butyrate) were significantly higher in the P24 group than those in the control group without POS addition. (4) Conclusion: The abovementioned results may explain the hypocholesterolemic effects of POS and promotion effects on cholesterol efflux of P24. These findings indicated that the potential regulatory mechanisms of citrus POS on cholesterol metabolism are modulated by cholesterol-related gut microbiota and specific metabolites.
Collapse
Affiliation(s)
- Haijuan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
Ran Z, Yang J, Liu L, Wu S, An Y, Hou W, Cheng T, Zhang Y, Zhang Y, Huang Y, Zhang Q, Wan J, Li X, Xing B, Ye Y, Xu P, Chen Z, Zhao J, Li R. Chronic PM 2.5 exposure disrupts intestinal barrier integrity via microbial dysbiosis-triggered TLR2/5-MyD88-NLRP3 inflammasome activation. ENVIRONMENTAL RESEARCH 2024; 258:119415. [PMID: 38906446 DOI: 10.1016/j.envres.2024.119415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND PM2.5, a known public health risk, is increasingly linked to intestinal disorders, however, the mechanisms of its impact are not fully understood. PURPOSE This study aimed to explore the impact of chronic PM2.5 exposure on intestinal barrier integrity and to uncover the underlying molecular mechanisms. METHODS C57BL/6 J mice were exposed to either concentrated ambient PM2.5 (CPM) or filtered air (FA) for six months to simulate urban pollution conditions. We evaluated intestinal barrier damage, microbial shifts, and metabolic changes through histopathology, metagenomics, and metabolomics. Analysis of the TLR signaling pathway was also conducted. RESULTS The mean concentration of PM2.5 in the CPM exposure chamber was consistently measured at 70.9 ± 26.8 μg/m³ throughout the study period. Our findings show that chronic CPM exposure significantly compromises intestinal barrier integrity, as indicated by reduced expression of the key tight junction proteins Occludin and Tjp1/Zo-1. Metagenomic sequencing revealed significant shifts in the microbial landscape, identifying 35 differentially abundant species. Notably, there was an increase in pro-inflammatory nongastric Helicobacter species and a decrease in beneficial bacteria, such as Lactobacillus intestinalis, Lactobacillus sp. ASF360, and Eubacterium rectale. Metabolomic analysis further identified 26 significantly altered metabolites commonly associated with intestinal diseases. A strong correlation between altered bacterial species and metabolites was also observed. For example, 4 Helicobacter species all showed positive correlations with 13 metabolites, including Lactate, Bile acids, Pyruvate and Glutamate. Additionally, increased expression levels of TLR2, TLR5, Myd88, and NLRP3 proteins were noted, and their expression patterns showed a strong correlation, suggesting a possible involvement of the TLR2/5-MyD88-NLRP3 signaling pathway. CONCLUSIONS Chronic CPM exposure induces intestinal barrier dysfunction, microbial dysbiosis, metabolic imbalance, and activation of the TLR2/5-MyD88-NLRP3 inflammasome. These findings highlight the urgent need for intervention strategies to mitigate the detrimental effects of air pollution on intestinal health and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Zihan Ran
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Department of Pathology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China; Greater Bay Area Institute of Precision Medicine, 115 Jiaoxi Road, Guangzhou 511458, China
| | - Liang Liu
- Clinical Research Unit, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shaobo Wu
- Department of Laboratory Medicine, Tinglin Hospital of Jinshan District, No. 80 Siping North Road, Shanghai 201505, China
| | - YanPeng An
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tianyuan Cheng
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Youyi Zhang
- School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yiqing Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yechao Huang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qianyue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Jiaping Wan
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Xuemei Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Department of Pathology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Baoling Xing
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Department of Pathology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Yuchen Ye
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Department of Pathology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Penghao Xu
- School of Biological Sciences, Georgia Insitute of Technology, Atlanta, GA, USA
| | - Zhenghu Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Department of Pathology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China.
| | - Jinzhuo Zhao
- School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Rui Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China.
| |
Collapse
|
23
|
Muramatsu MK, Winter SE. Nutrient acquisition strategies by gut microbes. Cell Host Microbe 2024; 32:863-874. [PMID: 38870902 PMCID: PMC11178278 DOI: 10.1016/j.chom.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
The composition and function of the gut microbiota are intimately tied to nutrient acquisition strategies and metabolism, with significant implications for host health. Both dietary and host-intrinsic factors influence community structure and the basic modes of bacterial energy metabolism. The intestinal tract is rich in carbon and nitrogen sources; however, limited access to oxygen restricts energy-generating reactions to fermentation. By contrast, increased availability of electron acceptors during episodes of intestinal inflammation results in phylum-level changes in gut microbiota composition, suggesting that bacterial energy metabolism is a key driver of gut microbiota function. In this review article, we will illustrate diverse examples of microbial nutrient acquisition strategies in the context of habitat filters and anatomical location and the central role of energy metabolism in shaping metabolic strategies to support bacterial growth in the mammalian gut.
Collapse
Affiliation(s)
- Matthew K Muramatsu
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis, Davis, CA 95616, USA
| | - Sebastian E Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Huangfu W, Ma J, Zhang Y, Liu M, Liu B, Zhao J, Wang Z, Shi Y. Dietary Fiber-Derived Butyrate Alleviates Piglet Weaning Stress by Modulating the TLR4/MyD88/NF-κB Pathway. Nutrients 2024; 16:1714. [PMID: 38892647 PMCID: PMC11174469 DOI: 10.3390/nu16111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
During weaning, piglets are susceptible to intestinal inflammation and impairment in barrier function. Dietary fiber (DF) plays an active role in alleviating weaning stress in piglets. However, the effects of different sources of dietary fiber on the performance of weaned piglets are inconsistent, and the mechanisms through which they affect intestinal health need to be explored. Therefore, in this study, sixty weaned piglets were randomly divided into three treatment groups: basal diet (control, CON), beet pulp (BP), and alfalfa meal (AM) according to the feed formulation for a 28-day trial. The results showed that both AM and BP groups significantly reduced diarrhea rate and serum inflammatory factors (IL-1β and TNF-α) and increased antioxidant markers (T-AOC and SOD), in addition to decreasing serum MDA and ROS concentrations in the AM group. At the same time, piglets in the AM group showed a significant reduction in serum intestinal permeability indices (LPS and DAO) and a substantial increase in serum immunoglobulin levels (IgA, IgG, and IgM) and expression of intestinal barrier-associated genes (Claudin1, Occludin, ZO-1, and MUC1), which resulted in an improved growth performance. Interestingly, the effect of DF on intestinal inflammation and barrier function can be attributed to its modulation of gut microbes. Fiber-degrading bacteria enriched in the AM group (Christensenellaceae_R-7_group, Pediococcus and Weissella) inhibited the production of TLR4- through the promotion of SCFAs (especially butyrate). MyD88-NF-κB signaling pathway activation reduces intestinal inflammation and repairs intestinal barrier function. In conclusion, it may provide some theoretical support and rationale for AM to alleviate weaning stress and improve early intestinal dysfunction, which may have implications for human infants.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
25
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. Cell Host Microbe 2024; 32:739-754.e4. [PMID: 38565143 PMCID: PMC11081829 DOI: 10.1016/j.chom.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to the insertion of "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota, and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain-level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M Kirsch
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Andrew J Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
26
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
27
|
Zhang L, Miao C, Wang Z, Guan X, Ma Y, Song J, Shen S, Song H, Li M, Liu C. Preparation and characterisation of baicalin magnesium and its protective effect in ulcerative colitis via gut microbiota-bile acid axis modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155416. [PMID: 38394726 DOI: 10.1016/j.phymed.2024.155416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Scutellaria baicalensis Georgi is a well-known herb in traditional Chinese medicine that is frequently prescribed for various gastrointestinal conditions, including ulcerative colitis (UC). Its primary active constituent, baicalin, has poorly water solubility that reduces its efficacy. PURPOSE To enhance the aqueous solubility of baicalin by optimising its extraction process. We compared the modulatory effects of isolated water-soluble baicalin and water-insoluble baicalin on UC, and delved deeper into the potential mechanisms of water-soluble baicalin. METHODS We successfully extracted a more hydrophilic baicalin directly from an aqueous S. baicalensis Georgi extract through the process of recrystallisation following alcoholic precipitation of the aqueous extract obtained from S. baicalensis Georgi, eliminating the need for acid additives. This specific form of baicalin was conclusively identified by UV, IR, atomic absorption spectroscopy, elemental analysis, 1H NMR, 13C NMR, and ESI-HRMS. We subsequently compared the regulatory effects of baicalin on UC before and after optimisation, employing 16S rDNA sequencing, bile acid-targeted metabolomics, and transcriptome analysis to elucidate the potential mechanism of water-soluble baicalin; and the key genes and proteins implicated in this mechanism were verified through RT-PCR and western blotting. RESULTS A new form of baicalin present in the aqueous solution of S. baicalensis Georgi was isolated, and its structural characterisation showed that it was bound to magnesium ions (baicalin magnesium) and exhibited favorable water solubility. Baicalin magnesium offers enhanced therapeutic benefits over baicalin for UC treatment, which alleviated the inflammatory response and oxidative stress levels while improving intestinal mucosal damage. Further investigation of the mechanism revealed that baicalin magnesium could effectively regulate bile acid metabolism and maintain intestinal microecological balance in UC mice, and suppress the activation of the nuclear factor-kappa B and peroxisome proliferator-activated receptor α signalling pathways, thereby playing a therapeutic role. CONCLUSIONS Baicalin magnesium has good water solubility, which solves the bottleneck problem of water insolubility in the practical applications of baicalin. Moreover, baicalin magnesium exhibits therapeutic potential for UC significantly better than baicalin.
Collapse
Affiliation(s)
- Lin Zhang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Ceyu Miao
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Zhixuan Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Xiulu Guan
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Yechao Ma
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Jingyu Song
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Shiyuan Shen
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Hongru Song
- Hebei North University, Zhangjiakou 075000, PR China
| | - Mingqian Li
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, PR China.
| | - Cuizhe Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China.
| |
Collapse
|
28
|
Jones JA, Andreas MP, Giessen TW. Structural basis for peroxidase encapsulation inside the encapsulin from the Gram-negative pathogen Klebsiella pneumoniae. Nat Commun 2024; 15:2558. [PMID: 38519509 PMCID: PMC10960027 DOI: 10.1038/s41467-024-46880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP and TP-binding site mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Kim JS, Liu L, Kant S, Orlicky DJ, Uppalapati S, Margolis A, Davenport BJ, Morrison TE, Matsuda J, McClelland M, Jones-Carson J, Vazquez-Torres A. Anaerobic respiration of host-derived methionine sulfoxide protects intracellular Salmonella from the phagocyte NADPH oxidase. Cell Host Microbe 2024; 32:411-424.e10. [PMID: 38307020 PMCID: PMC11396582 DOI: 10.1016/j.chom.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice. Reactive oxygen species generated by phagocytes oxidize methionine, generating methionine sulfoxide. Anaerobic Salmonella uses the molybdenum cofactor-containing DmsABC enzymatic complex to reduce methionine sulfoxide. The enzymatic activity of the methionine sulfoxide reductase DmsABC helps Salmonella maintain an alkaline cytoplasm that supports the synthesis of the antioxidant hydrogen sulfide via cysteine desulfuration while providing a source of methionine and fostering redox balancing by associated dehydrogenases. Our investigations demonstrate that nontyphoidal Salmonella responding to oxidative stress exploits the anaerobic metabolism associated with dmsABC gene products, a pathway that has accrued inactivating mutations in human-adapted typhoidal serovars.
Collapse
Affiliation(s)
- Ju-Sim Kim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sashi Kant
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Siva Uppalapati
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alyssa Margolis
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Michael McClelland
- University of California Irvine School of Medicine, Department of Microbiology and Molecular Genetics, Irvine, CA, USA
| | - Jessica Jones-Carson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andres Vazquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, USA.
| |
Collapse
|
30
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561241. [PMID: 37873088 PMCID: PMC10592638 DOI: 10.1101/2023.10.06.561241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to insertion "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M. Kirsch
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
31
|
Moreira de Gouveia MI, Bernalier-Donadille A, Jubelin G. Enterobacteriaceae in the Human Gut: Dynamics and Ecological Roles in Health and Disease. BIOLOGY 2024; 13:142. [PMID: 38534413 DOI: 10.3390/biology13030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
The human gut microbiota plays a crucial role in maintaining host health. Our review explores the prevalence and dynamics of Enterobacteriaceae, a bacterial family within the Proteobacteria phylum, in the human gut which represents a small fraction of the gut microbiota in healthy conditions. Even though their roles are not yet fully understood, Enterobacteriaceae and especially Escherichia coli (E. coli) play a part in creating an anaerobic environment, producing vitamins and protecting against pathogenic infections. The composition and residency of E. coli strains in the gut fluctuate among individuals and is influenced by many factors such as geography, diet and health. Dysbiosis, characterized by alterations in the microbial composition of the gut microbiota, is associated with various diseases, including obesity, inflammatory bowel diseases and metabolic disorders. A consistent pattern in dysbiosis is the expansion of Proteobacteria, particularly Enterobacteriaceae, which has been proposed as a potential marker for intestinal and extra-intestinal inflammatory diseases. Here we develop the potential mechanisms contributing to Enterobacteriaceae proliferation during dysbiosis, including changes in oxygen levels, alterations in mucosal substrates and dietary factors. Better knowledge of these mechanisms is important for developing strategies to restore a balanced gut microbiota and reduce the negative consequences of the Enterobacteriaceae bloom.
Collapse
Affiliation(s)
| | | | - Gregory Jubelin
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000 Clermont-Ferrand, France
| |
Collapse
|
32
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
33
|
Addington E, Sandalli S, Roe AJ. Current understandings of colibactin regulation. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001427. [PMID: 38314762 PMCID: PMC10924459 DOI: 10.1099/mic.0.001427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
The biosynthetic machinery for the production of colibactin is encoded by 19 genes (clbA - S) within the pks pathogenicity island harboured by many E. coli of the B2-phylogroup. Colibactin is a potent genotoxic metabolite which causes DNA-damage and which has potential roles in microbial competition and fitness of pks+ bacteria. Colibactin has also been strongly implicated in the development of colorectal cancer. Given the genotoxicity of colibactin and the metabolic cost of its synthesis, the regulatory system governing the clb cluster is accordingly highly complex, and many of the mechanisms remain to be elucidated. In this review we summarise the current understanding of regulation of colibactin biosynthesis by internal molecular components and how these factors are modulated by signals from the external environment.
Collapse
Affiliation(s)
- Emily Addington
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Sofia Sandalli
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Andrew J. Roe
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| |
Collapse
|
34
|
Jiang K, Cao X, Wu H, Xu Y, Liu L, Qian H, Miao Z, Wang H, Ma Y. 2D Nanozymes Modulate Gut Microbiota and T-Cell Differentiation for Inflammatory Bowel Disease Management. Adv Healthc Mater 2024; 13:e2302576. [PMID: 37897434 DOI: 10.1002/adhm.202302576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Intestinal commensal microbiota dysbiosis and immune dysfunction are significant exacerbating factors in inflammatory bowel disease (IBD). To address these problems, Pluronic F-127-coated tungsten diselenide (WSe2 @F127) nanozymes are developed by simple liquid-phase exfoliation. The abundant valence transitions of elemental selenium (Se2- /Se4+ ) and tungsten (W4+ /W6+ ) enable the obtained WSe2 @F127 nanozymes to eliminate reactive oxygen/nitrogen species. In addition, the released tungsten ions are capable of inhibiting the proliferation of Escherichia coli. In a model of dextran sodium sulfate-induced colitis, WSe2 @F127 nanozymes modulate the gut microbiota by increasing the abundance of bacteria S24-7 and significantly reducing the abundance of Enterobacteriaceae. Moreover, WSe2 @F127 nanozymes inhibit T-cell differentiation and improve intestinal immune barrier function in a model of Crohn's disease. The WSe2 @F127 nanozymes effectively alleviate IBD by reducing oxidative stress damage, modulating intestinal microbial populations, and remodeling the immune barrier.
Collapse
Affiliation(s)
- Kai Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangjing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haitao Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yifeng Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lulu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
35
|
Barrack KE, Hampton TH, Valls RA, Surve SV, Gardner TB, Sanville JL, Madan JL, O’Toole GA. An in vitro medium for modeling gut dysbiosis associated with cystic fibrosis. J Bacteriol 2024; 206:e0028623. [PMID: 38169295 PMCID: PMC10810206 DOI: 10.1128/jb.00286-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The gut physiology of pediatric and adult persons with cystic fibrosis (pwCF) is altered relative to healthy persons. The CF gut is characterized, in part, as having excess mucus, increased fat content, acidic pH, increased inflammation, increased antibiotic perturbation, and the potential for increased oxygen availability. These physiological differences shift nutritional availability and the local environment for intestinal microbes, thus likely driving significant changes in microbial metabolism, colonization, and competition with other microbes. The impact of any specific change in this physiological landscape is difficult to parse using human or animal studies. Thus, we have developed a novel culture medium representative of the CF gut environment, inclusive of all the aforementioned features. This medium, called CF-MiPro, maintains CF gut microbiome communities, while significantly shifting nonCF gut microbiome communities toward a CF-like microbial profile, characterized by low Bacteroidetes and high Proteobacteria abundance. This medium is able to maintain this culture composition for up to 5 days of passage. Additionally, microbial communities passaged in CF-MiPro produce significantly less immunomodulatory short-chain fatty acids (SCFA), including propionate and butyrate, than communities passaged in MiPro, a culture medium representative of healthy gut physiology, confirming not only a shift in microbial composition but also altered community function. Our results support the potential for this in vitro culture medium as a new tool for the study of CF gut dysbiosis. IMPORTANCE Cystic fibrosis is an autosomal recessive disease that disrupts ion transport at mucosal surfaces, leading to mucus accumulation and altered physiology of both the lungs and the intestines, among other organs, with the resulting altered environment contributing to an imbalance of microbial communities. Culture media representative of the CF airway have been developed and validated; however, no such medium exists for modeling the CF intestine. Here, we develop and validate a first-generation culture medium inclusive of features that are altered in the CF colon. Our findings suggest this novel medium, called CF-MiPro, as a maintenance medium for CF gut microbiome samples and a flexible tool for studying key drivers of CF-associated gut dysbiosis.
Collapse
Affiliation(s)
- Kaitlyn E. Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rebecca A. Valls
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sarvesh V. Surve
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Timothy B. Gardner
- Section of Gastroenterology and Hepatology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Julie L. Sanville
- Division of Pediatric Gastroenterology, Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Juliette L. Madan
- Departments of Psychiatry and Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
36
|
Bhattarai SK, Du M, Zeamer AL, Morzfeld BM, Kellogg TD, Firat K, Benjamin A, Bean JM, Zimmerman M, Mardi G, Vilbrun SC, Walsh KF, Fitzgerald DW, Glickman MS, Bucci V. Commensal antimicrobial resistance mediates microbiome resilience to antibiotic disruption. Sci Transl Med 2024; 16:eadi9711. [PMID: 38232140 PMCID: PMC11017772 DOI: 10.1126/scitranslmed.adi9711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
Despite their therapeutic benefits, antibiotics exert collateral damage on the microbiome and promote antimicrobial resistance. However, the mechanisms governing microbiome recovery from antibiotics are poorly understood. Treatment of Mycobacterium tuberculosis, the world's most common infection, represents the longest antimicrobial exposure in humans. Here, we investigate gut microbiome dynamics over 20 months of multidrug-resistant tuberculosis (TB) and 6 months of drug-sensitive TB treatment in humans. We find that gut microbiome dynamics and TB clearance are shared predictive cofactors of the resolution of TB-driven inflammation. The initial severe taxonomic and functional microbiome disruption, pathobiont domination, and enhancement of antibiotic resistance that initially accompanied long-term antibiotics were countered by later recovery of commensals. This resilience was driven by the competing evolution of antimicrobial resistance mutations in pathobionts and commensals, with commensal strains with resistance mutations reestablishing dominance. Fecal-microbiota transplantation of the antibiotic-resistant commensal microbiome in mice recapitulated resistance to further antibiotic disruption. These findings demonstrate that antimicrobial resistance mutations in commensals can have paradoxically beneficial effects by promoting microbiome resilience to antimicrobials and identify microbiome dynamics as a predictor of disease resolution in antibiotic therapy of a chronic infection.
Collapse
Affiliation(s)
- Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Muxue Du
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Abigail L Zeamer
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Benedikt M Morzfeld
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Tasia D Kellogg
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kaya Firat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Anna Benjamin
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James M Bean
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Gertrude Mardi
- Haitian Study Group for Kaposi’s Sarcoma and Opportunistic Infections (GHESKIO), Port-au-Prince, Haiti
| | - Stalz Charles Vilbrun
- Haitian Study Group for Kaposi’s Sarcoma and Opportunistic Infections (GHESKIO), Port-au-Prince, Haiti
| | - Kathleen F Walsh
- Center for Global Health, Weill Cornell Medicine, New York, NY 10065, USA
- Division of General Internal Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
37
|
Smith AB, Specker JT, Hewlett KK, Scoggins TR, Knight M, Lustig AM, Li Y, Evans KM, Guo Y, She Q, Christopher MW, Garrett TJ, Moustafa AM, Van Tyne D, Prentice BM, Zackular JP. Liberation of host heme by Clostridioides difficile-mediated damage enhances Enterococcus faecalis fitness during infection. mBio 2024; 15:e0165623. [PMID: 38078767 PMCID: PMC10790701 DOI: 10.1128/mbio.01656-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Clostridioides difficile and Enterococcus faecalis are two pathogens of great public health importance. Both bacteria colonize the human gastrointestinal tract where they are known to interact in ways that worsen disease outcomes. We show that the damage associated with C. difficile infection (CDI) releases nutrients that benefit E. faecalis. One particular nutrient, heme, allows E. faecalis to use oxygen to generate energy and grow better in the gut. Understanding the mechanisms of these interspecies interactions could inform therapeutic strategies for CDI.
Collapse
Affiliation(s)
- Alexander B. Smith
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Katharine K. Hewlett
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Troy R. Scoggins
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Montana Knight
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abigail M. Lustig
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yanhong Li
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Kirsten M. Evans
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingchan Guo
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Qianxuan She
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Timothy J. Garrett
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Ahmed M. Moustafa
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Sinha R, LeVeque RM, Callahan SM, Chatterjee S, Stopnisek N, Kuipel M, Johnson JG, DiRita VJ. Gut metabolite L-lactate supports Campylobacter jejuni population expansion during acute infection. Proc Natl Acad Sci U S A 2024; 121:e2316540120. [PMID: 38170751 PMCID: PMC10786315 DOI: 10.1073/pnas.2316540120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using 6-wk-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni, ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within 2 to 3 d of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP, which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter (lctP) led to identification of a putative thiol-based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides better insights into the pathogenicity of C. jejuni.
Collapse
Affiliation(s)
- Ritam Sinha
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Rhiannon M. LeVeque
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Sean M. Callahan
- Department of Microbiology, University of Tennessee, Knoxville, TN37996
| | - Shramana Chatterjee
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Nejc Stopnisek
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Matti Kuipel
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI48824
| | | | - Victor J. DiRita
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
39
|
Wallace BA, Varona NS, Hesketh-Best PJ, Stiffler AK, Silveira CB. Globally distributed bacteriophage genomes reveal mechanisms of tripartite phage-bacteria-coral interactions. THE ISME JOURNAL 2024; 18:wrae132. [PMID: 39030686 PMCID: PMC11309003 DOI: 10.1093/ismejo/wrae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Reef-building corals depend on an intricate community of microorganisms for functioning and resilience. The infection of coral-associated bacteria by bacteriophages can modify bacterial ecological interactions, yet very little is known about phage functions in the holobiont. This gap stems from methodological limitations that have prevented the recovery of high-quality viral genomes and bacterial host assignment from coral samples. Here, we introduce a size fractionation approach that increased bacterial and viral recovery in coral metagenomes by 9-fold and 2-fold, respectively, and enabled the assembly and binning of bacterial and viral genomes at relatively low sequencing coverage. We combined these viral genomes with those derived from 677 publicly available metagenomes, viromes, and bacterial isolates from stony corals to build a global coral virus database of over 20,000 viral genomic sequences spanning four viral realms. The tailed bacteriophage families Kyanoviridae and Autographiviridae were the most abundant, replacing groups formerly referred to as Myoviridae and Podoviridae, respectively. Prophage and CRISPR spacer linkages between these viruses and 626 bacterial metagenome-assembled genomes and bacterial isolates showed that most viruses infected Alphaproteobacteria, the most abundant class, and less abundant taxa like Halanaerobiia and Bacteroidia. A host-phage-gene network identified keystone viruses with the genomic capacity to modulate bacterial metabolic pathways and direct molecular interactions with eukaryotic cells. This study reveals the genomic basis of nested symbioses between bacteriophage, bacteria, and the coral host and its endosymbiotic algae.
Collapse
Affiliation(s)
- Bailey A Wallace
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Poppy J Hesketh-Best
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
- Department Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Alexandra K Stiffler
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Cynthia B Silveira
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| |
Collapse
|
40
|
Li Q, Lin L, Zhang C, Zhang H, Ma Y, Qian H, Chen XL, Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J Nanobiotechnology 2024; 22:17. [PMID: 38172992 PMCID: PMC10763270 DOI: 10.1186/s12951-023-02246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Ma
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Haisheng Qian
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xianwen Wang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
41
|
Chai L, Song Y, Chen A, Jiang L, Deng H. Gut microbiota perturbations during larval stages in Bufo gargarizans tadpoles after Cu exposure with or without the presence of Pb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122774. [PMID: 37871736 DOI: 10.1016/j.envpol.2023.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Cu and Pb are ubiquitous environmental contaminants, but there is limited information on their potential impacts on gut microbiota profile in anuran amphibians at different developmental stages during metamorphosis. In this study, Bufo gargarizans tadpoles were chronically exposed to Cu alone or Cu combined with Pb from Gs26 throughout metamorphosis. Morphology of tadpoles, histological characteristic and bacterial community of intestines were evaluated at three developmental stages: Gs33, Gs36, and Gs42. Results showed that Cu and Cu + Pb exposure caused various degrees of morphological and histological changes in guts at tested three stages. In addition, bacterial richness and diversity in tadpoles especially at Gs33 and Gs42 were disturbed by Cu and Cu + Pb. Beta diversity demonstrated that the bacterial community structures were influenced by both heavy metals exposure and developmental stages. Alterations in taxonomic composition were characterized by increased abundance of Proteobacteria and Firmicutes, reduction of Fusobacteriota, as well as decreased Cetobacterium and increased C39 at all three stages. Overall, response of gut bacterial diversity and composition to Cu stress depends on the developmental stage, while the altered patterns of bacterial community at Cu stress could be modified further by the presence of Pb. Moreover, predicted metabolic disorders were associated with shifts in bacterial community, but needs integrated information from metagenomic and metatranscriptomic analyses. These results contribute to the growing body of research about potential ecotoxicological effects of heavy metals on amphibian gut microbiota during metamorphosis.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China.
| | - Yanjiao Song
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
42
|
Zong W, Friedman ES, Allu SR, Firrman J, Tu V, Daniel SG, Bittinger K, Liu L, Vinogradov SA, Wu GD. Disruption of intestinal oxygen balance in acute colitis alters the gut microbiome. Gut Microbes 2024; 16:2361493. [PMID: 38958039 PMCID: PMC11225921 DOI: 10.1080/19490976.2024.2361493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
The juxtaposition of well-oxygenated intestinal colonic tissue with an anerobic luminal environment supports a fundamentally important relationship that is altered in the setting of intestinal injury, a process likely to be relevant to diseases such as inflammatory bowel disease. Herein, using two-color phosphorometry to non-invasively quantify both intestinal tissue and luminal oxygenation in real time, we show that intestinal injury induced by DSS colitis reduces intestinal tissue oxygenation in a spatially defined manner and increases the flux of oxygen from the tissue into the gut lumen. By characterizing the composition of the microbiome in both DSS colitis-affected gut and in a bioreactor containing a stable human fecal community exposed to microaerobic conditions, we provide evidence that the increased flux of oxygen into the gut lumen augments glycan degrading bacterial taxa rich in glycoside hydrolases which are known to inhabit gut mucosal surface. Continued disruption of the intestinal mucus barrier through such a mechanism may play a role in the perpetuation of the intestinal inflammatory process.
Collapse
Affiliation(s)
- Wenjing Zong
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - Elliot S. Friedman
- Department of Gastroenterology & Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Srinivasa Rao Allu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - Vincent Tu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - Scott G. Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - Sergei A. Vinogradov
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary D. Wu
- Department of Gastroenterology & Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Dash NR, Al Bataineh MT, Alili R, Al Safar H, Alkhayyal N, Prifti E, Zucker JD, Belda E, Clément K. Functional alterations and predictive capacity of gut microbiome in type 2 diabetes. Sci Rep 2023; 13:22386. [PMID: 38104165 PMCID: PMC10725451 DOI: 10.1038/s41598-023-49679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
The gut microbiome plays a significant role in the development of Type 2 Diabetes Mellitus (T2DM), but the functional mechanisms behind this association merit deeper investigation. Here, we used the nanopore sequencing technology for metagenomic analyses to compare the gut microbiome of individuals with T2DM from the United Arab Emirates (n = 40) with that of control (n = 44). DMM enterotyping of the cohort resulted concordantly with previous results, in three dominant groups Bacteroides (K1), Firmicutes (K2), and Prevotella (K3) lineages. The diversity analysis revealed a high level of diversity in the Firmicutes group (K2) both in terms of species richness and evenness (Wilcoxon rank-sum test, p value < 0.05 vs. K1 and K3 groups), consistent with the Ruminococcus enterotype described in Western populations. Additionally, functional enrichment analyses of KEGG modules showed significant differences in abundance between individuals with T2DM and controls (FDR < 0.05). These differences include modules associated with the degradation of amino acids, such as arginine, the degradation of urea as well as those associated with homoacetogenesis. Prediction analysis with the Predomics approach suggested potential biomarkers for T2DM, including a balance between a depletion of Enterococcus faecium and Blautia lineages with an enrichment of Absiella spp or Eubacterium limosum in T2DM individuals, highlighting the potential of metagenomic analysis in predicting predisposition to diabetic cardiomyopathy in T2DM patients.
Collapse
Affiliation(s)
- Nihar Ranjan Dash
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad T Al Bataineh
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Rohia Alili
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | | | - Edi Prifti
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, 93143, Bondy, France
| | - Jean-Daniel Zucker
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, 93143, Bondy, France
| | - Eugeni Belda
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, 93143, Bondy, France
| | - Karine Clément
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France.
- Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
44
|
Winter SE, Bäumler AJ. Gut dysbiosis: Ecological causes and causative effects on human disease. Proc Natl Acad Sci U S A 2023; 120:e2316579120. [PMID: 38048456 PMCID: PMC10722970 DOI: 10.1073/pnas.2316579120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
The gut microbiota plays a role in many human diseases, but high-throughput sequence analysis does not provide a straightforward path for defining healthy microbial communities. Therefore, understanding mechanisms that drive compositional changes during disease (gut dysbiosis) continues to be a central goal in microbiome research. Insights from the microbial pathogenesis field show that an ecological cause for gut dysbiosis is an increased availability of host-derived respiratory electron acceptors, which are dominant drivers of microbial community composition. Similar changes in the host environment also drive gut dysbiosis in several chronic human illnesses, and a better understanding of the underlying mechanisms informs approaches to causatively link compositional changes in the gut microbiota to an exacerbation of symptoms. The emerging picture suggests that homeostasis is maintained by host functions that control the availability of resources governing microbial growth. Defining dysbiosis as a weakening of these host functions directs attention to the underlying cause and identifies potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Sebastian E. Winter
- Department of Medicine, Division of Infectious Diseases, University of California, Davis, CA95616
- Department of Medical Microbiology and Immunology, University of California, Davis, CA95616
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis, CA95616
| |
Collapse
|
45
|
Zhang H, Wang X, Zhang J, He Y, Yang X, Nie Y, Sun L. Crosstalk between gut microbiota and gut resident macrophages in inflammatory bowel disease. J Transl Int Med 2023; 11:382-392. [PMID: 38130639 PMCID: PMC10732497 DOI: 10.2478/jtim-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Macrophages residing in the gut maintain gut homeostasis by orchestrating patho-gens and innocuous antigens. A disturbance in macrophages leads to gut inflamma-tion, causing conditions such as inflammatory bowel disease (IBD). Macrophages ex-hibit remarkable plasticity, as they are sensitive to various signals in the tissue micro-environment. During the recent decades, gut microbiota has been highlighted refer-ring to their critical roles in immunity response. Microbiome-derived metabolites and products can interact with macrophages to participate in the progression of IBD. In this review, we describe recent findings in this field and provide an overview of the current understanding of microbiota-macrophages interactions in IBD, which may lead to the development of new targets and treatment options for patients with IBD.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Targeting Oncology, National Center for International Re-search of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xueying Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yixuan He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Xiumin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| |
Collapse
|
46
|
Zheng T, Hao H, Liu Q, Li J, Yao Y, Liu Y, Zhang T, Zhang Z, Yi H. Effect of Extracelluar Vesicles Derived from Akkermansia muciniphila on Intestinal Barrier in Colitis Mice. Nutrients 2023; 15:4722. [PMID: 38004116 PMCID: PMC10674789 DOI: 10.3390/nu15224722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent disease. It has been observed that the incidence and prevalence of IBD are increasing, which consequently raises the risk of developing colon cancer. Recently, the regulation of the intestinal barrier by probiotics has become an effective treatment for colitis. Akkermansia muciniphila-derived extracellular vesicles (Akk EVs) are nano-vesicles that contain multiple bioactive macromolecules with the potential to modulate the intestinal barrier. In this study, we used ultrafiltration in conjunction with high-speed centrifugation to extract Akk EVs. A lipopolysaccharide (LPS)-induced RAW264.7 cell model was established to assess the anti-inflammatory effects of Akk EVs. It was found that Akk EVs were able to be absorbed by RAW264.7 cells and significantly reduce the expression of nitric oxide (NO), TNF-α, and IL-1β (p < 0.05). We explored the preventative effects on colitis and the regulating effects on the intestinal barrier using a mouse colitis model caused by dextran sulfate sodium (DSS). The findings demonstrated that Akk EVs effectively prevented colitis symptoms and reduced colonic tissue injury. Additionally, Akk EVs significantly enhanced the effectiveness of the intestinal barrier by elevating the expression of MUC2 (0.53 ± 0.07), improving mucus integrity, and reducing intestinal permeability (p < 0.05). Moreover, Akk EVs increased the proportion of the beneficial bacteria Firmicutes (33.01 ± 0.09%) and downregulated the proportion of the harmful bacteria Proteobacteria (0.32 ± 0.27%). These findings suggest that Akk EVs possess the ability to regulate immune responses, protect intestinal barriers, and modulate the gut microbiota. The research presents a potential intervention approach for Akk EVs to prevent colitis.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Haining Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Qiqi Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jiankun Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yukun Yao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yisuo Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Tai Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhe Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
| | - Huaxi Yi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
47
|
Marzano V, Levi Mortera S, Vernocchi P, Del Chierico F, Marangelo C, Guarrasi V, Gardini S, Dentici ML, Capolino R, Digilio MC, Di Donato M, Spasari I, Abreu MT, Dallapiccola B, Putignani L. Williams-Beuren syndrome shapes the gut microbiota metaproteome. Sci Rep 2023; 13:18963. [PMID: 37923896 PMCID: PMC10624682 DOI: 10.1038/s41598-023-46052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a rare genetic neurodevelopmental disorder with multi-systemic manifestations. The evidence that most subjects with WBS face gastrointestinal (GI) comorbidities, have prompted us to carry out a metaproteomic investigation of their gut microbiota (GM) profile compared to age-matched healthy subjects (CTRLs). Metaproteomic analysis was carried out on fecal samples collected from 41 individuals with WBS, and compared with samples from 45 CTRLs. Stool were extracted for high yield in bacterial protein group (PG) content, trypsin-digested and analysed by nanoLiquid Chromatography-Mass Spectrometry. Label free quantification, taxonomic assignment by the lowest common ancestor (LCA) algorithm and functional annotations by COG and KEGG databases were performed. Data were statistically interpreted by multivariate and univariate analyses. A WBS GM functional dissimilarity respect to CTRLs, regardless age distribution, was reported. The alterations in function of WBSs GM was primarily based on bacterial pathways linked to carbohydrate transport and metabolism and energy production. Influence of diet, obesity, and GI symptoms was assessed, highlighting changes in GM biochemical patterns, according to WBS subsets' stratification. The LCA-derived ecology unveiled WBS-related functionally active bacterial signatures: Bacteroidetes related to over-expressed PGs, and Firmicutes, specifically the specie Faecalibacterium prausnitzii, linked to under-expressed PGs, suggesting a depletion of beneficial bacteria. These new evidences on WBS gut dysbiosis may offer novel targets for tailored interventions.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valerio Guarrasi
- GenomeUp s.r.l., Rome, Italy
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Rome, Italy
| | | | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division, Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Genetics and Rare Diseases Research Division, Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maddalena Di Donato
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Iolanda Spasari
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Teresa Abreu
- Division of Digestive Health and Liver Diseases, Department of Medicine, Crohn's and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
48
|
Honda K, Furuichi M, Kawaguchi T, Pust MM, Yasuma-Mitobe K, Plichta D, Hasegawa N, Ohya T, Bhattarai S, Sasajima S, Yoshimasa A, Tuganbaev T, Yaginuma M, Ueda M, Okahashi N, Amafuji K, Kiridooshi Y, Sugita K, Stražar M, Skelly A, Suda W, Hattori M, Nakamoto N, Caballero S, Norman J, Olle B, Tanoue T, Arita M, Bucci V, Atarashi K, Xavier R. Rationally-defined microbial consortia suppress multidrug-resistant proinflammatory Enterobacteriaceae via ecological control. RESEARCH SQUARE 2023:rs.3.rs-3462622. [PMID: 37961431 PMCID: PMC10635318 DOI: 10.21203/rs.3.rs-3462622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Persistent colonization and outgrowth of pathogenic organisms in the intestine may occur due to long-term antibiotic usage or inflammatory conditions, which perpetuate dysregulated immunity and tissue damage1,2. Gram-negative Enterobacteriaceae gut pathobionts are particularly recalcitrant to conventional antibiotic treatment3,4, though an emerging body of evidence suggests that manipulation of the commensal microbiota may be a practical alternative therapeutic strategy5-7. In this study, we rationally isolated and down-selected commensal bacterial consortia from healthy human stool samples capable of strongly and specifically suppressing intestinal Enterobacteriaceae. One of the elaborated consortia, consisting of 18 commensal strains, effectively controlled ecological niches by regulating gluconate availability, thereby reestablishing colonization resistance and alleviating antibiotic-resistant Klebsiella-driven intestinal inflammation in mice. Harnessing these microbial activities in the form of live bacterial therapeutics may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Aoto Yoshimasa
- JSR-Keio University Medical and Chemical Innovation Center
| | | | | | | | | | | | | | | | | | | | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences
| | | | | | - Silvia Caballero
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Spiga L, Fansler RT, Perera YR, Shealy NG, Munneke MJ, David HE, Torres TP, Lemoff A, Ran X, Richardson KL, Pudlo N, Martens EC, Folta-Stogniew E, Yang ZJ, Skaar EP, Byndloss MX, Chazin WJ, Zhu W. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. Cell Host Microbe 2023; 31:1639-1654.e10. [PMID: 37776864 PMCID: PMC10599249 DOI: 10.1016/j.chom.2023.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients, such as iron. Pathogens scavenge iron using siderophores, including enterobactin; however, this strategy is counteracted by host protein lipocalin-2, which sequesters iron-laden enterobactin. Although this iron competition occurs in the presence of gut bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron and sustains its resilience in the inflamed gut by utilizing siderophores produced by other bacteria, including Salmonella, via a secreted siderophore-binding lipoprotein XusB. Notably, XusB-bound enterobactin is less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella, allowing the pathogen to evade nutritional immunity. Because the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the host-pathogen interactions and nutritional immunity.
Collapse
Affiliation(s)
- Luisella Spiga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan T Fansler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yasiru R Perera
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicolas G Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew J Munneke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Holly E David
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Teresa P Torres
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew Lemoff
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xinchun Ran
- Departments of Chemistry, Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Katrina L Richardson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicholas Pudlo
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C Martens
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ewa Folta-Stogniew
- Keck Foundation Biotechnology Resource Laboratory, Yale University, 300 George Street, New Haven, CT 06511, USA
| | - Zhongyue J Yang
- Departments of Chemistry, Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
50
|
Xu W, Xue W, Zhou Z, Wang J, Qi H, Sun S, Jin T, Yao P, Zhao JY, Lin F. Formate Might Be a Novel Potential Serum Metabolic Biomarker for Type 2 Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2023; 16:3147-3160. [PMID: 37842336 PMCID: PMC10576463 DOI: 10.2147/dmso.s428933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Background As one of the most frequent complications of type 2 diabetes mellitus (T2DM), diabetic peripheral neuropathy (DPN) shows a profound impact on 50% of patients with symptoms of neuropathic pain, numbness and other paresthesia. No valid serum biomarkers for the prediction of DPN have been identified in the clinic so far. This study is to investigate the potential serum biomarkers for DPN firstly based on 1H-Nuclear Magnetic Resonance (1H-NMR)-based metabolomics technique. Methods Thirty-six patients enrolled in this study were divided into two groups: 18 T2DM patients without DPN (T2DM group) and 18 T2DM patients with DPN (DPN group). Serum metabolites were measured via 1H-NMR spectroscopy. Bioinformatic approaches including principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), independent sample t-test, Fisher's test, Pearson and Spearman correlation analysis, Stepwise multiple linear regression analysis and receiver operating characteristic (ROC) curve analysis were used to identify the potential altered serum biomarkers. Results A total of 20 metabolites were obtained and further analyzed. Formate was identified as the only potential biomarker that decreased in the DPN group with statistical significance after multiple comparisons (p<0.05). Formate also displayed a negative relationship with some elevated clinical markers in DPN. ROC curve analysis showed a good discriminative ability for formate in DPN with an area under the curve (AUC) value of 0.981. Conclusion Formate could be considered a potential serum metabolic biomarker for DPN. The reduced level of formate in DPN may be associated with mitochondrial dysfunction and gut microbiota alteration. Monitoring the level of serum formate would be an important strategy for the early diagnosis of DPN and a supplement of formate may be a promising treatment for DPN in the future.
Collapse
Affiliation(s)
- Weisheng Xu
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
- School of Medicine, Tongji University, Shanghai, 200331, People’s Republic of China
| | - Wangsheng Xue
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Zeyu Zhou
- School of Life Sciences, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Jiying Wang
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Hui Qi
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Shiyu Sun
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Tong Jin
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Ping Yao
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200090, People’s Republic of China
| | - Fuqing Lin
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| |
Collapse
|