1
|
DiGianivittorio P, Hinkel LA, Mackinder JR, Schutz K, Klein EA, Wargo MJ. The Pseudomonas aeruginosa sphBC genes are important for growth in the presence of sphingosine by promoting sphingosine metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611043. [PMID: 39282278 PMCID: PMC11398299 DOI: 10.1101/2024.09.03.611043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Sphingoid bases, including sphingosine, are important components of the antimicrobial barrier at epithelial surfaces where they can cause growth inhibition and killing of susceptible bacteria. Pseudomonas aeruginosa is a common opportunistic pathogen that is less susceptible to sphingosine than many Gram-negative bacteria. Here, we determined that deletion of the sphBCD operon reduced growth in the presence of sphingosine. Using deletion mutants, complementation, and growth assays in P. aeruginosa PAO1, we determined that the sphC and sphB genes, encoding a periplasmic oxidase and periplasmic cytochrome c, respectively, were important for growth on sphingosine, while sphD was dispensable under these conditions. Deletion of sphBCD in P. aeruginosa PA14, P. protegens Pf-5, and P. fluorescens Pf01 also showed reduced growth in the presence of sphingosine. The P. aeruginosa sphBC genes were also important for growth in the presence of two other sphingoid bases, phytosphingosine and sphinganine. In wild-type P. aeruginosa, sphingosine is metabolized to an unknown non-inhibitory product, as sphingosine concentrations drop in the culture. However, in the absence of sphBC, sphingosine accumulates, pointing to SphC and SphB as having a role in sphingosine metabolism. Finally, metabolism of sphingosine by wild-type P. aeruginosa protected susceptible cells from full growth inhibition by sphingosine, pointing to a role for sphingosine metabolism as a public good. This work shows that metabolism of sphingosine by P. aeruginosa presents a novel pathway by which bacteria can alter host-derived sphingolipids, but it remains an open question whether SphB and SphC act directly on sphingosine.
Collapse
Affiliation(s)
- Pauline DiGianivittorio
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont
| | - Lauren A. Hinkel
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont
- Biology Department, Rutgers University-Camden
| | - Jacob R. Mackinder
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont
| | - Kristin Schutz
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
| | | | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
| |
Collapse
|
2
|
Miller LG, Chiok K, Mariasoosai C, Mohanty I, Pandit S, Deol P, Mehari L, Teng MN, Haas AL, Natesan S, Miura TA, Bose S. Extracellular ISG15 triggers ISGylation via a type-I interferon independent non-canonical mechanism to regulate host response during virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602290. [PMID: 39026703 PMCID: PMC11257485 DOI: 10.1101/2024.07.05.602290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Type-I interferons (IFN) induce cellular proteins with antiviral activity. One such protein is Interferon Stimulated Gene 15 (ISG15). ISG15 is conjugated to proteins during ISGylation to confer antiviral activity and regulate cellular activities associated with inflammatory and neurodegenerative diseases and cancer. Apart from ISGylation, unconjugated free ISG15 is also released from cells during various conditions, including virus infection. The role of extracellular ISG15 during virus infection was unknown. We show that extracellular ISG15 triggers ISGylation and acts as a soluble antiviral factor to restrict virus infection via an IFN-independent mechanism. Specifically, extracellular ISG15 acts post-translationally to markedly enhance the stability of basal intracellular ISG15 protein levels to support ISGylation. Furthermore, extracellular ISG15 interacts with cell surface integrin (α5β1 integrins) molecules via its RGD-like motif to activate the integrin-FAK (Focal Adhesion Kinase) pathway resulting in IFN-independent ISGylation. Thus, our studies have identified extracellular ISG15 protein as a new soluble antiviral factor that confers IFN-independent non-canonical ISGylation via the integrin-FAK pathway by post-translational stabilization of intracellular ISG15 protein.
Collapse
|
3
|
Idris T, Bachmann M, Bacchetta M, Wehrle-Haller B, Chanson M, Badaoui M. Akt-driven TGF-β and DKK1 Secretion Impairs F508del Cystic Fibrosis Airway Epithelium Polarity. Am J Respir Cell Mol Biol 2024; 71:81-94. [PMID: 38531016 DOI: 10.1165/rcmb.2023-0408oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/26/2024] [Indexed: 03/28/2024] Open
Abstract
Epithelial polarity is fundamental in maintaining barrier integrity and tissue protection. In cystic fibrosis (CF), apicobasal polarity of the airway epithelium is altered, resulting in increased apical fibronectin deposition and enhanced susceptibility to bacterial infections. Here, we evaluated the effect of highly effective modulator treatment (HEMT) on fibronectin apical deposition and investigated the intracellular mechanisms triggering the defect in polarity of the CF airway epithelium. To this end, primary cultures of CF (F508del variant) human airway epithelial cells (HAECs) and a HAEC line, Calu-3, knocked down for CFTR (CF transmembrane conductance regulator) were compared with control counterparts. We show that CFTR mutation in primary HAECs and CFTR knockdown cells promote the overexpression and oversecretion of TGF-β1 and DKK1 when cultured at an air-liquid interface. These dynamic changes result in hyperactivation of the TGF-β pathway and inhibition of the Wnt pathway through degradation of β-catenin leading to imbalanced proliferation and polarization. The abnormal interplay between TGF-β and Wnt signaling pathways is reinforced by aberrant Akt signaling. Pharmacological manipulation of TGF-β, Wnt, and Akt pathways restored polarization of the F508del CF epithelium, a correction that was not achieved by HEMT. Our data shed new insights into the signaling pathways that fine-tune apicobasal polarization in primary airway epithelial cells and may provide an explanation to the mitigated efficacy of HEMT on lung infection in people with CF.
Collapse
Affiliation(s)
- Tahir Idris
- Department of Cell Physiology and Metabolism
| | | | | | | | - Marc Chanson
- Department of Cell Physiology and Metabolism
- Department of Pediatrics, Gynecology, and Obstetrics, and
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
4
|
Simonin JL, Tomba C, Mercier V, Bacchetta M, Idris T, Badaoui M, Roux A, Chanson M. Apical dehydration impairs the cystic fibrosis airway epithelium barrier via a β1-integrin/YAP1 pathway. Life Sci Alliance 2024; 7:e202302449. [PMID: 38336456 PMCID: PMC10858171 DOI: 10.26508/lsa.202302449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Defective hydration of airway surface mucosa is associated with lung infection in cystic fibrosis (CF), partly caused by disruption of the epithelial barrier integrity. Although rehydration of the CF airway surface liquid (ASL) alleviates epithelium vulnerability to infection by junctional protein expression, the mechanisms linking ASL to barrier integrity are unknown. We show here the strong degradation of YAP1 and TAZ proteins in well-polarized CF human airway epithelial cells (HAECs), a process that was prevented by ASL rehydration. Conditional silencing of YAP1 in rehydrated CF HAECs indicated that YAP1 expression was necessary for the maintenance of junctional complexes. A higher plasma membrane tension in CF HAECs reduced endocytosis, concurrent with the maintenance of active β1-integrin ectopically located at the apical membrane. Pharmacological inhibition of β1-integrin accumulation restored YAP1 expression in CF HAECs. These results indicate that dehydration of the CF ASL affects epithelial plasma membrane tension, resulting in ectopic activation of a β1-integrin/YAP1 signaling pathway associated with degradation of junctional proteins.
Collapse
Affiliation(s)
- Juliette L Simonin
- https://ror.org/01swzsf04 Department of Cell Physiology and Metabolism, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Caterina Tomba
- https://ror.org/01swzsf04 Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Vincent Mercier
- https://ror.org/01swzsf04 Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Marc Bacchetta
- https://ror.org/01swzsf04 Department of Cell Physiology and Metabolism, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Tahir Idris
- https://ror.org/01swzsf04 Department of Cell Physiology and Metabolism, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Mehdi Badaoui
- https://ror.org/01swzsf04 Department of Cell Physiology and Metabolism, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Aurélien Roux
- https://ror.org/01swzsf04 Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Marc Chanson
- https://ror.org/01swzsf04 Department of Cell Physiology and Metabolism, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
5
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
6
|
Lang J, Soddemann M, Edwards MJ, Wilson GC, Lang KS, Gulbins E. Sphingosine Prevents Rhinoviral Infections. Int J Mol Sci 2024; 25:2486. [PMID: 38473734 DOI: 10.3390/ijms25052486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Rhinoviral infections cause approximately 50% of upper respiratory tract infections and novel treatment options are urgently required. We tested the effects of 10 μM to 20 μM sphingosine on the infection of cultured and freshly isolated human cells with minor and major group rhinovirus in vitro. We also performed in vivo studies on mice that were treated with an intranasal application of 10 μL of either a 10 μM or a 100 μM sphingosine prior and after infection with rhinovirus strains 1 and 2 and determined the infection of nasal epithelial cells in the presence or absence of sphingosine. Finally, we determined and characterized a direct binding of sphingosine to rhinovirus. Our data show that treating freshly isolated human nasal epithelial cells with sphingosine prevents infections with rhinovirus strains 2 (minor group) and 14 (major group). Nasal infection of mice with rhinovirus 1b and 2 is prevented by the intranasal application of sphingosine before or as long as 8 h after infection with rhinovirus. Nasal application of the same doses of sphingosine exerts no adverse effects on epithelial cells as determined by hemalaun and TUNEL stainings. The solvent, octylglucopyranoside, was without any effect in vitro and in vivo. Mechanistically, we demonstrate that the positively charged lipid sphingosine binds to negatively charged molecules in the virus, which seems to prevent the infection of epithelial cells. These findings indicate that exogenous sphingosine prevents infections with rhinoviruses, a finding that could be therapeutically exploited. In addition, we demonstrated that sphingosine has no obvious adverse effects on the nasal mucosa. Sphingosine prevents rhinoviral infections by a biophysical mode of action, suggesting that sphingosine could serve to prevent many viral infections of airways and epithelial cells in general. Future studies need to determine the molecular mechanisms of how sphingosine prevents rhinoviral infections and whether sphingosine also prevents infections with other viruses inducing respiratory tract infections. Furthermore, our studies do not provide detailed pharmacokinetics that are definitely required before the further development of sphingosine.
Collapse
Affiliation(s)
- Judith Lang
- Department of Immunology, University Clinic, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, University Clinic, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Michael J Edwards
- Department of Molecular Biology, University Clinic, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Gregory C Wilson
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Karl S Lang
- Department of Immunology, University Clinic, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University Clinic, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
7
|
May H, Liu Y, Kadow S, Edwards MJ, Keitsch S, Wilker B, Kamler M, Grassmé H, Wu Y, Gulbins E. Sphingosine kills intracellular Pseudomonas aeruginosa and Staphylococcus aureus. Pathog Dis 2024; 82:ftae016. [PMID: 39030066 DOI: 10.1093/femspd/ftae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024] Open
Abstract
Sphingosine has been previously shown to kill many strains of pathogenic bacteria including Pseudomonas aeruginosa, Staphyloccus aureus, Acinetobacter, and atypical mycobacteria. However, these studies were performed on isolated or extracellular bacteria and it is unknown whether sphingosine also targets intracellular bacteria. Here, we demonstrate that exogenously-added sphingosine directly binds to extracellular P. aeruginosa and S. aureus, but also targets and binds to intracellular bacteria. Intracellular sphingosine and bacteria were identified by sequential immunostainings. We further show that exogenously-added sphingosine also kills intracellular P. aeruginosa and S. aureus using modified gentamycin assays. Intracellular killing of P. aeruginosa and S. aureus by sphingosine is not mediated by improved phagosomal-lysosomal fusion. In summary, our data indicate that sphingosine binds to and most likely also directly kills extra- and intracellular P. aeruginosa and S. aureus.
Collapse
Affiliation(s)
- Helene May
- Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, 45259 Essen, Germany
| | - Yongjie Liu
- Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, 45259 Essen, Germany
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, 45259 Essen, Germany
| | - Michael J Edwards
- Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, 45259 Essen, Germany
| | - Simone Keitsch
- Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, 45259 Essen, Germany
| | - Barbara Wilker
- Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, 45259 Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, Thoracic Transplantation, University Hospital Essen, University Duisburg-Essen, West German Heart and Vascular Center, 45259 Essen, Germany
| | - Heike Grassmé
- Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, 45259 Essen, Germany
| | - Yuqing Wu
- Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, 45259 Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, 45259 Essen, Germany
| |
Collapse
|
8
|
Liu Y, Wu Y, Leukers L, Schimank K, Wilker J, Wissmann A, Rauen U, Pizanis N, Taube C, Koch A, Gulbins E, Kamler M. Treatment of Staphylococcus aureus infection with sphingosine in ex vivo perfused and ventilated lungs. J Heart Lung Transplant 2024; 43:100-110. [PMID: 37673383 DOI: 10.1016/j.healun.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/04/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) has expanded the donor pool for lung transplantation. Pulmonary Staphylococcus aureus infection, especially that caused by multidrug-resistant strains, is a severe threat to posttransplantation outcomes. Sphingosine is a lipid compound that exhibits broad-spectrum antibacterial activity. Therefore, we aimed to evaluate the effects of S aureus infection on EVLP and whether sphingosine administration during EVLP prevents infection with S aureus. METHODS Eighteen pigs were randomly assigned to 3 groups: uninfected, infected with S aureus with NaCl treatment, or infected with sphingosine treatment. Bacterial numbers were determined before and after treatment. Sphingosine concentrations in the lung tissues were determined using biochemical assays. Lung histology, lung physiological parameters, perfusate content, lung weight, and cell death were measured to analyze the effects of infection and sphingosine administration on EVLP. RESULTS Sphingosine administration significantly reduced the bacterial load. The concentration of sphingosine in the bronchial epithelium was elevated after sphingosine administration. S aureus infection increased pulmonary artery pressure and pulmonary vascular resistance. Lung edema, histology scores, lactate and lactate dehydrogenase levels in the perfusate, ΔPO2 in the perfusate, static lung compliance, and lung peak airway pressure did not differ among the groups. CONCLUSIONS Infection of S aureus did not affect the lung function during EVLP but induced higher pulmonary artery pressure and pulmonary vascular resistance. Administration of sphingosine effectively eliminated S aureus without side effects in isolated, perfused, and ventilated pig lungs.
Collapse
Affiliation(s)
- Yongjie Liu
- University Hospital Essen, University Duisburg-Essen, Department of Thoracic and Cardiovascular Surgery, Thoracic Transplantation, West German Heart and Vascular Center, Essen, Germany; University Hospital Essen, University Duisburg-Essen, Institute of Molecular Biology, Essen, Germany.
| | - Yuqing Wu
- University Hospital Essen, University Duisburg-Essen, Institute of Molecular Biology, Essen, Germany
| | - Lydia Leukers
- University Hospital Essen, University Duisburg-Essen, Department of Thoracic and Cardiovascular Surgery, Thoracic Transplantation, West German Heart and Vascular Center, Essen, Germany
| | - Kristin Schimank
- University Hospital Essen, University Duisburg-Essen, Institute of Molecular Biology, Essen, Germany
| | - Jonathan Wilker
- University Hospital Essen, University Duisburg-Essen, Institute of Molecular Biology, Essen, Germany
| | - Andreas Wissmann
- University Hospital Essen, University Duisburg-Essen, Central Animal Laboratory, Essen, Germany
| | - Ursula Rauen
- University Hospital Essen, University Duisburg-Essen, Institute of Biochemistry, Essen, Germany
| | - Nikolaus Pizanis
- University Hospital Essen, University Duisburg-Essen, Department of Thoracic and Cardiovascular Surgery, Thoracic Transplantation, West German Heart and Vascular Center, Essen, Germany
| | - Christian Taube
- University Hospital Essen, University Duisburg-Essen,Department of Pulmonary Medicine, Essen, Germany
| | - Achim Koch
- University Hospital Essen, University Duisburg-Essen, Department of Thoracic and Cardiovascular Surgery, Thoracic Transplantation, West German Heart and Vascular Center, Essen, Germany
| | - Erich Gulbins
- University Hospital Essen, University Duisburg-Essen, Institute of Molecular Biology, Essen, Germany
| | - Markus Kamler
- University Hospital Essen, University Duisburg-Essen, Department of Thoracic and Cardiovascular Surgery, Thoracic Transplantation, West German Heart and Vascular Center, Essen, Germany.
| |
Collapse
|
9
|
Kleuser B, Schumacher F, Gulbins E. New Therapeutic Options in Pulmonal Diseases: Sphingolipids and Modulation of Sphingolipid Metabolism. Handb Exp Pharmacol 2024; 284:289-312. [PMID: 37922034 DOI: 10.1007/164_2023_700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Sphingolipids are crucial molecules in the respiratory airways. As in most other tissues and organs, in the lung sphingolipids play an essential role as structural constituents as they regulate barrier function and fluidity of cell membranes. A lung-specific feature is the occurrence of sphingolipids as minor structural components in the surfactant. However, sphingolipids are also key signaling molecules involved in airway cell signaling and their dynamical formation and metabolism are important for normal lung physiology. Dysregulation of sphingolipid metabolism and signaling is involved in altering lung tissue and initiates inflammatory processes promoting the pathogenesis of pulmonal diseases including cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and asthma.In the present review, the important role of specific sphingolipid species in pulmonal diseases will be discussed. Only such an understanding opens up the possibility of developing new therapeutic strategies with the aim of correcting the imbalance in sphingolipid metabolism and signaling. Such delivery strategies have already been studied in animal models of these lung diseases, demonstrating that targeting the sphingolipid profile represents new therapeutic opportunities for lung disorders.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany.
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
10
|
Cellini B, Pampalone G, Camaioni E, Pariano M, Catalano F, Zelante T, Dindo M, Macchioni L, Di Veroli A, Galarini R, Paoletti F, Davidescu M, Stincardini C, Vascelli G, Bellet MM, Saba J, Giovagnoli S, Giardina G, Romani L, Costantini C. Dual species sphingosine-1-phosphate lyase inhibitors to combine antifungal and anti-inflammatory activities in cystic fibrosis: a feasibility study. Sci Rep 2023; 13:22692. [PMID: 38123809 PMCID: PMC10733307 DOI: 10.1038/s41598-023-50121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by respiratory failure due to a vicious cycle of defective Cystic Fibrosis Transmembrane conductance Regulator (CFTR) function, chronic inflammation and recurrent bacterial and fungal infections. Although the recent introduction of CFTR correctors/potentiators has revolutionized the clinical management of CF patients, resurgence of inflammation and persistence of pathogens still posit a major concern and should be targeted contextually. On the background of a network-based selectivity that allows to target the same enzyme in the host and microbes with different outcomes, we focused on sphingosine-1-phosphate (S1P) lyase (SPL) of the sphingolipid metabolism as a potential candidate to uniquely induce anti-inflammatory and antifungal activities in CF. As a feasibility study, herein we show that interfering with S1P metabolism improved the immune response in a murine model of CF with aspergillosis while preventing germination of Aspergillus fumigatus conidia. In addition, in an early drug discovery process, we purified human and A. fumigatus SPL, characterized their biochemical and structural properties, and performed an in silico screening to identify potential dual species SPL inhibitors. We identified two hits behaving as competitive inhibitors of pathogen and host SPL, thus paving the way for hit-to-lead and translational studies for the development of drug candidates capable of restraining fungal growth and increasing antifungal resistance.
Collapse
Affiliation(s)
- Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy.
| | - Gioena Pampalone
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy
| | - Flavia Catalano
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy
| | - Mirco Dindo
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy
| | - Lara Macchioni
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy
| | - Alessandra Di Veroli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberta Galarini
- Centro Sviluppo e Validazione Metodi, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Fabiola Paoletti
- Centro Sviluppo e Validazione Metodi, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Magdalena Davidescu
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy
| | - Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy
| | - Gianluca Vascelli
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy
| | - Marina Maria Bellet
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy
| | - Julie Saba
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, P.le Lucio Severi 1, 06132, Perugia, Italy.
| |
Collapse
|
11
|
Schnitker F, Liu Y, Keitsch S, Soddemann M, Verhasselt HL, Kehrmann J, Grassmé H, Kamler M, Gulbins E, Wu Y. Reduced Sphingosine in Cystic Fibrosis Increases Susceptibility to Mycobacterium abscessus Infections. Int J Mol Sci 2023; 24:14004. [PMID: 37762308 PMCID: PMC10530875 DOI: 10.3390/ijms241814004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by the deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) and often leads to pulmonary infections caused by various pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and nontuberculous mycobacteria, particularly Mycobacterium abscessus. Unfortunately, M. abscessus infections are increasing in prevalence and are associated with the rapid deterioration of CF patients. The treatment options for M. abscessus infections are limited, requiring the urgent need to comprehend infectious pathogenesis and develop new therapeutic interventions targeting affected CF patients. Here, we show that the deficiency of CFTR reduces sphingosine levels in bronchial and alveolar epithelial cells and macrophages from CF mice and humans. Decreased sphingosine contributes to the susceptibility of CF tissues to M. abscessus infection, resulting in a higher incidence of infections in CF mice. Notably, treatment of M. abscessus with sphingosine demonstrated potent bactericidal activity against the pathogen. Most importantly, restoration of sphingosine levels in CF cells, whether human or mouse, and in the lungs of CF mice, provided protection against M. abscessus infections. Our findings demonstrate that pulmonary sphingosine levels are important in controlling M. abscessus infection. These results offer a promising therapeutic avenue for CF patients with pulmonary M. abscessus infections.
Collapse
Affiliation(s)
- Fabian Schnitker
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Yongjie Liu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
- West German Heart and Vascular Center, Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany;
| | - Simone Keitsch
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Matthias Soddemann
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (H.L.V.); (J.K.)
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (H.L.V.); (J.K.)
| | - Heike Grassmé
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Markus Kamler
- West German Heart and Vascular Center, Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany;
| | - Erich Gulbins
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yuqing Wu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| |
Collapse
|
12
|
Dobi D, Loberto N, Bassi R, Pistocchi A, Lunghi G, Tamanini A, Aureli M. Cross-talk between CFTR and sphingolipids in cystic fibrosis. FEBS Open Bio 2023; 13:1601-1614. [PMID: 37315117 PMCID: PMC10476574 DOI: 10.1002/2211-5463.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023] Open
Abstract
Cystic fibrosis (CF) is the most common inherited, life-limiting disorder in Caucasian populations. It is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which lead to an impairment of protein expression and/or function. CFTR is a chloride/bicarbonate channel expressed at the apical surface of epithelial cells of different organs. Nowadays, more than 2100 CFTR genetic variants have been described, but not all of them cause CF. However, around 80-85% of the patients worldwide are characterized by the presence, at least in one allele, of the mutation F508del. CFTR mutations cause aberrant hydration and secretion of mucus in hollow organs. In the lungs, this condition favors bacterial colonization, allowing the development of chronic infections that lead to the onset of the CF lung disease, which is the main cause of death in patients. In recent years, evidence has reported that CFTR loss of function is responsible for alterations in a particular class of bioactive lipids, called sphingolipids (SL). SL are ubiquitously present in eukaryotic cells and are mainly asymmetrically located within the external leaflet of the plasma membrane, where they organize specific platforms capable of segregating a selected number of proteins. CFTR is associated with these platforms that are fundamental for its functioning. Considering the importance of SL in CFTR homeostasis, we attempt here to provide a critical overview of the literature to determine the role of these lipids in channel stability and activity, and whether their modulation in CF could be a target for new therapeutic approaches.
Collapse
Affiliation(s)
- Dorina Dobi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Anna Tamanini
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and MovementUniversity of VeronaItaly
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| |
Collapse
|
13
|
Li Z, Tan S, Qi L, Chen Y, Liu H, Liu X, Sha Z. Genome-wide characterization of integrin (ITG) gene family and their expression profiling in half-smooth tongue sole (Cynoglossus semilaevis) upon Vibrio anguillarum infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101099. [PMID: 37327728 DOI: 10.1016/j.cbd.2023.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Integrins (ITGs) are transmembrane heterodimer receptors with ITGα subunit and ITGβ subunit, participating in various physiological processes, including immunity. At present, systematic research on ITGs in teleost is scarce, especially in half-smooth tongue sole (Cynoglossus semilaevis). In this study, a set of 28 ITG genes in half-smooth tongue sole have been identified and characterized. The phylogenetic analysis showed that ITGα and ITGβ subunits were respectively classified into five and two clusters, consistent with previous studies. The selection pressure analysis indicated that most of ITG genes were under purifying selection, except for ITGα11b and ITGαL with positive selection. The expression profiles of eight selected ITG genes, including ITGα1, ITGα5, ITGα8, ITGα11, ITGβ1, ITGβ2, ITGβ3, and ITGβ8, were analyzed in healthy tissues and after infection with Vibrio anguillarum, revealed their implications in immune response. The study provided a comprehensive characterization and expression analysis of ITG genes in half-smooth tongue sole, setting a solid foundation for further functional studies and promising potential in disease control.
Collapse
Affiliation(s)
- Zhujun Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Longjiang Qi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yadong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xinbao Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
14
|
Badaoui M, Sobolewski C, Luscher A, Bacchetta M, Köhler T, van Delden C, Foti M, Chanson M. Targeting HuR-Vav3 mRNA interaction prevents Pseudomonas aeruginosa adhesion to the cystic fibrosis airway epithelium. JCI Insight 2023; 8:161961. [PMID: 36602863 PMCID: PMC9977432 DOI: 10.1172/jci.insight.161961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by chronic bacterial infections leading to progressive bronchiectasis and respiratory failure. Pseudomonas aeruginosa (Pa) is the predominant opportunistic pathogen infecting the CF airways. The guanine nucleotide exchange factor Vav3 plays a critical role in Pa adhesion to the CF airways by inducing luminal fibronectin deposition that favors bacteria trapping. Here we report that Vav3 overexpression in CF is caused by upregulation of the mRNA-stabilizing protein HuR. We found that HuR accumulates in the cytoplasm of CF airway epithelial cells and that it binds to and stabilizes Vav3 mRNA. Interestingly, disruption of the HuR-Vav3 mRNA interaction improved the CF epithelial integrity, inhibited the formation of the fibronectin-made bacterial docking platforms, and prevented Pa adhesion to the CF airway epithelium. These findings indicate that targeting HuR represents a promising antiadhesive approach in CF that can prevent initial stages of Pa infection in a context of emergence of multidrug-resistant pathogens.
Collapse
Affiliation(s)
| | | | - Alexandre Luscher
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | | | - Thilo Köhler
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Christian van Delden
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | | | | |
Collapse
|
15
|
Kleynerman A, Rybova J, Faber ML, McKillop WM, Levade T, Medin JA. Acid Ceramidase Deficiency: Bridging Gaps between Clinical Presentation, Mouse Models, and Future Therapeutic Interventions. Biomolecules 2023; 13:biom13020274. [PMID: 36830643 PMCID: PMC9953133 DOI: 10.3390/biom13020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare, autosomal-recessive, acid ceramidase (ACDase) deficiency disorders caused by ASAH1 gene mutations. Currently, 73 different mutations in the ASAH1 gene have been described in humans. These mutations lead to reduced ACDase activity and ceramide (Cer) accumulation in many tissues. Presenting as divergent clinical phenotypes, the symptoms of FD vary depending on central nervous system (CNS) involvement and severity. Classic signs of FD include, but are not limited to, a hoarse voice, distended joints, and lipogranulomas found subcutaneously and in other tissues. Patients with SMA-PME lack the most prominent clinical signs seen in FD. Instead, they demonstrate muscle weakness, tremors, and myoclonic epilepsy. Several ACDase-deficient mouse models have been developed to help elucidate the complex consequences of Cer accumulation. In this review, we compare clinical reports on FD patients and experimental descriptions of ACDase-deficient mouse models. We also discuss clinical presentations, potential therapeutic strategies, and future directions for the study of FD and SMA-PME.
Collapse
Affiliation(s)
- Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L. Faber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - William M. McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse, and INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier, 31062 Toulouse, France
| | - Jeffrey A. Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-4118
| |
Collapse
|
16
|
Caterino M, Fedele R, Carnovale V, Castaldo A, Gelzo M, Iacotucci P, Ruoppolo M, Castaldo G. Lipidomic alterations in human saliva from cystic fibrosis patients. Sci Rep 2023; 13:600. [PMID: 36635275 PMCID: PMC9837121 DOI: 10.1038/s41598-022-24429-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/15/2022] [Indexed: 01/14/2023] Open
Abstract
Cystic fibrosis is a hereditary metabolic disorder characterized by impaired traffic of chloride ions and water through membranes of the respiratory and gastrointestinal, that causes inadequate hydration of airway surfaces, dehydrated mucous secretions and a high-sodium chloride sweat. Although the classical presentation of the condition is well known, a better characterization of metabolic alterations related is need. In particular, the metabolic composition alterations of biological fluids may be influence by the disease state and could be captured as putative signature to set targeted therapeutic strategies. A targeted comprehensive mass spectrometry-based platform was employed to dissect the lipid content of saliva samples form CF patients, in order to investigate alterations in the lipid metabolic homeostasis related to the pathology, chronic obstructive pulmonary disease, Pseudomonas Aeruginosa infection, pancreatic insufficiency, liver disfunction and diabetes-related complications.
Collapse
Affiliation(s)
- Marianna Caterino
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy ,grid.511947.f0000 0004 1758 0953CEINGE - Biotecnologie Avanzate F. Salvatore, s.c.ar.l, 80145 Napoli, Italy
| | - Roberta Fedele
- grid.511947.f0000 0004 1758 0953CEINGE - Biotecnologie Avanzate F. Salvatore, s.c.ar.l, 80145 Napoli, Italy
| | - Vincenzo Carnovale
- grid.4691.a0000 0001 0790 385XDepartment of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alice Castaldo
- grid.4691.a0000 0001 0790 385XDepartment of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Monica Gelzo
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy ,grid.511947.f0000 0004 1758 0953CEINGE - Biotecnologie Avanzate F. Salvatore, s.c.ar.l, 80145 Napoli, Italy
| | - Paola Iacotucci
- grid.4691.a0000 0001 0790 385XDepartment of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131, Naples, Italy. .,CEINGE - Biotecnologie Avanzate F. Salvatore, s.c.ar.l, 80145, Napoli, Italy.
| | - Giuseppe Castaldo
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy ,grid.511947.f0000 0004 1758 0953CEINGE - Biotecnologie Avanzate F. Salvatore, s.c.ar.l, 80145 Napoli, Italy
| |
Collapse
|
17
|
Gulbins A, Görtz GE, Gulbins E, Eckstein A. Sphingolipids in thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1170884. [PMID: 37082124 PMCID: PMC10112667 DOI: 10.3389/fendo.2023.1170884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Graves' disease (GD) is caused by an autoimmune formation of autoantibodies and autoreactive T-cells against the thyroid stimulating hormone receptor (TSHR). The autoimmune reaction does not only lead to overstimulation of the thyroid gland, but very often also to an immune reaction against antigens within the orbital tissue leading to thyroid eye disease, which is characterized by activation of orbital fibroblasts, orbital generation of adipocytes and myofibroblasts and increased hyaluronan production in the orbit. Thyroid eye disease is the most common extra-thyroidal manifestation of the autoimmune Graves' disease. Several studies indicate an important role of sphingolipids, in particular the acid sphingomyelinase/ceramide system and sphingosine 1-phosphate in thyroid eye disease. Here, we discuss how the biophysical properties of sphingolipids contribute to cell signaling, in particular in the context of thyroid eye disease. We further review the role of the acid sphingomyelinase/ceramide system in autoimmune diseases and its function in T lymphocytes to provide some novel hypotheses for the pathogenesis of thyroid eye disease and potentially allowing the development of novel treatments.
Collapse
Affiliation(s)
- Anne Gulbins
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Anja Eckstein, ; Erich Gulbins,
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Anja Eckstein, ; Erich Gulbins,
| |
Collapse
|
18
|
Qi Q, Xu J, Wang Y, Zhang J, Gao M, Li Y, Dong L. Decreased Sphingosine Due to Down-Regulation of Acid Ceramidase Expression in Airway of Bronchiectasis Patients: A Potential Contributor to Pseudomonas aeruginosa Infection. Infect Drug Resist 2023; 16:2573-2588. [PMID: 37144155 PMCID: PMC10153545 DOI: 10.2147/idr.s407335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Purpose To assess the metabolites associated with Pseudomonas aeruginosa infection by analyzing the microbial diversity and metabolomics in lower respiratory tract of bronchiectasis patients and to explore the therapeutic approaches for Pseudomonas aeruginosa infection. Methods Bronchoalveolar lavage fluid samples from bronchiectasis patients and controls were analyzed by 16S rRNA and ITS sequencing, and metabolomic analysis was performed by liquid chromatography/mass spectrometry. A co-culture model of air-liquid interface cultured human bronchial epithelial cell with Pseudomonas aeruginosa was constructed to verify the correlation between sphingosine metabolism, acid ceramidase expression, and Pseudomonas aeruginosa infection. Results After screening, 54 bronchiectasis patients and 12 healthy controls were included. Sphingosine levels in bronchoalveolar lavage fluid were positively correlated with lower respiratory tract microbial diversity and negatively correlated with the abundance of Pseudomonas spp. Moreover, sphingosine levels in bronchoalveolar lavage fluid and acid ceramidase expression levels in lung tissue specimens were significantly lower in bronchiectasis patients than in healthy controls. Sphingosine levels and acid ceramidase expression levels were also significantly lower in bronchiectasis patients with positive Pseudomonas aeruginosa cultures than in bronchiectasis patients without Pseudomonas aeruginosa infection. Acid ceramidase expression in air-liquid interface cultured human bronchial epithelial cell had significantly increased after 6 h of Pseudomonas aeruginosa infection, while it had decreased significantly after 24 h of infection. In vitro experiments showed that sphingosine had a bactericidal effect on Pseudomonas aeruginosa by directly disrupting its cell wall and cell membrane. Furthermore, adherence of Pseudomonas aeruginosa on bronchial epithelial cells was significantly reduced after sphingosine supplementation. Conclusion Down-regulation of acid ceramidase expression in airway epithelial cells of bronchiectasis patients leads to insufficient metabolism of sphingosine, which has a bactericidal effect, and consequently weakens the clearance of Pseudomonas aeruginosa; thus, a vicious circle is formed. Exogenous supplementation with sphingosine aids bronchial epithelial cells in resisting Pseudomonas aeruginosa infection.
Collapse
Affiliation(s)
- Qian Qi
- Department of Respiratory, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, Shandong Province, People’s Republic of China
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Jiawei Xu
- Department of Respiratory, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, Shandong Province, People’s Republic of China
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Yujiao Wang
- Department of Clinical Laboratory Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, People’s Republic of China
| | - Jian Zhang
- Department of Respiratory, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, Shandong Province, People’s Republic of China
| | - Mingxia Gao
- Department of Respiratory, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, Shandong Province, People’s Republic of China
| | - Yu Li
- Department of Respiratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Liang Dong
- Department of Respiratory, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, Shandong Province, People’s Republic of China
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, People’s Republic of China
- Correspondence: Liang Dong, Department of Respiratory, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, #16766, Jingshi Road, Jinan, Shandong Province, 250014, People’s Republic of China, Tel +86 13505401207, Email
| |
Collapse
|
19
|
Sphingosine as a New Antifungal Agent against Candida and Aspergillus spp. Int J Mol Sci 2022; 23:ijms232415510. [PMID: 36555152 PMCID: PMC9779773 DOI: 10.3390/ijms232415510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigated whether sphingosine is effective as prophylaxis against Aspergillus spp. and Candida spp. In vitro experiments showed that sphingosine is very efficacious against A. fumigatus and Nakeomyces glabrataa (formerly named C. glabrata). A mouse model of invasive aspergillosis showed that sphingosine exerts a prophylactic effect and that sphingosine-treated animals exhibit a strong survival advantage after infection. Furthermore, mechanistic studies showed that treatment with sphingosine leads to the early depolarization of the mitochondrial membrane potential (Δψm) and the generation of mitochondrial reactive oxygen species and to a release of cytochrome C within minutes, thereby presumably initiating apoptosis. Because of its very good tolerability and ease of application, inhaled sphingosine should be further developed as a possible prophylactic agent against pulmonary aspergillosis among severely immunocompromised patients.
Collapse
|
20
|
Chen Y, Peng M, Li W, Zhao M, Cao X, Li C, Zhang H, Yang M, Liang L, Yue Y, Xia T, Zhong R, Wang Y, Shu Z. Inhibition of inflammasome activation via sphingolipid pathway in acute lung injury by Huanglian Jiedu decoction: An integrative pharmacology approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154469. [PMID: 36202056 DOI: 10.1016/j.phymed.2022.154469] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/21/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious health issue which causes significant morbidity and mortality. Inflammation is an important factor in the pathogenesis of ALI. Even though ALI has been successfully managed using a traditiomal Chinese medicine (TCM), Huanglian Jiedu Decoction (HLD), its mechanism of action remains unknown. PURPOSE This study explored the therapeutic potential of HLD in lipopolysaccharide (LPS)-induced ALI rats by utilizing integrative pharmacology. METHODS Here, the therapeutic efficacy of HLD was evaluated using lung wet/dry weight ratio (W/D), myeloperoxide (MPO) activity, and levels of tumor necrosis factor (TNF-α), interleukin (IL)-1β and IL-6. Network pharmacology predictd the active components of HLD in ALI. Lung tissues were subjected to perform Hematoxylin-eosin (H&E) staining, metabolomics, and transcriptomics. The acid ceramidase (ASAH1) inhibitor, carmofur, was employedto suppress the sphingolipid signaling pathway. RESULTS HLD reduced pulmonary edema and vascular permeability, and suppressed the levels of TNF-α, IL-6, and IL-1β in lung tissue, Bronchoalveolar lavage fluid (BALF), and serum. Network pharmacology combined with transcriptomics and metabolomics showed that sphingolipid signaling was the main regulatory pathway for HLD to ameliorate ALI, as confirmed by immunohistochemical analysis. Then, we reverse verified that the sphingolipid signaling pathway was the main pathway involed in ALI. Finally, berberine, baicalein, obacunone, and geniposide were docked with acid ceramidase to further explore the mechanisms of interaction between the compound and protein. CONCLUSION HLD does have a better therapeutic effect on ALI, and its molecular mechanism is better elucidated from the whole, which is to balance lipid metabolism, energy metabolism and amino acid metabolism, and inhibit NLRP3 inflammasome activation by regulating the sphingolipid pathway. Therefore, HLD and its active components can be used to develop new therapies for ALI and provide a new model for exploring complex TCM systems for treating ALI.
Collapse
Affiliation(s)
- Ying Chen
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Peng
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Li
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Cao
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuanqiu Li
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Han Zhang
- School of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Mengru Yang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiming Yue
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianyi Xia
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Renxing Zhong
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zunpeng Shu
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
21
|
Hu Q, Liu B, Fan Y, Zheng Y, Wen F, Yu U, Wang W. Multi-omics association analysis reveals interactions between the oropharyngeal microbiome and the metabolome in pediatric patients with influenza A virus pneumonia. Front Cell Infect Microbiol 2022; 12:1011254. [PMID: 36389138 PMCID: PMC9651038 DOI: 10.3389/fcimb.2022.1011254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Children are at high risk for influenza A virus (IAV) infections, which can develop into severe illnesses. However, little is known about interactions between the microbiome and respiratory tract metabolites and their impact on the development of IAV pneumonia in children. Using a combination of liquid chromatography tandem mass spectrometry (LC-MS/MS) and 16S rRNA gene sequencing, we analyzed the composition and metabolic profile of the oropharyngeal microbiota in 49 pediatric patients with IAV pneumonia and 42 age-matched healthy children. The results indicate that compared to healthy children, children with IAV pneumonia exhibited significant changes in the oropharyngeal macrobiotic structure (p = 0.001), and significantly lower microbial abundance and diversity (p < 0.05). These changes came with significant disturbances in the levels of oropharyngeal metabolites. Intergroup differences were observed in 204 metabolites mapped to 36 metabolic pathways. Significantly higher levels of sphingolipid (sphinganine and phytosphingosine) and propanoate (propionic acid and succinic acid) metabolism were observed in patients with IAV pneumonia than in healthy controls. Using Spearman’s rank-correlation analysis, correlations between IAV pneumonia-associated discriminatory microbial genera and metabolites were evaluated. The results indicate significant correlations and consistency in variation trends between Streptococcus and three sphingolipid metabolites (phytosphingosine, sphinganine, and sphingosine). Besides these three sphingolipid metabolites, the sphinganine-to-sphingosine ratio and the joint analysis of the three metabolites indicated remarkable diagnostic efficacy in children with IAV pneumonia. This study confirmed significant changes in the characteristics and metabolic profile of the oropharyngeal microbiome in pediatric patients with IAV pneumonia, with high synergy between the two factors. Oropharyngeal sphingolipid metabolites may serve as potential diagnostic biomarkers of IAV pneumonia in children.
Collapse
Affiliation(s)
- Qian Hu
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Baiming Liu
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yanqun Fan
- Department of Trans-omics Research, Biotree Metabolomics Technology Research Center, Shanghai, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Uet Yu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Wenjian Wang, ; Uet Yu,
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Wenjian Wang, ; Uet Yu,
| |
Collapse
|
22
|
Tang J, Suo L, Li F, Yang C, Bian K, Wang Y. ITRAQ-based quantitative proteomics analysis of forest musk deer with pneumonia. Front Vet Sci 2022; 9:1012276. [DOI: 10.3389/fvets.2022.1012276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pneumonia can seriously threaten the life of forest musk deer (FMD, an endangered species). To gain a comprehensive understanding of pneumonia pathogenesis in FMD, iTRAQ-based proteomics analysis was performed in diseased (Pne group) lung tissues of FMD that died of pneumonia and normal lung tissues (Ctrl group) of FMD that died from fighting against each other. Results showed that 355 proteins were differentially expressed (fold change ≥ 1.2 and adjusted P-value < 0.05) in Pne vs. Ctrl. GO/KEGG annotation and enrichment analyses showed that dysregulated proteins might play vital roles in bacterial infection and immunity. Given the close association between bacterial infection and pneumonia, 32 dysregulated proteins related to Staphylococcus aureus infection, bacterial invasion of epithelial cells, and pathogenic Escherichia coli infection were screened out. Among these 32 proteins, 13 proteins were mapped to the bovine genome. Given the close phylogenetic relationships of FMD and bovine, the protein-protein interaction networks of the above-mentioned 13 proteins were constructed by the String database. Based on the node degree analysis, 5 potential key proteins related to pneumonia-related bacterial infection in FMD were filtered out. Moreover, 85 dysregulated proteins related to the immune system process were identified given the tight connection between immune dysregulation and pneumonia pathogenesis. Additionally, 12 proteins that might function as crucial players in pneumonia-related immune response in FMD were screened out using the same experimental strategies described above. In conclusion, some vital proteins, biological processes, and pathways in pneumonia development were identified in FMD.
Collapse
|
23
|
Carstens H, Kalka K, Verhaegh R, Schumacher F, Soddemann M, Wilker B, Keitsch S, Sehl C, Kleuser B, Hübler M, Rauen U, Becker AK, Koch A, Gulbins E, Kamler M. Antimicrobial effects of inhaled sphingosine against Pseudomonas aeruginosa in isolated ventilated and perfused pig lungs. PLoS One 2022; 17:e0271620. [PMID: 35862397 PMCID: PMC9302828 DOI: 10.1371/journal.pone.0271620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Ex-vivo lung perfusion (EVLP) is a save way to verify performance of donor lungs prior to implantation. A major problem of lung transplantation is a donor-to-recipient-transmission of bacterial cultures. Thus, a broadspectrum anti-infective treatment with sphingosine in EVLP might be a novel way to prevent such infections. Sphingosine inhalation might provide a reliable anti-infective treatment option in EVLP. Here, antimicrobial potency of inhalative sphingosine in an infection EVLP model was tested.
Methods
A 3-hour EVLP run using pig lungs was performed. Bacterial infection was initiated 1-hour before sphingosine inhalation. Biopsies were obtained 60 and 120 min after infection with Pseudomonas aeruginosa. Aliquots of broncho-alveolar lavage (BAL) before and after inhalation of sphingosine were plated and counted, tissue samples were fixed in paraformaldehyde, embedded in paraffin and sectioned. Immunostainings were performed.
Results
Sphingosine inhalation in the setting of EVLP rapidly resulted in a 6-fold decrease of P. aeruginosa CFU in the lung (p = 0.016). We did not observe any negative side effects of sphingosine.
Conclusion
Inhalation of sphingosine induced a significant decrease of Pseudomonas aeruginosa at the epithelial layer of tracheal and bronchial cells. The inhalation has no local side effects in ex-vivo perfused and ventilated pig lungs.
Collapse
Affiliation(s)
- Henning Carstens
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Cardiac Surgery for Congenital Heart Disease, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Katharina Kalka
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rabea Verhaegh
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Matthias Soddemann
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Carolin Sehl
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Michael Hübler
- Cardiac Surgery for Congenital Heart Disease, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ursula Rauen
- Institute of Biochemistry, University of Duisburg-Essen, Essen, Germany
| | - Anne Katrin Becker
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Achim Koch
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
- Department of Surgery, University of Cincinnati, Medical School, Cincinnati, OH, United States of America
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Zhuo C, Zhao F, Tian H, Chen J, Li Q, Yang L, Ping J, Li R, Wang L, Xu Y, Cai Z, Song X. Acid sphingomyelinase/ceramide system in schizophrenia: implications for therapeutic intervention as a potential novel target. Transl Psychiatry 2022; 12:260. [PMID: 35739089 PMCID: PMC9226132 DOI: 10.1038/s41398-022-01999-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a severe mental illness, as the efficacies of current antipsychotic medications are far from satisfactory. An improved understanding of the signaling molecules involved in schizophrenia may provide novel therapeutic targets. Acid sphingomyelinase (ASM) catalyzes cellular membrane sphingomyelin into ceramide, which is further metabolized into sphingosine-1-phophate (S1P). ASM, ceramide, and S1P at the cell surface exert critical roles in the regulation of biophysical processes that include proliferation, apoptosis, and inflammation, and are thereby considered important signaling molecules. Although research on the ASM/ceramide system is still in its infancy, structural and metabolic abnormalities have been demonstrated in schizophrenia. ASM/ceramide system dysfunction is linked to the two important models of schizophrenia, the dopamine (DA) hypothesis through affecting presynaptic DA signaling, and the vulnerability-stress-inflammation model that includes the contribution of stress on the basis of genetic predisposition. In this review, we highlight the current knowledge of ASM/ceramide system dysfunction in schizophrenia gained from human and animal studies, and formulate future directions from the biological landscape for the development of new treatments. Collectively, these discoveries suggest that aberrations in the ASM/ceramide system, especially in ASM activity and levels of ceramide and S1P, may alter cerebral microdomain structure and neuronal metabolism, leading to neurotransmitter (e.g., DA) dysfunction and neuroinflammation. As such, the ASM/ceramide system may offer therapeutic targets for novel medical interventions. Normalization of the aberrant ASM/ceramide system or ceramide reduction by using approved functional inhibitors of ASM, such as fluvoxamine and rosuvastatin, may improve clinical outcomes of patients with schizophrenia. These transformative findings of the ASM/ceramide system in schizophrenia, although intriguing and exciting, may pose scientific questions and challenges that will require further studies for their resolution.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing Brain Circuit, Tianjin Medical Affiliated Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Hospital, 300140, Tianjin, China. .,The key Laboratory of Psychiatric-Neuroimaging-Genetics and Comorbidity (PNGC_Lab) of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, 300222, Tianjin, China. .,Brain Micro-imaging Center of Psychiatric Animal Model, Wenzhou Seventh Peoples Hospital, 325000, Wenzhou, China. .,Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222, Tianjin, China. .,Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000, Wenzhou, China. .,Department of Psychiatry, The First Hospital of Shanxi Medical University, 03000, Taiyuan, China. .,Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Feifei Zhao
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Hongjun Tian
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Jiayue Chen
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Qianchen Li
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Lei Yang
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Jing Ping
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Ranli Li
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Lina Wang
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Yong Xu
- grid.452461.00000 0004 1762 8478Department of Psychiatry, The First Hospital of Shanxi Medical University, 03000 Taiyuan, China
| | - Ziyao Cai
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Xueqin Song
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
25
|
Simonin JL, Luscher A, Losa D, Badaoui M, van Delden C, Köhler T, Chanson M. Surface Hydration Protects Cystic Fibrosis Airways from Infection by Restoring Junctional Networks. Cells 2022; 11:cells11091587. [PMID: 35563895 PMCID: PMC9105190 DOI: 10.3390/cells11091587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Defective hydration of airway surface mucosa is associated with recurrent lung infection in cystic fibrosis (CF), a disease caused by CF transmembrane conductance regulator (CFTR) gene mutations. Whether the composition and/or presence of an airway surface liquid (ASL) is sufficient to prevent infection remains unclear. The susceptibility to infection of polarized wild type and CFTR knockdown (CFTR-KD) airway epithelial cells was determined in the presence or absence of a healthy ASL or physiological saline. CFTR-KD epithelia exhibited strong ASL volume reduction, enhanced susceptibility to infection, and reduced junctional integrity. Interestingly, the presence of an apical physiological saline alleviated disruption of the airway epithelial barrier by stimulating essential junctional protein expression. Thus, rehydrated CFTR-KD cells were protected from infection despite normally intense bacterial growth. This study indicates that an epithelial integrity gatekeeper is modulated by the presence of an apical liquid volume, irrespective of the liquid's composition and of expression of a functional CFTR.
Collapse
Affiliation(s)
- Juliette L. Simonin
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (J.L.S.); (D.L.); (M.B.)
| | - Alexandre Luscher
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.v.D.); (T.K.)
| | - Davide Losa
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (J.L.S.); (D.L.); (M.B.)
| | - Mehdi Badaoui
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (J.L.S.); (D.L.); (M.B.)
| | - Christian van Delden
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.v.D.); (T.K.)
- Department of Medicine Specialties, Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.v.D.); (T.K.)
| | - Marc Chanson
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (J.L.S.); (D.L.); (M.B.)
- Correspondence: ; Tel./Fax: +41-22-37-95-206
| |
Collapse
|
26
|
Neutral ceramidase-dependent regulation of macrophage metabolism directs intestinal immune homeostasis and controls enteric infection. Cell Rep 2022; 38:110560. [PMID: 35354041 DOI: 10.1016/j.celrep.2022.110560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
It is not clear how the complex interactions between diet and intestinal immune cells protect the gut from infection. Neutral ceramidase (NcDase) plays a critical role in digesting dietary sphingolipids. We find that NcDase is an essential factor that controls intestinal immune cell dynamics. Mice lacking NcDase have reduced cluster of differentiation (CD) 8αβ+ T cells and interferon (IFN)-γ+ T cells and increased macrophages in the intestine and fail to clear bacteria after Citrobacter rodentium infection. Mechanistically, cellular NcDase or extracellular vesicle (EV)-related NcDase generates sphingosine, which promotes macrophage-driven Th1 immunity. Loss of NcDase influences sphingosine-controlled glycolytic metabolism in macrophages, which regulates the bactericidal activity of macrophages. Importantly, administration of dietary sphingomyelin and genetic deletion or pharmacological inhibition of SphK1 can protect against C. rodentium infection. Our findings demonstrate that sphingosine profoundly alters macrophage glycolytic metabolism, leading to intestinal macrophage activation and T cell polarization, which prevent pathogen colonization of the gut.
Collapse
|
27
|
Acid Sphingomyelinase Is a Modulator of Contextual Fear. Int J Mol Sci 2022; 23:ijms23063398. [PMID: 35328819 PMCID: PMC8954852 DOI: 10.3390/ijms23063398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Acid sphingomyelinase (ASM) regulates a variety of physiological processes and plays an important role in emotional behavior. The role of ASM in fear-related behavior has not been investigated so far. Using transgenic mice overexpressing ASM (ASMtg) and ASM deficient mice, we studied whether ASM regulates fear learning and expression of cued and contextual fear in a classical fear conditioning paradigm, a model used to investigate specific attributes of post-traumatic stress disorder (PTSD). We show that ASM does not affect fear learning as both ASMtg and ASM deficient mice display unaltered fear conditioning when compared to wild-type littermates. However, ASM regulates the expression of contextual fear in a sex-specific manner. While ASM overexpression enhances the expression of contextual fear in both male and female mice, ASM deficiency reduces the expression of contextual fear specifically in male mice. The expression of cued fear, however, is not regulated by ASM as ASMtg and ASM deficient mice display similar tone-elicited freezing levels. This study shows that ASM modulates the expression of contextual fear but not of cued fear in a sex-specific manner and adds a novel piece of information regarding the involvement of ASM in hippocampal-dependent aversive memory.
Collapse
|
28
|
Koch A, Pizanis N, Bessa V, Herbstreit F, Gulbins E, Aigner C, Kamler M. Lung Transplantation for Adult Respiratory Distress Syndrome after SARS-CoV-2 Infection. Thorac Cardiovasc Surg Rep 2022; 11:e23-e26. [PMID: 35251890 PMCID: PMC8890928 DOI: 10.1055/s-0042-1742714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 11/02/2022] Open
Abstract
Background The majority of patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection present mild symptoms. However, some patients develop severe acute respiratory distress syndrome (ARDS) and subsequent irreversible lung damage despite extracorporeal membrane oxygenation, leaving lung transplantation the ultimate therapeutically option. Case Description Here, we report a case of lung transplantation in a 31-year-old male recipient suffering from post-coronavirus disease 2019 respiratory failure with irreversible ARDS after prolonged extracorporeal membrane oxygenation therapy. Conclusion Patient selection criteria are elucidated. One relevant mechanism for susceptibility to SARS-CoV-2 in the respiratory system, the acid sphingomyelinase/ceramide system might be altered during infection with SARS-CoV-2.
Collapse
Affiliation(s)
- Achim Koch
- Department of Thoracic and Cardiovascular Surgery, University of Duisburg-Essen Faculty of Medicine, Essen, Northrhine-Westfalia, Germany
| | - Nikolaus Pizanis
- Department of Thoracic and Cardiovascular Surgery, University of Duisburg-Essen Faculty of Medicine, Essen, Northrhine-Westfalia, Germany
| | - Vasiliki Bessa
- Department of Pulmonology, University of Duisburg-Essen Faculty of Medicine, Essen, Northrhine-Westfalia, Germany
| | - Frank Herbstreit
- Department of Anesthesiology, University of Duisburg-Essen Faculty of Medicine, Essen, Northrhine-Westfalia, Germany
| | - Erich Gulbins
- Institute for Molecular Biology, University of Duisburg-Essen Faculty of Medicine, Essen, Northrhine-Westfalia, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, Universitat Duisburg-Essen Medizinische Fakultat, Essen, Germany
| | - Markus Kamler
- Thorax und Kardiovaskuläre Chirurgie, Universitätsklinikum Essen, Essen, Germany.,Herzchirurgie, Herzzentrum Essen, Essen, Germany
| |
Collapse
|
29
|
Pankonien I, Quaresma MC, Rodrigues CS, Amaral MD. CFTR, Cell Junctions and the Cytoskeleton. Int J Mol Sci 2022; 23:ijms23052688. [PMID: 35269829 PMCID: PMC8910340 DOI: 10.3390/ijms23052688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
The multi-organ disease cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, a cAMP regulated chloride (Cl−) and bicarbonate (HCO3−) ion channel expressed at the apical plasma membrane (PM) of epithelial cells. Reduced CFTR protein results in decreased Cl− secretion and excessive sodium reabsorption in epithelial cells, which consequently leads to epithelial dehydration and the accumulation of thick mucus within the affected organs, such as the lungs, pancreas, gastrointestinal (GI) tract, reproductive system and sweat glands. However, CFTR has been implicated in other functions besides transporting ions across epithelia. The rising number of references concerning its association to actin cytoskeleton organization, epithelial cell junctions and extracellular matrix (ECM) proteins suggests a role in the formation and maintenance of epithelial apical basolateral polarity. This review will focus on recent literature (the last 10 years) substantiating the role of CFTR in cell junction formation and actin cytoskeleton organization with its connection to the ECM.
Collapse
|
30
|
The acid sphingomyelinase/ceramide system in COVID-19. Mol Psychiatry 2022; 27:307-314. [PMID: 34608263 PMCID: PMC8488928 DOI: 10.1038/s41380-021-01309-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Acid sphingomyelinase (ASM) cleaves sphingomyelin into the highly lipophilic ceramide, which forms large gel-like rafts/platforms in the plasma membrane. We showed that SARS-CoV-2 uses these platforms for cell entry. Lowering the amount of ceramide or ceramide blockade due to inhibitors of ASM, genetic downregulation of ASM, anti-ceramide antibodies or degradation by neutral ceramidase protected against infection with SARS-CoV-2. The addition of ceramide restored infection with SARS-CoV-2. Many clinically approved medications functionally inhibit ASM and are called FIASMAs (functional inhibitors of acid sphingomyelinase). The FIASMA fluvoxamine showed beneficial effects on COVID-19 in a randomized prospective study and a prospective open-label real-world study. Retrospective and observational studies showed favorable effects of FIASMA antidepressants including fluoxetine, and the FIASMA hydroxyzine on the course of COVID-19. The ASM/ceramide system provides a framework for a better understanding of the infection of cells by SARS-CoV-2 and the clinical, antiviral, and anti-inflammatory effects of functional inhibitors of ASM. This framework also supports the development of new drugs or the repurposing of "old" drugs against COVID-19.
Collapse
|
31
|
Canals D, Clarke CJ. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy. Pharmacol Ther 2021; 232:108005. [PMID: 34582834 DOI: 10.1016/j.pharmthera.2021.108005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SLs) are a family of bioactive lipids implicated in a variety of cellular processes, and whose levels are controlled by an interlinked network of enzymes. While the spatial distribution of SL metabolism throughout the cell has been understood for some time, the implications of this for SL signaling and biological outcomes have only recently begun to be fully explored. In this review, we outline the compartmentalization of SL metabolism and describe advances in tools for investigating and probing compartment-specific SL functions. We also briefly discuss the implications of SL compartmentalization for cell signaling and therapeutic approaches to targeting the SL network.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
32
|
Carstens H, Kalka K, Verhaegh R, Schumacher F, Soddemann M, Wilker B, Keitsch S, Sehl C, Kleuser B, Wahlers T, Reiner G, Koch A, Rauen U, Gulbins E, Kamler M. Inhaled sphingosine has no adverse side effects in isolated ventilated and perfused pig lungs. Sci Rep 2021; 11:18607. [PMID: 34545108 PMCID: PMC8452622 DOI: 10.1038/s41598-021-97708-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
Ex-vivo lung perfusion (EVLP) systems like XVIVO are more and more common in the setting of lung transplantation, since marginal donor-lungs can easily be subjected to a performance test or be treated with corticosteroids or antibiotics in high dose regimes. Donor lungs are frequently positive in bronchoalveolar lavage (BAL) bacterial cultures (46-89%) which leads to a donor-to-recipient transmission and after a higher risk of lung infection with reduced posttransplant outcome. We have previously shown that sphingosine very efficiently kills a variety of pathogens, including Pseudomonas aeruginosa, Staphylococcus aureus and epidermidis, Escherichia coli or Haemophilus influenzae. Thus, sphingosine could be a new treatment option with broadspectrum antiinfective potential, which may improve outcome after lung transplantation when administered prior to lung re-implantation. Here, we tested whether sphingosine has any adverse effects in the respiratory tract when applied into isolated ventilated and perfused lungs. A 4-h EVLP run using minipig lungs was performed. Functional parameters as well as perfusate measurements where obtained. Biopsies were obtained 30 min and 150 min after inhalation of sphingosine. Tissue samples were fixed in paraformaldehyde, embedded in paraffin and sectioned. Hemalaun, TUNEL as well as stainings with Cy3-coupled anti-sphingosine or anti-ceramide antibodies were implemented. We demonstrate that tube-inhalation of sphingosine into ex-vivo perfused and ventilated minipig lungs results in increased levels of sphingosine in the luminal membrane of bronchi and the trachea without morphological side effects up to very high doses of sphingosine. Sphingosine also did not affect functional lung performance. In summary, the inhalation of sphingosine results in an increase of sphingosine concentrations in the luminal plasma membrane of tracheal and bronchial epithelial cells. The inhalation has no local side effects in ex-vivo perfused and ventilated minipig lungs.
Collapse
Affiliation(s)
- Henning Carstens
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany. .,Cardiac Surgery for Congenital Heart Disease, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany.
| | - Katharina Kalka
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Rabea Verhaegh
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Fabian Schumacher
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.,Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Matthias Soddemann
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Wilker
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Simone Keitsch
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Carolin Sehl
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.,Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Kerpener Strasse 61, 50924, Cologne, Germany
| | - Gerald Reiner
- Department of Veterinary Clinical Sciences, Swine Clinic, Justus-Liebig-University, Giessen, Germany
| | - Achim Koch
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Ursula Rauen
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Surgery, University of Cincinnati, Medical School, 231 Albert Sabin Way, ML0558, Cincinnati, OH, 45267, USA
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| |
Collapse
|
33
|
Peterson RJ, Koval M. Above the Matrix: Functional Roles for Apically Localized Integrins. Front Cell Dev Biol 2021; 9:699407. [PMID: 34485286 PMCID: PMC8414885 DOI: 10.3389/fcell.2021.699407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Integrins are transmembrane proteins that are most typically thought of as integrating adhesion to the extracellular matrix with intracellular signaling and cell regulation. Traditionally, integrins are found at basolateral and lateral cell surfaces where they facilitate binding to the ECM and intercellular adhesion through cytosolic binding partners that regulate organization of actin microfilaments. However, evidence is accumulating that integrins also are apically localized, either endogenously or due to an exogenous stimulus. Apically localized integrins have been shown to regulate several processes by interacting with proteins such as connexins, tight junction proteins, and polarity complex proteins. Integrins can also act as receptors to mediate endocytosis. Here we review these newly appreciated roles for integrins localized to the apical cell surface.
Collapse
Affiliation(s)
- Raven J Peterson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
34
|
Li ZT, Yau LF, Qiu Y, Li SQ, Zhan YQ, Chan WH, Chen ZM, Li Z, Li Y, Lin Y, Cheng J, Zhang JQ, Jiang ZH, Wang JR, Ye F. Serum Sphingolipids Aiding the Diagnosis of Adult HIV-Negative Patients with Talaromyces marneffei Infection. Front Cell Infect Microbiol 2021; 11:701913. [PMID: 34262882 PMCID: PMC8274425 DOI: 10.3389/fcimb.2021.701913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing attention has been directed to Talaromyces marneffei (T. marneffei) infection in HIV-negative patients due to its high mortality rate. However, nonspecific symptoms and biological characteristics similar to those of other common pathogenic fungi complicate the rapid and accurate diagnosis of T. marneffei infection. Sphingolipids (SPLs) are bioactive lipids involved in the regulation of various physiological and pathological processes and have been identified as serum biomarkers for several diseases. This study employed a sphingolipidomic approach established in our previous work to explore the use of serum SPLs in the diagnosis of HIV-negative patients with T. marneffei infection. Additional clinical cohorts of patients infected with other microorganisms were also recruited. We found that sphinganine (Sa) (d16:0) exhibited obvious depletion after infection; moreover, its level in patients with T. marneffei infection was significantly lower than that in patients infected with other microorganisms. Therefore, Sa (d16:0) was considered a specific diagnostic biomarker for T. marneffei infection, and 302.71 nM was selected as the optimal cutoff value with a diagnostic sensitivity of 87.5% and specificity of 100%. These results suggested that determination of serum Sa (d16:0) levels can be used as a new alternative tool for the rapid diagnosis of T. marneffei infection in HIV-negative patients.
Collapse
Affiliation(s)
- Zheng-Tu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Lee-Fong Yau
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Ye Qiu
- Department of Comprehensive Internal Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Shao-Qiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Yang-Qing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Wai-Him Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Zhao-Ming Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Zhun Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Yongming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Ye Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Jing Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Jian-Quan Zhang
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| |
Collapse
|
35
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
36
|
Yang Y, Ge S, Song Z, Zhao A, Zhao L, Hu Z, Cai D, Zhang Z, Peng L, Lu D, Luo P, Zhang W, Sun H, Zou Q, Zeng H. A novel self-assembled epitope peptide nanoemulsion vaccine targeting nasal mucosal epithelial cell for reinvigorating CD8 + T cell immune activity and inhibiting tumor progression. Int J Biol Macromol 2021; 183:1891-1902. [PMID: 34052270 DOI: 10.1016/j.ijbiomac.2021.05.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Epitope peptides are not suitable for nasal administration immunity due to their poor immunogenicity and low delivery efficiency. Here, we reported an intranasal self-assembled nanovaccine (I-OVA NE), which was loaded with the peptides IKVAV-OVA257-264 (I-OVA), a laminin peptide (Ile-Lys-Val-ala-Val, IKVAV) and OVA257-264 epitope conjugated peptide. This nanovaccine with I-OVA at a concentration of 4 mg/mL showed the average particle size of 30.37 ± 2.49 nm, zeta potential of -16.67 ± 1.76 mV, and encapsulation rate of 84.07 ± 7.59%. Moreover, the mucin did not alter its stability (size, PdI and zeta potential). And it also had no obvious acute pathological changes neither in the nasal mucosa nor lung tissues after nasal administration. Meanwhile, the antigen uptake of I-OVA NE was promoted, and the nasal residence time was also prolonged in vivo. Besides, the uptake rate of this nanovaccine was obviously higher than that of free I-OVA (P < 0.001) after blocking by the integrin antibody, suggesting that the binding of IKVAV to integrin is involved in the epitope peptide uptake. Importantly, this nanovaccine enhanced peptide-specific CD8+T cells exhibiting OVA257-264-specific CTL activity and Th1 immune response, leading to the induction of the protective immunity in E.G7-OVA tumor-bearing mice. Overall, these data indicate that I-OVA NE can be an applicable strategy of tumor vaccine development.
Collapse
Affiliation(s)
- Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Shuang Ge
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Anni Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Liqun Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Zhiming Hu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Dingyi Cai
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Zelong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Liusheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Hongwu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
37
|
Rohrhofer J, Zwirzitz B, Selberherr E, Untersmayr E. The Impact of Dietary Sphingolipids on Intestinal Microbiota and Gastrointestinal Immune Homeostasis. Front Immunol 2021; 12:635704. [PMID: 34054805 PMCID: PMC8160510 DOI: 10.3389/fimmu.2021.635704] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The large surfaces of gastrointestinal (GI) organs are well adapted to their diverse tasks of selective nutritional uptake and defense against the external environment. To maintain a functional balance, a vast number of immune cells is located within the mucosa. A strictly regulated immune response is required to impede constant inflammation and to maintain barrier function. An increasing prevalence of GI diseases has been reported in Western societies over the past decades. This surge in GI disorders has been linked to dietary changes followed by an imbalance of the gut microbiome, leading to a chronic, low grade inflammation of the gut epithelium. To counteract the increasing health care costs associated with diseases, it is paramount to understand the mechanisms driving immuno-nutrition, the associations between nutritional compounds, the commensal gut microbiota, and the host immune response. Dietary compounds such as lipids, play a central role in GI barrier function. Bioactive sphingolipids (SLs), e.g. sphingomyelin (SM), sphingosine (Sph), ceramide (Cer), sphingosine-1- phosphate (S1P) and ceramide-1-phosphate (C1P) may derive from dietary SLs ingested through the diet. They are not only integral components of cell membranes, they additionally modulate cell trafficking and are precursors for mediators and second messenger molecules. By regulating intracellular calcium levels, cell motility, cell proliferation and apoptosis, SL metabolites have been described to influence GI immune homeostasis positively and detrimentally. Furthermore, dietary SLs are suggested to induce a shift in the gut microbiota. Modes of action range from competing with the commensal bacteria for intestinal cell attachment to prevention from pathogen invasion by regulating innate and immediate defense mechanisms. SL metabolites can also be produced by gut microorganisms, directly impacting host metabolic pathways. This review aims to summarize recent findings on SL signaling and functional variations of dietary SLs. We highlight novel insights in SL homeostasis and SL impact on GI barrier function, which is directly linked to changes of the intestinal microbiota. Knowledge gaps in current literature will be discussed to address questions relevant for understanding the pivotal role of dietary SLs on chronic, low grade inflammation and to define a balanced and healthy diet for disease prevention and treatment.
Collapse
Affiliation(s)
- Johanna Rohrhofer
- Gastrointestinal Immunology Group, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Zwirzitz
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Eva Untersmayr
- Gastrointestinal Immunology Group, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Wu Y, Liu Y, Gulbins E, Grassmé H. The Anti-Infectious Role of Sphingosine in Microbial Diseases. Cells 2021; 10:cells10051105. [PMID: 34064516 PMCID: PMC8147940 DOI: 10.3390/cells10051105] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Sphingolipids are important structural membrane components and, together with cholesterol, are often organized in lipid rafts, where they act as signaling molecules in many cellular functions. They play crucial roles in regulating pathobiological processes, such as cancer, inflammation, and infectious diseases. The bioactive metabolites ceramide, sphingosine-1-phosphate, and sphingosine have been shown to be involved in the pathogenesis of several microbes. In contrast to ceramide, which often promotes bacterial and viral infections (for instance, by mediating adhesion and internalization), sphingosine, which is released from ceramide by the activity of ceramidases, kills many bacterial, viral, and fungal pathogens. In particular, sphingosine is an important natural component of the defense against bacterial pathogens in the respiratory tract. Pathologically reduced sphingosine levels in cystic fibrosis airway epithelial cells are normalized by inhalation of sphingosine, and coating plastic implants with sphingosine prevents bacterial infections. Pretreatment of cells with exogenous sphingosine also prevents the viral spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from interacting with host cell receptors and inhibits the propagation of herpes simplex virus type 1 (HSV-1) in macrophages. Recent examinations reveal that the bactericidal effect of sphingosine might be due to bacterial membrane permeabilization and the subsequent death of the bacteria.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; (Y.W.); (Y.L.); (E.G.)
| | - Yongjie Liu
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; (Y.W.); (Y.L.); (E.G.)
- Department of Thoracic Transplantation, Thoracic and Cardiovascular Surgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; (Y.W.); (Y.L.); (E.G.)
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; (Y.W.); (Y.L.); (E.G.)
- Correspondence: ; Tel.: +49-201-723-2133
| |
Collapse
|
39
|
Badaoui M, Zoso A, Idris T, Bacchetta M, Simonin J, Lemeille S, Wehrle-Haller B, Chanson M. Vav3 Mediates Pseudomonas aeruginosa Adhesion to the Cystic Fibrosis Airway Epithelium. Cell Rep 2021; 32:107842. [PMID: 32640241 DOI: 10.1016/j.celrep.2020.107842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/13/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) represents the leading cause of airway infection in cystic fibrosis (CF). Early airways colonization can be explained by enhanced adhesion of Pa to the respiratory epithelium. RNA sequencing (RNA-seq) on fully differentiated primary cultures of airway epithelial cells from CF and non-CF donors predict that VAV3, β1 INTEGRIN, and FIBRONECTIN genes are significantly enriched in CF. Indeed, Vav3 is apically overexpressed in CF, associates with active β1 integrin luminally exposed, and increases fibronectin deposition. These luminal microdomains, rich in fibronectin and β1 integrin and regulated by Vav3, mediate the increased Pa adhesion to the CF epithelium. Interestingly, Vav3 inhibition normalizes the CF-dependent fibronectin and β1-integrin ectopic expression, improves the CF epithelial integrity, and prevents the enhanced Pa trapping to the CF epithelium. Through its capacity to promote a luminal complex with active β1 integrin and fibronectin that favors bacteria trapping, Vav3 may represent a new target in CF.
Collapse
Affiliation(s)
- Mehdi Badaoui
- Faculty of Medicine, Department of Pediatrics, Gynecology & Obstetrics, University of Geneva, Geneva 1211, Switzerland; Faculty of Medicine, Department of Cell Physiology & Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Alice Zoso
- Faculty of Medicine, Department of Pediatrics, Gynecology & Obstetrics, University of Geneva, Geneva 1211, Switzerland; Faculty of Medicine, Department of Cell Physiology & Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Tahir Idris
- Faculty of Medicine, Department of Pediatrics, Gynecology & Obstetrics, University of Geneva, Geneva 1211, Switzerland; Faculty of Medicine, Department of Cell Physiology & Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Marc Bacchetta
- Faculty of Medicine, Department of Pediatrics, Gynecology & Obstetrics, University of Geneva, Geneva 1211, Switzerland; Faculty of Medicine, Department of Cell Physiology & Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Juliette Simonin
- Faculty of Medicine, Department of Pediatrics, Gynecology & Obstetrics, University of Geneva, Geneva 1211, Switzerland; Faculty of Medicine, Department of Cell Physiology & Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Sylvain Lemeille
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva 1211, Switzerland
| | - Bernhard Wehrle-Haller
- Faculty of Medicine, Department of Cell Physiology & Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Marc Chanson
- Faculty of Medicine, Department of Pediatrics, Gynecology & Obstetrics, University of Geneva, Geneva 1211, Switzerland; Faculty of Medicine, Department of Cell Physiology & Metabolism, University of Geneva, Geneva 1211, Switzerland.
| |
Collapse
|
40
|
Carpinteiro A, Gripp B, Hoffmann M, Pöhlmann S, Hoertel N, Edwards MJ, Kamler M, Kornhuber J, Becker KA, Gulbins E. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. J Biol Chem 2021; 296:100701. [PMID: 33895135 PMCID: PMC8062550 DOI: 10.1016/j.jbc.2021.100701] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
The acid sphingomyelinase/ceramide system has been shown to be important for cellular infection with at least some viruses, for instance, rhinovirus or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Functional inhibition of the acid sphingomyelinase using tricyclic antidepressants prevented infection of epithelial cells, for instance with SARS-CoV-2. The structure of ambroxol, that is, trans-4-[(2,4-dibromanilin-6-yl)-methyamino]-cyclohexanol, a mucolytic drug applied by inhalation, suggests that the drug might inhibit the acid sphingomyelinase and thereby infection with SARS-CoV-2. To test this, we used vesicular stomatitis virus pseudoviral particles presenting SARS-CoV-2 spike protein on their surface (pp-VSV-SARS-CoV-2 spike), a bona fide system for mimicking SARS-CoV-2 entry into cells. Viral uptake and formation of ceramide localization were determined by fluorescence microscopy, activity of the acid sphingomyelinase by consumption of [14C]sphingomyelin and ceramide was quantified by a kinase method. We found that entry of pp-VSV-SARS-CoV-2 spike required activation of acid sphingomyelinase and release of ceramide, events that were all prevented by pretreatment with ambroxol. We also obtained nasal epithelial cells from human volunteers prior to and after inhalation of ambroxol. Inhalation of ambroxol reduced acid sphingomyelinase activity in nasal epithelial cells and prevented pp-VSV-SARS-CoV-2 spike-induced acid sphingomyelinase activation, ceramide release, and entry of pp-VSV-SARS-CoV-2 spike ex vivo. The addition of purified acid sphingomyelinase or C16 ceramide restored entry of pp-VSV-SARS-CoV-2 spike into ambroxol-treated epithelial cells. We propose that ambroxol might be suitable for clinical studies to prevent coronavirus disease 2019.
Collapse
Affiliation(s)
- Alexander Carpinteiro
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany; Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Barbara Gripp
- Zentrum für Seelische Gesundheit des Kindes- und Jugendalters, Sana-Klinikum Remscheid GmbH, Remscheid, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Nicolas Hoertel
- AP-HP.Centre-Université de Paris, Hôpital Corentin-Celton, Département de Psychiatrie, Issy-les-Moulineaux, and Université de Paris, INSERM, Institut de Psychiatrie et Neurosciences de Paris, UMR_S1266, and Faculté de Santé, UFR de Médecine, Paris, France
| | - Michael J Edwards
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, Ohio, USA
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, Division of Thoracic Transplantation, University Hospital Essen, Essen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany; Department of Surgery, Medical School, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
41
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
42
|
Zhang K, Wu L, Lin K, Zhang M, Li W, Tong X, Zheng J. Integrin-dependent microgliosis mediates ketamine-induced neuronal apoptosis during postnatal rat retinal development. Exp Neurol 2021; 340:113659. [PMID: 33640375 DOI: 10.1016/j.expneurol.2021.113659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Remodeling of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a pivotal role for microglia in developing retina. We tested whether integrin-dependent microgliosis mediates ketamine-induced neuronal apoptosis in the developing rat retina. METHODS We performed immunofluorescence assays to investigate the role of integrin receptors expressed in the microglia in ketamine-induced neuronal apoptosis. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to investigate the protein and mRNA levels of cytokines (TNF-α, IL-1β) and/or chemokines (CCL2, CXCL6, CXCL10, and CXCL12). Experiments were performed using whole-mount retinas dissected from P7 Sprague-Dawley rats. RESULTS Integrin receptors expressed in microglia were upregulated in ketamine-induced neuronal apoptosis in the early developing rat retina. Downregulating integrin receptors with RGD peptide ameliorated ketamine-induced microgliosis through: 1) ameliorating the change in microglia morphology from immature ramified microglia to an amoeboid state; 2) decreasing the number of microglia and intensity of activated microglia in the retinal ganglion cell layer (GCL); and 3) decreasing cytokine (TNF-α and IL-1β) and chemokine (CCL2, CXCL10) levels in the retinal tissue. Inhibition of activated microglia with minocycline or the blockade of cytokines (TNF-α and IL-1β) with a receptor antagonist (RA) attenuated neuronal apoptosis after exposure to ketamine. CONCLUSIONS The upregulation of integrin β1 receptors in the microglia acts as a signaling molecule, triggering microgliosis to aggravate ketamine-induced neuronal apoptosis via the release of TNF-α and IL-1β in the early developing rat retina.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lei Wu
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Kana Lin
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Mazhong Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Weiguang Li
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
43
|
Acid Ceramidase Rescues Cystic Fibrosis Mice from Pulmonary Infections. Infect Immun 2021; 89:IAI.00677-20. [PMID: 33139382 PMCID: PMC7822142 DOI: 10.1128/iai.00677-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Previous studies have shown that sphingosine kills a variety of pathogenic bacteria, including Pseudomonas aeruginosa and Staphylococcus aureus. Sphingosine concentrations are decreased in airway epithelial cells of cystic fibrosis (CF) mice, and this defect has been linked to the infection susceptibility of these mice. Here, we tested whether the genetic overexpression of acid ceramidase rescues cystic fibrosis mice from pulmonary infections with P. aeruginosa. Previous studies have shown that sphingosine kills a variety of pathogenic bacteria, including Pseudomonas aeruginosa and Staphylococcus aureus. Sphingosine concentrations are decreased in airway epithelial cells of cystic fibrosis (CF) mice, and this defect has been linked to the infection susceptibility of these mice. Here, we tested whether the genetic overexpression of acid ceramidase rescues cystic fibrosis mice from pulmonary infections with P. aeruginosa. We demonstrate that the transgenic overexpression of acid ceramidase in CF mice corresponds to the overexpression of acid ceramidase in bronchial and tracheal epithelial cells and normalizes ceramide and sphingosine levels in bronchial and tracheal epithelial cells. In addition, the expression of β1-integrin, which is ectopically expressed on the luminal surface of airway epithelial cells in cystic fibrosis mice, an alteration that is very important for mediating pulmonary P. aeruginosa infections in cystic fibrosis, is normalized in cystic fibrosis airways upon the overexpression of acid ceramidase. Most importantly, the overexpression of acid ceramidase protects cystic fibrosis mice from pulmonary P. aeruginosa infections. Infection of CF mice or CF mice that inhaled sphingosine with P. aeruginosa or a P. aeruginosa mutant that is resistant to sphingosine indicates that sphingosine and not a metabolite kills P. aeruginosa upon pulmonary infection. These studies further support the use of acid ceramidase and its metabolite sphingosine as potential treatments of cystic fibrosis.
Collapse
|
44
|
Gardner AI, Wu Y, Verhaegh R, Liu Y, Wilker B, Soddemann M, Keitsch S, Edwards MJ, Haq IJ, Kamler M, Becker KA, Brodlie M, Gulbins E. Interferon regulatory factor 8 regulates expression of acid ceramidase and infection susceptibility in cystic fibrosis. J Biol Chem 2021; 296:100650. [PMID: 33839155 PMCID: PMC8113888 DOI: 10.1016/j.jbc.2021.100650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Most patients with cystic fibrosis (CF) suffer from acute and chronic pulmonary infections with bacterial pathogens, which often determine their life quality and expectancy. Previous studies have demonstrated a downregulation of the acid ceramidase in CF epithelial cells resulting in an increase of ceramide and a decrease of sphingosine. Sphingosine kills many bacterial pathogens, and the downregulation of sphingosine seems to determine the infection susceptibility of cystic fibrosis mice and patients. It is presently unknown how deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) connects to a marked downregulation of the acid ceramidase in human and murine CF epithelial cells. Here, we employed quantitative PCR, western blot analysis, and enzyme activity measurements to study the role of IRF8 for acid ceramidase regulation. We report that genetic deficiency or functional inhibition of CFTR/Cftr results in an upregulation of interferon regulatory factor 8 (IRF8) and a concomitant downregulation of acid ceramidase expression with CF and an increase of ceramide and a reduction of sphingosine levels in tracheal and bronchial epithelial cells from both human individuals or mice. CRISPR/Cas9- or siRNA-mediated downregulation of IRF8 prevented changes of acid ceramidase, ceramide, and sphingosine in CF epithelial cells and restored resistance to Pseudomonas aeruginosa infections, which is one of the most important and common pathogens in lung infection of patients with CF. These studies indicate that CFTR deficiency causes a downregulation of acid ceramidase via upregulation of IRF8, which is a central pathway to control infection susceptibility of CF cells.
Collapse
Affiliation(s)
- Aaron Ions Gardner
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yuqing Wu
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rabea Verhaegh
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yongjie Liu
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Iram J Haq
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Malcolm Brodlie
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne, UK.
| | - Erich Gulbins
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
45
|
Sertbas M, Ulgen KO. Genome-Scale Metabolic Modeling for Unraveling Molecular Mechanisms of High Threat Pathogens. Front Cell Dev Biol 2020; 8:566702. [PMID: 33251208 PMCID: PMC7673413 DOI: 10.3389/fcell.2020.566702] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogens give rise to a wide range of diseases threatening global health and hence drawing public health agencies' attention to establish preventative and curative solutions. Genome-scale metabolic modeling is ever increasingly used tool for biomedical applications including the elucidation of antibiotic resistance, virulence, single pathogen mechanisms and pathogen-host interaction systems. With this approach, the sophisticated cellular system of metabolic reactions inside the pathogens as well as between pathogen and host cells are represented in conjunction with their corresponding genes and enzymes. Along with essential metabolic reactions, alternate pathways and fluxes are predicted by performing computational flux analyses for the growth of pathogens in a very short time. The genes or enzymes responsible for the essential metabolic reactions in pathogen growth are regarded as potential drug targets, as a priori guide to researchers in the pharmaceutical field. Pathogens alter the key metabolic processes in infected host, ultimately the objective of these integrative constraint-based context-specific metabolic models is to provide novel insights toward understanding the metabolic basis of the acute and chronic processes of infection, revealing cellular mechanisms of pathogenesis, identifying strain-specific biomarkers and developing new therapeutic approaches including the combination drugs. The reaction rates predicted during different time points of pathogen development enable us to predict active pathways and those that only occur during certain stages of infection, and thus point out the putative drug targets. Among others, fatty acid and lipid syntheses reactions are recent targets of new antimicrobial drugs. Genome-scale metabolic models provide an improved understanding of how intracellular pathogens utilize the existing microenvironment of the host. Here, we reviewed the current knowledge of genome-scale metabolic modeling in pathogen cells as well as pathogen host interaction systems and the promising applications in the extension of curative strategies against pathogens for global preventative healthcare.
Collapse
Affiliation(s)
- Mustafa Sertbas
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.,Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
46
|
Gardner AI, Haq IJ, Simpson AJ, Becker KA, Gallagher J, Saint-Criq V, Verdon B, Mavin E, Trigg A, Gray MA, Koulman A, McDonnell MJ, Fisher AJ, Kramer EL, Clancy JP, Ward C, Schuchman EH, Gulbins E, Brodlie M. Recombinant Acid Ceramidase Reduces Inflammation and Infection in Cystic Fibrosis. Am J Respir Crit Care Med 2020; 202:1133-1145. [PMID: 32569477 PMCID: PMC7560813 DOI: 10.1164/rccm.202001-0180oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rationale: In cystic fibrosis the major cause of morbidity and mortality is lung disease characterized by inflammation and infection. The influence of sphingolipid metabolism is poorly understood with a lack of studies using human airway model systems.Objectives: To investigate sphingolipid metabolism in cystic fibrosis and the effects of treatment with recombinant human acid ceramidase on inflammation and infection.Methods: Sphingolipids were measured using mass spectrometry in fully differentiated cultures of primary human airway epithelial cells and cocultures with Pseudomonas aeruginosa. In situ activity assays, Western blotting, and quantitative PCR were used to investigate function and expression of ceramidase and sphingomyelinase. Effects of treatment with recombinant human acid ceramidase on sphingolipid profile and inflammatory mediator production were assessed in cell cultures and murine models.Measurements and Main Results: Ceramide is increased in cystic fibrosis airway epithelium owing to differential function of enzymes regulating sphingolipid metabolism. Sphingosine, a metabolite of ceramide with antimicrobial properties, is not upregulated in response to P. aeruginosa by cystic fibrosis airway epithelia. Tumor necrosis factor receptor 1 is increased in cystic fibrosis epithelia and activates NF-κB signaling, generating inflammation. Treatment with recombinant human acid ceramidase, to decrease ceramide, reduced both inflammatory mediator production and susceptibility to infection.Conclusions: Sphingolipid metabolism is altered in airway epithelial cells cultured from people with cystic fibrosis. Treatment with recombinant acid ceramidase ameliorates the two pivotal features of cystic fibrosis lung disease, inflammation and infection, and thus represents a therapeutic approach worthy of further exploration.
Collapse
Affiliation(s)
- Aaron I Gardner
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Iram J Haq
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and.,Paediatric Respiratory Medicine, Great North Children's Hospital, and
| | - A John Simpson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and.,Respiratory Medicine, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Katrin A Becker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - John Gallagher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Vinciane Saint-Criq
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernard Verdon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Mavin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Alexandra Trigg
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Michael A Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Albert Koulman
- National Institute for Health Research Biomedical Research Centre Metabolomics and Lipidomics Facility, University of Cambridge, Cambridge, United Kingdom
| | - Melissa J McDonnell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Andrew J Fisher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Elizabeth L Kramer
- Department of Pediatrics and.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - John P Clancy
- Department of Pediatrics and.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Christopher Ward
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and.,Paediatric Respiratory Medicine, Great North Children's Hospital, and
| |
Collapse
|
47
|
Edwards MJ, Becker KA, Gripp B, Hoffmann M, Keitsch S, Wilker B, Soddemann M, Gulbins A, Carpinteiro E, Patel SH, Wilson GC, Pöhlmann S, Walter S, Fassbender K, Ahmad SA, Carpinteiro A, Gulbins E. Sphingosine prevents binding of SARS-CoV-2 spike to its cellular receptor ACE2. J Biol Chem 2020; 295:15174-15182. [PMID: 32917722 PMCID: PMC7650243 DOI: 10.1074/jbc.ra120.015249] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/02/2020] [Indexed: 01/08/2023] Open
Abstract
Sphingosine has been shown to prevent and eliminate bacterial infections of the respiratory tract, but it is unknown whether sphingosine can be also employed to prevent viral infections. To test this hypothesis, we analyzed whether sphingosine regulates the infection of cultured and freshly isolated ex vivo human epithelial cells with pseudoviral particles expressing SARS–CoV-2 spike (pp-VSV–SARS–CoV-2 spike) that served as a bona fide system mimicking SARS–CoV-2 infection. We demonstrate that exogenously applied sphingosine suspended in 0.9% NaCl prevents cellular infection with pp-SARS–CoV-2 spike. Pretreatment of cultured Vero epithelial cells or freshly isolated human nasal epithelial cells with low concentrations of sphingosine prevented adhesion of and infection with pp-VSV–SARS–CoV-2 spike. Mechanistically, we demonstrate that sphingosine binds to ACE2, the cellular receptor of SARS–CoV-2, and prevents the interaction of the receptor-binding domain of the viral spike protein with ACE2. These data indicate that sphingosine prevents at least some viral infections by interfering with the interaction of the virus with its receptor. Our data also suggest that further preclinical and finally clinical examination of sphingosine is warranted for potential use as a prophylactic or early treatment for coronavirus disease-19.
Collapse
Affiliation(s)
- Michael J Edwards
- Department of Surgery, University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - Katrin Anne Becker
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Gripp
- Zentrum für Seelische Gesundheit des Kindes- und Jugendalters, Sana-Klinikum Remscheid GmbH, Remscheid, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Simone Keitsch
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Soddemann
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Anne Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Elisa Carpinteiro
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Sameer H Patel
- Department of Surgery, University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - Gregory C Wilson
- Department of Surgery, University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Silke Walter
- Department of Neurology, University Hospital of the Saarland, Homburg/Saar, Germany
| | - Klaus Fassbender
- Department of Neurology, University Hospital of the Saarland, Homburg/Saar, Germany
| | - Syed A Ahmad
- Department of Surgery, University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - Alexander Carpinteiro
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany; Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Department of Surgery, University of Cincinnati Medical School, Cincinnati, Ohio, USA; Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
48
|
Abstract
Ceramide can be generated on cell surfaces by the activity of the acid sphingomyelinase. The unique biophysical properties of ceramide result in the self-formation of small ceramide-enriched membrane domains that spontaneously fuse to large ceramide-enriched membrane macrodomains. The present chapter describes how these domains can be labeled and thereby visualized in cells. Further, the chapter provides protocols how ceramide and sphingosine can be quantified on the surface of cells and organs.
Collapse
|
49
|
Costantini C, Puccetti M, Pariano M, Renga G, Stincardini C, D'Onofrio F, Bellet MM, Cellini B, Giovagnoli S, Romani L. Selectively targeting key inflammatory pathways in cystic fibrosis. Eur J Med Chem 2020; 206:112717. [PMID: 32823008 DOI: 10.1016/j.ejmech.2020.112717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 01/04/2023]
Abstract
Cystic fibrosis (CF) is a rare genetic disorder caused by a defect in the ion channel Cystic Fibrosis Transmembrane conductance Regulator (CFTR), resulting in ionic imbalance of surface fluid. Although affecting multiple organs, the progressive deterioration of respiratory function by recurrent infections and chronic inflammation represents the main cause of morbidity and mortality in CF patients. The development of modulators targeting the basic defect of CFTR has represented a major breakthrough in CF therapy, but the impact on inflammation has remained enigmatic. The emerging scenario taking hold in the field points to inflammation as a major, somehow missed, therapeutic target for prevention of lung decline. Not surprisingly, the development of anti-inflammatory drugs is taking its share in the drug development pipeline. But the path is not straightforward and targeting inflammation should be balanced with the increased risk of infection. The strategy to restore the homeostatic regulation of inflammation to efficiently respond to infection while preventing lung damage needs to be based on identifying and targeting endogenous immunoregulatory pathways that are defective in CF. We herein provide an overview of anti-inflammatory drugs currently approved or under investigation in CF patients, and present our recent studies on how the knowledge on defective immune pathways in CF may translate into innovative and selective anti-inflammatory therapeutics. Through the discovery of naturally occurring molecules or their synthetic mimics, this review emphasizes the critical importance of selectively targeting key inflammatory pathways to preserve immunocompetence in CF patients.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, Perugia, 06132, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Claudia Stincardini
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Fiorella D'Onofrio
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Marina M Bellet
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, Perugia, 06132, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.
| |
Collapse
|
50
|
Liessi N, Pedemonte N, Armirotti A, Braccia C. Proteomics and Metabolomics for Cystic Fibrosis Research. Int J Mol Sci 2020; 21:ijms21155439. [PMID: 32751630 PMCID: PMC7432297 DOI: 10.3390/ijms21155439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this review article is to introduce the reader to the state-of-the-art of the contribution that proteomics and metabolomics sciences are currently providing for cystic fibrosis (CF) research: from the understanding of cystic fibrosis transmembrane conductance regulator (CFTR) biology to biomarker discovery for CF diagnosis. Our work particularly focuses on CFTR post-translational modifications and their role in cellular trafficking as well as on studies that allowed the identification of CFTR molecular interactors. We also show how metabolomics is currently helping biomarker discovery in CF. The most recent advances in these fields are covered by this review, as well as some considerations on possible future scenarios for new applications.
Collapse
Affiliation(s)
- Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Nicoletta Pedemonte
- U.O.C. Genetica Medica, IRCCS Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
- Correspondence: ; Tel.: +39-010-2896-938
| | - Clarissa Braccia
- D3PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|