1
|
Rupp T, Oelschlägel B, Berjano R, Mahfoud H, Buono D, Wenke T, Rabitsch K, Bächli G, Stanojlovic V, Cabrele C, Xiong W, Knaden M, Dahl A, Neinhuis C, Wanke S, Dötterl S. Chemical imitation of yeast fermentation by the drosophilid-pollinated deceptive trap-flower Aristolochia baetica (Aristolochiaceae). PHYTOCHEMISTRY 2024; 224:114142. [PMID: 38762152 DOI: 10.1016/j.phytochem.2024.114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Deceptive flowers, unlike in mutualistic pollination systems, mislead their pollinators by advertising rewards which ultimately are not provided. Although our understanding of deceptive pollination systems increased in recent years, the attractive signals and deceptive strategies in the majority of species remain unknown. This is also true for the genus Aristolochia, famous for its deceptive and fly-pollinated trap flowers. Representatives of this genus were generally assumed to be oviposition-site mimics, imitating vertebrate carrion or mushrooms. However, recent studies found a broader spectrum of strategies, including kleptomyiophily and imitation of invertebrate carrion. A different deceptive strategy is presented here for the western Mediterranean Aristolochia baetica L. We found that this species is mostly pollinated by drosophilid flies (Drosophilidae, mostly Drosophila spp.), which typically feed on fermenting fruit infested by yeasts. The flowers of A. baetica emitted mostly typical yeast volatiles, predominantly the aliphatic compounds acetoin and 2,3-butandiol, and derived acetates, as well as the aromatic compound 2-phenylethanol. Analyses of the absolute configurations of the chiral volatiles revealed weakly (acetoin, 2,3-butanediol) to strongly (mono- and diacetates) biased stereoisomer-ratios. Electrophysiological (GC-EAD) experiments and lab bioassays demonstrated that most of the floral volatiles, although not all stereoisomers of chiral compounds, were physiologically active and attractive in drosophilid pollinators; a synthetic mixture thereof successfully attracted them in field and lab bioassays. We conclude that A. baetica chemically mimics yeast fermentation to deceive its pollinators. This deceptive strategy (scent chemistry, pollinators, trapping function) is also known from more distantly related plants, such as Arum palaestinum Boiss. (Araceae) and Ceropegia spp. (Apocynaceae), suggesting convergent evolution. In contrast to other studies working on floral scents in plants imitating breeding sites, the present study considered the absolute configuration of chiral compounds.
Collapse
Affiliation(s)
- Thomas Rupp
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Birgit Oelschlägel
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Regina Berjano
- Department of Vegetal Biology and Ecology, University of Sevilla, Avenida Reina Mercedes s/n, 41012, Sevilla, Spain
| | - Hafez Mahfoud
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Daniele Buono
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Torsten Wenke
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Katharina Rabitsch
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Gerhard Bächli
- Institut für Evolutionsbiologie und Umweltforschung, Universität Zürich-Irchel, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Vesna Stanojlovic
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Wujian Xiong
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria; Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxingxi Road 166, 621000, Mianyang, China
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745, Jena, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Christoph Neinhuis
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany; Departamento de Botánica, Instituto de Biología, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-367, 04510, Coyoacan, Distrito Federal, Mexico; Institut für Ökologie, Evolution und Diversiät, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany; Abteilung Botanik und molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Stefan Dötterl
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| |
Collapse
|
2
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
3
|
Shibata A, Kudo G. Night and day: Contributions of diurnal and nocturnal visitors to pollen dispersal, paternity diversity, and fruit set in an early-blooming shrub, Daphne jezoensis. AMERICAN JOURNAL OF BOTANY 2023; 110:e16239. [PMID: 37668113 DOI: 10.1002/ajb2.16239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
PREMISE Under uncertain pollinator visit conditions, plants often exhibit long flowering periods and generalized pollination systems. Flowering of the gynodioecious shrub Daphne jezoensis occurs in early spring in cool temperate forests. Pollination by nocturnal moths is expected, given the species' tubular-shaped flowers with sweet fragrance and nectar. However, the effectiveness of nocturnal moths under cool conditions is unknown. We evaluated the relative importance of diurnal and nocturnal visitors as pollinators in early spring. METHODS We investigated flowering duration, flower visitors, and floral scents in a natural population. We experimentally exposed flowers to visitors only during daytime or nighttime using bagging treatments and evaluated the contributions of diurnal and nocturnal insects to fruit set, pollen dispersal distance, and paternity diversity using 16 microsatellite markers. RESULTS Female flowers lasted ~3 wk, which was ~8 d longer than the flowering period of hermaphrodites. Various insects, including Coleoptera, Diptera, Hymenoptera, and Lepidoptera, visited the flowers during both daytime and nighttime. Flowers emitted volatiles, such as lilac aldehyde isomers and β-ocimene, which are known to attract moths. Fruit-set rate in the night-open treatment was similar to or higher than that in the day-open treatment. However, pollen dispersal distance in the night-open treatment was shorter than that in the day-open treatment. Paternity diversity was similar in day-open and night-open treatments. CONCLUSIONS Early-blooming plants ensure pollen receipt and dispersal by having a long flowering period and using both diurnal and nocturnal flower visitors, suggesting the importance of a generalized pollination system under uncertain pollinator visit conditions.
Collapse
Affiliation(s)
- Akari Shibata
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Gaku Kudo
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
4
|
Perkins J, Hayashi T, Peakall R, Flematti GR, Bohman B. The volatile chemistry of orchid pollination. Nat Prod Rep 2023; 40:819-839. [PMID: 36691832 DOI: 10.1039/d2np00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Covering: up to September 2022Orchids are renowned not only for their diversity of floral forms, but also for their many and often highly specialised pollination strategies. Volatile semiochemicals play a crucial role in the attraction of a wide variety of insect pollinators of orchids. The compounds produced by orchid flowers are as diverse as the pollinators they attract, and here we summarise some of the chemical diversity found across orchid taxa and pollination strategies. We focus on compounds that have been experimentally demonstrated to underpin pollinator attraction. We also highlight the structural elucidation and synthesis of a select subset of important orchid pollinator attractants, and discuss the ecological significance of the discoveries, the gaps in our current knowledge of orchid pollination chemistry, and some opportunities for future research in this field.
Collapse
Affiliation(s)
- James Perkins
- Research School of Biology, The Australian National University, Australia
| | - Tobias Hayashi
- Research School of Biology, The Australian National University, Australia
| | - Rod Peakall
- Research School of Biology, The Australian National University, Australia.,School of Molecular Sciences, The University of Western Australia, Australia
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia, Australia
| | - Björn Bohman
- Research School of Biology, The Australian National University, Australia.,School of Molecular Sciences, The University of Western Australia, Australia.,Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sweden.
| |
Collapse
|
5
|
Gfrerer E, Laina D, Wagner R, Gibernau M, Hörger AC, Comes HP, Dötterl S. Antennae of psychodid and sphaerocerid flies respond to a high variety of floral scent compounds of deceptive Arum maculatum L. Sci Rep 2022; 12:5086. [PMID: 35332183 PMCID: PMC8948215 DOI: 10.1038/s41598-022-08196-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Insect-pollinated plants often release complex mixtures of floral scents to attract their pollinators. Yet scent compounds eliciting physiological or behavioural responses in pollinators have only been identified in few plant species. The sapromyiophilous aroid Arum maculatum releases a highly diverse dung-like scent with overall more than 300 different compounds recorded so far to attract its psychodid and other fly pollinators. The volatiles' role in pollinator attraction is mostly unknown. To identify potential behaviourally active compounds, we recorded electroantennographic responses of four Psychodidae and one Sphaeroceridae species to (1) inflorescence scents of A. maculatum and (2) the scents released by cow dung, likely imitated by the plant species. Here we show that these flies are sensitive to 78 floral volatiles of various chemical classes, 18 of which were also found in cow dung. Our study, which for the first time determined physiologically active compounds in the antennae of Psychoda spp. and Sphaeroceridae, identified various volatiles not known to be biologically active in any floral visitors so far. The obtained results help deciphering the chemical basis that enables A. maculatum and other plants, pollinated by psychodids and sphaerocerids, to attract and deceive their pollinators.
Collapse
Affiliation(s)
- Eva Gfrerer
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Danae Laina
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Rüdiger Wagner
- Department of Limnology, University of Kassel, 34127, Kassel, Germany
| | - Marc Gibernau
- Laboratory of Sciences for the Environment, CNRS - University of Corsica, 20000, Ajaccio, France
| | - Anja C Hörger
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Hans Peter Comes
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, 5020, Salzburg, Austria.
| |
Collapse
|
6
|
Cozzolino R, Stocchero M, Perestrelo R, Câmara JS. Comprehensive Evaluation of the Volatomic Fingerprint of Saffron from Campania towards Its Authenticity and Quality. Foods 2022; 11:366. [PMID: 35159517 PMCID: PMC8834390 DOI: 10.3390/foods11030366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
The volatile profiles of eight saffron samples (seven cultivated and one spontaneous) grown in different geographical districts within the Campania region (southern Italy) were compared. Using headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS), overall, 80 volatiles were identified in the eight landraces. Among them, safranal and its isomers and other related compounds such as isophorones, which are not only key odorants but also pharmacologically active metabolites, have been detected in all the investigated samples. Principal Component Analysis performed on the volatiles' compounds revealed that the spontaneous sample turned out to be an outlier. In particular, the volatile organic compounds (VOCs) profile of the spontaneous saffron presented four lilac aldehydes and four lilac alcohol isomers, which, to the authors' knowledge, have never been identified in the volatile signature of this spice. The multivariate statistical analysis allowed the discrimination of the seven cultivate saffron ecotypes in four well-separated clusters according to variety. Moreover, 20 VOCs, able to differentiate the clusters in terms of single volatile metabolite, were discovered. Altogether, these results could contribute to identifying possible volatile signature metabolites (biomarkers) or patterns that discriminate saffron samples grown in Campania region on a molecular basis, encouraging future biodiversity programs to preserve saffron landraces revealing valuable genetic resources.
Collapse
Affiliation(s)
- Rosaria Cozzolino
- National Research Council (CNR), Institute of Food Science, Via Roma 64, 83100 Avellino, Italy
| | - Matteo Stocchero
- Department of Women’s and Children’s Health, University of Padova, 35122 Padova, Italy;
| | - Rosa Perestrelo
- Centro de Química da Madeira—CQM, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - José S. Câmara
- Centro de Química da Madeira—CQM, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| |
Collapse
|
7
|
Synthesis and Olfactory Properties of Seco-Analogues of Lilac Aldehydes. Molecules 2021; 26:molecules26237086. [PMID: 34885667 PMCID: PMC8658798 DOI: 10.3390/molecules26237086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Lilac aldehydes are considered as principal olfactory molecules of lilac flowers. We have designed, prepared, and evaluated a set of racemic seco-analogues of such natural products. The synthesis employs commercially available α-chloroketones as substrates that are transformed in four steps to target compounds. Their qualitative olfactory analysis revealed that the opening of the tetrahydrofuran ring leads to a vanishing of original flowery scent with the emergence of spicy aroma accompanied by green notes, and/or fruity aspects of novel seco-analogues. These results suggest the important osmophoric role of THF moiety for the generation of the typical flowery aroma associated with lilac aldehydes.
Collapse
|
8
|
Ploidy differentiation and floral scent divergence in Buddleja macrostachya (Scrophulariaceae) complex. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Identification of VOCs in essential oils extracted using ultrasound- and microwave-assisted methods from sweet cherry flower. Sci Rep 2021; 11:1167. [PMID: 33441964 PMCID: PMC7806641 DOI: 10.1038/s41598-020-80891-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/28/2020] [Indexed: 01/29/2023] Open
Abstract
The floral fragrance of plants is an important indicator in their evaluation. The aroma of sweet cherry flowers is mainly derived from their essential oil. In this study, based on the results of a single-factor experiment, a Box-Behnken design was adopted for ultrasound- and microwave-assisted extraction of essential oil from sweet cherry flowers of the Brooks cultivar. With the objective of extracting the maximum essential oil yield (w/w), the optimal extraction process conditions were a liquid-solid ratio of 52 mL g-1, an extraction time of 27 min, and a microwave power of 435 W. The essential oil yield was 1.23%, which was close to the theoretical prediction. The volatile organic compounds (VOCs) of the sweet cherry flowers of four cultivars (Brooks, Black Pearl, Tieton and Summit) were identified via headspace solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The results showed that a total of 155 VOCs were identified and classified in the essential oil from sweet cherry flowers of four cultivars, 65 of which were shared among the cultivars. The highest contents of VOCs were aldehydes, alcohols, ketones and esters. Ethanol, linalool, lilac alcohol, acetaldehyde, (E)-2-hexenal, benzaldehyde and dimethyl sulfide were the major volatiles, which were mainly responsible for the characteristic aroma of sweet cherry flowers. It was concluded that the VOCs of sweet cherry flowers were qualitatively similar; however, relative content differences were observed in the four cultivars. This study provides a theoretical basis for the metabolism and regulation of the VOCs of sweet cherry flowers.
Collapse
|
10
|
Comparative Analysis of Volatile Compounds in Flowers of Different Actinidia Species. PLANTS 2020; 9:plants9121675. [PMID: 33266005 PMCID: PMC7760476 DOI: 10.3390/plants9121675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022]
Abstract
Among the actinidia genus (Actinidia spp.) native to China, few species are grown commercially for their edible and healthy fruits. As they are dioecious plants, a lot of interest is paid to effective pollination and to insects as the most efficient pollinators. In this study we have concentrated on the composition of volatile compounds in male flowers of four different actinidia species (A. chinensis var. deliciosa, A. arguta, A. kolomikta and A. polygama) and on the diversity between male and female flower volatiles for the two most winter-hardy species (A. arguta and A. kolomikta) with growing commercial value. Analyses were provided using gas chromatography with mass spectrometry (GC-MS). In total, 120 compounds were found in 15 actinidia genotypes. However, the number of identified compounds varied between species. Different main compounds or groups of volatile compounds characterised flowers of every species. Smaller differences were observed between male and female flowers of the same species. Our results suggest that actinidia flowers could be attractive to pollinating insects.
Collapse
|
11
|
Farré-Armengol G, Fernández-Martínez M, Filella I, Junker RR, Peñuelas J. Deciphering the Biotic and Climatic Factors That Influence Floral Scents: A Systematic Review of Floral Volatile Emissions. FRONTIERS IN PLANT SCIENCE 2020; 11:1154. [PMID: 32849712 PMCID: PMC7412988 DOI: 10.3389/fpls.2020.01154] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 06/02/2023]
Abstract
Currently, a global analysis of the information available on the relative composition of the floral scents of a very diverse variety of plant species is missing. Such analysis may reveal general patterns on the distribution and dominance of the volatile compounds that form these mixtures, and may also allow measuring the effects of factors such as the phylogeny, pollination vectors, and climatic conditions on the floral scents of the species. To fill this gap, we compiled published data on the relative compositions and emission rates of volatile organic compounds (VOCs) in the floral scents of 305 plant species from 66 families. We also gathered information on the groups of pollinators that visited the flowers and the climatic conditions in the areas of distribution of these species. This information allowed us to characterize the occurrence and relative abundances of individual volatiles in floral scents and the effects of biotic and climatic factors on floral scent. The monoterpenes trans-β-ocimene and linalool and the benzenoid benzaldehyde were the most abundant floral VOCs, in both ubiquity and predominance in the floral blends. Floral VOC richness and relative composition were moderately preserved traits across the phylogeny. The reliance on different pollinator groups and the climate also had important effects on floral VOC richness, composition, and emission rates of the species. Our results support the hypothesis that key compounds or compounds originating from specific biosynthetic pathways mediate the attraction of the main pollinators. Our results also indicate a prevalence of monoterpenes in the floral blends of plants that grow in drier conditions, which could link with the fact that monoterpene emissions protect plants against oxidative stresses throughout drought periods and their emissions are enhanced under moderate drought stress. Sesquiterpenes, in turn, were positively correlated with mean annual temperature, supporting that sesquiterpene emissions are dominated mainly by ambient temperature. This study is the first to quantitatively summarise data on floral-scent emissions and provides new insights into the biotic and climatic factors that influence floral scents.
Collapse
Affiliation(s)
- Gerard Farré-Armengol
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | | | - Iolanda Filella
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Robert R. Junker
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| |
Collapse
|
12
|
Pinto D, Delerue-Matos C, Rodrigues F. Bioactivity, phytochemical profile and pro-healthy properties of Actinidia arguta: A review. Food Res Int 2020; 136:109449. [PMID: 32846546 DOI: 10.1016/j.foodres.2020.109449] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022]
Abstract
Hardy kiwi (Actinidia arguta) is a climbing, perennial and dioecious vine from Actinidiaceae family, native from Asia and valued as ornamental and traditional medicine. In the last decade, the growing interest as fruit-bearing plant encourage the expanding cultivation of A. arguta mainly to fruits production, particularly in Europe and North America. A. arguta plants have an extensive range ofbioactive compoundsthat can be obtained from different botanical structures, such as fruits, leaves, flowers and stems. These bioactive molecules, with well-recognized health-promoting properties, include phenolic compounds, minerals, carbohydrates or even volatile substances, with a great potential to be used in several formulations of food products. Phytochemical studies on this plant reported hypoglycemic effects as well as antioxidant and anti-inflammatory activities, among others. The traditional uses ofA. arguta have been experimentally proved byin vitroandin vivostudies, in which its bioactivities were associated to its phytochemical composition. This review aims to assess and summarize the phytochemical and healthy properties ofthe different botanical parts of A. arguta, describing their bioactive composition and exploring it potential functional properties on foodstuffs.
Collapse
Affiliation(s)
- Diana Pinto
- REQUIMTE/LAQV, Polytechnic of Porto - School of Engineering, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Polytechnic of Porto - School of Engineering, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Polytechnic of Porto - School of Engineering, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
13
|
Amaral MSS, Marriott PJ. The Blossoming of Technology for the Analysis of Complex Aroma Bouquets-A Review on Flavour and Odorant Multidimensional and Comprehensive Gas Chromatography Applications. Molecules 2019; 24:E2080. [PMID: 31159223 PMCID: PMC6600270 DOI: 10.3390/molecules24112080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 01/09/2023] Open
Abstract
Multidimensional approaches in gas chromatography have been established as potent tools to (almost) attain fully resolved analyses. Flavours and odours are important application fields for these techniques since they include complex matrices, and are of interest for both scientific study and to consumers. This article is a review of the main research studies in the above theme, discussing the achievements and challenges that demonstrate a maturing of analytical separation technology.
Collapse
Affiliation(s)
- Michelle S S Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | - Philip J Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| |
Collapse
|
14
|
Brandt K, Dötterl S, Fuchs R, Navarro DMDAF, Machado ICS, Dobler D, Reiser O, Ayasse M, Milet-Pinheiro P. Subtle Chemical Variations with Strong Ecological Significance: Stereoselective Responses of Male Orchid Bees to Stereoisomers of Carvone Epoxide. J Chem Ecol 2019; 45:464-473. [DOI: 10.1007/s10886-019-01072-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
|
15
|
Giacosa S, Giordano M, Vilanova M, Cagnasso E, Río Segade S, Rolle L. On-vine withering process of 'Moscato bianco' grapes: effect of cane-cut system on volatile composition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1135-1144. [PMID: 30047150 DOI: 10.1002/jsfa.9281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cane-cut on-vine withering is a grape dehydration technique used for dry and sweet wine production. The aim of this work was to study the influence of the cane-cut technique applied at harvest to Moscato bianco grapes during the on-vine withering process to produce dehydrated berries with a different chemical composition and a volatile profile. RESULTS After 24 days of dehydration, an on-vine withering system using the cane-cut technique induced an increase in the total volatile content compared with grapes produced with a normal on-vine withering process. This increase was greater in glycosidically bound volatile compounds than in the free fraction. Bound linalool showed a significant increase of 52% when the cane-cut withering system was applied but the grapes that were normally withered appeared to be less prone to the loss of free linalool. A significant increase in the glycosylated forms of nerol and geraniol was also observed in the two on-vine withering systems on the 24th day compared with the control (fresh grapes at harvest date). CONCLUSION A cane-cut, on-vine withering system applied at harvest induced changes in the volatile composition of Moscato bianco grapes increasing total volatile content, consisting mainly of bound compounds, by the 24th day of dehydration. The grapes dehydrated on-vine using this new system also showed significantly greater content of most of the free volatile compounds detected. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Simone Giacosa
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Grugliasco, Italy
| | - Manuela Giordano
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Grugliasco, Italy
| | - Mar Vilanova
- Spanish National Research Council (CSIC), Department Misión Biológica de Galicia, Pontevedra, Spain
| | - Enzo Cagnasso
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Grugliasco, Italy
| | - Susana Río Segade
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Grugliasco, Italy
| | - Luca Rolle
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Grugliasco, Italy
| |
Collapse
|
16
|
Bandeira Reidel RV, Cioni PL, Pistelli L. Volatile emission of different plant parts and fruit development from Italian cherry plums ( Prunus cerasifera and P . cerasifera ‘Pissardii’). BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zheng R, Liu C, Wang Y, Luo J, Zeng X, Ding H, Xiao W, Gan J, Wang C. Expression of MEP Pathway Genes and Non-volatile Sequestration Are Associated with Circadian Rhythm of Dominant Terpenoids Emission in Osmanthus fragrans Lour. Flowers. FRONTIERS IN PLANT SCIENCE 2017; 8:1869. [PMID: 29163594 PMCID: PMC5670350 DOI: 10.3389/fpls.2017.01869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/13/2017] [Indexed: 05/30/2023]
Abstract
Osmanthus fragrans Lour. is one of the top 10 traditional ornamental flowers in China famous for its unique fragrance. Preliminary study proved that the terpenoids including ionone, linalool, and ocimene and their derivatives are the dominant aroma-active compounds that contribute greatly to the scent bouquet. Pollination observation implies the emission of aromatic terpenoids may follow a circadian rhythm. In this study, we investigated the variation of volatile terpenoids and its potential regulators. The results showed that both volatile and non-volatile terpenoids presented circadian oscillation with high emission or accumulation during the day and low emission or accumulation during the night. The volatile terpenoids always increased to reach their maximum values at 12:00 h, while free and glycosylated compounds continued increasing throughout the day. The depletion of non-volatile pool might provide the substrates for volatile emission at 0:00-6:00, suggesting the sequestration of non-volatile compounds acted like a buffer regulating emission of terpenoids. Further detection of MEP pathway genes demonstrated that their expressions increased significantly in parallel with the evident increase of both volatile and non-volatile terpenoids during the day, indicating that the gene expressions were also closely associated with terpenoid formation. Thus, the expression of MEP pathway genes and internal sequestration both played crucial roles in modulating circadian rhythm of terpenoid emission in O. fragrans.
Collapse
Affiliation(s)
- Riru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, China
| | - Cai Liu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yanli Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| | - Xiangling Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Haiqin Ding
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Wei Xiao
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jianping Gan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
18
|
The Emission of the Floral Scent of Four Osmanthus fragrans Cultivars in Response to Different Temperatures. Molecules 2017; 22:molecules22030430. [PMID: 28282901 PMCID: PMC6155510 DOI: 10.3390/molecules22030430] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 12/05/2022] Open
Abstract
Floral scent is an important part of volatile organic compounds (VOCs) emitted from plants, and is influenced by many environmental and endogenous factors. To investigate the influence of temperature on the emission of the floral scent of Osmanthus fragrans, the number of chemical compounds and their relative release amounts from four cultivars of O. fragrans under different temperature treatments, were identified using the solid-phase microextraction (SPME) technique and gas chromatography-mass spectrometry (GC-MS) in this study. Results revealed that the numbers and release amounts of floral scent components were significantly influenced by different temperatures, and depend on different cultivars and different types of compounds. Overall, most cultivars had the largest number of chemical compounds in 19 °C and the numbers of chemical compounds decreased with the increase or decrease in the temperature. Alcohols and ketones were the two main kinds of compounds responding to temperature change. The response of a specific chemical compound to temperature change was different in four cultivars. Generally, linalool, α-ionone, β-ionone, and γ-decalactone accounted for the highest proportion in the nine main compounds, and changes of these four chemical compounds to different temperatures had obvious contributions to the floral scent of O. fragrans. The results obtained provide evidence that temperatures can greatly influence the emission of floral scent.
Collapse
|
19
|
D’Auria M, Lorenz R, Racioppi R, Romano VA. Fragrance components of Platanthera bifolia subsp. osca. Nat Prod Res 2017; 31:1612-1619. [DOI: 10.1080/14786419.2017.1289203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maurizio D’Auria
- Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | - Richard Lorenz
- Arbeitskreis Heimische Orchideen Baden-Württemberg, Weinheim, Germany
| | - Rocco Racioppi
- Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | | |
Collapse
|
20
|
Konarska A. Comparative micromorphology and anatomy of flowers and floral secretory structures in two Viburnum species. PROTOPLASMA 2017; 254:523-537. [PMID: 27076216 PMCID: PMC5216110 DOI: 10.1007/s00709-016-0972-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/06/2016] [Indexed: 05/11/2023]
Abstract
In entomogamous plants, the presence and function of floral secretory structures, whose main role is to attract pollinators, is strictly associated with the pollination ecology and hence the reproductive success of the plant. The aims of the present paper were to analyse the micromorphology and anatomy of flower nectaries and stigmas in Viburnum opulus and V. lantana and to determine the function and microstructure of inflorescence trichomes in both taxa using light and scanning electron microscopy as well as histochemical assays. It was found that stigmas were formed by papillae, which contained lipids, polysaccharides, tannins, and pigments. Stigmatic secretion proceeded via cuticular pores. Floral nectaries formed a thick layer around the styles, and nectar was secreted through numerous nectarostomata. There were no traces of vascular bundles penetrating the nectary tissue. In turn, numerous tannin deposits were observed in the cells of the glandular parenchyma. Pedicels, hypanthia, and bracts had mainly peltate and capitate glandular trichomes as well as stellate non-glandular trichomes (in V. lantana). The trichomes were shown to contain lipids, mucilage, and tannins. Many similarities in the flower and nectaries microstructure and considerable heterogeneity were observed in the examined Viburnum species. Knowledge of the microstructural characteristics of flowers, nectaries, and trichomes may be important for the phylogenesis and taxonomy of the genus Viburnum and the family Adoxaceae. Additionally, floral and nectaries features are helpful in assessment of the relatedness between taxa and provide better understanding of the floral biology and pollination ecology.
Collapse
Affiliation(s)
- Agata Konarska
- Department of Botany, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland.
| |
Collapse
|
21
|
Prieto-Benítez S, Millanes AM, Dötterl S, Giménez-Benavides L. Comparative analyses of flower scent in Sileneae
reveal a contrasting phylogenetic signal between night and day emissions. Ecol Evol 2016. [DOI: 10.1002/ece3.2377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Samuel Prieto-Benítez
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| | - Ana M. Millanes
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| | - Stefan Dötterl
- Department of Ecology and Evolution; University of Salzburg; Hellbrunnerstr. 34 5020 Salzburg Austria
| | - Luis Giménez-Benavides
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| |
Collapse
|
22
|
Raguso RA. More lessons from linalool: insights gained from a ubiquitous floral volatile. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:31-36. [PMID: 27286000 DOI: 10.1016/j.pbi.2016.05.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 05/25/2023]
Abstract
Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a common floral volatile with two distinct enantiomers and related metabolites involved in the full spectrum of plant-pollinator interactions. Recent studies reveal a complex interplay between pollinator attraction and plant defense mediated by linalool and its derivatives, from the smallest (Arabidopsis, Mitella) to the largest (Datura) flowers studied. Accordingly, fig wasps, fungus gnats and moths of all sizes show remarkable electrophysiological, neural and behavioral sensitivity to different enantiomers and quantitative ratios of linalool in floral bouquets. The diverse functions of linalool, ranging from toxin to long distance pollinator attractant are discussed in the broader context of floral volatile ecology and evolution.
Collapse
Affiliation(s)
- Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd., Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
Ilc T, Parage C, Boachon B, Navrot N, Werck-Reichhart D. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications. FRONTIERS IN PLANT SCIENCE 2016; 7:509. [PMID: 27200002 PMCID: PMC4844611 DOI: 10.3389/fpls.2016.00509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/31/2016] [Indexed: 05/20/2023]
Abstract
Plants use monoterpenols as precursors for the production of functionally and structurally diverse molecules, which are key players in interactions with other organisms such as pollinators, flower visitors, herbivores, fungal, or microbial pathogens. For humans, many of these monoterpenol derivatives are economically important because of their pharmaceutical, nutraceutical, flavor, or fragrance applications. The biosynthesis of these derivatives is to a large extent catalyzed by enzymes from the cytochrome P450 superfamily. Here we review the knowledge on monoterpenol oxidative metabolism in plants with special focus on recent elucidations of oxidation steps leading to diverse linalool and geraniol derivatives. We evaluate the common features between oxidation pathways of these two monoterpenols, such as involvement of the CYP76 family, and highlight the differences. Finally, we discuss the missing steps and other open questions in the biosynthesis of oxygenated monoterpenol derivatives.
Collapse
|
24
|
Farré-Armengol G, Filella I, Llusià J, Peñuelas J. Pollination mode determines floral scent. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Timing is Everything: Temporal Variation in Floral Scent, and its Connections to Pollinator Behavior and Female Reproductive Success in Phlox divaricata. AMERICAN MIDLAND NATURALIST 2015. [DOI: 10.1674/amid-173-02-191-207.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Gong WC, Chen G, Vereecken NJ, Dunn BL, Ma YP, Sun WB. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:245-55. [PMID: 24841694 DOI: 10.1111/plb.12176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/31/2014] [Indexed: 05/11/2023]
Abstract
Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species.
Collapse
Affiliation(s)
- W-C Gong
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Špánik I, Pažitná A, Šiška P, Szolcsányi P. The determination of botanical origin of honeys based on enantiomer distribution of chiral volatile organic compounds. Food Chem 2014; 158:497-503. [DOI: 10.1016/j.foodchem.2014.02.129] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 09/18/2013] [Accepted: 02/23/2014] [Indexed: 11/29/2022]
|
29
|
|
30
|
Dönges M, Amberg M, Stapf G, Kelm H, Bergsträßer U, Hartung J. cis-2,6-Bis-(methanolate)-piperidine oxovanadium(V) complexes as catalysts for oxidative alkenol cyclization by tert-butyl hydroperoxide. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Comparison of floral scent between and within Buddleja fallowiana and Buddleja officinalis (Scrophulariaceae). BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Diversity of Secondary Metabolites in the Genus Silene L. (Caryophyllaceae)—Structures, Distribution, and Biological Properties. DIVERSITY-BASEL 2014. [DOI: 10.3390/d6030415] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genus Silene (family Caryophyllaceae) comprises more than 700 species, which are widely distributed in temperate zones of the Northern Hemisphere, but are also present in Africa and have been introduced in other continents. Silene produces a high diversity of secondary metabolites and many of them show interesting biological and pharmacological activities. More than 450 compounds have been isolated; important classes include phytoecdysteroids (which mimic insect molting hormones), triterpene saponins (with detergent properties), volatiles, other terpenoids and phenolics. This review focusses on the phytochemical diversity, distribution of Silene secondary metabolites and their biological activities.
Collapse
|
33
|
Abstract
Plant biochemical processes result in the release of an array of volatile chemical substances into the environment, some of which are known to play important plant fitness enhancing functions, such as attracting pollinators, thermal tolerance of photosynthesis, and defense against herbivores. Cunningly, phytophagous insects have evolved mechanisms to utilize these volatiles to their own advantage, either to colonize a suitable host for feeding, reproduction and oviposition or avoid an unsuitable one. The volatile compounds involved in plant-insect chemical interactions have been widely exploited in the management of agricultural pests. On the other hand, use of plant volatiles in the management of medically important insects is limited, mainly due to paucity of information on their role in disease vector-plant interactions. To date, a total of 29 plant volatile compounds from various chemical classes, including phenols, aldehydes, alcohols, ketones and terpenes, have been identified as mosquito semiochemicals. In this review, we present highlights of mosquito-plant interactions, the available evidence of nectar feeding, with particular emphasis on sources of plant attractants, methods of plant volatile collection and the candidate plant volatile compounds that attract mosquitoes to nectar sources. We also highlight the potential application of these phytochemical attractants in integrated mosquito management.
Collapse
Affiliation(s)
| | - Baldwyn Torto
- Corresponding author. Tel.: +254 20 8632999; fax: +254 20 8632001. (V.O. Nyasembe), (B. Torto)
| |
Collapse
|
34
|
Schneider MA, Dötterl S, Seifert K. Diastereoselective synthesis of a lilac aldehyde isomer and its electrophysiological detection by a moth. Chem Biodivers 2014; 10:1252-9. [PMID: 23847069 DOI: 10.1002/cbdv.201200385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 11/08/2022]
Abstract
The monoterpene lilac aldehyde (=2-(5-ethenyl-5-methyloxolan-2-yl)propanal) is a widespread flower scent. Lilac aldehyde is emitted in high amounts from nocturnal plant species, and it is highly attractive to nocturnal moth pollinators, such as Hadena bicruris, the pollinating seed predator of Silene latifolia. Lilac aldehyde possesses three stereogenic centers and can occur in eight stereoisomers which induce different antennal responses in H. bicruris. The distribution pattern of stereoisomers differs among plant species, and if H. bicruris has different receptors for detecting different isomers, it may use these differences to discriminate flowers of S. latifolia hosts from flowers of non-host plants. To investigate the question whether the moths have in their antennae one olfactory receptor or several different receptors for the detection of the single lilac aldehyde isomers, (2S,2'S,5'S)-lilac aldehyde was diastereoselectively synthesized. (2S,2'S,5'S)-Lilac aldehyde and its isomeric mixture were tested electrophysiologically on antennae of H. bicruris. The results displayed antennal responses, which are characteristic for a single receptor that detects the different lilac aldehyde isomers.
Collapse
|
35
|
Calvo MI, Akerreta S, Cavero RY. The pharmacological validation of medicinal plants used for digestive problems in Navarra, Spain. Eur J Integr Med 2013. [DOI: 10.1016/j.eujim.2013.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Zhang S, Wei J, Kang L. Transcriptional analysis of Arabidopsis thaliana response to lima bean volatiles. PLoS One 2012; 7:e35867. [PMID: 22558246 PMCID: PMC3338473 DOI: 10.1371/journal.pone.0035867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/27/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Exposure of plants to herbivore-induced plant volatiles (HIPVs) alters their resistance to herbivores. However, the whole-genome transcriptional responses of treated plants remain unknown, and the signal pathways that produce HIPVs are also unclear. METHODOLOGY/PRINCIPAL FINDINGS Time course patterns of the gene expression of Arabidopsis thaliana exposed to Lima bean volatiles were examined using Affymetrix ATH1 genome arrays. Results showed that A. thaliana received and responded to leafminer-induced volatiles from Lima beans through up-regulation of genes related to the ethylene (ET) and jasmonic acid pathways. Time course analysis revealed strong and partly qualitative differences in the responses between exposure at 24 and that at 48 h. Further experiments using either A. thaliana ET mutant ein2-1 or A. thaliana jasmonic acid mutant coi1-2 indicated that both pathways are involved in the volatile response process but that the ET pathway is indispensable for detecting volatiles. Moreover, transcriptional comparisons showed that plant responses to larval feeding do not merely magnify the volatile response process. Finally, (Z)-3-hexen-ol, ocimene, (3E)-4,8-dimethyl-1,3,7-nonatriene, and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene triggered responses in A. thaliana similar to those induced by the entire suite of Lima bean volatiles after 24 and 48 h. CONCLUSIONS/SIGNIFICANCE This study shows that the transcriptional responses of plants to HIPVs become stronger as treatment time increases and that ET signals are critical during this process.
Collapse
Affiliation(s)
- Sufang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
37
|
|
38
|
Saveer AM, Kromann SH, Birgersson G, Bengtsson M, Lindblom T, Balkenius A, Hansson BS, Witzgall P, Becher PG, Ignell R. Floral to green: mating switches moth olfactory coding and preference. Proc Biol Sci 2012; 279:2314-22. [PMID: 22319127 PMCID: PMC3350682 DOI: 10.1098/rspb.2011.2710] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores.
Collapse
Affiliation(s)
- Ahmed M Saveer
- Chemical Ecology Group, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Piskorski R, Kroder S, Dorn S. Can pollen headspace volatiles and pollenkitt lipids serve as reliable chemical cues for bee pollinators? Chem Biodivers 2011; 8:577-86. [PMID: 21480504 DOI: 10.1002/cbdv.201100014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chemical analysis of putative contact chemical cues for pollinators from pollen of two plant species, Ranunculus bulbosus (Ranunculaceae) and Campanula rapunculoides (Campanulaceae), showed high consistency in the qualitative and quantitative composition of pollenkitt surface lipids in all samples analyzed per species. The pollenkitt lipids of R. bulbosus included an aldehyde, fatty acid amides, saturated and unsaturated hydrocarbons, and secondary alcohols; the lipids of C. rapunculoides consisted of an aldehyde, monoketones, and β-diketones. In marked contrast, the pollen headspace volatiles showed a wide qualitative and quantitative variability among all samples per species, whereby the variability was more pronounced in R. bulbosus. Hence, the highly species-specific pollenkitt lipids may provide pollinators with more reliable information on pollen identity.
Collapse
Affiliation(s)
- Rafal Piskorski
- ETH Zurich, Institute of Agricultural Sciences, Applied Entomology, Schmelzbergstrasse 9/LFO, CH-8092 Zurich
| | | | | |
Collapse
|
40
|
Paczkowski S, Schütz S. Post-mortem volatiles of vertebrate tissue. Appl Microbiol Biotechnol 2011; 91:917-35. [PMID: 21720824 PMCID: PMC3145088 DOI: 10.1007/s00253-011-3417-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/12/2022]
Abstract
Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted.
Collapse
Affiliation(s)
- Sebastian Paczkowski
- Department of Forest Zoology and Forest Conservation, Büsgeninstitut, Georg August University, Büsgenweg 3, 37077 Göttingen, Germany.
| | | |
Collapse
|
41
|
Senyuva HZ, Gilbert J, Silici S, Charlton A, Dal C, Gürel N, Cimen D. Profiling Turkish honeys to determine authenticity using physical and chemical characteristics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3911-3919. [PMID: 19326859 DOI: 10.1021/jf900039s] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Seventy authentic honey samples of 9 different floral types (rhododendron, chestnut, honeydew, Anzer (thymus spp.), eucalyptus, gossypium, citrus, sunflower, and multifloral) from 15 different geographical regions of Turkey were analyzed for their chemical composition and for indicators of botanical and geographical origin. The profiles of free amino acids, oligosaccharides, and volatile components together with water activity were determined to characterize chemical composition. The microscopic analysis of honey sediment (mellissopalynology) was carried out to identify and count the pollen to provide qualitative indicators to confirm botanical origin. Statistical analysis was undertaken using a bespoke toolbox for Matlab called Metabolab. Discriminant analysis was undertaken using partial least-squares (PLS) regression followed by linear discriminant analysis (LDA). Four data models were constructed and validated. Model 1 used 51 variables to predict the floral origin of the honey samples. This model was also used to identify the top 5 variable important of projection (VIP) scores, selecting those variables that most significantly affected the PLS-LDA calculation. These data related to the phthalic acid, 2-methylheptanoic acid, raffinose, maltose, and sucrose. Data from these compounds were remodeled using PLS-LDA. Model 2 used only the volatiles data, model 3 the sugars data, and model 4 the amino acids data. The combined data set allowed the floral origin of Turkish honey to be accurately predicted and thus provides a useful tool for authentication purposes. However, using variable selection techniques a smaller subset of analytes have been identified that have the capability of classifying Turkish honey according to floral type with a similar level of accuracy.
Collapse
Affiliation(s)
- Hamide Z Senyuva
- Ankara Test and Analysis Laboratory, Scientific and Technological Research Council of Turkey, Ankara 06330, Turkey.
| | | | | | | | | | | | | |
Collapse
|
42
|
Goodrich KR, Raguso RA. The olfactory component of floral display in Asimina and Deeringothamnus (Annonaceae). THE NEW PHYTOLOGIST 2009; 183:457-469. [PMID: 19594704 DOI: 10.1111/j.1469-8137.2009.02868.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Floral scent is a key component of floral display, and probably one of the first floral attractants linking insect pollinators to the radiation of Angiosperms. In this article, we investigate floral scent in two extra-tropical genera of Annonaceae. We discuss floral scent in the context of differing pollination strategies in these genera, and compare their scent to that of a close tropical relative. Floral volatiles were collected for Annona glabra, Asimina and Deeringothamnus whole flowers and dissected floral organs, using a standardized static-headspace solid phase microextraction method. Scents were analyzed using gas chromatography-mass spectrometry, and identified using known standards. The floral scents of these species are highly dynamic, varying between floral organs, sexual stages and species. Maroon-flowered species of Asimina produce 'yeasty' odors, dominated by fermentation volatiles and occasionally containing sulfurous or nitrogenous compounds. White-flowered species of Asimina and Deeringothamnus produce pleasant odors characterized by lilac compounds, benzenoids and hydrocarbons. Annona glabra produces a strong, fruity-acetonic scent dominated by 3-pentanyl acetate and 1,8-cineole. The fermented/decaying scents of maroon-flowered species of Asimina suggest mimicry-based pollination strategies similar to aroids and stapeliads, whereas the pleasant scents of white-flowered species of Asimina suggest honest, reward-based pollination strategies. The scent of Annona glabra is typical of specialized beetle pollination systems common to tropical Annonaceae.
Collapse
Affiliation(s)
- Katherine R Goodrich
- University of South Carolina, Coker Life Science Building, 700 Sumter St., Columbia, SC 29208, USA
- Present address: Widener University, Department of Biology, 1 University Place, Chester, PA 19034, USA
| | - Robert A Raguso
- University of South Carolina, Coker Life Science Building, 700 Sumter St., Columbia, SC 29208, USA
| |
Collapse
|
43
|
Chess SKR, Raguso RA, Lebuhn G. Geographic divergence in floral morphology and scent in Linanthus dichotomus (Polemoniaceae). AMERICAN JOURNAL OF BOTANY 2008; 95:1652-1659. [PMID: 21628171 DOI: 10.3732/ajb.0800118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Floral reproductive morphology and scent are of primary importance to pollinators in guiding foraging decisions. We compared the floral scent and reproductive morphology between two subspecies of Linanthus dichotomus (Polemoniaceae) that are taxonomically distinguished by geography and flowering time: the vespertine L. dichotomus subsp. dichotomus and the diurnal L. dichotomus subsp. meridianus. Disparity in flowering time between the two subspecies is accompanied by differences in flower visitors. We collected floral volatiles using dynamic headspace methods and analyzed them using gas chromatography and mass spectroscopy. Together, the subspecies produced a total of 39 floral scent compounds. Subspecies differ in the quantitative pattern of volatiles that attract noctuid moths (e.g., lilac aldehydes) vs. a more general suite of visitors (e.g., phenylacetaldehyde), but not in overall scent emission rates. A discriminant function analysis correctly distinguished between the two subspecies based on scent samples 86% of the time. We measured seven reproductive morphological traits; a discriminant function analysis distinguished between the two subspecies based on morphological samples 81% of the time. We found significant differences between subspecies in scent but not in individual morphological traits. The evidence presented here is most consistent with a hypothesis of pollinator-mediated selection.
Collapse
Affiliation(s)
- Sally K R Chess
- San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132 USA
| | | | | |
Collapse
|
44
|
Kamatou GPP, Viljoen AM. Linalool – a Review of a Biologically Active Compound of Commercial Importance. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300727] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Since the earliest times fragrant materials have been used in rituals. Today, a lucrative industry has developed to produce and deliver fragrances and aromatic chemicals with various applications in modern society. Linalool, a much sought after compound in the flavor and fragrance industry is a monoterpene alcohol which occurs naturally in many aromatic plants. Linalool and linalool-rich essential oils are known to exhibit various biological activities such as antimicrobial, anti-inflammatory, anticancer, anti-oxidant properties and several in vivo studies have confirmed various effects of linalool on the central nervous system. The applications of linalool are not confined to simply adding or enhancing a specific scent to domestic products such as soaps, detergents and shampoos. Linalool also plays an import role in nature as a key compound in the complex pollination biology of various plant species to ensure reproduction and survival. Linalool is also a key compound for the industrial production of a variety of fragrance chemicals such as geraniol, nerol, citral and its derivatives, as well as a lead compound in the synthesis of vitamins A and E. The repellent properties of linalool on various crop-destroying insects has been well documented accentuating the application of this molecule in eco-friendly pest management. This review aims to highlight the various biological properties of linalool and to emphasize the value of linalool and linalool-rich essential oils in phytotherapy.
Collapse
Affiliation(s)
- Guy P. P. Kamatou
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro M. Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| |
Collapse
|
45
|
Oh SY, Shin HD, Kim SJ, Hong J. Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface acoustic wave sensor. J Chromatogr A 2008; 1183:170-8. [PMID: 18255083 DOI: 10.1016/j.chroma.2008.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/26/2007] [Accepted: 01/04/2008] [Indexed: 11/29/2022]
Abstract
A novel analytical method using fast gas chromatography combined with surface acoustic wave sensor (GC/SAW) has been developed for the detection of volatile aroma compounds emanated from lilac blossom (Syringa species: Syringa vulgaris variginata and Syringa dilatata). GC/SAW could detect and quantify various fragrance emitted from lilac blossom, enabling to provide fragrance pattern analysis results. The fragrance pattern analysis could easily characterize the delicate differences in aromas caused by the substantial difference of chemical composition according to different color and shape of petals. Moreover, the method validation of GC/SAW was performed for the purpose of volatile floral actual aroma analysis, achieving a high reproducibility and excellent sensitivity. From the validation results, GC/SAW could serve as an alternative analytical technique for the analysis of volatile floral actual aroma of lilac. In addition, headspace solid-phase microextraction (HS-SPME) GC-MS was employed to further confirm the identification of fragrances emitted from lilac blossom and compared to GC/SAW.
Collapse
Affiliation(s)
- Se Yeon Oh
- College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | | | | | | |
Collapse
|
46
|
Jhumur US, Dötterl S, Jürgens A. Floral odors of Silene otites: their variability and attractiveness to mosquitoes. J Chem Ecol 2007; 34:14-25. [PMID: 18057987 DOI: 10.1007/s10886-007-9392-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 09/07/2007] [Accepted: 10/29/2007] [Indexed: 11/29/2022]
Abstract
Inflorescence scent samples from nine populations of dioecious Silene otites, a plant pollinated by moths and mosquitoes, were collected by dynamic headspace extraction. Sixty-three scent samples were analyzed by gas chromatography-mass spectrometry. Out of 38 found, 35 compounds were identified, most of which were monoterpenoids, fatty acid derivatives, and benzenoids. Phenyl acetaldehyde was the most dominant compound in the majority of samples. The variability in scent composition was high, and population and sex differences were found. Nevertheless, wind tunnel experiments proved similar attraction of Culex pipiens pipiens biotype molestus mosquitoes to the inflorescence odor of S. otites of different populations, indicating that different blends are similarly attractive to mosquitoes. The electrophysiological responses of mosquitoes to the 12 most common and abundant odor compounds of S. otites differed. Linalool oxide (furanoid) and linalool evoked the strongest responses in male and female mosquitoes, and (Z)-3-hexenyl acetate was strongly active in females. Medium responses were evoked in males by (Z)-3-hexenyl acetate, in females by benzaldehyde and methyl salicylate, and in both sexes by lilac aldehyde, lilac alcohol, and linalool oxide (pyranoid).
Collapse
Affiliation(s)
- Umma Salma Jhumur
- Department of Plant Systematics, University of Bayreuth, 95440, Bayreuth, Germany.
| | | | | |
Collapse
|
47
|
WAELTI MO, MUHLEMANN JK, WIDMER A, SCHIESTL FP. Floral odour and reproductive isolation in two species ofSilene. J Evol Biol 2007; 21:111-121. [DOI: 10.1111/j.1420-9101.2007.01461.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Rocha SM, Coelho E, Zrostlíková J, Delgadillo I, Coimbra MA. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability. J Chromatogr A 2007; 1161:292-9. [PMID: 17585921 DOI: 10.1016/j.chroma.2007.05.093] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
The establishment of the monoterpenoid profile of Vitis vinifera L. cv. 'Fernão-Pires' white grape was achieved by headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToF-MS). The plot of the first dimension versus the second dimension retention times using the m/z 93, 121, and 136 was used. The grapes were found to contain 56 monoterpenoids identified by GCxGC-ToF-MS. From these, 20 were reported for the first time in grapes. According to their chemical structure, the compounds were organized in different groups: monoterpene hydrocarbons and monoterpene oxygen-containing compounds, this later divided in oxides, alcohols (monoterpenols and monoterpendiols), aldehydes, esters, and ketones. A database composed by the retention indices of monoterpenoids calculated in the bi-dimensional column set was created, representing a developmental step in monoterpenoid analysis using a GCxGC system. Remarkable results were also obtained in terms of compound classification based on the organized structure of the peaks of structurally related compounds in the GCxGC contour plot. This information represents a valuable approach for future studies, as the ordered-structure principle can considerably help the establishment of the composition of samples. This study proposes a methodology and provides data that can be applied to determine the monoterpenoid profile of grapes, and its extension to the analysis of musts, and wines. As monoterpenoids are secondary metabolites whose synthesis is encoded by variety-related genes, the terpenoid profile may be used as a way to trace its varietal origin.
Collapse
Affiliation(s)
- Sílvia M Rocha
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | |
Collapse
|
49
|
Matich AJ, Bunn BJ, Comeskey DJ, Hunt MB, Rowan DD. Chirality and biosynthesis of lilac compounds in Actinidia arguta flowers. PHYTOCHEMISTRY 2007; 68:1746-51. [PMID: 17466345 DOI: 10.1016/j.phytochem.2007.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/20/2007] [Accepted: 03/14/2007] [Indexed: 05/15/2023]
Abstract
Biosynthesis of lilac compounds in 'Hortgem Tahi' kiwifruit (Actinidia arguta) flowers was investigated by treating inflorescences with d(5)-linalool. The incorporation of the deuterium label into 8-hydroxylinalool, 8-oxolinalool, the lilac aldehydes, alcohols, and alcohol epoxides was followed by GC-MS and enantioselective GC-MS. Both (R)- and (S)-linalool were produced naturally by the flowers, but 8-hydroxylinalool, 8-oxolinalool, and the lilac aldehydes and alcohols occurred predominantly as the (S) and 5'(S)-diastereoisomers, respectively. The enantioselective step in the biosynthesis of the lilac aldehydes and alcohols was concluded to be the oxidation of linalool to (S)-8-hydroxylinalool. In contrast, the lilac alcohol epoxides had a 5'(R):(S) ratio, the same as for linalool, which suggests that either these compounds are not synthesised from the 5'(S)-configured lilac aldehydes and alcohols, or that if indeed they are, then it is by an enantioselective step that favours utilisation of the 5'(R)-configured compounds.
Collapse
Affiliation(s)
- A J Matich
- The Horticultural and Food Research Institute of New Zealand Ltd., Private Bag 11030, Palmerston North 4442, New Zealand.
| | | | | | | | | |
Collapse
|
50
|
Dötterl S, Burkhardt D, Jürgens A, Mosandl A. Stereoisomeric pattern of lilac aldehyde in Silene latifolia, a plant involved in a nursery pollination system. PHYTOCHEMISTRY 2007; 68:499-504. [PMID: 17182068 DOI: 10.1016/j.phytochem.2006.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 11/06/2006] [Accepted: 11/06/2006] [Indexed: 05/13/2023]
Abstract
The monoterpene lilac aldehyde is found in floral scent of several plants species, among them Silene latifolia. This plant is involved in a nursery pollination system, because a noctuid moth, Hadena bicruris, is not only pollinator but also seed predator. Lilac aldehyde is the key floral scent compound of S. latifolia for attracting Hadena. This monoterpene has three stereogenic centers, and eight different isomers are possible. Here, we analysed the ratio of lilac aldehyde isomers from plants originating from 18 different populations of S. latifolia using enantioselective multidimensional GC-MS (enantio-MDGC-MS), and compared resulting variability with variability found in total scent emitted by specimen under study. Though variability in total emitted scent was high, ratio of lilac aldehyde isomers was a more conservative trait. There was no correlation between the ratio of lilac aldehyde isomers and the total emitted floral scent pattern. Both, ratio of stereoisomers and total emitted scent were independent from the geographic origin of the plants. In conclusion, the ratio of lilac aldehyde stereoisomers in S. latifolia is a reliable trait, and may used by the nursery pollinator H. bicruris for host-plant detection.
Collapse
Affiliation(s)
- Stefan Dötterl
- University of Bayreuth, Department of Plant Systematics, D-95440 Bayreuth, Germany.
| | | | | | | |
Collapse
|