1
|
Evseev P, Gutnik D, Evpak A, Kasimova A, Miroshnikov K. Origin, Evolution and Diversity of φ29-like Phages-Review and Bioinformatic Analysis. Int J Mol Sci 2024; 25:10838. [PMID: 39409167 PMCID: PMC11476376 DOI: 10.3390/ijms251910838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Phage φ29 and related bacteriophages are currently the smallest known tailed viruses infecting various representatives of both Gram-positive and Gram-negative bacteria. They are characterised by genomic content features and distinctive properties that are unique among known tailed phages; their characteristics include protein primer-driven replication and a packaging process characteristic of this group. Searches conducted using public genomic databases revealed in excess of 2000 entries, including bacteriophages, phage plasmids and sequences identified as being archaeal that share the characteristic features of phage φ29. An analysis of predicted proteins, however, indicated that the metagenomic sequences attributed as archaeal appear to be misclassified and belong to bacteriophages. An analysis of the translated polypeptides of major capsid proteins (MCPs) of φ29-related phages indicated the dissimilarity of MCP sequences to those of almost all other known Caudoviricetes groups and a possible distant relationship to MCPs of T7-like (Autographiviridae) phages. Sequence searches conducted using HMM revealed the relatedness between the main structural proteins of φ29-like phages and an unusual lactococcal phage, KSY1 (Chopinvirus KSY1), whose genome contains two genes of RNA polymerase that are similar to the RNA polymerases of phages of the Autographiviridae and Schitoviridae (N4-like) families. An analysis of the tail tube proteins of φ29-like phages indicated their dissimilarity of the lower collar protein to tail proteins of all other viral groups, but revealed its possible distant relatedness with proteins of toxin translocation complexes. The combination of the unique features and distinctive origin of φ29-related phages suggests the categorisation of this vast group in a new order or as a new taxon of a higher rank.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
| | - Daria Gutnik
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorsakaya Street, 3, 664033 Irkutsk, Russia
| | - Alena Evpak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Anastasia Kasimova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, 119991 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| |
Collapse
|
2
|
Hobbs SJ, Nomburg J, Doudna JA, Kranzusch PJ. Animal and bacterial viruses share conserved mechanisms of immune evasion. Cell 2024; 187:5530-5539.e8. [PMID: 39197447 PMCID: PMC11455605 DOI: 10.1016/j.cell.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Animal and bacterial cells sense and defend against viral infections using evolutionarily conserved antiviral signaling pathways. Here, we show that viruses overcome host signaling using mechanisms of immune evasion that are directly shared across the eukaryotic and prokaryotic kingdoms of life. Structures of animal poxvirus proteins that inhibit host cGAS-STING signaling demonstrate architectural and catalytic active-site homology shared with bacteriophage Acb1 proteins, which inactivate CBASS anti-phage defense. In bacteria, phage Acb1 proteins are viral enzymes that degrade host cyclic nucleotide immune signals. Structural comparisons of poxvirus protein-2'3'-cGAMP and phage Acb1-3'3'-cGAMP complexes reveal a universal mechanism of host nucleotide immune signal degradation and explain kingdom-specific additions that enable viral adaptation. Chimeric bacteriophages confirm that animal poxvirus proteins are sufficient to evade immune signaling in bacteria. Our findings identify a mechanism of immune evasion conserved between animal and bacterial viruses and define shared rules that explain host-virus interactions across multiple kingdoms of life.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jason Nomburg
- Gladstone-UCSF Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Gladstone-UCSF Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Moody ERR, Álvarez-Carretero S, Mahendrarajah TA, Clark JW, Betts HC, Dombrowski N, Szánthó LL, Boyle RA, Daines S, Chen X, Lane N, Yang Z, Shields GA, Szöllősi GJ, Spang A, Pisani D, Williams TA, Lenton TM, Donoghue PCJ. The nature of the last universal common ancestor and its impact on the early Earth system. Nat Ecol Evol 2024; 8:1654-1666. [PMID: 38997462 PMCID: PMC11383801 DOI: 10.1038/s41559-024-02461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/04/2024] [Indexed: 07/14/2024]
Abstract
The nature of the last universal common ancestor (LUCA), its age and its impact on the Earth system have been the subject of vigorous debate across diverse disciplines, often based on disparate data and methods. Age estimates for LUCA are usually based on the fossil record, varying with every reinterpretation. The nature of LUCA's metabolism has proven equally contentious, with some attributing all core metabolisms to LUCA, whereas others reconstruct a simpler life form dependent on geochemistry. Here we infer that LUCA lived ~4.2 Ga (4.09-4.33 Ga) through divergence time analysis of pre-LUCA gene duplicates, calibrated using microbial fossils and isotope records under a new cross-bracing implementation. Phylogenetic reconciliation suggests that LUCA had a genome of at least 2.5 Mb (2.49-2.99 Mb), encoding around 2,600 proteins, comparable to modern prokaryotes. Our results suggest LUCA was a prokaryote-grade anaerobic acetogen that possessed an early immune system. Although LUCA is sometimes perceived as living in isolation, we infer LUCA to have been part of an established ecological system. The metabolism of LUCA would have provided a niche for other microbial community members and hydrogen recycling by atmospheric photochemistry could have supported a modestly productive early ecosystem.
Collapse
Affiliation(s)
- Edmund R R Moody
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | | | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - James W Clark
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Holly C Betts
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Lénárd L Szánthó
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- MTA-ELTE 'Lendulet' Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, HUN-REN Center for Ecological Research, Budapest, Hungary
| | | | - Stuart Daines
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Xi Chen
- Department of Earth Sciences, University College London, London, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Graham A Shields
- Department of Earth Sciences, University College London, London, UK
| | - Gergely J Szöllősi
- MTA-ELTE 'Lendulet' Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, HUN-REN Center for Ecological Research, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Sun X, Lian Y, Tian T, Cui Z. Advancements in Functional Nanomaterials Inspired by Viral Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402980. [PMID: 39058214 DOI: 10.1002/smll.202402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Virus-like particles (VLPs) are nanostructures composed of one or more structural proteins, exhibiting stable and symmetrical structures. Their precise compositions and dimensions provide versatile opportunities for modifications, enhancing their functionality. Consequently, VLP-based nanomaterials have gained widespread adoption across diverse domains. This review focuses on three key aspects: the mechanisms of viral capsid protein self-assembly into VLPs, design methods for constructing multifunctional VLPs, and strategies for synthesizing multidimensional nanomaterials using VLPs. It provides a comprehensive overview of the advancements in virus-inspired functional nanomaterials, encompassing VLP assembly, functionalization, and the synthesis of multidimensional nanomaterials. Additionally, this review explores future directions, opportunities, and challenges in the field of VLP-based nanomaterials, aiming to shed light on potential advancements and prospects in this exciting area of research.
Collapse
Affiliation(s)
- Xianxun Sun
- College of Life Science, Jiang Han University, Wuhan, 430056, China
| | - Yindong Lian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Tian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
5
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
6
|
Mbewe W, Mukasa S, Ochwo-Ssemakula M, Sseruwagi P, Tairo F, Ndunguru J, Duffy S. Cassava brown streak virus evolves with a nucleotide-substitution rate that is typical for the family Potyviridae. Virus Res 2024; 346:199397. [PMID: 38750679 PMCID: PMC11145536 DOI: 10.1016/j.virusres.2024.199397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The ipomoviruses (family Potyviridae) that cause cassava brown streak disease (cassava brown streak virus [CBSV] and Uganda cassava brown streak virus [UCBSV]) are damaging plant pathogens that affect the sustainability of cassava production in East and Central Africa. However, little is known about the rate at which the viruses evolve and when they emerged in Africa - which inform how easily these viruses can host shift and resist RNAi approaches for control. We present here the rates of evolution determined from the coat protein gene (CP) of CBSV (Temporal signal in a UCBSV dataset was not sufficient for comparable analysis). Our BEAST analysis estimated the CBSV CP evolves at a mean rate of 1.43 × 10-3 nucleotide substitutions per site per year, with the most recent common ancestor of sampled CBSV isolates existing in 1944 (95% HPD, between years 1922 - 1963). We compared the published measured and estimated rates of evolution of CPs from ten families of plant viruses and showed that CBSV is an average-evolving potyvirid, but that members of Potyviridae evolve more quickly than members of Virgaviridae and the single representatives of Betaflexiviridae, Bunyaviridae, Caulimoviridae and Closteroviridae.
Collapse
Affiliation(s)
- Willard Mbewe
- Department of Biological Sciences, Malawi University of Science and Technology, P. O. Box 5196, Limbe, Malawi.
| | - Settumba Mukasa
- School of Agriculture and Environmental Science, Department of Agricultural Production, P. O. Box 7062, Makerere University, Kampala, Uganda
| | - Mildred Ochwo-Ssemakula
- School of Agriculture and Environmental Science, Department of Agricultural Production, P. O. Box 7062, Makerere University, Kampala, Uganda
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, United States.
| |
Collapse
|
7
|
Trgovec-Greif L, Hellinger HJ, Mainguy J, Pfundner A, Frishman D, Kiening M, Webster NS, Laffy PW, Feichtinger M, Rattei T. VOGDB-Database of Virus Orthologous Groups. Viruses 2024; 16:1191. [PMID: 39205165 PMCID: PMC11360334 DOI: 10.3390/v16081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Computational models of homologous protein groups are essential in sequence bioinformatics. Due to the diversity and rapid evolution of viruses, the grouping of protein sequences from virus genomes is particularly challenging. The low sequence similarities of homologous genes in viruses require specific approaches for sequence- and structure-based clustering. Furthermore, the annotation of virus genomes in public databases is not as consistent and up to date as for many cellular genomes. To tackle these problems, we have developed VOGDB, which is a database of virus orthologous groups. VOGDB is a multi-layer database that progressively groups viral genes into groups connected by increasingly remote similarity. The first layer is based on pair-wise sequence similarities, the second layer is based on the sequence profile alignments, and the third layer uses predicted protein structures to find the most remote similarity. VOGDB groups allow for more sensitive homology searches of novel genes and increase the chance of predicting annotations or inferring phylogeny. VOGD B uses all virus genomes from RefSeq and partially reannotates them. VOGDB is updated with every RefSeq release. The unique feature of VOGDB is the inclusion of both prokaryotic and eukaryotic viruses in the same clustering process, which makes it possible to explore old evolutionary relationships of the two groups. VOGDB is freely available at vogdb.org under the CC BY 4.0 license.
Collapse
Affiliation(s)
- Lovro Trgovec-Greif
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Doctoral School of Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Hans-Jörg Hellinger
- Doctoral School of Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Armaments and Defence Technology Agency, Austria
| | | | - Alexander Pfundner
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Doctoral School of Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University Munich, 85350 Freising, Germany
| | - Michael Kiening
- Department of Bioinformatics, School of Life Sciences, Technical University Munich, 85350 Freising, Germany
| | - Nicole Suzanne Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville 4810, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7000, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane 4072, Australia
| | - Patrick William Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville 4810, Australia
| | - Michael Feichtinger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
8
|
Kuhn JH, Botella L, de la Peña M, Vainio EJ, Krupovic M, Lee BD, Navarro B, Sabanadzovic S, Simmonds P, Turina M. Ambiviricota, a novel ribovirian phylum for viruses with viroid-like properties. J Virol 2024; 98:e0083124. [PMID: 38856119 PMCID: PMC11265453 DOI: 10.1128/jvi.00831-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Fungi harbor a vast diversity of mobile genetic elements (MGEs). Recently, novel fungal MGEs, tentatively referred to as 'ambiviruses,' were described. 'Ambiviruses' have single-stranded RNA genomes of about 4-5 kb in length that contain at least two open reading frames (ORFs) in non-overlapping ambisense orientation. Both ORFs are conserved among all currently known 'ambiviruses,' and one of them encodes a distinct viral RNA-directed RNA polymerase (RdRP), the hallmark gene of ribovirian kingdom Orthornavirae. However, 'ambivirus' genomes are circular and predicted to replicate via a rolling-circle mechanism. Their genomes are also predicted to form rod-like structures and contain ribozymes in various combinations in both sense and antisense orientations-features reminiscent of viroids, virusoids, ribozyvirian kolmiovirids, and yet-unclassified MGEs (such as 'epsilonviruses,' 'zetaviruses,' and some 'obelisks'). As a first step toward the formal classification of 'ambiviruses,' the International Committee on Taxonomy of Viruses (ICTV) recently approved the establishment of a novel ribovirian phylum, Ambiviricota, to accommodate an initial set of 20 members with well-annotated genome sequences.
Collapse
Affiliation(s)
- Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Benjamin D. Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Sead Sabanadzovic
- Department of Agricultural Science and Plant Protection, Mississippi State University, Mississippi State, Mississippi, USA
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Massimo Turina
- Institute for Sustainable Plant Protection-CNR, Torino, Italy
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
9
|
Li S, Bu J, Pan X, Li Q, Zuo X, Xiao G, Du J, Zhang LK, Xia B, Gao Z. SARS-CoV-2 envelope protein-derived extracellular vesicles act as potential media for viral spillover. J Med Virol 2024; 96:e29782. [PMID: 39011762 DOI: 10.1002/jmv.29782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024]
Abstract
Extracellular vesicles (EVs) are shown to be a novel viral transmission model capable of increasing a virus's tropism. According to our earlier research, cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or transfected with envelope protein plasmids generate a novel type of EVs that are micrometer-sized and able to encase virus particles. Here, we showed the capacity of these EVs to invade various animals both in vitro and in vivo independent of the angiotensin-converting enzyme 2 receptor. First, via macropinocytosis, intact EVs produced from Vero E6 (monkey) cells were able to enter cells from a variety of animals, including cats, dogs, bats, hamsters, and minks, and vice versa. Second, when given to zebrafish with cutaneous wounds, the EVs showed favorable stability in aqueous environments and entered the fish. Moreover, infection of wild-type (WT) mice with heterogeneous EVs carrying SARS-CoV-2 particles led to a strong cytokine response and a notable amount of lung damage. Conversely, free viral particles did not infect WT mice. These results highlight the variety of processes behind viral transmission and cross-species evolution by indicating that EVs may be possible vehicles for SARS-CoV-2 spillover and raising risk concerns over EVs' potential for viral gene transfer.
Collapse
Affiliation(s)
- Shuangqu Li
- Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiwen Bu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiguang Li
- Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Zuo
- Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiulin Du
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Bingqing Xia
- Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaobing Gao
- Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, 22 Chinese Academy of Science, Zhongshan, China
| |
Collapse
|
10
|
Gómez-Márquez J. The Lithbea Domain. Adv Biol (Weinh) 2024; 8:e2300679. [PMID: 38386280 DOI: 10.1002/adbi.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The tree of life is the evolutionary metaphor for the past and present connections of all cellular organisms. Today, to speak of biodiversity is not only to speak of archaea, bacteria, and eukaryotes, but they should also consider the "new biodiversity" that includes viruses and synthetic organisms, which represent the new forms of life created in laboratories. There is even a third group of artificial entities that, although not living systems, pretend to imitate the living. To embrace and organize all this new biodiversity, I propose the creation of a new domain, with the name Lithbea (from life-on-the-border entites) The criteria for inclusion as members of Lithbea are: i) the acellular nature of the living system, ii) its origin in laboratory manipulation, iii) showing new biological traits, iv) the presence of exogenous genetic elements, v) artificial or inorganic nature. Within Lithbea there are two subdomains: Virworld (from virus world) which includes all viruses, regarded as lifeless living systems, and classified according to the International Committee on Taxonomy of Viruses (ICTV), and ii) Humade (from human-made) which includes all synthetic organisms and artificial entities. The relationships of Lithbea members to the three classical woesian domains and their implications are briefly discussed.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain
| |
Collapse
|
11
|
Qu W, Hua C, Wang Y, Wang Y, Zhang L, Wang Z, Shi W, Chen F, Wu Z, Wang Q, Lu L, Jiang S, Sui L, Li Y. Lineage Replacement and Genetic Changes of Four HR-HPV Types during the Period of Vaccine Coverage: A Six-Year Retrospective Study in Eastern China. Vaccines (Basel) 2024; 12:411. [PMID: 38675793 PMCID: PMC11053858 DOI: 10.3390/vaccines12040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE This study aimed to provide clinical evidence for lineage replacement and genetic changes of High-Risk Human Papillomavirus (HR-HPV) during the period of vaccine coverage and characterize those changes in eastern China. METHODS This study consisted of two stages. A total of 90,583 patients visiting the Obstetrics and Gynecology Hospital of Fudan University from March 2018 to March 2022 were included in the HPV typing analysis. Another 1076 patients who tested positive for HPV31, 33, 52, or 58 from November 2020 to August 2023 were further included for HPV sequencing. Vaccination records, especially vaccine types and the third dose administration time, medical history, and cervical cytology samples were collected. Viral DNA sequencing was then conducted, followed by phylogenetic analysis and sequence alignment. RESULTS The overall proportion of HPV31 and 58 infections increased by 1.23% and 0.51%, respectively, while infection by HPV33 and 52 decreased by 0.42% and 1.43%, respectively, within the four-year vaccination coverage period. The proportion of HPV31 C lineage infections showed a 22.17% increase in the vaccinated group, while that of the HPV58 A2 sublineage showed a 12.96% increase. T267A and T274N in the F-G loop of HPV31 L1 protein, L150F in the D-E loop, and T375N in the H-I loop of HPV58 L1 protein were identified as high-frequency escape-related mutations. CONCLUSIONS Differences in epidemic lineage changes and dominant mutation accumulation may result in a proportional difference in trends of HPV infection. New epidemic lineages and high-frequency escape-related mutations should be noted during the vaccine coverage period, and regional epidemic variants should be considered during the development of next-generation vaccines.
Collapse
Affiliation(s)
- Wenjie Qu
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (W.Q.)
| | - Chen Hua
- Shanghai Institute of Infection Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China; (C.H.)
| | - Yaping Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (W.Q.)
| | - Yan Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (W.Q.)
- Qingpu Branch of the Yangtze River Delta Integrated Demonstration Zone, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China
| | - Lu Zhang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (W.Q.)
| | - Zhiheng Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (W.Q.)
- Qingpu Branch of the Yangtze River Delta Integrated Demonstration Zone, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China
| | - Wenqian Shi
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (W.Q.)
| | - Fang Chen
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (W.Q.)
| | - Zhiyong Wu
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (W.Q.)
- Qingpu Branch of the Yangtze River Delta Integrated Demonstration Zone, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China
| | - Qian Wang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 201508, China
| | - Lu Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 201508, China
| | - Shibo Jiang
- Shanghai Institute of Infection Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China; (C.H.)
| | - Long Sui
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (W.Q.)
| | - Yanyun Li
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (W.Q.)
- Qingpu Branch of the Yangtze River Delta Integrated Demonstration Zone, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China
| |
Collapse
|
12
|
Domingo E, Witzany G. Quasispecies productivity. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:11. [PMID: 38372790 DOI: 10.1007/s00114-024-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
The quasispecies theory is a helpful concept in the explanation of RNA virus evolution and behaviour, with a relevant impact on methods used to fight viral diseases. It has undergone some adaptations to integrate new empirical data, especially the non-deterministic nature of mutagenesis, and the variety of behavioural motifs in cooperation, competition, communication, innovation, integration, and exaptation. Also, the consortial structure of quasispecies with complementary roles of memory genomes of minority populations better fits the empirical data than did the original concept of a master sequence and its mutant spectra. The high productivity of quasispecies variants generates unique sequences that never existed before and will never exist again. In the present essay, we underline that such sequences represent really new ontological entities, not just error copies of previous ones. Their primary unique property, the incredible variant production, is suggested here as quasispecies productivity, which replaces the error-replication narrative to better fit into a new relationship between mankind and living nature in the twenty-first century.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | |
Collapse
|
13
|
Liu J, Zhang B, Wang L, Peng J, Wu K, Liu T. The development of droplet-based microfluidic virus detection technology for human infectious diseases. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:971-978. [PMID: 38299435 DOI: 10.1039/d3ay01795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Virus-based human infectious diseases have a significant negative impact on people's health and social development. The need for quick, accurate, and early viral infection detection in preventive medicine is expanding. A microfluidic control is particularly suitable for point-of-care-testing virus diagnosis due to its advantages of low sample consumption, quick detection speed, simple operation, multi-functional integration, small size, and easy portability. It is also thought to have significant development potential and a wide range of application prospects in the research on virus detection technology. In an effort to aid researchers in creating novel microfluidic tools for virus detection, this review highlights recent developments of droplet-based microfluidics in virus detection research and also discusses the challenges and opportunities for rapid virus detection.
Collapse
Affiliation(s)
- Jiayan Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Bingyang Zhang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Li Wang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Jingjie Peng
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Kun Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
Meredith LW, Aboualy M, Ochola R, Ozel M, Abubakar A, Barakat A. A phased strengthening of laboratory capacity in the Eastern Mediterranean Region during the COVID-19 pandemic. Influenza Other Respir Viruses 2024; 18:e13225. [PMID: 38322196 PMCID: PMC10844753 DOI: 10.1111/irv.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 02/08/2024] Open
Abstract
The Eastern Mediterranean Region (EMR) faces ongoing challenges in its public health system due to limited resources, logistical issues, and political disruptions. The COVID-19 pandemic accelerated the need for stronger laboratory capacities to handle the increased demand for testing. In a phased response, EMR countries utilized the National Influenza Centers to rapidly establish and scale molecular testing for SARS-CoV-2, the causative agent of COVID-19. The expansion of capacity included strong collaborations between public health bodies and private and academic sectors to decentralize and expand testing to the subnational level. To ensure that the quality of testing was not impacted by rapid expansion, national and subnational laboratories were enrolled in external quality assurance programs for the duration of the response. Implementation of genomic surveillance was prioritized for variant tracking, leading to the establishment of regional sequencing reference laboratories and the distribution of MinION sequencing platforms to complex emergency countries who previously had limited experience with pathogen sequencing. Challenges included a lack of technical expertise, including in implementing novel diagnostic assays and sequencing, a lack of bioinformatics expertise in the region, and significant logistical and procurement challenges. The collaborative approach, coordinated through the WHO Eastern Mediterranean Regional Office, enabled all 22 countries to achieve SARS-CoV-2 diagnostic capabilities, highlighting the pivotal role of laboratories in global health security.
Collapse
Affiliation(s)
- Luke W. Meredith
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| | - Mustafa Aboualy
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| | - Rachel Ochola
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| | - Mehmet Ozel
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| | - Abdinasir Abubakar
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| | - Amal Barakat
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| |
Collapse
|
15
|
Forgia M, Daghino S, Chiapello M, Ciuffo M, Turina M. New clades of viruses infecting the obligatory biotroph Bremia lactucae representing distinct evolutionary trajectory for viruses infecting oomycetes. Virus Evol 2024; 10:veae003. [PMID: 38361818 PMCID: PMC10868552 DOI: 10.1093/ve/veae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Recent advances in high throughput sequencing (HTS) approaches allowed a broad exploration of viromes from different fungal hosts, unveiling a great diversity of mycoviruses with interesting evolutionary features. The word mycovirus historically applies also to viruses infecting oomycetes but most studies are on viruses infecting fungi, with less mycoviruses found and characterized in oomycetes, particularly in the obligatory biotrophs. We, here, describe the first virome associated to Bremia lactucae, the causal agent of lettuce downy mildew, which is an important biotrophic pathogen for lettuce production and a model system for the molecular aspects of the plant-oomycetes interactions. Among the identified viruses, we could detect (1) two new negative sense ssRNA viruses related to the yueviruses, (2) the first example of permuted RdRp in a virus infecting fungi/oomycetes, (3) a new group of bipartite dsRNA viruses showing evidence of recent bi-segmentation and concomitantly, a possible duplication event bringing a bipartite genome to tripartite, (4) a first representative of a clade of viruses with evidence of recombination between distantly related viruses, (5) a new open reading frame (ORF)an virus encoding for an RdRp with low homology to known RNA viruses, and (6) a new virus, belonging to riboviria but not conserved enough to provide a conclusive phylogenetic placement that shows evidence of a recombination event between a kitrinoviricota-like and a pisuviricota-like sequence. The results obtained show a great diversity of viruses and evolutionary mechanisms previously unreported for oomycetes-infecting viruses, supporting the existence of a large diversity of oomycetes-specific viral clades ancestral of many fungal and insect virus clades.
Collapse
Affiliation(s)
| | - Stefania Daghino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Branze 39, Brescia 25123, Italy
| |
Collapse
|
16
|
Wang L, Li Q, Wen X, Zhang X, Wang S, Qin Q. Dissecting the early and late endosomal pathways of Singapore grouper iridovirus by single-particle tracking in living cells. Int J Biol Macromol 2024; 256:128336. [PMID: 38013078 DOI: 10.1016/j.ijbiomac.2023.128336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/10/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Iridoviruses are large DNA viruses that infect a wide range of invertebrates and lower vertebrates, causing serious threats to ecological security and aquaculture industry worldwide. However, the mechanisms underlying intracellular transport of iridovirus remain unknown. In this study, the transport of Singapore grouper iridovirus (SGIV) in early endosomes (EEs) and late endosomes (LEs) was explored by single-particle tracking technology. SGIV employs EEs to move rapidly from the cell membrane to the nucleus, and this long-range transport is divided into "slow-fast-slow" stages. SGIV within LEs mainly underwent oscillatory movements near the nucleus. Furthermore, SGIV entered newly formed EEs and LEs, respectively, possibly based on the interaction between the viral major capsid protein and Rab5/Rab7. Importantly, interruption of EEs and LEs by the dominant negative mutants of Rab5 and Rab7 significantly inhibited the movement of SGIV, suggesting the important roles of Rab5 and Rab7 in virus transport. In addition, it seems that SGIV needs to enter clathrin-coated vesicles to move from actin to microtubules before EEs carry the virus moving along microtubules. Together, our results for the first time provide a model whereby iridovirus transport depending on EEs and LEs, helping to clarify the mechanism underlying iridovirus infection, and provide a convenient tactic to investigate the dynamic infection of large DNA virus.
Collapse
Affiliation(s)
- Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Qiang Li
- College of Oceanology and meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaozhi Wen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xinyue Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China.
| |
Collapse
|
17
|
Wu J, Cai Y, Jiang N, Qian Y, Lyu R, You Q, Zhang F, Tao H, Zhu H, Nawaz W, Chen D, Wu Z. Pralatrexate inhibited the replication of varicella zoster virus and vesicular stomatitis virus: An old dog with new tricks. Antiviral Res 2024; 221:105787. [PMID: 38145756 DOI: 10.1016/j.antiviral.2023.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Varicella zoster virus (VZV) is associated with herpes zoster (HZ) or herpes zoster ophthalmicus (HZO). All antiviral agents currently licensed for the management of VZV replication via modulating different mechanisms, and the resistance is on the rise. There is a need to develop new antiviral agents with distinct mechanisms of action and adequate safety profiles. Pralatrexate (PDX) is a fourth-generation anti-folate agent with an inhibitory activity on folate (FA) metabolism and has been used as an anti-tumor drug. We observed that PDX possessed potent inhibitory activity against VZV infection. In this study, we reported the antiviral effects and the underlying mechanism of PDX against VZV infection. The results showed that PDX not only inhibited VZV replication in vitro and in mice corneal tissues but also reduced the inflammatory response and apoptosis induced by viral infection. Furthermore, PDX treatment showed a similar anti-VSV inhibitory effect in both in vitro and in vivo models. Mechanistically, PDX inhibited viral replication by interrupting the substrate supply for de novo purine and thymidine synthesis. In conclusion, this study discovered the potent antiviral activity of PDX with a novel mechanism and presented a new strategy for VZV treatment that targets a cellular metabolic mechanism essential for viral replication. The present study provided a new insight into the development of broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Jing Wu
- Medical School of Nanjing University, Nanjing, China
| | - Yurong Cai
- School of Life Science, Ningxia University, Yinchuan, China
| | - Na Jiang
- Medical School of Nanjing University, Nanjing, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruining Lyu
- Medical School of Nanjing University, Nanjing, China
| | - Qiao You
- Medical School of Nanjing University, Nanjing, China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongji Tao
- Medical School of Nanjing University, Nanjing, China
| | - Haotian Zhu
- Medical School of Nanjing University, Nanjing, China
| | - Waqas Nawaz
- Hȏpital Maisonneuve-Rosemont, School of Medicine, University of Montreal, Canada
| | - Deyan Chen
- Medical School of Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- Medical School of Nanjing University, Nanjing, China; Northern Jiangsu People's Hospital, Affiliated Teaching Hospital of Medical School, Nanjing University, Yangzhou, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; School of Life Science, Ningxia University, Yinchuan, China.
| |
Collapse
|
18
|
Machado TB, Picorelli ACR, de Azevedo BL, de Aquino ILM, Queiroz VF, Rodrigues RAL, Araújo JP, Ullmann LS, dos Santos TM, Marques RE, Guimarães SL, Andrade ACSP, Gularte JS, Demoliner M, Filippi M, Pereira VMAG, Spilki FR, Krupovic M, Aylward FO, Del-Bem LE, Abrahão JS. Gene duplication as a major force driving the genome expansion in some giant viruses. J Virol 2023; 97:e0130923. [PMID: 38092658 PMCID: PMC10734413 DOI: 10.1128/jvi.01309-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/26/2023] [Indexed: 12/22/2023] Open
Abstract
IMPORTANCE Giant viruses are noteworthy not only due to their enormous particles but also because of their gigantic genomes. In this context, a fundamental question has persisted: how did these genomes evolve? Here we present the discovery of cedratvirus pambiensis, featuring the largest genome ever described for a cedratvirus. Our data suggest that the larger size of the genome can be attributed to an unprecedented number of duplicated genes. Further investigation of this phenomenon in other viruses has illuminated gene duplication as a key evolutionary mechanism driving genome expansion in diverse giant viruses. Although gene duplication has been described as a recurrent event in cellular organisms, our data highlights its potential as a pivotal event in the evolution of gigantic viral genomes.
Collapse
Affiliation(s)
- Talita B. Machado
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Agnello C. R. Picorelli
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Bruna L. de Azevedo
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Isabella L. M. de Aquino
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Victória F. Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rodrigo A. L. Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - João Pessoa Araújo
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Leila S. Ullmann
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Thiago M. dos Santos
- Del-Bem Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafael E. Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Samuel L. Guimarães
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Ana Cláudia S. P. Andrade
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Laval, Québec, Canada
| | - Juliana S. Gularte
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Micheli Filippi
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | | | - Fernando R. Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, Paris, France
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease Virginia Tech, Blacksburg, Virginia, USA
| | - Luiz-Eduardo Del-Bem
- Del-Bem Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jônatas S. Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
19
|
Bejerman N, Dietzgen R, Debat H. Novel Tri-Segmented Rhabdoviruses: A Data Mining Expedition Unveils the Cryptic Diversity of Cytorhabdoviruses. Viruses 2023; 15:2402. [PMID: 38140643 PMCID: PMC10747219 DOI: 10.3390/v15122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cytorhabdoviruses (genus Cytorhabdovirus, family Rhabdoviridae) are plant-infecting viruses with enveloped, bacilliform virions. Established members of the genus Cytorhabdovirus have unsegmented single-stranded negative-sense RNA genomes (ca. 10-16 kb) which encode four to ten proteins. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and genomic characterization of 93 novel viruses with genetic and evolutionary cues of cytorhabdoviruses. Strikingly, five unprecedented viruses with tri-segmented genomes were also identified. This finding represents the first tri-segmented viruses in the family Rhabdoviridae, and they should be classified in a novel genus within this family for which we suggest the name "Trirhavirus". Interestingly, the nucleocapsid and polymerase were the only typical rhabdoviral proteins encoded by those tri-segmented viruses, whereas in three of them, a protein similar to the emaravirus (family Fimoviridae) silencing suppressor was found, while the other predicted proteins had no matches in any sequence databases. Genetic distance and evolutionary insights suggest that all these novel viruses may represent members of novel species. Phylogenetic analyses, of both novel and previously classified plant rhabdoviruses, provide compelling support for the division of the genus Cytorhabdovirus into three distinct genera. This proposed reclassification not only enhances our understanding of the evolutionary dynamics within this group of plant rhabdoviruses but also illuminates the remarkable genomic diversity they encompass. This study not only represents a significant expansion of the genomics of cytorhabdoviruses that will enable future research on the evolutionary peculiarity of this genus but also shows the plasticity in the rhabdovirus genome organization with the discovery of tri-segmented members with a unique evolutionary trajectory.
Collapse
Affiliation(s)
- Nicolas Bejerman
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| | - Ralf Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Humberto Debat
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| |
Collapse
|
20
|
Altae-Tran H, Shmakov SA, Makarova KS, Wolf YI, Kannan S, Zhang F, Koonin EV. Diversity, evolution, and classification of the RNA-guided nucleases TnpB and Cas12. Proc Natl Acad Sci U S A 2023; 120:e2308224120. [PMID: 37983496 PMCID: PMC10691335 DOI: 10.1073/pnas.2308224120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 11/22/2023] Open
Abstract
The TnpB proteins are transposon-associated RNA-guided nucleases that are among the most abundant proteins encoded in bacterial and archaeal genomes, but whose functions in the transposon life cycle remain unknown. TnpB appears to be the evolutionary ancestor of Cas12, the effector nuclease of type V CRISPR-Cas systems. We performed a comprehensive census of TnpBs in archaeal and bacterial genomes and constructed a phylogenetic tree on which we mapped various features of these proteins. In multiple branches of the tree, the catalytic site of the TnpB nuclease is rearranged, demonstrating structural and probably biochemical malleability of this enzyme. We identified numerous cases of apparent recruitment of TnpB for other functions of which the most common is the evolution of type V CRISPR-Cas effectors on about 50 independent occasions. In many other cases of more radical exaptation, the catalytic site of the TnpB nuclease is apparently inactivated, suggesting a regulatory function, whereas in others, the activity appears to be retained, indicating that the recruited TnpB functions as a nuclease, for example, as a toxin. These findings demonstrate remarkable evolutionary malleability of the TnpB scaffold and provide extensive opportunities for further exploration of RNA-guided biological systems as well as multiple applications.
Collapse
Affiliation(s)
- Han Altae-Tran
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sergey A. Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Soumya Kannan
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Feng Zhang
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| |
Collapse
|
21
|
Haltom J, Trovao NS, Guarnieri J, Vincent P, Singh U, Tsoy S, O'Leary CA, Bram Y, Widjaja GA, Cen Z, Meller R, Baylin SB, Moss WN, Nikolau BJ, Enguita FJ, Wallace DC, Beheshti A, Schwartz R, Wurtele ES. SARS-CoV-2 Orphan Gene ORF10 Contributes to More Severe COVID-19 Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23298847. [PMID: 38076862 PMCID: PMC10705665 DOI: 10.1101/2023.11.27.23298847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The orphan gene of SARS-CoV-2, ORF10, is the least studied gene in the virus responsible for the COVID-19 pandemic. Recent experimentation indicated ORF10 expression moderates innate immunity in vitro. However, whether ORF10 affects COVID-19 in humans remained unknown. We determine that the ORF10 sequence is identical to the Wuhan-Hu-1 ancestral haplotype in 95% of genomes across five variants of concern (VOC). Four ORF10 variants are associated with less virulent clinical outcomes in the human host: three of these affect ORF10 protein structure, one affects ORF10 RNA structural dynamics. RNA-Seq data from 2070 samples from diverse human cells and tissues reveals ORF10 accumulation is conditionally discordant from that of other SARS-CoV-2 transcripts. Expression of ORF10 in A549 and HEK293 cells perturbs immune-related gene expression networks, alters expression of the majority of mitochondrially-encoded genes of oxidative respiration, and leads to large shifts in levels of 14 newly-identified transcripts. We conclude ORF10 contributes to more severe COVID-19 clinical outcomes in the human host.
Collapse
Affiliation(s)
- Jeffrey Haltom
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Joseph Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Pan Vincent
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Collin A O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zimu Cen
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert Meller
- Morehouse School of Medicine, Atlanta, GA , 30310-1495, USA
| | - Stephen B Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
- Van Andel Research Institute, Grand Rapids, MI 49503
| | - Walter N Moss
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Basil J Nikolau
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA 02155, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104 USA
| | - Robert Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| |
Collapse
|
22
|
Campillo-Balderas JA, Lazcano A, Cottom-Salas W, Jácome R, Becerra A. Pangenomic Analysis of Nucleo-Cytoplasmic Large DNA Viruses. I: The Phylogenetic Distribution of Conserved Oxygen-Dependent Enzymes Reveals a Capture-Gene Process. J Mol Evol 2023; 91:647-668. [PMID: 37526693 PMCID: PMC10598087 DOI: 10.1007/s00239-023-10126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
The Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs) infect a wide range of eukaryotic species, including amoeba, algae, fish, amphibia, arthropods, birds, and mammals. This group of viruses has linear or circular double-stranded DNA genomes whose size spans approximately one order of magnitude, from 100 to 2500 kbp. The ultimate origin of this peculiar group of viruses remains an open issue. Some have argued that NCLDVs' origin may lie in a bacteriophage ancestor that increased its genome size by subsequent recruitment of eukaryotic and bacterial genes. Others have suggested that NCLDVs families originated from cells that underwent an irreversible process of genome reduction. However, the hypothesis that a number of NCLDVs sequences have been recruited from the host genomes has been largely ignored. In the present work, we have performed pangenomic analyses of each of the seven known NCLDVs families. We show that these families' core- and shell genes have cellular homologs, supporting possible escaping-gene events as part of its evolution. Furthermore, the detection of sequences that belong to two protein families (small chain ribonucleotide reductase and Erv1/Air) and to one superfamily [2OG-Fe(II) oxygenases] that are for distribution in all NCLDVs core and shell clusters encoding for oxygen-dependent enzymes suggests that the highly conserved core these viruses originated after the Proterozoic Great Oxidation Event that transformed the terrestrial atmosphere 2.4-2.3 Ga ago.
Collapse
Affiliation(s)
- J A Campillo-Balderas
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
| | - A Lazcano
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
- El Colegio Nacional, Donceles 104, Centro Histórico, 06020, Mexico City, CP, Mexico
| | - W Cottom-Salas
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - R Jácome
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
| | - A Becerra
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico.
| |
Collapse
|
23
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
24
|
Koonin EV. Antitoxins within toxins: A new theme in bacterial antivirus defense. Proc Natl Acad Sci U S A 2023; 120:e2311001120. [PMID: 37487075 PMCID: PMC10400984 DOI: 10.1073/pnas.2311001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD20894
| |
Collapse
|
25
|
Shoaib A, Javed S, Wahab S, Azmi L, Tabish M, Sultan MH, Abdelsalam K, Alqahtani SS, Ahmad MF. Cellular, Molecular, Pharmacological, and Nano-Formulation Aspects of Thymoquinone-A Potent Natural Antiviral Agent. Molecules 2023; 28:5435. [PMID: 37513307 PMCID: PMC10383476 DOI: 10.3390/molecules28145435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The goal of an antiviral agent research is to find an antiviral drug that reduces viral growth without harming healthy cells. Transformations of the virus, new viral strain developments, the resistance of viral pathogens, and side effects are the current challenges in terms of discovering antiviral drugs. The time has come and it is now essential to discover a natural antiviral agent that has the potential to destroy viruses without causing resistance or other unintended side effects. The pharmacological potency of thymoquinone (TQ) against different communicable and non-communicable diseases has been proven by various studies, and TQ is considered to be a safe antiviral substitute. Adjunctive immunomodulatory effects in addition to the antiviral potency of TQ makes it a major compound against viral infection through modulating the production of nitric oxide and reactive oxygen species, decreasing the cytokine storm, and inhibiting endothelial dysfunction. Nevertheless, TQ's low oral bioavailability, short half-life, poor water solubility, and conventional formulation are barriers to achieving its optimal pharmacologic benefits. Nano-formulation proposes numerous ways to overcome these obstacles through a small particle size, a big surface area, and a variety of surface modifications. Nano-based pharmaceutical innovations to combat viral infections using TQ are a promising approach to treating surmounting viral infections.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit (PPRU), College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226007, India
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Muhammad H Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Karim Abdelsalam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit (PPRU), College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
26
|
Huang Y, Sun H, Wei S, Cai L, Liu L, Jiang Y, Xin J, Chen Z, Que Y, Kong Z, Li T, Yu H, Zhang J, Gu Y, Zheng Q, Li S, Zhang R, Xia N. Structure and proposed DNA delivery mechanism of a marine roseophage. Nat Commun 2023; 14:3609. [PMID: 37330604 PMCID: PMC10276861 DOI: 10.1038/s41467-023-39220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Tailed bacteriophages (order, Caudovirales) account for the majority of all phages. However, the long flexible tail of siphophages hinders comprehensive investigation of the mechanism of viral gene delivery. Here, we report the atomic capsid and in-situ structures of the tail machine of the marine siphophage, vB_DshS-R4C (R4C), which infects Roseobacter. The R4C virion, comprising 12 distinct structural protein components, has a unique five-fold vertex of the icosahedral capsid that allows genome delivery. The specific position and interaction pattern of the tail tube proteins determine the atypical long rigid tail of R4C, and further provide negative charge distribution within the tail tube. A ratchet mechanism assists in DNA transmission, which is initiated by an absorption device that structurally resembles the phage-like particle, RcGTA. Overall, these results provide in-depth knowledge into the intact structure and underlining DNA delivery mechanism for the ecologically important siphophages.
Collapse
Affiliation(s)
- Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jiabao Xin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, 361102, China.
| |
Collapse
|
27
|
Butkovic A, Dolja VV, Koonin EV, Krupovic M. Plant virus movement proteins originated from jelly-roll capsid proteins. PLoS Biol 2023; 21:e3002157. [PMID: 37319262 DOI: 10.1371/journal.pbio.3002157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Numerous, diverse plant viruses encode movement proteins (MPs) that aid the virus movement through plasmodesmata, the plant intercellular channels. MPs are essential for virus spread and propagation in distal tissues, and several unrelated MPs have been identified. The 30K superfamily of MPs (named after the molecular mass of tobacco mosaic virus (TMV) MP, the classical model of plant virology) is the largest and most diverse MP variety, represented in 16 virus families, but its evolutionary origin remained obscure. Here, we show that the core structural domain of the 30K MPs is homologous to the jelly-roll domain of the capsid proteins (CPs) of small RNA and DNA viruses, in particular, those infecting plants. The closest similarity was observed between the 30K MPs and the CPs of the viruses in the families Bromoviridae and Geminiviridae. We hypothesize that the MPs evolved via duplication or horizontal acquisition of the CP gene in a virus that infected an ancestor of vascular plants, followed by neofunctionalization of one of the paralogous CPs, potentially through the acquisition of unique N- and C-terminal regions. During the subsequent coevolution of viruses with diversifying vascular plants, the 30K MP genes underwent explosive horizontal spread among emergent RNA and DNA viruses, likely permitting viruses of insects and fungi that coinfected plants to expand their host ranges, molding the contemporary plant virome.
Collapse
Affiliation(s)
- Anamarija Butkovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, United States of America
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| |
Collapse
|
28
|
Liang J, Wu Y, Lan K, Dong C, Wu S, Li S, Zhou HB. Antiviral PROTACs: Opportunity borne with challenge. CELL INSIGHT 2023; 2:100092. [PMID: 37398636 PMCID: PMC10308200 DOI: 10.1016/j.cellin.2023.100092] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 07/04/2023]
Abstract
Proteolysis targeting chimera (PROTAC) degradation of pathogenic proteins by hijacking of the ubiquitin-proteasome-system has become a promising strategy in drug design. The overwhelming advantages of PROTAC technology have ensured a rapid and wide usage, and multiple PROTACs have entered clinical trials. Several antiviral PROTACs have been developed with promising bioactivities against various pathogenic viruses. However, the number of reported antiviral PROTACs is far less than that of other diseases, e.g., cancers, immune disorders, and neurodegenerative diseases, possibly because of the common deficiencies of PROTAC technology (e.g., limited available ligands and poor membrane permeability) plus the complex mechanism involved and the high tendency of viral mutation during transmission and replication, which may challenge the successful development of effective antiviral PROTACs. This review highlights the important advances in this rapidly growing field and critical limitations encountered in developing antiviral PROTACs by analyzing the current status and representative examples of antiviral PROTACs and other PROTAC-like antiviral agents. We also summarize and analyze the general principles and strategies for antiviral PROTAC design and optimization with the intent of indicating the potential strategic directions for future progress.
Collapse
Affiliation(s)
- Jinsen Liang
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Yihe Wu
- Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chune Dong
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shu Li
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Hai-Bing Zhou
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
29
|
Krupovic M, Dolja VV, Koonin EV. The virome of the last eukaryotic common ancestor and eukaryogenesis. Nat Microbiol 2023; 8:1008-1017. [PMID: 37127702 PMCID: PMC11130978 DOI: 10.1038/s41564-023-01378-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
All extant eukaryotes descend from the last eukaryotic common ancestor (LECA), which is thought to have featured complex cellular organization. To gain insight into LECA biology and eukaryogenesis-the origin of the eukaryotic cell, which remains poorly understood-we reconstructed the LECA virus repertoire. We compiled an inventory of eukaryotic hosts of all major virus taxa and reconstructed the LECA virome by inferring the origins of these groups of viruses. The origin of the LECA virome can be traced back to a small set of bacterial-not archaeal-viruses. This provenance of the LECA virome is probably due to the bacterial origin of eukaryotic membranes, which is most compatible with two endosymbiosis events in a syntrophic model of eukaryogenesis. In the first endosymbiosis, a bacterial host engulfed an Asgard archaeon, preventing archaeal viruses from entry owing to a lack of archaeal virus receptors on the external membranes.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.
| |
Collapse
|
30
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
31
|
Xi R, Abdulla R, Zhao J, Aisa HA, Liu Y. Pharmacokinetic Study and Metabolite Identification of CAM106 in Rats by Validated UHPLC-MS/MS. Pharmaceuticals (Basel) 2023; 16:ph16050728. [PMID: 37242511 DOI: 10.3390/ph16050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Given the limitations of existing antiviral drugs and vaccines, there is still an urgent need for new anti-influenza drugs. CAM106, a rupestonic acid derivative, was studied for its potent antiviral activity and showed a favorable inhibitory effect on influenza virus replication. However, many gaps exist in preclinical studies of CAM106. This study focused on the pharmacokinetic profile and metabolites of CAM106 in vivo. An efficient and fast bioanalytical method was successfully developed and validated for the quantitation of CAM106 in rat plasma. A mobile phase aqueous solution (A, containing 0.1% formic acid) and acetonitrile (B) worked within 0-3.5 min, with 60% B. The mass spectrum scanning mode was the parallel reaction monitoring (PRM) with a resolution of 17,500. The linear range of the method was 2.13-1063.83 ng/mL. The validated method was applied to a pharmacokinetic study in rats. The matrix effects ranged from 93.99% to 100.08% and the recovery ranged from 86.72% to 92.87%. The intra- and inter-day precisions were less than 10.24% and the relative error (RE) ranged from -8.92% to 7.1%. The oral bioavailability of CAM106 was 1.6%. Thereafter, its metabolites in rats were characterized using high-resolution mass spectrometry. The isomers M7-A, M7-B, M7-C, and M7-D were well separated. As a result, a total of 11 metabolites were identified in the feces, urine, and plasma of rats. The main metabolic pathways of CAM106 were oxidation, reduction, desaturation, and methylation. The assay was reliable and provided useful information for further clinical studies of CAM106.
Collapse
Affiliation(s)
- Ruqi Xi
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Rahima Abdulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yongqiang Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
32
|
Gorbalenya AE, Perlman S. What's what in a pandemic? Virus, disease, and societal disaster must be differentiated. PLoS Biol 2023; 21:e3002130. [PMID: 37228002 PMCID: PMC10212159 DOI: 10.1371/journal.pbio.3002130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Viruses, the diseases they can trigger, and the possible associated societal disaster represent different entities. To engage with the complexities of viral pandemics, we need to recognize each entity by using a distinctive name.
Collapse
Affiliation(s)
- Alexander E. Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
- Faculty of Bioengineering & Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Stanley Perlman
- Department of Microbiology and Immunology, Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
33
|
Siddell SG, Smith DB, Adriaenssens E, Alfenas-Zerbini P, Dutilh BE, Garcia ML, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Lefkowitz EJ, Łobocka M, Mushegian AR, Oksanen HM, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Suzuki N, Van Doorslaer K, Vandamme AM, Varsani A, Zerbini FM. Virus taxonomy and the role of the International Committee on Taxonomy of Viruses (ICTV). J Gen Virol 2023; 104:001840. [PMID: 37141106 PMCID: PMC10227694 DOI: 10.1099/jgv.0.001840] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
Abstract
The taxonomy of viruses is developed and overseen by the International Committee on Taxonomy of Viruses (ICTV), which scrutinizes, approves and ratifies taxonomic proposals, and maintains a list of virus taxa with approved names (https://ictv.global). The ICTV has approximately 180 members who vote by simple majority. Taxon-specific Study Groups established by the ICTV have a combined membership of over 600 scientists from the wider virology community; they provide comprehensive expertise across the range of known viruses and are major contributors to the creation and evaluation of taxonomic proposals. Proposals can be submitted by anyone and will be considered by the ICTV irrespective of Study Group support. Thus, virus taxonomy is developed from within the virology community and realized by a democratic decision-making process. The ICTV upholds the distinction between a virus or replicating genetic element as a physical entity and the taxon category to which it is assigned. This is reflected by the nomenclature of the virus species taxon, which is now mandated by the ICTV to be in a binomial format (genus + species epithet) and is typographically distinct from the names of viruses. Classification of viruses below the rank of species (such as, genotypes or strains) is not within the remit of the ICTV. This article, authored by the ICTV Executive Committee, explains the principles of virus taxonomy and the organization, function, processes and resources of the ICTV, with the aim of encouraging greater understanding and interaction among the wider virology community.
Collapse
Affiliation(s)
- Stuart G. Siddell
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University of Bristol, Bristol, UK
| | - Donald B. Smith
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Bas E. Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Maria Laura Garcia
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET, UNLP, La Plata, Buenos Aires, Argentina
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Amy J. Lambert
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, Virginia, USA
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, CNR, SS Bari, Bari, Italy
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, Genetics Graduate Interdisciplinary Program, Cancer Biology Graduate Interdisciplinary Program and University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium and Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - F. Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
34
|
Mutz P, Resch W, Faure G, Senkevich TG, Koonin EV, Moss B. Exaptation of Inactivated Host Enzymes for Structural Roles in Orthopoxviruses and Novel Folds of Virus Proteins Revealed by Protein Structure Modeling. mBio 2023; 14:e0040823. [PMID: 37017580 PMCID: PMC10128050 DOI: 10.1128/mbio.00408-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Viruses with large, double-stranded DNA genomes captured the majority of their genes from their hosts at different stages of evolution. The origins of many virus genes are readily detected through significant sequence similarity with cellular homologs. In particular, this is the case for virus enzymes, such as DNA and RNA polymerases or nucleotide kinases, that retain their catalytic activity after capture by an ancestral virus. However, a large fraction of virus genes have no readily detectable cellular homologs, meaning that their origins remain enigmatic. We explored the potential origins of such proteins that are encoded in the genomes of orthopoxviruses, a thoroughly studied virus genus that includes major human pathogens. To this end, we used AlphaFold2 to predict the structures of all 214 proteins that are encoded by orthopoxviruses. Among the proteins of unknown provenance, structure prediction yielded clear indications of origin for 14 of them and validated several inferences that were previously made via sequence analysis. A notable emerging trend is the exaptation of enzymes from cellular organisms for nonenzymatic, structural roles in virus reproduction that is accompanied by the disruption of catalytic sites and by an overall drastic divergence that precludes homology detection at the sequence level. Among the 16 orthopoxvirus proteins that were found to be inactivated enzyme derivatives are the poxvirus replication processivity factor A20, which is an inactivated NAD-dependent DNA ligase; the major core protein A3, which is an inactivated deubiquitinase; F11, which is an inactivated prolyl hydroxylase; and more similar cases. For nearly one-third of the orthopoxvirus virion proteins, no significantly similar structures were identified, suggesting exaptation with subsequent major structural rearrangement that yielded unique protein folds. IMPORTANCE Protein structures are more strongly conserved in evolution than are amino acid sequences. Comparative structural analysis is particularly important for inferring the origins of viral proteins that typically evolve at high rates. We used a powerful protein structure modeling method, namely, AlphaFold2, to model the structures of all orthopoxvirus proteins and compared them to all available protein structures. Multiple cases of recruitment of host enzymes for structural roles in viruses, accompanied by the disruption of catalytic sites, were discovered. However, many viral proteins appear to have evolved unique structural folds.
Collapse
Affiliation(s)
- Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Wolfgang Resch
- Center for Information Technology, National Institutes of Health, Bethesda, Maryland, USA
| | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Tatiana G. Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Instutes of Health, Bethesda, Maryland, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Instutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
35
|
Makarova KS, Wolf YI, Koonin EV. In Silico Approaches for Prediction of Anti-CRISPR Proteins. J Mol Biol 2023; 435:168036. [PMID: 36868398 PMCID: PMC10073340 DOI: 10.1016/j.jmb.2023.168036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Numerous viruses infecting bacteria and archaea encode CRISPR-Cas system inhibitors, known as anti-CRISPR proteins (Acr). The Acrs typically are highly specific for particular CRISPR variants, resulting in remarkable sequence and structural diversity and complicating accurate prediction and identification of Acrs. In addition to their intrinsic interest for understanding the coevolution of defense and counter-defense systems in prokaryotes, Acrs could be natural, potent on-off switches for CRISPR-based biotechnological tools, so their discovery, characterization and application are of major importance. Here we discuss the computational approaches for Acr prediction. Due to the enormous diversity and likely multiple origins of the Acrs, sequence similarity searches are of limited use. However, multiple features of protein and gene organization have been successfully harnessed to this end including small protein size and distinct amino acid compositions of the Acrs, association of acr genes in virus genomes with genes encoding helix-turn-helix proteins that regulate Acr expression (Acr-associated proteins, Aca), and presence of self-targeting CRISPR spacers in bacterial and archaeal genomes containing Acr-encoding proviruses. Productive approaches for Acr prediction also involve genome comparison of closely related viruses, of which one is resistant and the other one is sensitive to a particular CRISPR variant, and "guilt by association" whereby genes adjacent to a homolog of a known Aca are identified as candidate Acrs. The distinctive features of Acrs are employed for Acr prediction both by developing dedicated search algorithms and through machine learning. New approaches will be needed to identify novel types of Acrs that are likely to exist.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, USA
| |
Collapse
|
36
|
Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther 2023; 8:112. [PMID: 36906608 PMCID: PMC10007681 DOI: 10.1038/s41392-023-01375-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The fast-developing synthetic biology (SB) has provided many genetic tools to reprogram and engineer cells for improved performance, novel functions, and diverse applications. Such cell engineering resources can play a critical role in the research and development of novel therapeutics. However, there are certain limitations and challenges in applying genetically engineered cells in clinical practice. This literature review updates the recent advances in biomedical applications, including diagnosis, treatment, and drug development, of SB-inspired cell engineering. It describes technologies and relevant examples in a clinical and experimental setup that may significantly impact the biomedicine field. At last, this review concludes the results with future directions to optimize the performances of synthetic gene circuits to regulate the therapeutic activities of cell-based tools in specific diseases.
Collapse
Affiliation(s)
- Ninglin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziqi Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Duan
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Lampi M, Gregorova P, Qasim MS, Ahlblad NCV, Sarin LP. Bacteriophage Infection of the Marine Bacterium Shewanella glacialimarina Induces Dynamic Changes in tRNA Modifications. Microorganisms 2023; 11:microorganisms11020355. [PMID: 36838320 PMCID: PMC9963407 DOI: 10.3390/microorganisms11020355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Viruses are obligate intracellular parasites that, throughout evolution, have adapted numerous strategies to control the translation machinery, including the modulation of post-transcriptional modifications (PTMs) on transfer RNA (tRNA). PTMs are critical translation regulators used to further host immune responses as well as the expression of viral proteins. Yet, we lack critical insight into the temporal dynamics of infection-induced changes to the tRNA modification landscape (i.e., 'modificome'). In this study, we provide the first comprehensive quantitative characterization of the tRNA modificome in the marine bacterium Shewanella glacialimarina during Shewanella phage 1/4 infection. Specifically, we show that PTMs can be grouped into distinct categories based on modification level changes at various infection stages. Furthermore, we observe a preference for the UAC codon in viral transcripts expressed at the late stage of infection, which coincides with an increase in queuosine modification. Queuosine appears exclusively on tRNAs with GUN anticodons, suggesting a correlation between phage codon usage and PTM modification. Importantly, this work provides the basis for further studies into RNA-based regulatory mechanisms employed by bacteriophages to control the prokaryotic translation machinery.
Collapse
Affiliation(s)
- Mirka Lampi
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Correspondence: (M.L.); (L.P.S.); Tel.: +358-2941-59533 (L.P.S.)
| | - Pavlina Gregorova
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Doctoral Programme in Integrative Life Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - M. Suleman Qasim
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Doctoral Programme in Microbiology and Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Niklas C. V. Ahlblad
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - L. Peter Sarin
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Correspondence: (M.L.); (L.P.S.); Tel.: +358-2941-59533 (L.P.S.)
| |
Collapse
|
38
|
Koonin EV, Krupovic M, Dolja VV. The global virome: How much diversity and how many independent origins? Environ Microbiol 2023; 25:40-44. [PMID: 36097140 DOI: 10.1111/1462-2920.16207] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 01/21/2023]
Abstract
Viruses are considered to be the most abundant biological entities on earth. They also display striking genetic diversity as emphatically demonstrated by the recent advances of metagenomics and metatranscriptomics. But what are the limits of this diversity, that is, how many virus species in the earth virome? By combining the available estimates of the number of prokaryote species with those of the virome size, we obtain back-of-the-envelope estimates of the total number of distinct virus species, which come out astronomically large, from about 107 to about 109 . The route of virus origins apparently involved non-viral replicators capturing and exapting various cellular proteins to become virus capsid subunits. How many times in the history of life has this happened? In other words, how many realms of viruses, the highest rank taxa that are supposed to be monophyletic, comprise the global virome? We argue that viruses emerged on a number (even if far from astronomical) independent occasions, so the number of realms will considerably increase from the current 6, by splitting some of the current realms, giving the realm status to some of the currently unclassified groups of viruses and discovery of new distinct groups.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Oregon, USA
| |
Collapse
|
39
|
Liao M, Xie Y, Shi M, Cui J. Over two decades of research on the marine RNA virosphere. IMETA 2022; 1:e59. [PMID: 38867898 PMCID: PMC10989941 DOI: 10.1002/imt2.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
RNA viruses (realm: Riboviria), including RNA phages and eukaryote-infecting RNA viruses, are essential components of marine ecosystems. A large number of marine RNA viruses have been discovered in the last two decades because of the rapid development of next-generation sequencing (NGS) technology. Indeed, the combination of NGS and state-of-the-art meta-omics methods (viromics, the study of all viruses in a specific environment) has led to a fundamental understanding of the taxonomy and genetic diversity of RNA viruses in the sea, suggesting the complex ecological roles played by RNA viruses in this complex ecosystem. Furthermore, comparisons of viromes in the context of highly variable marine niches reveal the biogeographic patterns and ecological impact of marine RNA viruses, whose role in global ecology is becoming increasingly clearer. In this review, we summarize the characteristics of the global marine RNA virosphere and outline the taxonomic hierarchy of RNA viruses with a specific focus on their ancient evolutionary history. We also review the development of methodology and the major progress resulting from its applications in RNA viromics. The aim of this review is not only to provide an in-depth understanding of multifaceted aspects of marine RNA viruses, but to offer future perspectives on developing a better methodology for discovery, and exploring the evolutionary origin and major ecological significance of marine RNA virosphere.
Collapse
Affiliation(s)
- Meng‐en Liao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yunyi Xie
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mang Shi
- School of MedicineSun Yat‐sen UniversityShenzhen Campus of Sun Yat‐sen UniversityShenzhenChina
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- Laboatory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
| |
Collapse
|
40
|
Effect of green solvents physical, chemical, biological and bonding nature on 5-acetyl-thiophene-2-carboxylic acid by DFT and TD-DFT approach – An antiviral agent. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Abstract
Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, United States
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| |
Collapse
|
42
|
Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, Chen IM, Ivanova N, Zeigler Allen L, Paez-Espino D, Bryant DA, Bhaya D, Krupovic M, Dolja VV, Kyrpides NC, Koonin EV, Gophna U. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 2022; 185:4023-4037.e18. [PMID: 36174579 DOI: 10.1016/j.cell.2022.08.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.
Collapse
Affiliation(s)
- Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Benjamin Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - I Min Chen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lisa Zeigler Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA; Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
| | - Valerian V Dolja
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
43
|
Koonin EV, Krupovic M. A life LINE for large viruses. eLife 2022; 11:83488. [PMID: 36282171 PMCID: PMC9596153 DOI: 10.7554/elife.83488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As long suspected, poxviruses capture host genes through a reverse-transcription process now shown to be mediated by retrotransposons.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Institutes of HealthBethesdaUnited States
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology UnitParisFrance
| |
Collapse
|