1
|
Rodrigues SS, Bocchi M, de Oliveira DM, Fernandes EV. Importance of trace elements in the immunometabolic health of people living with HIV/AIDS: a literature review. Mol Biol Rep 2024; 52:71. [PMID: 39708271 DOI: 10.1007/s11033-024-10186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Trace elements (TEs) are essential for human health and for maintaining immune responses against potentially aggressive pathogens, such as the human immunodeficiency virus (HIV). During the infectious process, the body needs greater amounts of TEs in order to coordinate an efficient immune response to combat the invading agent, a condition that reflects in lymphocyte proliferation and activation of the antioxidant defense system of neutrophils and macrophages. Thus, during the progression phase of a viral infection, immunomodulation of TEs such as iron, zinc, chromium, magnesium, selenium, copper, calcium, and manganese occurs, can lead to immunosuppression and increased oxidative stress. Furthermore, the adverse effects caused by the use of antiretroviral therapy (ART) trigger nutritional disorders and metabolic alterations that contribute to deficiencies in TEs, associated with compromised immune function. Therefore, this narrative literature review aims to contribute as a teaching tool on the TEs involved in the pathogenesis of HIV, by reviewing the role of TEs in the immunometabolic health of people living with HIV/AIDS.
Collapse
Affiliation(s)
| | - Mayara Bocchi
- Postgraduate Program in Animal Bioscience, Federal University of Jataí, Jataí, Goiás, Brazil
| | | | - Eduardo Vignoto Fernandes
- Postgraduate Program in Animal Bioscience, Federal University of Jataí, Jataí, Goiás, Brazil.
- Universidade Federal de Jataí, BR 364, km 195, nº 3800, CEP 75801-615, Câmpus Jatobá, Jataí, Goiás, Brazil.
| |
Collapse
|
2
|
Sreeharsha N, Kunigal Sridhar S, Bhuvanahalli Rangappa A, Goudanavar P, Karadigere Nagaraju P, Raghavendra Naveen N, Narayanappa Shiroorkar P, Haq Asif A, Meravanige G, Swaroop Duddi Sreehari K. Ultrasonication-mediated synthesis of diblock polymer-based nanoparticles for advanced drug delivery systems: Insights and optimization. ULTRASONICS SONOCHEMISTRY 2024; 111:107137. [PMID: 39522330 PMCID: PMC11585744 DOI: 10.1016/j.ultsonch.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This study presents the synthesis and optimization of Methylene polyethyl glycol -Polystyrene (mPEG-PS) Diblock (DIP) copolymer-based solid lipid nanoparticles (SLNs) using ultrasonication for advanced drug delivery systems targeting the human immunodeficiency virus (HIV-1). The mPEG-PS block copolymer was synthesized by ring opening polymerization mechanism under nitrogen atmosphere for 24hrs and characterized using Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy and NMR, confirming the formation of DIP polymers. Optimization of SLNs formulation was achieved through a systematic approach, utilizing response surface methodology, optimal conditions for SLNs synthesis were determined, resulting in nanoparticles with a particle size of 198 nm and an entrapment efficiency of 67.42 %. Cell viability assays, quantitative PCR for viral DNA analysis, caspase-3 enzyme assays, and quantitative uptake studies using High Performance Liquid Chromatography (HPLC) provided quantitative insights into the efficacy and biocompatibility of the synthesized nanoparticles. The experimental data demonstrate that nanoparticle treatments significantly influence cellular responses, providing valuable insights into their therapeutic potential and underlying mechanisms. By employing precise experimental methods alongside rigorous analytical techniques, this study enhances our understanding of nanoparticle-based drug delivery systems, particularly in the context of HIV treatment. These findings pave the way for optimizing therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India.
| | - Srikruthi Kunigal Sridhar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India
| | - Asha Bhuvanahalli Rangappa
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India
| | - Purushotham Karadigere Nagaraju
- Department of Pharmaceutical Chemistry and Analysis, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India.
| | | | - Afzal Haq Asif
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Girish Meravanige
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | |
Collapse
|
3
|
Ngo MH, Pankrac J, Ho RCY, Ndashimye E, Pawa R, Ceccacci R, Biru T, Olabode AS, Klein K, Li Y, Kovacs C, Assad R, Jacobson JM, Canaday DH, Tomusange S, Jamiru S, Anok A, Kityamuweesi T, Buule P, Galiwango RM, Reynolds SJ, Quinn TC, Redd AD, Prodger JL, Mann JFS, Arts EJ. Effective and targeted latency reversal in CD4 + T cells from individuals on long term combined antiretroviral therapy initiated during chronic HIV-1 infection. Emerg Microbes Infect 2024; 13:2327371. [PMID: 38444369 PMCID: PMC10967673 DOI: 10.1080/22221751.2024.2327371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
To date, an affordable, effective treatment for an HIV-1 cure remains only a concept with most "latency reversal" agents (LRAs) lacking specificity for the latent HIV-1 reservoir and failing in early clinical trials. We assessed HIV-1 latency reversal using a multivalent HIV-1-derived virus-like particle (HLP) to treat samples from 32 people living with HIV-1 (PLWH) in Uganda, US and Canada who initiated combined antiretroviral therapy (cART) during chronic infection. Even after 5-20 years on stable cART, HLP could target CD4+ T cells harbouring latent HIV-1 reservoir resulting in 100-fold more HIV-1 release into culture supernatant than by common recall antigens, and 1000-fold more than by chemotherapeutic LRAs. HLP induced release of a divergent and replication-competent HIV-1 population from PLWH on cART. These findings suggest HLP provides a targeted approach to reactivate the majority of latent HIV-1 proviruses among individuals infected with HIV-1.
Collapse
Affiliation(s)
- Minh Ha Ngo
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Joshua Pankrac
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Ryan C. Y. Ho
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Emmanuel Ndashimye
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Rahul Pawa
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Renata Ceccacci
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Tsigereda Biru
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
- Special Immunology Unit and Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Abayomi S. Olabode
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Katja Klein
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Yue Li
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic and Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| | - Robert Assad
- Special Immunology Unit and Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jeffrey M. Jacobson
- Special Immunology Unit and Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David H. Canaday
- Special Immunology Unit and Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Aggrey Anok
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | - Paul Buule
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | - Steven J. Reynolds
- Rakai Health Sciences Program, Kalisizo, Uganda
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas C. Quinn
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew D. Redd
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jessica L. Prodger
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Jamie F. S. Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Eric J. Arts
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| |
Collapse
|
4
|
Marín-Sánchez N, Paredes R, Borgognone A. Exploring potential associations between the human microbiota and reservoir of latent HIV. Retrovirology 2024; 21:21. [PMID: 39614246 PMCID: PMC11605983 DOI: 10.1186/s12977-024-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The rapid establishment and persistence of latent HIV-1 reservoirs is one of the main obstacles towards an HIV cure. While antiretroviral therapy supresses viral replication, it does not eradicate the latent reservoir of HIV-1-infected cells. Recent evidence suggests that the human microbiome, particularly the gut microbiome, may have the potential to modulate the HIV-1 reservoir. However, literature is limited and the exact mechanisms underlying the role of the microbiome in HIV immunity and potential regulation of the viral reservoir remain poorly understood. RESULTS Here, we review updated knowledge on the associations between the human microbiome and HIV reservoir across different anatomical sites, including the gut, the lungs and blood. We provide an overview of the predominant taxa associated with prominent microbiome changes in the context of HIV infection. Based on the current evidence, we summarize the main study findings, with specific focus on consistent bacterial and related byproduct associations. Specifically, we address the contribution of immune activation and inflammatory signatures on HIV-1 persistence. Furthermore, we discuss possible scenarios by which bacterial-associated inflammatory mediators, related metabolites and host immune signatures may modulate the HIV reservoir size. Finally, we speculate on potential implications of microbiome-based therapeutics for future HIV-1 cure strategies, highlighting challenges and limitations inherent in this research field. CONCLUSIONS Despite recent advances, this review underscores the need for further research to deepen the understanding of the complex interplay between the human microbiome and HIV reservoir. Further integrative multi-omics assessments and functional studies are crucial to test the outlined hypothesis and to identify potential therapeutic targets ultimately able to achieve an effective cure for HIV.
Collapse
Affiliation(s)
- Nel Marín-Sánchez
- IrsiCaixa, Badalona, Catalonia, Spain
- Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roger Paredes
- IrsiCaixa, Badalona, Catalonia, Spain.
- Department of Infectious Diseases, Hospital Germans Trias i Pujol, Badalona, Catalonia, Spain.
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | | |
Collapse
|
5
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024; 328:350-371. [PMID: 39248154 PMCID: PMC11659942 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A. D. King
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases ServiceRoyal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Rodríguez-Mora S, Sánchez-Menéndez C, Bautista-Carrascosa G, Mateos E, Moreno-Serna L, Megías D, Cantón J, García-Gutiérrez V, Murciano-Antón MA, Cervero M, Spivak A, Planelles V, Coiras M. Dasatinib interferes with HIV-1 proviral integration and the inflammatory potential of monocyte-derived macrophages from people with HIV. Biochem Pharmacol 2024; 229:116512. [PMID: 39222713 DOI: 10.1016/j.bcp.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
HIV-1 infection is efficiently controlled by the antiretroviral treatment (ART) but viral persistence in long-lived reservoirs formed by CD4 + T cells and macrophages impedes viral eradication and creates a chronic inflammatory environment. Dasatinib is a tyrosine kinase inhibitor clinically used against chronic myeloid leukemia (CML) that has also showed an anti-inflammatory potential. We previously reported that dasatinib is very efficient at interfering with HIV-1 infection of CD4 + T cells by preserving the antiviral activity of SAMHD1, an innate immune factor that blocks T-cell activation and proliferation and that is inactivated by phosphorylation at T592 (pSAMHD1). We observed that short-term treatment in vitro with dasatinib significantly reduced pSAMHD1 in monocyte-derived macrophages (MDMs) isolated from people with HIV (PWH) and healthy donors, interfering with HIV-1 infection. This inhibition was based on low levels of 2-LTR circles and proviral integration, while viral reverse transcription was not affected. MDMs isolated from people with CML on long-term treatment with dasatinib also showed low levels of pSAMHD1 and were resistant to HIV-1 infection. In addition, dasatinib decreased the inflammatory potential of MDMs by reducing the release of M1-related cytokines like TNFα, IL-1β, IL-6, CXCL8, and CXCL9, but preserving the antiviral activity through normal levels of IL-12 and IFNγ. Due to the production of M2-related anti-inflammatory cytokines like IL-1RA and IL-10 was also impaired, dasatinib appeared to interfere with MDMs differentiation. The use of dasatinib along with ART could be used against HIV-1 reservoir in CD4 and macrophages and to alleviate the chronic inflammation characteristic of PWH.
Collapse
Affiliation(s)
- Sara Rodríguez-Mora
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucia Moreno-Serna
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Diego Megías
- Microscopy and Imaging Facility, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Cantón
- PhD Program in Health Sciences, Universidad de Alcalá, Madrid, Spain; Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - María Aránzazu Murciano-Antón
- PhD Program in Epidemiology and Public Health, Universidad Rey Juan Carlos, Madrid, Spain; Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain; School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Adam Spivak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
7
|
Gray CN, Ashokkumar M, Janssens DH, Kirchherr J, Allard B, Hsieh E, Hafer TL, Archin NM, Browne EP, Emerman M. Integrator complex subunit 12 knockout overcomes a transcriptional block to HIV latency reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610517. [PMID: 39257755 PMCID: PMC11383676 DOI: 10.1101/2024.08.30.610517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing towards inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells from people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo. We also detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout suggesting that INTS12 prevents full-length HIV RNA production in primary T cells.
Collapse
Affiliation(s)
- Carley N. Gray
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Manickam Ashokkumar
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Terry L. Hafer
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nancie M. Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edward P. Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
8
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IA, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. J Exp Med 2024; 221:e20240391. [PMID: 39141127 PMCID: PMC11323366 DOI: 10.1084/jem.20240391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
HIV-1 antiretroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses, leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here, we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 100-10,000× less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir, thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Isabella A.T.M. Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Chica and Heinz Schaller (CHS) Research Group, University Hospital Heidelberg, Heidelberg, Germany
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
9
|
Zaman F, Smith ML, Balagopal A, Durand CM, Redd AD, Tobian AAR. Spatial technologies to evaluate the HIV-1 reservoir and its microenvironment in the lymph node. mBio 2024; 15:e0190924. [PMID: 39058091 PMCID: PMC11324018 DOI: 10.1128/mbio.01909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
The presence of the HIV-1 reservoir, a group of immune cells that contain intact, integrated, and replication-competent proviruses, is a major challenge to cure HIV-1. HIV-1 reservoir cells are largely unaffected by the cytopathic effects of viruses, antiviral immune responses, or antiretroviral therapy (ART). The HIV-1 reservoir is seeded early during HIV-1 infection and augmented during active viral replication. CD4+ T cells are the primary target for HIV-1 infection, and recent studies suggest that memory T follicular helper cells within the lymph node, more precisely in the B cell follicle, harbor integrated provirus, which contribute to viral rebound upon ART discontinuation. The B cell follicle, more specifically the germinal center, possesses a unique environment because of its distinct property of being partly immune privileged, potentially allowing HIV-1-infected cells within the lymph nodes to be protected from CD8+ T cells. This modified immune response in the germinal center of the follicle is potentially explained by the exclusion of CD8+ T cells and the presence of T regulatory cells at the junction of the follicle and extrafollicular region. The proviral makeup of HIV-1-infected cells is similar in lymph nodes and blood, suggesting trafficking between these compartments. Little is known about the cell-to-cell interactions, microenvironment of HIV-1-infected cells in the follicle, and trafficking between the lymph node follicle and other body compartments. Applying a spatiotemporal approach that integrates genomics, transcriptomics, and proteomics to investigate the HIV-1 reservoir and its neighboring cells in the lymph node has promising potential for informing HIV-1 cure efforts.
Collapse
Affiliation(s)
- Fatima Zaman
- Department of
Pathology, Johns Hopkins University School of
Medicine, Baltimore,
Maryland, USA
| | - Melissa L. Smith
- Department of
Biochemistry and Molecular Genetics, University of Louisville School of
Medicine, Louisville,
Kentucky, USA
| | - Ashwin Balagopal
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| | - Christine M. Durand
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| | - Andrew D. Redd
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
- Laboratory of
Immunoregulation, National Institute of Allergy and Infectious Diseases,
National Institutes of Health,
Bethesda, Maryland, USA
- Institute of
Infectious Disease and Molecular Medicine, University of Cape
Town, Cape Town,
South Africa
| | - Aaron A. R. Tobian
- Department of
Pathology, Johns Hopkins University School of
Medicine, Baltimore,
Maryland, USA
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| |
Collapse
|
10
|
Girard A, Vimonpatranon S, Chan A, Jiang A, Huang DW, Virtaneva K, Kanakabandi K, Martens C, Goes LR, Soares MA, Licavoli I, McMurry J, Doan P, Wertz S, Wei D, Ryk DV, Ganesan S, Hwang IY, Kehrl JH, Martinelli E, Arthos J, Cicala C. MAdCAM-1 co-stimulation combined with retinoic acid and TGF-β induces blood CD8 + T cells to adopt a gut CD101 + T RM phenotype. Mucosal Immunol 2024; 17:700-712. [PMID: 38729611 PMCID: PMC11323166 DOI: 10.1016/j.mucimm.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Resident memory T cells (TRMs) help control local immune homeostasis and contribute to tissue-protective immune responses. The local cues that guide their differentiation and localization are poorly defined. We demonstrate that mucosal vascular addressin cell adhesion molecule 1, a ligand for the gut-homing receptor α4β7 integrin, in the presence of retinoic acid and transforming growth factor-β (TGF-β) provides a co-stimulatory signal that induces blood cluster of differentiation (CD8+ T cells to adopt a TRM-like phenotype. These cells express CD103 (integrin αE) and CD69, the two major TRM cell-surface markers, along with CD101. They also express C-C motif chemokine receptors 5 (CCR5) , C-C motif chemokine receptors 9 (CCR9), and α4β7, three receptors associated with gut homing. A subset also expresses E-cadherin, a ligand for αEβ7. Fluorescent lifetime imaging indicated an αEβ7 and E-cadherin cis interaction on the plasma membrane. This report advances our understanding of the signals that drive the differentiation of CD8+ T cells into resident memory T cells and provides a means to expand these cells in vitro, thereby affording an avenue to generate more effective tissue-specific immunotherapies.
Collapse
Affiliation(s)
- Alexandre Girard
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Sinmanus Vimonpatranon
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA; Department of Retrovirology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Amanda Chan
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Andrew Jiang
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Da Wei Huang
- NCI, Lymphoid Malignancy Branch, Bethesda, Maryland, USA
| | - Kimmo Virtaneva
- National Institute of Allergy and Infectious Diseases, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, Hamilton, Montana, USA
| | - Kishore Kanakabandi
- National Institute of Allergy and Infectious Diseases, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, Hamilton, Montana, USA
| | - Craig Martens
- National Institute of Allergy and Infectious Diseases, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, Hamilton, Montana, USA
| | - Livia R Goes
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA; INCA, Rio de Janeiro, Brazil
| | | | - Isabella Licavoli
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Jordan McMurry
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Pearl Doan
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Samuel Wertz
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Danlan Wei
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Donald Van Ryk
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Sundar Ganesan
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Il Young Hwang
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - John H Kehrl
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Elena Martinelli
- Northwestern Feinberg School of Medicine, Division of Infectious Diseases, Chicago, Illinois, USA
| | - James Arthos
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Claudia Cicala
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA.
| |
Collapse
|
11
|
Blazkova J, Whitehead EJ, Schneck R, Shi V, Justement JS, Rai MA, Kennedy BD, Manning MR, Praiss L, Gittens K, Wender PA, Oguz C, Lack J, Moir S, Chun TW. Immunologic and Virologic Parameters Associated With Human Immunodeficiency Virus (HIV) DNA Reservoir Size in People With HIV Receiving Antiretroviral Therapy. J Infect Dis 2024; 229:1770-1780. [PMID: 38128541 PMCID: PMC11492273 DOI: 10.1093/infdis/jiad595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A better understanding of the dynamics of human immunodeficiency virus (HIV) reservoirs in CD4+ T cells of people with HIV (PWH) receiving antiretroviral therapy (ART) is crucial for developing therapies to eradicate the virus. METHODS We conducted a study involving 28 aviremic PWH receiving ART with high and low levels of HIV DNA. We analyzed immunologic and virologic parameters and their association with the HIV reservoir size. RESULTS The frequency of CD4+ T cells carrying HIV DNA was associated with higher pre-ART plasma viremia, lower pre-ART CD4+ T-cell counts, and lower pre-ART CD4/CD8 ratios. During ART, the High group maintained elevated levels of intact HIV proviral DNA, cell-associated HIV RNA, and inducible virion-associated HIV RNA. HIV sequence analysis showed no evidence for preferential accumulation of defective proviruses nor higher frequencies of clonal expansion in the High versus Low group. Phenotypic and functional T-cell analyses did not show enhanced immune-mediated virologic control in the Low versus High group. Of considerable interest, pre-ART innate immunity was significantly higher in the Low versus High group. CONCLUSIONS Our data suggest that innate immunity at the time of ART initiation may play an important role in modulating the dynamics and persistence of viral reservoirs in PWH.
Collapse
Affiliation(s)
- Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Emily J Whitehead
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Rachel Schneck
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - J Shawn Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - M Ali Rai
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Brooke D Kennedy
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Maegan R Manning
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Lauren Praiss
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Kathleen Gittens
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland
| | - Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, California
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| |
Collapse
|
12
|
Hudson JA, Ferrand RA, Gitau SN, Mureithi MW, Maffia P, Alam SR, Shah ASV. HIV-Associated Cardiovascular Disease Pathogenesis: An Emerging Understanding Through Imaging and Immunology. Circ Res 2024; 134:1546-1565. [PMID: 38781300 DOI: 10.1161/circresaha.124.323890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cardiac abnormalities were identified early in the epidemic of AIDS, predating the isolation and characterization of the etiologic agent, HIV. Several decades later, the causation and pathogenesis of cardiovascular disease (CVD) linked to HIV infection continue to be the focus of intense speculation. Before the widespread use of antiretroviral therapy, HIV-associated CVD was primarily characterized by HIV-associated cardiomyopathy linked to profound immunodeficiency. With increasing antiretroviral therapy use, viral load suppression, and establishment of immune competency, the effects of HIV on the cardiovascular system are more subtle. Yet, people living with HIV still face an increased incidence of cardiovascular pathology. Advances in cardiac imaging modalities and immunology have deepened our understanding of the pathogenesis of HIV-associated CVD. This review provides an overview of the pathogenesis of HIV-associated CVD integrating data from imaging and immunologic studies with particular relevance to the HIV population originating from high-endemic regions, such as sub-Saharan Africa. The review highlights key evidence gaps in the field and suggests future directions for research to better understand the complex HIV-CVD interactions.
Collapse
Affiliation(s)
- Jonathan A Hudson
- Kings College London BHF Centre, School of Cardiovascular and Metabolic Medicine & Sciences, United Kingdom (J.A.H.)
| | - Rashida A Ferrand
- Department of Clinical Research (R.A.F.), London School of Hygiene and Tropical Medicine, United Kingdom
- Biomedical Research and Training Institute, Harare, Zimbabwe (R.A.F.)
| | - Samuel N Gitau
- Department of Radiology, Aga Khan University Nairobi, Kenya (S.N.G.)
| | - Marianne Wanjiru Mureithi
- Department of Medical Microbiology and Immunology, Faculty of Health Sciences (M.W.M.), University of Nairobi, Kenya
| | - Pasquale Maffia
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom (P.M.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Italy (P.M.)
- Africa-Europe Cluster of Research Excellence in Non-Communicable Diseases and Multimorbidity, African Research Universities Alliance and The Guild of European Research-Intensive Universities, Glasgow, United Kingdom (P.M.)
| | - Shirjel R Alam
- Department of Cardiology, North Bristol NHS Trust, United Kingdom (S.R.A.)
| | - Anoop S V Shah
- Department of Non-Communicable Disease Epidemiology (A.S.V.S.), London School of Hygiene and Tropical Medicine, United Kingdom
- Department of Cardiology, Imperial College NHS Trust, London, United Kingdom (A.S.V.S.)
| |
Collapse
|
13
|
Fombellida-Lopez C, Berkhout B, Darcis G, Pasternak AO. Persistent HIV-1 transcription during ART: time to reassess its significance? Curr Opin HIV AIDS 2024; 19:124-132. [PMID: 38502547 PMCID: PMC10990031 DOI: 10.1097/coh.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and reignite viral replication if therapy is interrupted. Persistence of the viral reservoir in people with HIV-1 (PWH) is the main obstacle to an HIV-1 cure. The reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. Here, we review the recent progress in the characterization of persistent HIV-1 transcription during ART. RECENT FINDINGS Evidence from several studies indicates that, although cell-associated unspliced (US) HIV-1 RNA is abundantly expressed in ART-treated PWH, intact full-length US transcripts are rare and most US RNA is derived from defective proviruses. The transcription- and translation-competent defective proviruses, previously considered irrelevant, are increasingly being linked to residual HIV-1 pathogenesis under suppressive ART. Recent data suggest a continuous crosstalk between the residual HIV-1 activity under ART and the immune system. Persistent HIV-1 transcription on ART, despite being mostly derived from defective proviruses, predicts viral rebound upon therapy interruption, suggesting its role as an indicator of the strength of the host antiviral immune response that is shaping the viral rebound. SUMMARY In light of the recent findings, the significance of persistent HIV-1 transcription during ART for the long-term health of PWH and the cure research should be reassessed.
Collapse
Affiliation(s)
- Céline Fombellida-Lopez
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gilles Darcis
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège, Liège, Belgium
| | - Alexander O. Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Hasler MF, Speck RF, Kadzioch NP. Humanized mice for studying HIV latency and potentially its eradication. Curr Opin HIV AIDS 2024; 19:157-167. [PMID: 38547338 DOI: 10.1097/coh.0000000000000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF THE REVIEW The quest for an HIV cure faces a formidable challenge: the persistent presence of latent viral infections within the cells and tissues of infected individuals. This review provides a thorough examination of discussions surrounding HIV latency, the use of humanized mouse models, and strategies aimed at eliminating the latent HIV reservoir. It explores the hurdles and advancements in understanding HIV pathogenesis, mainly focusing on establishing latent reservoirs in CD4 + T cells and macrophages. Introducing the concepts of functional and sterile cures, the review underscores the indispensable role of humanized mouse models in HIV research, offering crucial insights into the efficacy of cART and the ongoing pursuit of an HIV cure. RECENT FINDINGS Here, we highlight studies investigating molecular mechanisms and pathogenesis related to HIV latency in humanized mice and discuss novel strategies for eradicating latent HIV. Emphasizing the importance of analytical cART interruption in humanized mouse studies to gauge its impact on the latent reservoir accurately, the review underlines the ongoing progress and challenges in harnessing humanized mouse models for HIV research. SUMMARY This review suggests that humanized mice models provide valuable insights into HIV latency and potential eradication strategies, contributing significantly to the quest for an HIV cure.
Collapse
Affiliation(s)
- Moa F Hasler
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
15
|
Shmakova A, Tsimailo I, Kozhevnikova Y, Gérard L, Boutboul D, Oksenhendler E, Tuaillon E, Rivault A, Germini D, Vassetzky Y, Beaumelle B. HIV-1 Tat is present in the serum of people living with HIV-1 despite viral suppression. Int J Infect Dis 2024; 142:106994. [PMID: 38447753 DOI: 10.1016/j.ijid.2024.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
OBJECTIVES Despite successful human immunodeficiency virus (HIV) control with combination antiretroviral therapy (cART), individuals with HIV still face health risks, including cancers, cardiovascular and neurocognitive diseases. An HIV protein, Tat, is potentially involved in these HIV-related diseases. Previous studies demonstrated circulating Tat in the blood of untreated people with HIV. Here, we measured Tat levels in the serum of cART-treated people with HIV to examine the effect of cART on Tat production. METHODS Serum samples from 63 HIV-positive and 20 HIV-seronegative individuals were analyzed using an ELISA assay that detected Tat concentrations above 2.5 ng/mL. RESULTS Among HIV-positive individuals, the Tat level ranged from 0 to 14 ng/mL. 25.4% (16 out of 63) exceeded the 2.5 ng/mL cut-off, with a median HIV Tat level of 4.518 [3.329-8.120] ng/mL. No correlation was revealed between Tat levels and CD4+ T cell counts, serum HIV RNA, p24 antigen, or anti-Tat levels. CONCLUSIONS Despite cART, circulating HIV Tat persists and may contribute to HIV-related diseases. This emphasizes the need for further research on the mechanisms of Tat action in non-infected cells where it can penetrate upon circulation in the blood.
Collapse
Affiliation(s)
- Anna Shmakova
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94800 France; Koltzov Institute of Developmental Biology, Moscow, 119334 Russia
| | - Ivan Tsimailo
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94800 France
| | - Yana Kozhevnikova
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94800 France
| | - Laurence Gérard
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, 75012 France
| | - David Boutboul
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, 75012 France
| | - Eric Oksenhendler
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, 75012 France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM U1058, Montpellier University Hospital, Montpellier, France
| | - Aurélie Rivault
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Diego Germini
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94800 France
| | - Yegor Vassetzky
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94800 France; Koltzov Institute of Developmental Biology, Moscow, 119334 Russia.
| | - Bruno Beaumelle
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, Montpellier, France
| |
Collapse
|
16
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IA, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591331. [PMID: 38746186 PMCID: PMC11092494 DOI: 10.1101/2024.04.26.591331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
HIV-1 anti-retroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 10010,000X less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Isabella A.T.M. Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
- Chica and Heinz Schaller (CHS) Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
17
|
Sever B, Otsuka M, Fujita M, Ciftci H. A Review of FDA-Approved Anti-HIV-1 Drugs, Anti-Gag Compounds, and Potential Strategies for HIV-1 Eradication. Int J Mol Sci 2024; 25:3659. [PMID: 38612471 PMCID: PMC11012182 DOI: 10.3390/ijms25073659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stemming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for the discovery of new therapeutics that not only bypass the limitations of the current therapy but also protect the body's health at the same time. The main goal for complete HIV-1 eradication is purging latently infected cells from patients' bodies. A potential strategy called "lock-in and apoptosis" targets the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1 infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The current work intends to present the main advantages and disadvantages of United States Food and Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic profiles, and improved safety issues.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Bioengineering Sciences, Izmir Katip Celebi University, Izmir 35620, Türkiye
| |
Collapse
|
18
|
Benlarbi M, Richard J, Bourassa C, Tolbert WD, Chartrand-Lefebvre C, Gendron-Lepage G, Sylla M, El-Far M, Messier-Peet M, Guertin C, Turcotte I, Fromentin R, Verly MM, Prévost J, Clark A, Mothes W, Kaufmann DE, Maldarelli F, Chomont N, Bégin P, Tremblay C, Baril JG, Trottier B, Trottier S, Duerr R, Pazgier M, Durand M, Finzi A. Plasma Human Immunodeficiency Virus 1 Soluble Glycoprotein 120 Association With Correlates of Immune Dysfunction and Inflammation in Antiretroviral Therapy-Treated Individuals With Undetectable Viremia. J Infect Dis 2024; 229:763-774. [PMID: 38035854 PMCID: PMC10938206 DOI: 10.1093/infdis/jiad503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Chronic inflammation persists in some people living with human immunodeficiency virus (HIV) during antiretroviral therapy and is associated with premature aging. The glycoprotein 120 (gp120) subunit of HIV-1 envelope sheds and can be detected in plasma, showing immunomodulatory properties even in the absence of detectable viremia. We evaluated whether plasma soluble gp120 (sgp120) and a family of gp120-specific anti-cluster A antibodies, linked to CD4 depletion in vitro, contribute to chronic inflammation, immune dysfunction, and subclinical cardiovascular disease in participants of the Canadian HIV and Aging Cohort Study with undetectable viremia. METHODS Cross-sectional assessment of sgp120 and anti-cluster A antibodies was performed in 386 individuals from the cohort. Their association with proinflammatory cytokines and subclinical coronary artery disease was assessed using linear regression models. RESULTS High levels of sgp120 and anti-cluster A antibodies were inversely correlated with CD4+ T cell count and CD4/CD8 ratio. The presence of sgp120 was associated with increased levels of interleukin 6. In participants with detectable atherosclerotic plaque and detectable sgp120, anti-cluster A antibodies and their combination with sgp120 levels correlated positively with the total volume of atherosclerotic plaques. CONCLUSIONS This study showed that sgp120 may act as a pan toxin causing immune dysfunction and sustained inflammation in a subset of people living with HIV, contributing to the development of premature comorbid conditions.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Carl Chartrand-Lefebvre
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montreal, Québec, Canada
| | | | - Mohamed Sylla
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | | | | | - Camille Guertin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Isabelle Turcotte
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Rémi Fromentin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Andrew Clark
- ViiV Healthcare, Global Medical Affairs, Middlesex, United Kingdom
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Philippe Bégin
- Section of Allergy, Immunology and Rheumatology, Department of Pediatrics, CHU Sainte-Justine, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medecine, Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Guy Baril
- Clinique de Médecine Urbaine du Quartier Latin, Montréal, Québec, Canada
- Département de Médecine Familiale, Université de Montréal, Montréal, Québec, Canada
| | - Benoit Trottier
- Clinique de Médecine Urbaine du Quartier Latin, Montréal, Québec, Canada
- Département de Médecine Familiale, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Trottier
- Département de microbiologie-infectiologie et d'immunologie, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec, Canada
| | - Ralf Duerr
- Vaccine Center, NYU Grossman School of Medicine, NewYork, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, NewYork, New York, USA
- Department of Microbiology, NYU Grossman School of Medicine, NewYork, New York, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Madeleine Durand
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medecine, Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
19
|
Taga K, Takeuchi H. Novel role of host protein SLC25A42 in the HIV-1 reactivation of latent HIV-1 provirus. Microbiol Immunol 2024; 68:90-99. [PMID: 38244193 DOI: 10.1111/1348-0421.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024]
Abstract
Despite the effectiveness of combination antiretroviral therapy, human immunodeficiency virus (HIV) infection remains incurable. To seek new strategies to overcome HIV type 1 (HIV-1) latency, one of the major barriers to HIV elimination, it is crucial to better understand how this state is maintained. Here, by means of an RNA interference screen employing an HIV-1 latency model using monocytic cell lines, we identified solute carrier family 25 member 42 (SLC25A42) as a potential host factor not previously known to affect HIV-1 latency. SLC25A42 knockdown resulted in increased HIV-1 expression, whereas forced expression of exogenous SLC25A42 suppressed it in SLC25A42-depleted cells. SLC25A42 depletion increased HIV-1 proviral transcriptional elongation but did not cause HIV-1 activation in an HIV-1 Tat-depleted latency model. This suggests that the role of SLC25A42 in HIV-1 transcription depends on HIV-1 Tat. Chromatin immunoprecipitation-qPCR analysis further revealed that SLC25A42 accumulated on or near the HIV-1 5' long terminal repeat promoter region of the HIV-1 provirus, suggesting a possible role in regulating HIV-1 Tat near this promoter region. These results indicate that SLC25A42 plays a novel role in HIV-1 latency maintenance in monocytic HIV-1 reservoirs.
Collapse
Affiliation(s)
- Kei Taga
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroaki Takeuchi
- Department of High-risk Infectious Disease Control, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- TMDU Center for Infectious Disease Education and Analysis (TCIDEA), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
20
|
Tassaneetrithep B, Phuphuakrat A, Pasomsub E, Bhukhai K, Wongkummool W, Priengprom T, Khamaikawin W, Chaisavaneeyakorn S, Anurathapan U, Apiwattanakul N, Hongeng S. HIV-1 proviral DNA in purified peripheral blood CD34 + stem and progenitor cells in individuals with long-term HAART; paving the way to HIV gene therapy. Heliyon 2024; 10:e26613. [PMID: 38434025 PMCID: PMC10906414 DOI: 10.1016/j.heliyon.2024.e26613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Human immunodeficiency virus (HIV)-1 infection is an important public health problem worldwide. After primary HIV-1 infection, transcribed HIV-1 DNA is integrated into the host genome, serving as a reservoir of the virus and hindering a definite cure. Although highly active antiretroviral therapy suppresses active viral replication, resulting in undetectable levels of HIV RNA in the blood, a viral rebound can be detected after a few weeks of treatment interruption. This supports the concept that there is a stable HIV-1 reservoir in people living with HIV-1. Recently, a few individuals with HIV infection were reported to be probably cured by hematopoietic stem transplantation (HSCT). The underlying mechanism for this success involved transfusion of uninfected hematopoietic stem and progenitor cells (HSPCs) from CCR5-mutated donors who were naturally resistant to HIV infection. Thus, gene editing technology to provide HIV-resistant HSPC has promise in the treatment of HIV infections by HSCT. In this study, we aimed to find HIV-infected individuals likely to achieve a definite cure via gene editing HSCT. We screened for total HIV proviral DNA by Alu PCR in peripheral blood mononuclear cells (PBMCs) of 20 HIV-infected individuals with prolonged viral suppression. We assessed the amount of intact proviral DNA via a modified intact proviral DNA assay (IPDA) in purified peripheral CD34+ HSPCs. PBMCs from all 20 individuals were positive for the gag gene in Alu PCR, and peripheral CD34+ HSPCs were IPDA-negative for six individuals. Our results suggested that these six HIV-infected individuals could be candidates for further studies into the ability of gene editing HSCT to lead to a definite HIV cure.
Collapse
Affiliation(s)
- Boonrat Tassaneetrithep
- Center of Research Excellence in Immunoregulation, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Angsana Phuphuakrat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Thailand
| | | | - Thongkoon Priengprom
- Center of Research Excellence in Immunoregulation, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Wannisa Khamaikawin
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Thailand
| | | | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| |
Collapse
|
21
|
Matsuda K, Maeda K. HIV Reservoirs and Treatment Strategies toward Curing HIV Infection. Int J Mol Sci 2024; 25:2621. [PMID: 38473868 DOI: 10.3390/ijms25052621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Combination antiretroviral therapy (cART) has significantly improved the prognosis of individuals living with human immunodeficiency virus (HIV). Acquired immunodeficiency syndrome has transformed from a fatal disease to a treatable chronic infection. Currently, effective and safe anti-HIV drugs are available. Although cART can reduce viral production in the body of the patient to below the detection limit, it cannot eliminate the HIV provirus integrated into the host cell genome; hence, the virus will be produced again after cART discontinuation. Therefore, research into a cure (or remission) for HIV has been widely conducted. In this review, we focus on drug development targeting cells latently infected with HIV and assess the progress including our current studies, particularly in terms of the "Shock and Kill", and "Block and Lock" strategies.
Collapse
Affiliation(s)
- Kouki Matsuda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kenji Maeda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
22
|
Kumar S, Bajpai P, Joyce C, Kabra SK, Lodha R, Burton DR, Briney B, Luthra K. B cell repertoire sequencing of HIV-1 pediatric elite-neutralizers identifies multiple broadly neutralizing antibody clonotypes. Front Immunol 2024; 15:1272493. [PMID: 38433846 PMCID: PMC10905035 DOI: 10.3389/fimmu.2024.1272493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction A limited subset of HIV-1 infected adult individuals typically after at least 2-3 years of chronic infection, develop broadly neutralizing antibodies (bnAbs), suggesting that highly conserved neutralizing epitopes on the HIV-1 envelope glycoprotein are difficult for B cell receptors to effectively target, during natural infection. Recent studies have shown the evolution of bnAbs in HIV-1 infected infants. Methods We used bulk BCR sequencing (BCR-seq) to profile the B cell receptors from longitudinal samples (3 time points) collected from a rare pair of antiretroviralnaïve, HIV-1 infected pediatric monozygotic twins (AIIMS_329 and AIIMS_330) who displayed elite plasma neutralizing activity against HIV-1. Results BCR-seq of both twins revealed convergent antibody characteristics including V-gene use, CDRH3 lengths and somatic hypermutation (SHM). Further, antibody clonotypes with genetic features similar to highly potent bnAbs isolated from adults showed ongoing development in donor AIIMS_330 but not in AIIMS_329, corroborating our earlier findings based on plasma bnAbs responses. An increase in SHM was observed in sequences of the IgA isotype from AIIMS_330. Discussion This study suggests that children living with chronic HIV-1 can develop clonotypes of HIV-1 bnAbs against multiple envelope epitopes similar to those isolated from adults, highlighting that such B cells could be steered to elicit bnAbs responses through vaccines aimed to induce bnAbs against HIV-1 in a broad range of people including children.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Prashant Bajpai
- International Centre for Genetic Engineering and Biotechnology (ICGEB)-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Collin Joyce
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- Multi-omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA, United States
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
Reeves DB, Rigau DN, Romero A, Zhang H, Simonetti FR, Varriale J, Hoh R, Zhang L, Smith KN, Montaner LJ, Rubin LH, Gange SJ, Roan NR, Tien PC, Margolick JB, Peluso MJ, Deeks SG, Schiffer JT, Siliciano JD, Siliciano RF, Antar AAR. Mild HIV-specific selective forces overlaying natural CD4+ T cell dynamics explain the clonality and decay dynamics of HIV reservoir cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24302704. [PMID: 38405967 PMCID: PMC10888981 DOI: 10.1101/2024.02.13.24302704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRβ) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRβ and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.
Collapse
|
24
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
25
|
Jansen J, Kroeze S, Man S, Andreini M, Bakker JW, Zamperini C, Tarditi A, Kootstra NA, Geijtenbeek TBH. Noncanonical-NF-κB activation and DDX3 inhibition reduces the HIV-1 reservoir by elimination of latently infected cells ex-vivo. Microbiol Spectr 2024; 12:e0318023. [PMID: 38051053 PMCID: PMC10783037 DOI: 10.1128/spectrum.03180-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/28/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE HIV-1 continues to be a major global health challenge. Current HIV-1 treatments are effective but need lifelong adherence. An HIV-1 cure should eliminate the latent viral reservoir that persists in people living with HIV-1. Different methods have been investigated that focus on reactivation and subsequent elimination of the HIV-1 reservoir, and it is becoming clear that a combination of compounds with different mechanisms of actions might be more effective. Here, we target two host factors, inhibitor of apoptosis proteins that control apoptosis and the DEAD-box helicase DDX3, facilitating HIV mRNA transport/translation. We show that targeting of these host factors with SMAC mimetics and DDX3 inhibitors induce reversal of viral latency and eliminate HIV-1-infected cells in vitro and ex vivo.
Collapse
Affiliation(s)
- Jade Jansen
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Stefanie Kroeze
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Shirley Man
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Matteo Andreini
- First Health Pharmaceuticals B.V, Amsterdam, the Netherlands
| | | | | | - Alessia Tarditi
- First Health Pharmaceuticals B.V, Amsterdam, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Yoon H, Dean LS, Jiyarom B, Khadka VS, Deng Y, Nerurkar VR, Chow DC, Shikuma CM, Devendra G, Koh Y, Park J. Single-cell RNA sequencing reveals characteristics of myeloid cells in post-acute sequelae of SARS-CoV-2 patients with persistent respiratory symptoms. Front Immunol 2024; 14:1268510. [PMID: 38259488 PMCID: PMC10800799 DOI: 10.3389/fimmu.2023.1268510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Although our understanding of the immunopathology and subsequent risk and severity of COVID-19 disease is evolving, a detailed account of immune responses that contribute to the long-term consequences of pulmonary complications in COVID-19 infection remains unclear. Few studies have detailed the immune and cytokine profiles associated with post-acute sequelae of SARS-CoV-2 infection (PASC) with persistent pulmonary symptoms. The dysregulation of the immune system that drives pulmonary sequelae in COVID-19 survivors and PASC sufferers remains largely unknown. Results To characterize the immunological features of pulmonary PASC (PPASC), we performed droplet-based single-cell RNA sequencing (scRNA-seq) to study the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from a participant naïve to SARS-CoV-2 (Control) (n=1) and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC) (n=2). After integrating scRNA-seq data with a naïve participant from a published dataset, 11 distinct cell populations were identified based on the expression of canonical markers. The proportion of myeloid-lineage cells ([MLCs]; CD14+/CD16+monocytes, and dendritic cells) was increased in PPASC (n=2) compared to controls (n=2). MLCs from PPASC displayed up-regulation of genes associated with pulmonary symptoms/fibrosis, while glycolysis metabolism-related genes were downregulated. Similarly, pathway analysis showed that fibrosis-related (VEGF, WNT, and SMAD) and cell death pathways were up-regulated, but immune pathways were down-regulated in PPASC. Further comparison of PPASC with scRNA-seq data with Severe COVID-19 (n=4) data demonstrated enrichment of fibrotic transcriptional signatures. In PPASC, we observed interactive VEGF ligand-receptor pairs among MLCs, and network modules in CD14+ (cluster 4) and CD16+ (Cluster 5) monocytes displayed a significant enrichment for biological pathways linked to adverse COVID-19 outcomes, fibrosis, and angiogenesis. Further analysis revealed a distinct metabolic alteration in MLCs with a down-regulation of glycolysis/gluconeogenesis in PPASC compared to SARS-CoV-2 naïve samples. Conclusion Analysis of a small scRNA-seq dataset demonstrated alterations in the immune response and cellular landscape in PPASC. The presence of elevated MLC levels and their corresponding gene signatures associated with fibrosis, immune response suppression, and altered metabolic states suggests a potential role in PPASC development.
Collapse
Affiliation(s)
- Hyundong Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Logan S. Dean
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Vedbar S. Khadka
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI, United States
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI, United States
| | - Vivek R. Nerurkar
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Dominic C. Chow
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Gehan Devendra
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Pulmonary and Critical Care, Queen’s Medical Center, Honolulu, HI, United States
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Juwon Park
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| |
Collapse
|
27
|
Kruglova N, Shepelev M. Increasing Gene Editing Efficiency via CRISPR/Cas9- or Cas12a-Mediated Knock-In in Primary Human T Cells. Biomedicines 2024; 12:119. [PMID: 38255224 PMCID: PMC10813735 DOI: 10.3390/biomedicines12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
T lymphocytes represent a promising target for genome editing. They are primarily modified to recognize and kill tumor cells or to withstand HIV infection. In most studies, T cell genome editing is performed using the CRISPR/Cas technology. Although this technology is easily programmable and widely accessible, its efficiency of T cell genome editing was initially low. Several crucial improvements were made in the components of the CRISPR/Cas technology and their delivery methods, as well as in the culturing conditions of T cells, before a reasonable editing level suitable for clinical applications was achieved. In this review, we summarize and describe the aforementioned parameters that affect human T cell editing efficiency using the CRISPR/Cas technology, with a special focus on gene knock-in.
Collapse
Affiliation(s)
- Natalia Kruglova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, 119334 Moscow, Russia;
| | | |
Collapse
|
28
|
Li X, Chen Z, Ye W, Yu J, Zhang X, Li Y, Niu Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Xia C, Xia J, Wu J. High-throughput CRISPR technology: a novel horizon for solid organ transplantation. Front Immunol 2024; 14:1295523. [PMID: 38239344 PMCID: PMC10794540 DOI: 10.3389/fimmu.2023.1295523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
29
|
Peterson JJ, Lewis CA, Burgos SD, Manickam A, Xu Y, Rowley AA, Clutton G, Richardson B, Zou F, Simon JM, Margolis DM, Goonetilleke N, Browne EP. A histone deacetylase network regulates epigenetic reprogramming and viral silencing in HIV-infected cells. Cell Chem Biol 2023; 30:1617-1633.e9. [PMID: 38134881 PMCID: PMC10754471 DOI: 10.1016/j.chembiol.2023.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
A long-lived latent reservoir of HIV-1-infected CD4 T cells persists with antiretroviral therapy and prevents cure. We report that the emergence of latently infected primary CD4 T cells requires the activity of histone deacetylase enzymes HDAC1/2 and HDAC3. Data from targeted HDAC molecules, an HDAC3-directed PROTAC, and CRISPR-Cas9 knockout experiments converge on a model where either HDAC1/2 or HDAC3 targeting can prevent latency, whereas all three enzymes must be targeted to achieve latency reversal. Furthermore, HDACi treatment targets features of memory T cells that are linked to proviral latency and persistence. Latency prevention is associated with increased H3K9ac at the proviral LTR promoter region and decreased H3K9me3, suggesting that this epigenetic switch is a key proviral silencing mechanism that depends on HDAC activity. These findings support further mechanistic work on latency initiation and eventual clinical studies of HDAC inhibitors to interfere with latency initiation.
Collapse
Affiliation(s)
- Jackson J Peterson
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Samuel D Burgos
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Ashokkumar Manickam
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Allison A Rowley
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Brian Richardson
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Fei Zou
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Jeremy M Simon
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC 27514, USA; UNC Neuroscience Center, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA; Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Edward P Browne
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA.
| |
Collapse
|
30
|
Cossarini F, Aberg JA, Chen BK, Mehandru S. Viral Persistence in the Gut-Associated Lymphoid Tissue and Barriers to HIV Cure. AIDS Res Hum Retroviruses 2023; 40:54-65. [PMID: 37450338 PMCID: PMC10790554 DOI: 10.1089/aid.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
More than 40 years after the first reported cases of what then became known as acquired immunodeficiency syndrome (AIDS), tremendous progress has been achieved in transforming the disease from almost universally fatal to a chronic manageable condition. Nonetheless, the efforts to find a preventative vaccine or a cure for the underlying infection with Human Immunodeficiency Virus (HIV) remain largely unsuccessful. Many challenges intrinsic to the virus characteristics and host response need to be overcome for either goal to be achieved. This article will review the obstacles to an effective HIV cure, specifically the steps involved in the generation of HIV latency, focusing on the role of the gut-associated lymphoid tissue, which has received less attention compared with the peripheral blood, despite being the largest repository of lymphoid tissue in the human body, and a large site for HIV persistence.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
- Division of Gastroenterology, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
| |
Collapse
|
31
|
Lässig M, Mustonen V, Nourmohammad A. Steering and controlling evolution - from bioengineering to fighting pathogens. Nat Rev Genet 2023; 24:851-867. [PMID: 37400577 PMCID: PMC11137064 DOI: 10.1038/s41576-023-00623-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Control interventions steer the evolution of molecules, viruses, microorganisms or other cells towards a desired outcome. Applications range from engineering biomolecules and synthetic organisms to drug, therapy and vaccine design against pathogens and cancer. In all these instances, a control system alters the eco-evolutionary trajectory of a target system, inducing new functions or suppressing escape evolution. Here, we synthesize the objectives, mechanisms and dynamics of eco-evolutionary control in different biological systems. We discuss how the control system learns and processes information about the target system by sensing or measuring, through adaptive evolution or computational prediction of future trajectories. This information flow distinguishes pre-emptive control strategies by humans from feedback control in biotic systems. We establish a cost-benefit calculus to gauge and optimize control protocols, highlighting the fundamental link between predictability of evolution and efficacy of pre-emptive control.
Collapse
Affiliation(s)
- Michael Lässig
- Institute for Biological Physics, University of Cologne, Cologne, Germany.
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Armita Nourmohammad
- Department of Physics, University of Washington, Seattle, WA, USA.
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
32
|
Falcinelli SD, Cooper-Volkheimer AD, Semenova L, Wu E, Richardson A, Ashokkumar M, Margolis DM, Archin NM, Rudin CD, Murdoch D, Browne EP. Impact of Cannabis Use on Immune Cell Populations and the Viral Reservoir in People With HIV on Suppressive Antiretroviral Therapy. J Infect Dis 2023; 228:1600-1609. [PMID: 37606598 PMCID: PMC10681869 DOI: 10.1093/infdis/jiad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection remains incurable due to the persistence of a viral reservoir despite antiretroviral therapy (ART). Cannabis (CB) use is prevalent amongst people with HIV (PWH), but the impact of CB on the latent HIV reservoir has not been investigated. METHODS Peripheral blood cells from a cohort of PWH who use CB and a matched cohort of PWH who do not use CB on ART were evaluated for expression of maturation/activation markers, HIV-specific T-cell responses, and intact proviral DNA. RESULTS CB use was associated with increased abundance of naive T cells, reduced effector T cells, and reduced expression of activation markers. CB use was also associated with reduced levels of exhausted and senescent T cells compared to nonusing controls. HIV-specific T-cell responses were unaffected by CB use. CB use was not associated with intact or total HIV DNA frequency in CD4 T cells. CONCLUSIONS This analysis is consistent with the hypothesis that CB use reduces activation, exhaustion, and senescence in the T cells of PWH, and does not impair HIV-specific CD8 T-cell responses. Longitudinal and interventional studies with evaluation of CB exposure are needed to fully evaluate the impact of CB use on the HIV reservoir.
Collapse
Affiliation(s)
- Shane D Falcinelli
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Lesia Semenova
- Department of Computer Science, Duke University, Durham, North Carolina, USA
| | - Ethan Wu
- Department of Computer Science, Duke University, Durham, North Carolina, USA
| | | | - Manickam Ashokkumar
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancie M Archin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cynthia D Rudin
- Department of Computer Science, Duke University, Durham, North Carolina, USA
| | - David Murdoch
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Edward P Browne
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
33
|
Li S, Wang H, Guo N, Su B, Lambotte O, Zhang T. Targeting the HIV reservoir: chimeric antigen receptor therapy for HIV cure. Chin Med J (Engl) 2023; 136:2658-2667. [PMID: 37927030 PMCID: PMC10684145 DOI: 10.1097/cm9.0000000000002904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/07/2023] Open
Abstract
ABSTRACT Although antiretroviral therapy (ART) can reduce the viral load in the plasma to undetectable levels in human immunodeficiency virus (HIV)-infected individuals, ART alone cannot completely eliminate HIV due to its integration into the host cell genome to form viral reservoirs. To achieve a functional cure for HIV infection, numerous preclinical and clinical studies are underway to develop innovative immunotherapies to eliminate HIV reservoirs in the absence of ART. Early studies have tested adoptive T-cell therapies in HIV-infected individuals, but their effectiveness was limited. In recent years, with the technological progress and great success of chimeric antigen receptor (CAR) therapy in the treatment of hematological malignancies, CAR therapy has gradually shown its advantages in the field of HIV infection. Many studies have identified a variety of HIV-specific CAR structures and types of cytolytic effector cells. Therefore, CAR therapy may be beneficial for enhancing HIV immunity, achieving HIV control, and eliminating HIV reservoirs, gradually becoming a promising strategy for achieving a functional HIV cure. In this review, we provide an overview of the design of anti-HIV CAR proteins, the cell types of anti-HIV CAR (including CAR T cells, CAR natural killer cells, and CAR-encoding hematopoietic stem/progenitor cells), the clinical application of CAR therapy in HIV infection, and the prospects and challenges in anti-HIV CAR therapy for maintaining viral suppression and eliminating HIV reservoirs.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Na Guo
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Olivier Lambotte
- Department of Internal Medicine, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, University Paris Saclay, Paris 94270, France
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
34
|
Zhao JH, Wang YW, Yang J, Tong ZJ, Wu JZ, Wang YB, Wang QX, Li QQ, Yu YC, Leng XJ, Chang L, Xue X, Sun SL, Li HM, Ding N, Duan JA, Li NG, Shi ZH. Natural products as potential lead compounds to develop new antiviral drugs over the past decade. Eur J Med Chem 2023; 260:115726. [PMID: 37597436 DOI: 10.1016/j.ejmech.2023.115726] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Virus infection has been one of the main causes of human death since the ancient times. Even though more and more antiviral drugs have been approved in clinic, long-term use can easily lead to the emergence of drug resistance and side effects. Fortunately, there are many kinds of metabolites which were produced by plants, marine organisms and microorganisms in nature with rich structural skeletons, and they are natural treasure house for people to find antiviral active substances. Aiming at many types of viruses that had caused serious harm to human health in recent years, this review summarizes the natural products with antiviral activity that had been reported for the first time in the past ten years, we also sort out the source, chemical structure and safety indicators in order to provide potential lead compounds for the research and development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing-Han Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yue-Wei Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
35
|
Wietgrefe SW, Anderson J, Duan L, Southern PJ, Zuck P, Wu G, Howell BJ, Reilly C, Kroon E, Chottanapund S, Buranapraditkun S, Sacdalan C, Tulmethakaan N, Colby DJ, Chomchey N, Prueksakaew P, Pinyakorn S, Trichavaroj R, Mitchell JL, Trautmann L, Hsu D, Vasan S, Manasnayakorn S, de Souza M, Tovanabutra S, Schuetz A, Robb ML, Phanuphak N, Ananworanich J, Schacker TW, Haase AT. Initial productive and latent HIV infections originate in vivo by infection of resting T cells. J Clin Invest 2023; 133:e171501. [PMID: 37733443 PMCID: PMC10645380 DOI: 10.1172/jci171501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023] Open
Abstract
Productively infected cells are generally thought to arise from HIV infection of activated CD4+ T cells, and these infected activated cells are thought to be a recurring source of latently infected cells when a portion of the population transitions to a resting state. We discovered and report here that productively and latently infected cells can instead originate from direct infection of resting CD4+ T cell populations in lymphoid tissues in Fiebig I, the earliest stage of detectable HIV infection. We found that direct infection of resting CD4+ T cells was correlated with the availability of susceptible target cells in lymphoid tissues largely restricted to resting CD4+ T cells in which expression of pTEFb enabled productive infection, and we documented persistence of HIV-producing resting T cells during antiretroviral therapy (ART). Thus, we provide evidence of a mechanism by which direct infection of resting T cells in lymphoid tissues to generate productively and latently infected cells creates a mechanism by which the productively infected cells can replenish both populations and maintain two sources of virus from which HIV infection can rebound, even if ART is instituted at the earliest stage of detectable infection.
Collapse
Affiliation(s)
| | - Jodi Anderson
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lijie Duan
- Department of Microbiology and Immunology and
| | | | - Paul Zuck
- Department of Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Guoxin Wu
- Department of Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Bonnie J. Howell
- Department of Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Cavan Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eugène Kroon
- Institute of HIV Research and Innovation, Bangkok, Thailand
- SEARCH Research Foundation, Bangkok, Thailand
| | | | - Supranee Buranapraditkun
- Department of Medicine and
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center)
| | - Carlo Sacdalan
- SEARCH Research Foundation, Bangkok, Thailand
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Donn J. Colby
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | | | | | - Suteeraporn Pinyakorn
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | | | - Julie L. Mitchell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, Oregon, USA
| | - Lydie Trautmann
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, Oregon, USA
| | - Denise Hsu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Sopark Manasnayakorn
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mark de Souza
- Institute of HIV Research and Innovation, Bangkok, Thailand
- SEARCH Research Foundation, Bangkok, Thailand
| | - Sodsai Tovanabutra
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Alexandra Schuetz
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | | | - Jintanat Ananworanich
- Amsterdam University Medical Centers, Department of Global Health, Amsterdam Institute for Global Health & Development, Amsterdam, Netherlands
| | - Timothy W. Schacker
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
36
|
Bernal S, Puertas MC, Morón-López S, Cranston RD, Urrea V, Dalmau J, Salgado M, Gálvez C, Erkizia I, McGowan I, Scherrer D, Revollo B, Sirera G, Santos JR, Clotet B, Paredes R, Martinez-Picado J. Impact of Obefazimod on Viral Persistence, Inflammation, and Immune Activation in People With Human Immunodeficiency Virus on Suppressive Antiretroviral Therapy. J Infect Dis 2023; 228:1280-1291. [PMID: 37395474 PMCID: PMC10629703 DOI: 10.1093/infdis/jiad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Persistence of viral reservoirs has been observed in people with human immunodeficiency virus (HIV), despite long-term antiretroviral therapy (ART), and likely contributes to chronic immune activation and inflammation. Obefazimod is a novel drug that inhibits human immunodeficiency virus type 1 (HIV-1) replication and reduces inflammation. Here we assess whether obefazimod is safe and might impact HIV-1 persistence, chronic immune activation, and inflammation in ART-suppressed people with HIV. METHODS We evaluated obefazimod-related adverse events, changes in cell-associated HIV-1 DNA and RNA, residual viremia, immunophenotype, and inflammation biomarkers in blood and rectal tissue. We compared 24 ART-suppressed people with HIV who received daily doses of 50 mg obefazimod for 12 weeks (n = 13) or 150 mg for 4 weeks (n = 11) and 12 HIV-negative individuals who received 50 mg for 4 weeks. RESULTS The 50- and 150-mg doses of obefazimod were safe, although the 150-mg dose showed inferior tolerability. The 150-mg dose reduced HIV-1 DNA (P = .008, median fold change = 0.6) and residual viremia in all individuals with detectable viremia at baseline. Furthermore, obefazimod upregulated miR-124 in all participants and reduced the activation markers CD38, HLA-DR, and PD-1 and several inflammation biomarkers. CONCLUSIONS The effect of obefazimod by reducing chronic immune activation and inflammation suggests a potential role for the drug in virus remission strategies involving other compounds that can activate immune cells, such as latency-reversing agents.
Collapse
Affiliation(s)
- Silvia Bernal
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Department of Infectious Diseases and Immunity, School of Medicine, University of Vic–Central University of Catalonia, Vic, Spain
| | - Maria C Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Morón-López
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ross D Cranston
- Department of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Víctor Urrea
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | | | - María Salgado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Germans Trias i Pujol Research Institute, Badalona, Spain
| | | | | | - Ian McGowan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Boris Revollo
- Fundació Lluita contra les Infeccions, Badalona, Spain
- Department of Infectious Diseases, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Guillem Sirera
- Fundació Lluita contra les Infeccions, Badalona, Spain
- Department of Infectious Diseases, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - José Ramón Santos
- Fundació Lluita contra les Infeccions, Badalona, Spain
- Department of Infectious Diseases, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Department of Infectious Diseases and Immunity, School of Medicine, University of Vic–Central University of Catalonia, Vic, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Fundació Lluita contra les Infeccions, Badalona, Spain
- Department of Infectious Diseases, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Department of Infectious Diseases and Immunity, School of Medicine, University of Vic–Central University of Catalonia, Vic, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Fundació Lluita contra les Infeccions, Badalona, Spain
- Department of Infectious Diseases, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Department of Infectious Diseases and Immunity, School of Medicine, University of Vic–Central University of Catalonia, Vic, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Germans Trias i Pujol Research Institute, Badalona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
37
|
Papadakis M, Karniadakis I, Mazonakis N, Akinosoglou K, Tsioutis C, Spernovasilis N. Immune Checkpoint Inhibitors and Infection: What Is the Interplay? In Vivo 2023; 37:2409-2420. [PMID: 37905657 PMCID: PMC10621463 DOI: 10.21873/invivo.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 11/02/2023]
Abstract
Immune checkpoint molecules are receptors expressed on immune cells, especially T-cells, which activate immunosuppressive pathways and lead them to a state known as T-cell exhaustion. Immune checkpoint inhibitors (ICIs) constitute a group of specific antibodies that target these molecules, restoring T-cell effector function. Several ICIs have already been approved by the FDA as therapeutic options for certain malignancies. However, evidence in the literature remains unclear regarding the possible risk of infection in patients receiving this treatment. A thorough examination of existing literature was carried out to investigate whether the use of ICIs increases the likelihood of specific infections and to explore the potential beneficial effects of ICIs on the treatment of infections. Our review found most infectious complications are related to immunosuppressive therapy for immune-related adverse events caused by checkpoint blockade. Current evidence shows that ICIs per se do not seem to generally increase the risk of infection, yet they might increase susceptibility to certain infections, such as tuberculosis. On the other hand, reinvigoration of immune responses triggered by ICIs might play a significant role in pathogen clearance, establishing a possible positive impact of ICIs, especially on chronic infectious diseases, such as HIV infection. Data from preclinical models are limited and larger clinical trials are warranted to shed more light on the effect of immune checkpoint blockade on specific pathogens.
Collapse
Affiliation(s)
- Michail Papadakis
- Third Department of Internal Medicine and Diabetes Center, Agios Panteleimon General Hospital of Nikaia, Piraeus, Greece
| | - Ioannis Karniadakis
- Cardiff Transplant Unit, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, U.K
| | - Nikolaos Mazonakis
- Department of Internal Medicine, Thoracic Diseases General Hospital Sotiria, Athens, Greece
| | - Karolina Akinosoglou
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, Patras, Greece
| | | | | |
Collapse
|
38
|
Pawar P, Gokavi J, Wakhare S, Bagul R, Ghule U, Khan I, Ganu V, Mukherjee A, Shete A, Rao A, Saxena V. MiR-155 Negatively Regulates Anti-Viral Innate Responses among HIV-Infected Progressors. Viruses 2023; 15:2206. [PMID: 38005883 PMCID: PMC10675553 DOI: 10.3390/v15112206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/26/2023] Open
Abstract
HIV infection impairs host immunity, leading to progressive disease. An anti-retroviral treatment efficiently controls viremia but cannot completely restore the immune dysfunction in HIV-infected individuals. Both host and viral factors determine the rate of disease progression. Among the host factors, innate immunity plays a critical role; however, the mechanism(s) associated with dysfunctional innate responses are poorly understood among HIV disease progressors, which was investigated here. The gene expression profiles of TLRs and innate cytokines in HIV-infected (LTNPs and progressors) and HIV-uninfected individuals were examined. Since the progressors showed a dysregulated TLR-mediated innate response, we investigated the role of TLR agonists in restoring the innate functions of the progressors. The stimulation of PBMCs with TLR3 agonist-poly:(I:C), TLR7 agonist-GS-9620 and TLR9 agonist-ODN 2216 resulted in an increased expression of IFN-α, IFN-β and IL-6. Interestingly, the expression of IFITM3, BST-2, IFITM-3, IFI-16 was also increased upon stimulation with TLR3 and TLR7 agonists, respectively. To further understand the molecular mechanism involved, the role of miR-155 was explored. Increased miR-155 expression was noted among the progressors. MiR-155 inhibition upregulated the expression of TLR3, NF-κB, IRF-3, TNF-α and the APOBEC-3G, IFITM-3, IFI-16 and BST-2 genes in the PBMCs of the progressors. To conclude, miR-155 negatively regulates TLR-mediated cytokines as wel l as the expression of host restriction factors, which play an important role in mounting anti-HIV responses; hence, targeting miR-155 might be helpful in devising strategic approaches towards alleviating HIV disease progression.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Jyotsna Gokavi
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Shilpa Wakhare
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Rajani Bagul
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Ujjwala Ghule
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Ishrat Khan
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, India; (I.K.); (A.M.)
| | - Varada Ganu
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, India; (I.K.); (A.M.)
| | - Ashwini Shete
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Amrita Rao
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| |
Collapse
|
39
|
Lamers SL, Fogel GB, Liu ES, Nolan DJ, Rose R, McGrath MS. HIV-1 subtypes maintain distinctive physicochemical signatures in Nef domains associated with immunoregulation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105514. [PMID: 37832752 PMCID: PMC10842591 DOI: 10.1016/j.meegid.2023.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND HIV subtype is associated with varied rates of disease progression. The HIV accessory protein, Nef, continues to be present during antiretroviral therapy (ART) where it has numerous immunoregulatory effects. In this study, we analyzed Nef sequences from HIV subtypes A1, B, C, and D using a machine learning approach that integrates functional amino acid information to identify if unique physicochemical features are associated with Nef functional/structural domains in a subtype-specific manner. METHODS 2253 sequences representing subtypes A1, B, C, and D were aligned and domains with known functional properties were scored based on amino acid physicochemical properties. Following feature generation, we used statistical pruning and evolved neural networks (ENNs) to determine if we could successfully classify subtypes. Next, we used ENNs to identify the top five key Nef physicochemical features applied to specific immunoregulatory domains that differentiated subtypes. A signature pattern analysis was performed to the assess amino acid diversity in sub-domains that differentiated each subtype. RESULTS In validation studies, ENNs successfully differentiated each subtype at A1 (87.2%), subtype B (89.5%), subtype C (91.7%), and subtype D (85.1%). Our feature-based domain scoring, followed by t-tests, and a similar ENN identified subtype-specific domain-associated features. Subtype A1 was associated with alterations in Nef CD4 binding domain; subtype B was associated with alterations with the AP-2 Binding domain; subtype C was associated with alterations in a structural Alpha Helix domain; and, subtype D was associated with alterations in a Beta-Sheet domain. CONCLUSIONS Recent studies have focused on HIV Nef as a driver of immunoregulatory disease in those HIV infected and on ART. Nef acts through a complex mixture of interactions that are directly linked to the key features of the subtype-specific domains we identified with the ENN. The study supports the hypothesis that varied Nef subtypes contribute to subtype-specific disease progression.
Collapse
Affiliation(s)
| | | | - Enoch S Liu
- Natural Selection, San Diego, California, USA
| | | | | | | |
Collapse
|
40
|
Dragoni F, Kwaa AK, Traut CC, Veenhuis RT, Woldemeskel BA, Camilo-Contreras A, Raymond HE, Dykema AG, Scully EP, Rosecrans AM, Smith KN, Bushman FD, Simonetti FR, Blankson JN. Proviral location affects cognate peptide-induced virus production and immune recognition of HIV-1-infected T cell clones. J Clin Invest 2023; 133:e171097. [PMID: 37698927 PMCID: PMC10617777 DOI: 10.1172/jci171097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUNDHIV-1-infected CD4+ T cells contribute to latent reservoir persistence by proliferating while avoiding immune recognition. Integration features of intact proviruses in elite controllers (ECs) and people on long-term therapy suggest that proviruses in specific chromosomal locations can evade immune surveillance. However, direct evidence of this mechanism is missing.METHODSIn this case report, we characterized integration sites and full genome sequences of expanded T cell clones in an EC before and after chemoradiation. We identified the cognate peptide of infected clones to investigate cell proliferation and virus production induced by T cell activation, and susceptibility to autologous CD8+ T cells.RESULTSThe proviral landscape was dominated by 2 large clones with replication-competent proviruses integrated into zinc finger (ZNF) genes (ZNF470 and ZNF721) in locations previously associated with deeper latency. A third nearly intact provirus, with a stop codon in Pol, was integrated into an intergenic site. Upon stimulation with cognate Gag peptides, infected clones proliferated extensively and produced virus, but the provirus in ZNF721 was 200-fold less inducible. While autologous CD8+ T cells decreased the proliferation of cells carrying the intergenic provirus, they had no effect on cells with the provirus in the ZNF721 gene.CONCLUSIONSWe provide direct evidence that upon activation of infected clones by cognate antigen, the lower inducibility of intact proviruses in ZNF genes can result in immune evasion and persistence.FUNDINGOffice of the NIH Director and National Institute of Dental & Craniofacial Research; NIAID, NIH; Johns Hopkins University Center for AIDS Research.
Collapse
Affiliation(s)
| | | | | | - Rebecca T. Veenhuis
- Department of Molecular and Comparative Pathobiology, and
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Hayley E. Raymond
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Arbor G. Dykema
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, and
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Kellie N. Smith
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, and
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Joel N. Blankson
- Department of Medicine
- Department of Molecular and Comparative Pathobiology, and
| |
Collapse
|
41
|
D’Orso I, Forst CV. Mathematical Models of HIV-1 Dynamics, Transcription, and Latency. Viruses 2023; 15:2119. [PMID: 37896896 PMCID: PMC10612035 DOI: 10.3390/v15102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
HIV-1 latency is a major barrier to curing infections with antiretroviral therapy and, consequently, to eliminating the disease globally. The establishment, maintenance, and potential clearance of latent infection are complex dynamic processes and can be best described with the help of mathematical models followed by experimental validation. Here, we review the use of viral dynamics models for HIV-1, with a focus on applications to the latent reservoir. Such models have been used to explain the multi-phasic decay of viral load during antiretroviral therapy, the early seeding of the latent reservoir during acute infection and the limited inflow during treatment, the dynamics of viral blips, and the phenomenon of post-treatment control. Finally, we discuss that mathematical models have been used to predict the efficacy of potential HIV-1 cure strategies, such as latency-reversing agents, early treatment initiation, or gene therapies, and to provide guidance for designing trials of these novel interventions.
Collapse
Affiliation(s)
- Iván D’Orso
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Christian V. Forst
- Department of Genetics and Genomic Sciences, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
42
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
43
|
Reeves DB, Bacchus-Souffan C, Fitch M, Abdel-Mohsen M, Hoh R, Ahn H, Stone M, Hecht F, Martin J, Deeks SG, Hellerstein MK, McCune JM, Schiffer JT, Hunt PW. Estimating the contribution of CD4 T cell subset proliferation and differentiation to HIV persistence. Nat Commun 2023; 14:6145. [PMID: 37783718 PMCID: PMC10545742 DOI: 10.1038/s41467-023-41521-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
Persistence of HIV in people living with HIV (PWH) on suppressive antiretroviral therapy (ART) has been linked to physiological mechanisms of CD4+ T cells. Here, in the same 37 male PWH on ART we measure longitudinal kinetics of HIV DNA and cell turnover rates in five CD4 cell subsets: naïve (TN), stem-cell- (TSCM), central- (TCM), transitional- (TTM), and effector-memory (TEM). HIV decreases in TTM and TEM but not in less-differentiated subsets. Cell turnover is ~10 times faster than HIV clearance in memory subsets, implying that cellular proliferation consistently creates HIV DNA. The optimal mathematical model for these integrated data sets posits HIV DNA also passages between CD4 cell subsets via cellular differentiation. Estimates are heterogeneous, but in an average participant's year ~10 (in TN and TSCM) and ~104 (in TCM, TTM, TEM) proviruses are generated by proliferation while ~103 proviruses passage via cell differentiation (per million CD4). In simulations, therapies blocking proliferation and/or enhancing differentiation could reduce HIV DNA by 1-2 logs over 3 years. In summary, HIV exploits cellular proliferation and differentiation to persist during ART but clears faster in more proliferative/differentiated CD4 cell subsets and the same physiological mechanisms sustaining HIV might be temporarily modified to reduce it.
Collapse
Affiliation(s)
- Daniel B Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
- Department of Global Health, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| | | | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California, University Avenue and Oxford St, Berkeley, CA, 94720, USA
| | | | - Rebecca Hoh
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Haelee Ahn
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Mars Stone
- Vitalant Research Institute, 360 Spear St Suite 200, San Francisco, CA, 94105, USA
| | - Frederick Hecht
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Jeffrey Martin
- Epidemiology & Biostatistics, University of California San Francisco School of Medicine, 550 16th Street, San Francisco, CA, 94158, USA
| | - Steven G Deeks
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, University Avenue and Oxford St, Berkeley, CA, 94720, USA
| | - Joseph M McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation, 500 5th Ave N, Seattle, WA, 98109, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Allergy and Infectious Diseases, School of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Peter W Hunt
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| |
Collapse
|
44
|
Malyshkina A, Bayer W, Podschwadt P, Otto L, Karakoese Z, Sutter K, Bruderek K, Wang B, Lavender KJ, Santiago ML, Leipe PM, Elsner C, Esser S, Brandau S, Gunzer M, Dittmer U. Immunotherapy-induced cytotoxic T follicular helper cells reduce numbers of retrovirus-infected reservoir cells in B cell follicles. PLoS Pathog 2023; 19:e1011725. [PMID: 37883584 PMCID: PMC10602292 DOI: 10.1371/journal.ppat.1011725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Antiretroviral therapy (ART) transformed HIV from a life-threatening disease to a chronic condition. However, eliminating the virus remains an elusive therapy goal. For several decades, Friend virus (FV) infection serves as a murine model to study retrovirus immunity. Similar to HIV, FV persists at low levels in lymph nodes B cell follicles avoiding elimination by immune cells. Such immune-privileged reservoirs exclude cytotoxic T cells from entry. However, CXCR5+ T cells are permitted to traffic through germinal centers. This marker is predominantly expressed by CD4+ follicular helper T cells (Tfh). Therefore, we explored immunotherapy to induce cytotoxic Tfh, which are rarely found under physiological conditions. The TNF receptor family member CD137 was first identified as a promising target for cancer immunotherapy. We demonstrated that FV-infected mice treatment with αCD137 antibody resulted in an induction of the cytotoxic program in Tfh. The therapy significantly increased numbers of cytotoxic Tfh within B cell follicles and contributed to viral load reduction. Moreover, αCD137 antibody combined with ART delayed virus rebound upon treatment termination without disturbing the lymph node architecture or antibody responses. Thus, αCD137 antibody therapy might be a novel strategy to target the retroviral reservoir and an interesting approach for HIV cure research.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philip Podschwadt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zehra Karakoese
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Baoxiao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerry J. Lavender
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Pia Madeleine Leipe
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Esser
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Damour A, Slaninova V, Radulescu O, Bertrand E, Basyuk E. Transcriptional Stochasticity as a Key Aspect of HIV-1 Latency. Viruses 2023; 15:1969. [PMID: 37766375 PMCID: PMC10535884 DOI: 10.3390/v15091969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This review summarizes current advances in the role of transcriptional stochasticity in HIV-1 latency, which were possible in a large part due to the development of single-cell approaches. HIV-1 transcription proceeds in bursts of RNA production, which stem from the stochastic switching of the viral promoter between ON and OFF states. This switching is caused by random binding dynamics of transcription factors and nucleosomes to the viral promoter and occurs at several time scales from minutes to hours. Transcriptional bursts are mainly controlled by the core transcription factors TBP, SP1 and NF-κb, the chromatin status of the viral promoter and RNA polymerase II pausing. In particular, spontaneous variability in the promoter chromatin creates heterogeneity in the response to activators such as TNF-α, which is then amplified by the Tat feedback loop to generate high and low viral transcriptional states. This phenomenon is likely at the basis of the partial and stochastic response of latent T cells from HIV-1 patients to latency-reversing agents, which is a barrier for the development of shock-and-kill strategies of viral eradication. A detailed understanding of the transcriptional stochasticity of HIV-1 and the possibility to precisely model this phenomenon will be important assets to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Alexia Damour
- MFP UMR 5234 CNRS, Université de Bordeaux, 33076 Bordeaux, France;
| | - Vera Slaninova
- IGH UMR 9002 CNRS, Université de Montpellier, 34094 Montpellier, France;
| | - Ovidiu Radulescu
- LPHI, UMR 5294 CNRS, University of Montpellier, 34095 Montpellier, France;
| | - Edouard Bertrand
- IGH UMR 9002 CNRS, Université de Montpellier, 34094 Montpellier, France;
| | - Eugenia Basyuk
- MFP UMR 5234 CNRS, Université de Bordeaux, 33076 Bordeaux, France;
| |
Collapse
|
46
|
Hafer TL, Felton A, Delgado Y, Srinivasan H, Emerman M. A CRISPR Screen of HIV Dependency Factors Reveals That CCNT1 Is Non-Essential in T Cells but Required for HIV-1 Reactivation from Latency. Viruses 2023; 15:1863. [PMID: 37766271 PMCID: PMC10535513 DOI: 10.3390/v15091863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
We sought to explore the hypothesis that host factors required for HIV-1 replication also play a role in latency reversal. Using a CRISPR gene library of putative HIV dependency factors, we performed a screen to identify genes required for latency reactivation. We identified several HIV-1 dependency factors that play a key role in HIV-1 latency reactivation including ELL, UBE2M, TBL1XR1, HDAC3, AMBRA1, and ALYREF. The knockout of Cyclin T1 (CCNT1), a component of the P-TEFb complex that is important for transcription elongation, was the top hit in the screen and had the largest effect on HIV latency reversal with a wide variety of latency reversal agents. Moreover, CCNT1 knockout prevents latency reactivation in a primary CD4+ T cell model of HIV latency without affecting the activation of these cells. RNA sequencing data showed that CCNT1 regulates HIV-1 proviral genes to a larger extent than any other host gene and had no significant effects on RNA transcripts in primary T cells after activation. We conclude that CCNT1 function is non-essential in T cells but is absolutely required for HIV latency reversal.
Collapse
Affiliation(s)
- Terry L. Hafer
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA;
| | - Abby Felton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yennifer Delgado
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Harini Srinivasan
- Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
47
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
48
|
Benlarbi M, Richard J, Bourassa C, Tolbert WD, Chartrand-Lefebvre C, Gendron-Lepage G, Sylla M, El-Far M, Messier-Peet M, Guertin C, Turcotte I, Fromentin R, Verly MM, Prévost J, Clark A, Mothes W, Kaufmann DE, Maldarelli F, Chomont N, Bégin P, Tremblay C, Baril JG, Trottier B, Trottier S, Duerr R, Pazgier M, Durand M, Finzi A. Plasmatic HIV-1 soluble gp120 is associated with immune dysfunction and inflammation in ART-treated individuals with undetectable viremia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.15.23294128. [PMID: 37645879 PMCID: PMC10462214 DOI: 10.1101/2023.08.15.23294128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background Chronic inflammation persists in some people living with HIV (PLWH), even during antiretroviral therapy (ART) and is associated with premature aging. The gp120 subunit of the HIV-1 envelope glycoprotein can shed from viral and cellular membranes and can be detected in plasma and tissues, showing immunomodulatory properties even in the absence of detectable viremia. We evaluated whether plasmatic soluble gp120 (sgp120) and a family of gp120-specific anti-cluster A antibodies, which were previously linked to CD4 depletion in vitro , could contribute to chronic inflammation, immune dysfunction, and sub-clinical cardiovascular disease in participants of the Canadian HIV and Aging cohort (CHACS) with undetectable viremia. Methods Cross-sectional assessment of plasmatic sgp120 and anti-cluster A antibodies was performed in 386 individuals from CHACS. Their association with pro-inflammatory cytokines, as well as subclinical coronary artery disease measured by computed tomography coronary angiography was assessed using linear regression models. Results In individuals with high levels of sgp120, anti-cluster A antibodies inversely correlated with CD4 count (p=0.042) and CD4:CD8 ratio (p=0.004). The presence of sgp120 was associated with increased plasma levels of IL-6. In participants with detectable atherosclerotic plaque and detectable sgp120, sgp120 levels, anti-cluster A antibodies and their combination correlated positively with the total volume of atherosclerotic plaques (p=0.01, 0.018 and 0.006, respectively). Conclusion Soluble gp120 may act as a pan toxin causing immune dysfunction and sustained inflammation in a subset of PLWH, contributing to the development of premature comorbidities. Whether drugs targeting sgp120 could mitigate HIV-associated comorbidities in PLWH with suppressed viremia warrants further studies. Key points Soluble gp120 is detected in the plasma of people living with HIV-1 with undetectable viremia. The presence of soluble gp120 and anti-cluster A antibodies is associated with immune dysfunction, chronic inflammation, and sub-clinical cardiovascular disease.
Collapse
|
49
|
Trunfio M, Chaillon A, Beliakova-Bethell N, Deiss R, Letendre SL, Riggs PK, Higgins N, Gianella S. Beyond the Syndemic of Opioid Use Disorders and HIV: The Impact of Opioids on Viral Reservoirs. Viruses 2023; 15:1712. [PMID: 37632053 PMCID: PMC10458944 DOI: 10.3390/v15081712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
People with HIV are more likely to have opioid use disorder and to be prescribed opioids for chronic pain than the general population; however, the effects of opioids on the immune system and HIV persistence have not been fully elucidated. Opioids may affect HIV reservoirs during their establishment, maintenance, and reactivation by enhancing HIV infectivity and replication due to upregulation of co-receptors and impairment of innate antiviral responses. Opioids may also modulate immune cell functioning and microbial translocation and can reverse viral latency. In this review, we summarize the current findings for and against the modulating effects of opioids on HIV cellular and anatomical reservoirs, highlighting the current limitations that affect in vitro, ex vivo, and in vivo studies in the field. We propose further research targets and potential strategies to approach this topic.
Collapse
Affiliation(s)
- Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences at Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
- HIV Neurobehavioral Research Program, Department of Psychiatry, University of California San Diego (UCSD), San Diego, CA 92103, USA
| | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Nadejda Beliakova-Bethell
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
- VA San Diego Healthcare System and Veterans Medical Research Foundation, La Jolla, CA 92037, USA
| | - Robert Deiss
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
- VA San Diego Healthcare System and Veterans Medical Research Foundation, La Jolla, CA 92037, USA
- Department of Medicine, Owen Clinic, University of California San Diego (UCSD), San Diego, CA 92037, USA
| | - Scott L. Letendre
- HIV Neurobehavioral Research Program, Department of Psychiatry, University of California San Diego (UCSD), San Diego, CA 92103, USA
| | - Patricia K. Riggs
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Niamh Higgins
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
50
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|