1
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
2
|
Muralidharan J, Romain C, Bresciani L, Mena P, Angelino D, Del Rio D, Chung LH, Alcaraz PE, Cases J. Nutrikinetics and urinary excretion of phenolic compounds after a 16-week supplementation with a flavanone-rich ingredient. Food Funct 2023; 14:10506-10519. [PMID: 37943075 DOI: 10.1039/d3fo02820h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Background: Polyphenols are a broad group of compounds with a complex metabolic fate. Flavanones and their metabolites provide cardiovascular protection and assistance in long-term body composition management. Objective: This study evaluates the nutrikinetics and the bioavailability of phenolic compounds after both acute and chronic supplementation with a flavanone-rich product, namely Sinetrol® Xpur, in healthy overweight and obese volunteers. Design: An open-label study including 20 volunteers was conducted for 16 weeks. Participants received Sinetrol® Xpur, either a low dose (900 mg per day) or a high dose (1800 mg per day), in capsules during breakfast and lunch. They were advised to follow an individualized isocaloric diet and avoid a list of polyphenol-rich foods 48 hours before and during the pharmacokinetic measurements. Results: Over 20 phase II and colonic metabolites were measured in the plasma. Two peaks were observed at 1 h and 7h-10 h after the first capsule ingestion. No significant differences in the AUC were observed in circulating metabolites between both doses. In urine excretion, 53 metabolites were monitored, including human phase II and colonic metabolites, at weeks 1 and 16. Cumulative urine excretion was higher after the high dose than after the low dose in both acute and chronic studies. Total urinary metabolites were significantly lower in week 16 compared to week 1. Conclusion: Although the urinary excreted metabolites reduced significantly over 16 weeks, the circulating metabolites did not decrease significantly. This study suggests that chronic intake might not offer the same bioavailability as in the acute study, and this effect does not seem to be dose-dependent. The clinical trial registry number is NCT03823196.
Collapse
Affiliation(s)
| | - Cindy Romain
- Fytexia, ZAE via Europa - 3 rue d'Athènes, 34350 Vendres, France.
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Donato Angelino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, 64100, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Linda H Chung
- Research Center for High Performance Sport - UCAM Universidad Católica de Murcia, Murcia, Spain
- Department of Food and Nutrition Technology, Universidad Católica de Murcia, Murcia, Spain
| | - Pedro E Alcaraz
- Research Center for High Performance Sport - UCAM Universidad Católica de Murcia, Murcia, Spain
- Department of Food and Nutrition Technology, Universidad Católica de Murcia, Murcia, Spain
| | - Julien Cases
- Fytexia, ZAE via Europa - 3 rue d'Athènes, 34350 Vendres, France.
| |
Collapse
|
3
|
Lessard-Lord J, Auger S, Demers S, Plante PL, Picard P, Desjardins Y. Automated High-Throughput Quantification of Phenyl-γ-valerolactones and Creatinine in Urine by Laser Diode Thermal Desorption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16787-16796. [PMID: 37890868 PMCID: PMC10637324 DOI: 10.1021/acs.jafc.3c03888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023]
Abstract
Quantification of nutritional biomarkers is crucial to accurately assess the dietary intake of different classes of (poly)phenols in large epidemiological studies. High-throughput analysis is mandatory to apply this methodology in large cohorts. However, the current validated methods to quantify (poly)phenols metabolites in biological fluids use ultra performance liquid chromatography (UPLC), leading to analysis time of several minutes per sample. To significantly reduce the run time, we developed and validated a method to quantify in urine the flavan-3-ols biomarkers, phenyl-γ-valerolactones (PVLs), using laser diode thermal desorption (LDTD). This mass spectrometry source allows direct introduction of sample extracts, resulting in analysis time of less than 10 s per sample. Also, to encompass the problem associated with the cost and availability of sulfated and glucuronide analytical standards, urine samples were subjected to enzymatic hydrolysis. Creatinine was also quantified to normalize the results obtained from the urinary spot. Results obtained with LDTD-MS/MS were cross-validated by UPLC-MS/MS using 155 urine samples. Coefficient of correlation was above 0.975 for PVLs and creatinine. For all analytes, the accuracy was between 90% and 113% by LDTD-MS/MS. Altogether, sample preparation was fully automated to demonstrate the application potential of this method to large cohorts.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440 boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Department
of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, 2425 Rue de l’Agriculture, Québec, Québec G1V 0A6 Canada
| | - Serge Auger
- Phytronix
Technologies, 4535, Boulevard
Wilfrid-Hamel, Suite #120, Québec, Québec G1P 2J7, Canada
| | - Sarah Demers
- Phytronix
Technologies, 4535, Boulevard
Wilfrid-Hamel, Suite #120, Québec, Québec G1P 2J7, Canada
| | - Pier-Luc Plante
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440 boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
| | - Pierre Picard
- Phytronix
Technologies, 4535, Boulevard
Wilfrid-Hamel, Suite #120, Québec, Québec G1P 2J7, Canada
| | - Yves Desjardins
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440 boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Department
of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, 2425 Rue de l’Agriculture, Québec, Québec G1V 0A6 Canada
| |
Collapse
|
4
|
Cáceres-Jiménez S, Rodríguez-Solana R, Dobani S, Pourshahidi K, Gill C, Moreno-Rojas JM, Almutairi TM, Crozier A, Pereira-Caro G. UHPLC-HRMS Spectrometric Analysis: Method Validation and Plasma and Urinary Metabolite Identification after Mango Pulp Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37471325 DOI: 10.1021/acs.jafc.3c03846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
After an acute intake of 300 g of mango purée by 10 subjects, 0 and 24 h urine and plasma samples were analyzed by high-performance liquid chromatography-high-resolution mass spectrometry. The method was first validated for 44 reference polyphenols in terms of linearity, specificity, limits of detection and quantification, intra-day and inter-day precision, recovery, and matrix effects in two biological matrices. After method validation, a total of 94 microbial-derived phenolic catabolites, including 15 cinnamic acids, 3 phenylhydracrylic acids, 14 phenylpropanoic acids, 12 phenylacetic acids, 28 benzoic acids, 2 mandelic acids, 15 hydroxybenzenes, and 5 hippuric acid derivatives, were identified or tentatively identified in urine and/or plasma. These results establish the value of the UHPLC-HRMS protocol and the use of authentic standards to obtain a detailed and accurate picture of mango polyphenol metabolites, together with their phase II conjugated metabolites, in human bioavailability studies.
Collapse
Affiliation(s)
- Salud Cáceres-Jiménez
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, Córdoba 14004, Spain
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-anexo, Universidad de Córdoba, Córdoba 14071, Spain
| | - Raquel Rodríguez-Solana
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, Córdoba 14004, Spain
| | - Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT1 6DN, U.K
| | - Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT1 6DN, U.K
| | - Chris Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT1 6DN, U.K
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, Córdoba 14004, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain
| | - Tahani M Almutairi
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, Córdoba 14004, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain
| |
Collapse
|
5
|
Ramos-Garcia V, Ten-Doménech I, Moreno-Giménez A, Campos-Berga L, Parra-Llorca A, Gormaz M, Vento M, Karipidou M, Poulimeneas D, Mamalaki E, Bathrellou E, Kuligowski J. Joint Microbiota Activity and Dietary Assessment through Urinary Biomarkers by LC-MS/MS. Nutrients 2023; 15:1894. [PMID: 37111113 PMCID: PMC10146414 DOI: 10.3390/nu15081894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Accurate dietary assessment in nutritional research is a huge challenge, but essential. Due to the subjective nature of self-reporting methods, the development of analytical methods for food intake and microbiota biomarkers determination is needed. This work presents an ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) method for the quantification and semi quantification of 20 and 201 food intake biomarkers (BFIs), respectively, as well as 7 microbiota biomarkers applied to 208 urine samples from lactating mothers (M) (N = 59). Dietary intake was assessed through a 24 h dietary recall (R24h). BFI analysis identified three distinct clusters among samples: samples from clusters 1 and 3 presented higher concentrations of most biomarkers than those from cluster 2, with dairy products and milk biomarkers being more concentrated in cluster 1, and seeds, garlic and onion in cluster 3. Significant correlations were observed between three BFIs (fruits, meat, and fish) and R24h data (r > 0.2, p-values < 0.01, Spearman correlation). Microbiota activity biomarkers were simultaneously evaluated and the subgroup patterns detected were compared to clusters from dietary assessment. These results evidence the feasibility, usefulness, and complementary nature of the determination of BFIs, R24h, and microbiota activity biomarkers in observational nutrition cohort studies.
Collapse
Affiliation(s)
- Victoria Ramos-Garcia
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| | - Isabel Ten-Doménech
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| | - Alba Moreno-Giménez
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| | - Laura Campos-Berga
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| | - Anna Parra-Llorca
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| | - María Gormaz
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Máximo Vento
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Melina Karipidou
- Department of Nutrition and Dietetics, Harokopio University of Athens, El. Venizelou 70, 17676 Kallithea, Greece; (M.K.); (D.P.); (E.M.); (E.B.)
| | - Dimitrios Poulimeneas
- Department of Nutrition and Dietetics, Harokopio University of Athens, El. Venizelou 70, 17676 Kallithea, Greece; (M.K.); (D.P.); (E.M.); (E.B.)
| | - Eirini Mamalaki
- Department of Nutrition and Dietetics, Harokopio University of Athens, El. Venizelou 70, 17676 Kallithea, Greece; (M.K.); (D.P.); (E.M.); (E.B.)
| | - Eirini Bathrellou
- Department of Nutrition and Dietetics, Harokopio University of Athens, El. Venizelou 70, 17676 Kallithea, Greece; (M.K.); (D.P.); (E.M.); (E.B.)
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| |
Collapse
|
6
|
Woolf EK, Terwoord JD, Litwin NS, Vazquez AR, Lee SY, Ghanem N, Michell KA, Smith BT, Grabos LE, Ketelhut NB, Bachman NP, Smith ME, Le Sayec M, Rao S, Gentile CL, Weir TL, Rodriguez-Mateos A, Seals DR, Dinenno FA, Johnson SA. Daily blueberry consumption for 12 weeks improves endothelial function in postmenopausal women with above-normal blood pressure through reductions in oxidative stress: a randomized controlled trial. Food Funct 2023; 14:2621-2641. [PMID: 36847333 DOI: 10.1039/d3fo00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Estrogen-deficient postmenopausal women have oxidative stress-mediated suppression of endothelial function that is exacerbated by high blood pressure. Previous research suggests blueberries may improve endothelial function through reductions in oxidative stress, while also exerting other cardiovascular benefits. The objective of this study was to examine the efficacy of blueberries to improve endothelial function and blood pressure in postmenopausal women with above-normal blood pressure, and to identify potential mechanisms for improvements in endothelial function. A randomized, double-blind, placebo-controlled, parallel-arm clinical trial was performed, where postmenopausal women aged 45-65 years with elevated blood pressure or stage 1-hypertension (total n = 43, endothelial function n = 32) consumed 22 g day-1 of freeze-dried highbush blueberry powder or placebo powder for 12 weeks. Endothelial function was assessed at baseline and 12 weeks through ultrasound measurement of brachial artery flow-mediated dilation (FMD) normalized to shear rate area under the curve (FMD/SRAUC) before and after intravenous infusion of a supraphysiologic dose of ascorbic acid to evaluate whether FMD improvements were mediated by reduced oxidative stress. Hemodynamics, arterial stiffness, cardiometabolic blood biomarkers, and plasma (poly)phenol metabolites were assessed at baseline and 4, 8, and 12 weeks, and venous endothelial cell protein expression was assessed at baseline and 12 weeks. Absolute FMD/SRAUC was 96% higher following blueberry consumption compared to baseline (p < 0.05) but unchanged in the placebo group (p > 0.05), and changes from baseline to 12 weeks were greater in the blueberry group than placebo (+1.09 × 10-4 ± 4.12 × 10-5vs. +3.82 × 10-6 ± 1.59 × 10-5, p < 0.03, respectively). The FMD/SRAUC response to ascorbic acid infusion was lower (p < 0.05) at 12 weeks compared to baseline in the blueberry group with no change in the placebo group (p > 0.05). The sum of plasma (poly)phenol metabolites increased at 4, 8, and 12 weeks in the blueberry group compared to baseline, and were higher than the placebo group (all p < 0.05). Increases in several plasma flavonoid and microbial metabolites were also noted. No major differences were found for blood pressure, arterial stiffness, blood biomarkers, or endothelial cell protein expression following blueberry consumption. These findings suggest daily consumption of freeze-dried blueberry powder for 12 weeks improves endothelial function through reduced oxidative stress in postmenopausal women with above-normal blood pressure. The clinical trial registry number is NCT03370991 (https://clinicaltrials.gov).
Collapse
Affiliation(s)
- Emily K Woolf
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Janée D Terwoord
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Nicole S Litwin
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Allegra R Vazquez
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Sylvia Y Lee
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Nancy Ghanem
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Kiri A Michell
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Brayden T Smith
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Lauren E Grabos
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Nathaniel B Ketelhut
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Nate P Bachman
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Melanie Le Sayec
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, England, UK
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher L Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, England, UK
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Frank A Dinenno
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
7
|
An automated micro solid phase extraction gas chromatography-mass spectrometry (μSPE-GC-MS) detection method for geosmin and 2-methylisoborneol in drinking water. Sci Rep 2023; 13:1768. [PMID: 36720961 PMCID: PMC9889310 DOI: 10.1038/s41598-023-28543-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023] Open
Abstract
Geosmin and 2-methylisoborneol (2-MIB) are amongst the most common earthy and musty taste and odour (T&O) compounds found in drinking water. With low odour threshold detection limits below 10 ng L-1, and the complexity of raw water matrices, these two compounds provide a significant challenge for water companies globally. In this research, for the first time, a novel and fully automated micro-solid phase-extraction (μSPE) method coupled with gas chromatography (GC)-mass spectrometry (MS) has been developed for the detection of geosmin and 2-MIB for drinking water analysis. The new automated method described herein is environmentally friendly requiring low raw water sample volumes, of 25 mL, and only 50 μL of elution solvent. Our μSPE-GC-MS method exhibits excellent linearity for both compounds (R2 > 0.999) and low limits of detection of 2.0 ng L-1 and 4.3 ng L-1 for geosmin and 2-MIB, respectively. The method showed excellent recovery rates (95.1-100.1%) and good precision (RSD < 7%) in raw sample matrices. Our approach is fully automated onto a robotic workstation which can be readily integrated into a laboratory workflow for routine water analysis. Furthermore, the method has excellent potential to be incorporated within a portable system for onsite analysis.
Collapse
|
8
|
Oral Bioavailability and Metabolism of Hydroxytyrosol from Food Supplements. Nutrients 2023; 15:nu15020325. [PMID: 36678196 PMCID: PMC9866489 DOI: 10.3390/nu15020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Table olives and olive oils are the main dietary sources of hydroxytyrosol (HT), a natural antioxidant compound that has emerged as a potential aid in protection against cardiovascular risk. Bioavailability studies with olive oils showed that HT is bioavailable from its free form and from conjugated forms such as oleuropein and its aglycone. Still, its low dietary intake, poor bioavailability, and high inter-individual variability after absorption through the gastrointestinal tract hamper its full benefits. In a randomized, controlled, blinded, cross-over study, we investigated the impact of HT metabolism and bioavailability by comparing two olive-derived watery supplements containing different doses of HT (30.58 and 61.48 mg of HT/dosage). Additionally, HT-fortified olive oil was used in the control group. To this aim, plasma and urine samples were evaluated in 12 healthy volunteers following the intake of a single dose of the supplements or fortified olive oil. Blood and urine samples were collected at baseline and at 0.5, 1, 1.5, 2, 4, and 12 h after intake. HT and its metabolites were analyzed using UHPLC-DAD-MS/MS. Pharmacokinetic results showed that dietary HT administered through the food supplements is bioavailable and bioavailability increases with the administered dose. After intake, homovanillic acid, HT-3-O-sulphate, and 3,4-dihydroxyphenylacetic acid are the main metabolites found both in plasma and urine. The maximum concentrations in plasma peaked 30 min after intake. As bioavailability of a compound is a fundamental prerequisite for its effect, these results promise a good potential of both food supplements for protection against oxidative stress and the consequent cardiovascular risk.
Collapse
|
9
|
Milenkovic D, Rodriguez‐Mateos A, Lucosz M, Istas G, Declerck K, Sansone R, Deenen R, Köhrer K, Corral‐Jara KF, Altschmied J, Haendeler J, Kelm M, Berghe WV, Heiss C. Flavanol Consumption in Healthy Men Preserves Integrity of Immunological-Endothelial Barrier Cell Functions: Nutri(epi)genomic Analysis. Mol Nutr Food Res 2022; 66:e2100991. [PMID: 35094491 PMCID: PMC9787825 DOI: 10.1002/mnfr.202100991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/16/2022] [Indexed: 12/30/2022]
Abstract
SCOPE While cocoa flavanol (CF) consumption improves cardiovascular risk biomarkers, molecular mechanisms underlying their protective effects are not understood. OBJECTIVE To investigate nutri(epi)genomic effects of CF and identify regulatory networks potential mediating vascular health benefits. METHODS AND RESULTS Twenty healthy middle-aged men consume CF (bi-daily 450 mg) or control drinks for 1 month. Microarray analysis identifies 2235 differentially expressed genes (DEG) involved in processes regulating immune response, cell adhesion, or cytoskeleton organization. Distinct patterns of DEG correlate with CF-related changes in endothelial function, arterial stiffness, and blood pressure. DEG profile negatively correlates with expression profiles of cardiovascular disease patients. CF modulated DNA methylation profile of genes implicates in cell adhesion, actin cytoskeleton organization, or cell signaling. In silico docking analyses indicate that CF metabolites have the potential of binding to cell signaling proteins and transcription factors. Incubation of plasma obtained after CF consumption decrease monocyte to endothelial adhesion and dose-dependently increase nitric oxide-dependent chemotaxis of circulating angiogenic cells further validating the biological functions of CF metabolites. CONCLUSION In healthy humans, CF consumption may mediate vascular protective effects by modulating gene expression and DNA methylation towards a cardiovascular protective effect, in agreement with clinical results, by preserving integrity of immunological-endothelial barrier functions.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Department of NutritionUniversity of California DavisDavisCA95616USA
- INRAEUNHUniversité Clermont AuvergneClermont‐FerrandF‐63000France
| | - Ana Rodriguez‐Mateos
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Department of Nutritional SciencesSchool of Life Course and Population SciencesFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Margarete Lucosz
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Geoffrey Istas
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Department of Nutritional SciencesSchool of Life Course and Population SciencesFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Ken Declerck
- PPESDepartment of Biomedical SciencesUniversity of Antwerp (UA)WilrijkBelgium
| | - Roberto Sansone
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - René Deenen
- Biological and Medical Research Center (BMFZ)Heinrich Heine UniversityDüsseldorfGermany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ)Heinrich Heine UniversityDüsseldorfGermany
| | | | - Joachim Altschmied
- Environmentally‐induced Cardiovascular DegenerationClinical Chemistry and Laboratory DiagnosticsMedical FacultyUniversity Hospital and Heinrich‐Heine UniversityDüsseldorfGermany
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | - Judith Haendeler
- Environmentally‐induced Cardiovascular DegenerationClinical Chemistry and Laboratory DiagnosticsMedical FacultyUniversity Hospital and Heinrich‐Heine UniversityDüsseldorfGermany
| | - Malte Kelm
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Wim Vanden Berghe
- PPESDepartment of Biomedical SciencesUniversity of Antwerp (UA)WilrijkBelgium
| | - Christian Heiss
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Clinical Medicine SectionDepartment of Clinical and Experimental MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- Department of Vascular MedicineSurrey and Sussex NHS Healthcare TrustEast Surrey HospitalRedhillUK
| |
Collapse
|
10
|
The effects of Aronia berry polyphenol supplementation on arterial function and the gut microbiome in middle aged men and women: Results from a randomized controlled trial. Clin Nutr 2022; 41:2549-2561. [DOI: 10.1016/j.clnu.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
|
11
|
Duarte I, de Souza MCM, Curinga RM, Mendonça HM, de Lacerda de Oliveira L, Milenkovic D, Hassimotto NMA, Costa AM, Malaquias JV, Dos Santos Borges TK. Effect of Passiflora setacea juice and its phenolic metabolites on insulin resistance markers in overweight individuals and on microglial cell activity. Food Funct 2022; 13:6498-6509. [PMID: 35621054 DOI: 10.1039/d1fo04334j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Passiflora setacea (PS) is a species of wild Brazilian passion fruit, rich in bioactive compounds. Scientific evidence suggests that food rich in polyphenols can modulate inflammation, thereby playing an important role in preventing chronic non-communicable diseases, such as type 2 diabetes (DT2) and cardiovascular diseases (CVD). This study aimed to investigate the effect of PS consumption on metabolic and inflammatory biomarkers in overweight male volunteers and to identify the underlying mechanism of action using an in vitro study using phenolic metabolites isolated from the plasma of volunteers at physiologically relevant concentrations. Volunteers participated in a double-blind, placebo-controlled (PB) study with two phases: phase I (acute study) and phase II (chronic study). In phase I, 15 volunteers ingested a single dose of 50 g, 150 g of PS pulp and PB in three different interventions. In phase II, nine volunteers ingested 50 g of PS or PB for 14 days. Blood samples were collected before (T0 h) and 3 h (T3 h) (phase I) or 15 days after (phase II) ingestion of PS or PB. Blood biochemical markers, HOMA IR, and inflammatory markers were analyzed and data on BMI, waist circumference, and consumption of polyphenol-rich foods were collected. Phenolic metabolites were extracted from plasma by solid-phase separation and were used to treat BV-2 cells stimulated by LPS or anacardic acid to assess p50, p65 and PPAR-γ activation. It was observed that the consumption of a single dose of PS juice significantly reduced basal insulin levels and HOMA IR. After prolonged consumption for two weeks, PS contributed to the reduction of circulating levels of IL-6. BV-2 cells treated with PS phenolic metabolites showed increased PPAR-γ activity, which resulted in an anti-inflammatory and anti-diabetic effect of PS metabolites. In conclusion, PS juice consumption exerts beneficial effects on inflammatory markers in overweight individuals, being a possible and important tool in the prevention of T2D and CVD in risk groups.
Collapse
Affiliation(s)
- Isabella Duarte
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil.
| | - Maria Carolina Miranda de Souza
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil
| | - Rafaela Moura Curinga
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, Brasilia, DF, 70.910-900, Brazil
| | - Henrique Matos Mendonça
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, Brasilia, DF, 70.910-900, Brazil
| | - Livia de Lacerda de Oliveira
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil.
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC-CEPID) and Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Maria Costa
- Embrapa Cerrados, BR 020, Km18, Laboratory of Food Science, Planaltina, DF, 73.310-970, Brazil
| | - Juaci Vitorio Malaquias
- Embrapa Cerrados, BR 020, Km18, Laboratory of Food Science, Planaltina, DF, 73.310-970, Brazil
| | | |
Collapse
|
12
|
Flanagan E, Cameron D, Sobhan R, Wong C, Pontifex MG, Tosi N, Mena P, Del Rio D, Sami S, Narbad A, Müller M, Hornberger M, Vauzour D. Chronic Consumption of Cranberries (Vaccinium macrocarpon) for 12 Weeks Improves Episodic Memory and Regional Brain Perfusion in Healthy Older Adults: A Randomised, Placebo-Controlled, Parallel-Groups Feasibility Study. Front Nutr 2022; 9:849902. [PMID: 35662954 PMCID: PMC9160193 DOI: 10.3389/fnut.2022.849902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 12/28/2022] Open
Abstract
Background Ageing is highly associated with cognitive decline and modifiable risk factors such as diet are believed to protect against this process. Specific dietary components and in particular, (poly)phenol-rich fruits such as berries have been increasingly recognised for their protection against age-related neurodegeneration. However, the impact of cranberries on cognitive function and neural functioning in older adults remains unclear. Design A 12-week parallel randomised placebo-controlled trial of freeze-dried cranberry powder was conducted in 60 older adults aged between 50 and 80 years. Cognitive assessment, including memory and executive function, neuroimaging and blood sample collection were conducted before and after the intervention to assess the impact of daily cranberry consumption on cognition, brain function and biomarkers of neuronal signalling. Results Cranberry supplementation for 12 weeks was associated with improvements in visual episodic memory in aged participants when compared to placebo. Mechanisms of action may include increased regional perfusion in the right entorhinal cortex, the accumbens area and the caudate in the cranberry group. Significant decrease in low-density lipoprotein (LDL) cholesterol during the course of the intervention was also observed. No significant differences were, however, detected for BDNF levels between groups. Conclusions The results of this study indicate that daily cranberry supplementation (equivalent to 1 small cup of cranberries) over a 12-week period improves episodic memory performance and neural functioning, providing a basis for future investigations to determine efficacy in the context of neurological disease. This trial was registered at clinicaltrials.gov as NCT03679533 and at ISRCTN as ISRCTN76069316.
Collapse
Affiliation(s)
- Emma Flanagan
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Donnie Cameron
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Rashed Sobhan
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Chloe Wong
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Matthew G. Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Saber Sami
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Michael Müller
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Michael Hornberger
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
- *Correspondence: David Vauzour,
| |
Collapse
|
13
|
Heiss C, Istas G, Feliciano RP, Weber T, Wang B, Favari C, Mena P, Del Rio D, Rodriguez-Mateos A. Daily consumption of cranberry improves endothelial function in healthy adults: a double blind randomized controlled trial. Food Funct 2022; 13:3812-3824. [PMID: 35322843 DOI: 10.1039/d2fo00080f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Previous studies indicate cardiovascular health benefits of cranberry juice consumption. However, whether daily consumption of whole cranberries will have sustained vascular benefits in healthy individuals is currently unknown. Objective: To investigate the vascular effects of acute and daily consumption of freeze dried whole cranberry in healthy men and how effects relate to circulating cranberry (poly)phenol metabolites. Methods: A double-blind, parallel-group, randomized controlled trial was conducted in 45 healthy male adults randomly allocated to 1 month daily consumption of either cranberry (9 g powder solubilized in water equivalent to 100 g of fresh cranberries, 525 mg total (poly)phenols) or control (9 g powder, no (poly)phenols). Flow-mediated dilation (FMD, primary outcome), pulse wave velocity (PWV), aortic augmentation index (AIx), blood pressure, heart rate, blood lipids, and blood glucose were assessed at baseline and at 2 h on day 1 and after 1 month. Plasma and 24 h-urine were analyzed before and after treatment using targeted quantitative LC-MS methods including 137 (poly)phenol metabolites. Results: Cranberry consumption significantly increased FMD at 2 h and 1-month (1.1% (95% CI: 1.1%, 1.8%); ptreatment ≤ 0.001; ptreatment × time = 0.606) but not PWV, AIx, blood pressure, heart rate, blood lipids, and glucose. Of the 56 and 74 (poly)phenol metabolites quantified in plasma and urine, 13 plasma and 13 urinary metabolites significantly increased 2 h post-consumption and on day 1, respectively, while 4 plasma and 13 urinary metabolites were significantly higher after 1-month of cranberry consumption, in comparison with control. A multi-variable stepwise linear regression analysis showed that plasma cinnamic acid-4'-glucuronide, 4-hydroxybenzoic acid-3-sulfate, 2,5-dihydroxybenzoic acid, 3'-hydroxycinnamic acid, and 5-O-caffeoylquinic acid were significant independent predictors of 2 h FMD effects (R2 = 0.71), while 3'-hydroxycinnamic acid, 4-methoxycinnamic acid-3'-glucuronide, 3-(4'-methoxyphenyl)propanoic acid 3'-sulfate, and 3-(4'-methoxyphenyl)propanoic acid 3'-glucuronide predicted the 1-month FMD effects (R2 = 0.52). Conclusions: Acute and daily consumption of whole cranberry powder for 1 month improves vascular function in healthy men and this is linked with specific metabolite profiles in plasma. The National Institutes of Health (NIH)-randomized trial records held on the NIH ClinicalTrials.gov website (NCT02764749). https://clinicaltrials.gov/ct2/show/NCT02764749.
Collapse
Affiliation(s)
- Christian Heiss
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany.,Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK.,Surrey and Sussex Healthcare NHS Trust, East Surrey Hospital, Redhill, UK
| | - Geoffrey Istas
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany.,Department of Nutritional Sciences, School of Life Course and Population Health Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Rodrigo P Feliciano
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Timon Weber
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Brian Wang
- Department of Nutritional Sciences, School of Life Course and Population Health Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy.,School of Advanced Studies on Food and Nutrition, University of Parma, Parma, Italy
| | - Ana Rodriguez-Mateos
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany.,Department of Nutritional Sciences, School of Life Course and Population Health Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
14
|
Mecha E, Erny GL, Guerreiro ACL, Feliciano RP, Barbosa I, Bento da Silva A, Leitão ST, Veloso MM, Rubiales D, Rodriguez-Mateos A, Figueira ME, Vaz Patto MC, Bronze MR. Metabolomics profile responses to changing environments in a common bean (Phaseolus vulgaris L.) germplasm collection. Food Chem 2022; 370:131003. [PMID: 34543920 DOI: 10.1016/j.foodchem.2021.131003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/22/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
Metabolomics is one of the most powerful -omics to assist plant breeding. Despite the recognized genetic diversity in Portuguese common bean germplasm, details on its metabolomics profiles are still missing. Aiming to promote their use and to understand the environment's effect in bean metabolomics profiles, 107 Portuguese common bean accessions, cropped under contrasting environments, were analyzed using spectrophotometric, untargeted and targeted mass spectrometry approaches. Although genotype was the most relevant factor on bean metabolomics profile, a clear genotype × environment interaction was also detected. Multivariate analysis highlighted, on the heat-stress environment, the existence of higher levels of salicylic acid, and lower levels of triterpene saponins. Three clusters were defined within each environment. White accessions presented the lowest content and the colored ones the highest levels of prenol lipids and flavonoids. Sources of interesting metabolomics profiles are now identified for bean breeding, focusing either on local or on broad adaptation.
Collapse
Affiliation(s)
- Elsa Mecha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal.
| | - Guillaume L Erny
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200 - 465 Porto, Portugal.
| | - Ana C L Guerreiro
- UniMS - Mass Spectrometry Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; UniMS - Mass Spectrometry Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| | - Rodrigo P Feliciano
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University of Düsseldorf, D-40225 Düsseldorf, Germany.
| | - Inês Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Andreia Bento da Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal.
| | - Susana T Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Maria Manuela Veloso
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, 2784-505 Oeiras, Portugal.
| | - Diego Rubiales
- IAS, Institute for Sustainable Agriculture, CSIC, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | - Ana Rodriguez-Mateos
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University of Düsseldorf, D-40225 Düsseldorf, Germany; Department of Nutritional Sciences, School of Life Course Sciences, King's College London, SE1 9NH London, UK.
| | - Maria Eduardo Figueira
- Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal.
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Maria Rosário Bronze
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal.
| |
Collapse
|
15
|
Mena P, Bresciani L, Tassotti M, Rosi A, Martini D, Antonini M, Cas AD, Bonadonna R, Brighenti F, Del Rio D. Effect of different patterns of consumption of coffee and a cocoa-based product containing coffee on the nutrikinetics and urinary excretion of phenolic compounds. Am J Clin Nutr 2021; 114:2107-2118. [PMID: 34582552 DOI: 10.1093/ajcn/nqab299] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Coffee consumption is associated with a reduced risk of several chronic diseases in a dose-dependent manner. Chronic intake results in the transient appearance of bioactive phenolic metabolites in the circulatory system. However, there is a lack of information on the impact of different patterns of coffee consumption on plasma and urinary profiles of phenolic metabolites. OBJECTIVES Plasma and urinary phenolic metabolites were investigated following regular consumption of different daily dosages of coffee or cocoa-based products containing coffee (CBPCC) under a real-life setting. METHODS A repeated-dose, randomized, crossover human intervention was conducted with 21 healthy volunteers. For 1 mo, participants consumed 1) 1 cup of coffee (1C), 2) 3 cups of coffee (3C), or 3) 1 cup of coffee + 2 CBPCC twice daily (PC). Plasma and urine samples were collected over a 24-h period after each treatment. The nutrikinetics and urinary excretion of native, human phase II, and colonic metabolites were assessed. RESULTS A total of 51 (poly)phenolic metabolites were quantified, with 41 metabolites being strictly related to coffee consumption. Significant differences were observed among treatments for most of the metabolites. The metabolites present in the highest amounts were the hydroxycinnamate, phenylpropanoic acid, benzaldehyde, and benzene classes, along with (-)-epicatechin and phenyl-γ-valerolactone derivatives after PC treatment. Daily average concentrations did not exceed 200 nmol/L and were <100 nmol/L for most of the metabolites. The excretion of coffee phenolics ranged from 40% to 70% of intake, indicating that coffee hydroxycinnamates are notably more bioavailable than previously thought. Interindividual variability was also investigated. CONCLUSIONS The absorption, metabolism, nutrikinetic profile, and bioavailability of coffee phenolics were established for different patterns of coffee consumption under real-life conditions. This work provides the basis for further nutritional epidemiology research and mode-of-action cell-based studies. This study was registered at clinicaltrials.gov as NCT03166540.
Collapse
Affiliation(s)
- Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Michele Tassotti
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Alice Rosi
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Daniela Martini
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Monica Antonini
- Division of Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessandra Dei Cas
- Division of Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Riccardo Bonadonna
- Division of Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Furio Brighenti
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Tartaglia A, Romasco T, D'Ovidio C, Rosato E, Ulusoy HI, Furton KG, Kabir A, Locatelli M. Determination of phenolic compounds in human saliva after oral administration of red wine by high performance liquid chromatography. J Pharm Biomed Anal 2021; 209:114486. [PMID: 34847459 DOI: 10.1016/j.jpba.2021.114486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023]
Abstract
Red wine is a relevant source of bioactive compounds, which contribute to its antioxidant activity and other beneficial advantages for human health. However, the bioavailability of phenols in humans is not well understood, and the inter-individual variability in the production of phenolic compounds has not been comprehensively assessed to date. The present work describes a new method for the extraction and analysis of phenolic compounds including gallic acid (Gal), vanillic acid (Van), caffeic acid (Caf), syringic acid (Sir); (-)-epicatechin (Epi); p-coumaric acid (Cum) and resveratrol (Rsv) in human saliva samples. The target analytes were extracted using Fabric Phase Sorptive Extraction (FPSE), and subsequently analysed by high-performance liquid chromatography (HPLC) coupled with photodiode array detector (PDA). Chromatographic separation was achieved using a Symmetry C18 RP column in gradient elution mode, with methanol and phosphate buffer as the mobile phases. The linearity (intercept, slope, and determination coefficient) was evaluated in the range from 1 to 50 µg/mL. The limit of quantification (LOQ) was 1 µg/mL (LLOQ ≥0.8 µg/mL), whereas limit of detection was 0.25 µg/mL. The intra and inter-day RSD% and BIAS% values were less than± 15%. The analytical performances were further tested on human saliva collected from healthy volunteers after administering red wine. To the best of our knowledge, this is the first FPSE procedure for the analysis of phenols in saliva, using a non-invasive and easy to perform sample collection protocol. The proposed fast and inexpensive approach can be deployed as a reliable tool to study other biological matrices to proliferate understanding of these compounds distribution in human body.
Collapse
Affiliation(s)
- A Tartaglia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - T Romasco
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - C D'Ovidio
- Department of Medicine and Aging Sciences, Section of Legal Medicine, University of Chieti-Pescara "G. d'Annunzio", Chieti 66100, Italy
| | - E Rosato
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - H I Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas 58140, Turkey
| | - K G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - A Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - M Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy.
| |
Collapse
|
17
|
Rossi F, Crnjar A, Comitani F, Feliciano R, Jahn L, Malim G, Southgate L, Kay E, Oakey R, Buggs R, Moir A, Kistler L, Rodriguez Mateos A, Molteni C, Schulz R. Extraction and high-throughput sequencing of oak heartwood DNA: Assessing the feasibility of genome-wide DNA methylation profiling. PLoS One 2021; 16:e0254971. [PMID: 34793449 PMCID: PMC8601515 DOI: 10.1371/journal.pone.0254971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/27/2021] [Indexed: 11/19/2022] Open
Abstract
Tree ring features are affected by environmental factors and therefore are the basis for dendrochronological studies to reconstruct past environmental conditions. Oak wood often provides the data for these studies because of the durability of oak heartwood and hence the availability of samples spanning long time periods of the distant past. Wood formation is regulated in part by epigenetic mechanisms such as DNA methylation. Studies of the methylation state of DNA preserved in oak heartwood thus could identify epigenetic tree ring features informing on past environmental conditions. In this study, we aimed to establish protocols for the extraction of DNA, the high-throughput sequencing of whole-genome DNA libraries (WGS) and the profiling of DNA methylation by whole-genome bisulfite sequencing (WGBS) for oak (Quercus robur) heartwood drill cores taken from the trunks of living standing trees spanning the AD 1776-2014 time period. Heartwood contains little DNA, and large amounts of phenolic compounds known to hinder the preparation of high-throughput sequencing libraries. Whole-genome and DNA methylome library preparation and sequencing consistently failed for oak heartwood samples more than 100 and 50 years of age, respectively. DNA fragmentation increased with sample age and was exacerbated by the additional bisulfite treatment step during methylome library preparation. Relative coverage of the non-repetitive portion of the oak genome was sparse. These results suggest that quantitative methylome studies of oak hardwood will likely be limited to relatively recent samples and will require a high sequencing depth to achieve sufficient genome coverage.
Collapse
Affiliation(s)
- Federico Rossi
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Crnjar
- Department of Physics, King’s College London, London, United Kingdom
| | - Federico Comitani
- Department of Chemistry, University College London, London, United Kingdom
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rodrigo Feliciano
- Department of Nutrition, King’s College London, London, United Kingdom
- Division of Cardiology, Pulmonology and Vascular Medicine, University of Dusseldorf, Dusseldorf, Germany
| | - Leonie Jahn
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - George Malim
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Laura Southgate
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Emily Kay
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- CRUK Beatson Institute, Glasgow, United Kingdom
| | - Rebecca Oakey
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Richard Buggs
- Department of Natural Capital and Plant Health, Royal Botanical Gardens, Richmond, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Andy Moir
- Tree-Ring Services Limited, Mitcheldean, United Kingdom
| | - Logan Kistler
- Department of Anthropology, National Museum Of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | | | - Carla Molteni
- Department of Physics, King’s College London, London, United Kingdom
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| |
Collapse
|
18
|
López-Yerena A, Domínguez-López I, Vallverdú-Queralt A, Pérez M, Jáuregui O, Escribano-Ferrer E, Lamuela-Raventós RM. Metabolomics Technologies for the Identification and Quantification of Dietary Phenolic Compound Metabolites: An Overview. Antioxidants (Basel) 2021; 10:846. [PMID: 34070614 PMCID: PMC8229076 DOI: 10.3390/antiox10060846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
In the search for natural products with properties that may protect against or slow down chronic and degenerative diseases (e.g., cancer, and cardiovascular and neurodegenerative conditions), phenolic compounds (PC) with benefits for human health have been identified. The biological effects of PC in vivo depend on their bioavailability, intestinal absorption, metabolism, and interaction with target tissues. The identification of phenolic compounds metabolites (PCM), in biological samples, after food ingestion rich in PC is a first step to understand the overall effect on human health. However, their wide range of physicochemical properties, levels of abundance, and lack of reference standards, renders its identification and quantification a challenging task for existing analytical platforms. The most frequent approaches to metabolomics analysis combine mass spectrometry and NMR, parallel technologies that provide an overview of the metabolome and high-power compound elucidation. In this scenario, the aim of this review is to summarize the pre-analytical separation processes for plasma and urine samples and the technologies applied in quantitative and qualitative analysis of PCM. Additionally, a comparison of targeted and non-targeted approaches is presented, not available in previous reviews, which may be useful for future metabolomics studies of PCM.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
| | - Inés Domínguez-López
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Olga Jáuregui
- Scientific and Technological Center (CCiTUB), University of Barcelona, 08028 Barcelona, Spain;
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, University of Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Bergh C, Landberg R, Andersson K, Heyman-Lindén L, Rascón A, Magnuson A, Khalili P, Kåregren A, Nilsson J, Pirazzi C, Erlinge D, Fröbert O. Effects of Bilberry and Oat intake on lipids, inflammation and exercise capacity after Acute Myocardial Infarction (BIOAMI): study protocol for a randomized, double-blind, placebo-controlled trial. Trials 2021; 22:338. [PMID: 33971938 PMCID: PMC8112057 DOI: 10.1186/s13063-021-05287-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Background Bilberries from Sweden, rich in polyphenols, have shown cholesterol-lowering effects in small studies, and the cholesterol-lowering properties of oats, with abundant beta-glucans and potentially bioactive phytochemicals, are well established. Both may provide cardiometabolic benefits following acute myocardial infarction (AMI), but large studies of adequate statistical power and appropriate duration are needed to confirm clinically relevant treatment effects. No previous study has evaluated the potential additive or synergistic effects of bilberry combined with oats on cardiometabolic risk factors. Our primary objective is to assess cardioprotective effects of diet supplementation with dried bilberry or with bioprocessed oat bran, with a secondary explorative objective of assessing their combination, compared with a neutral isocaloric reference supplement, initiated within 5 days following percutaneous coronary intervention (PCI) for AMI. Methods The effects of Bilberry and Oat intake on lipids, inflammation and exercise capacity after Acute Myocardial Infarction (BIOAMI) trial is a double-blind, randomized, placebo-controlled clinical trial. A total of 900 patients will be randomized post-PCI to one of four dietary intervention arms. After randomization, subjects will receive beverages with bilberry powder (active), beverages with high-fiber bioprocessed oat bran (active), beverages with bilberry and oats combined (active), or reference beverages containing no active bilberry or active oats, for consumption twice daily during a 3-month intervention. The primary endpoint is the difference in LDL cholesterol change between the intervention groups after 3 months. The major secondary endpoint is exercise capacity at 3 months. Other secondary endpoints include plasma concentrations of biochemical markers of inflammation, metabolomics, and gut microbiota composition after 3 months. Discussion Controlling hyperlipidemia and inflammation is critical to preventing new cardiovascular events, but novel pharmacological treatments for these conditions are expensive and associated with negative side effects. If bilberry and/or oat, in addition to standard medical therapy, can lower LDL cholesterol and inflammation more than standard therapy alone, this could be a cost-effective and safe dietary strategy for secondary prevention after AMI. Trial registration ClinicalTrials.gov NCT03620266. Registered on August 8, 2018. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05287-5.
Collapse
Affiliation(s)
- Cecilia Bergh
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 701 85, Örebro, Sweden.
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.,Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kristina Andersson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Glucanova AB, Lund, Sweden
| | - Lovisa Heyman-Lindén
- Molecular Nutrition, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Berry Lab AB, Lund, Sweden
| | - Ana Rascón
- Glucanova AB, Lund, Sweden.,Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Anders Magnuson
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 701 85, Örebro, Sweden
| | - Payam Khalili
- Department of Cardiology and Acute Internal Medicine, Central Hospital, Karlstad, Sweden
| | - Amra Kåregren
- Department of Medicine, Hospital Region Västmanland, Västerås, Sweden
| | - Johan Nilsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Carlo Pirazzi
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Ole Fröbert
- Department of Cardiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
20
|
Vlčková HK, Catapano MC, Mitašík L, Kotland O, Nejmanová I, Pourová J, Mladěnka P, Nováková L. Featuring ultimate sensitivity of high-resolution LC-MS analysis of phenolics in rat plasma. J Sep Sci 2021; 44:1893-1903. [PMID: 33650236 DOI: 10.1002/jssc.202100054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
Sensitive analysis of very low-molecular weight metabolites using liquid chromatography with quadrupole-time-of-flight mass spectrometry is challenging due to the high losses of ions in a time-of-flight analyzer. Improvement in sensitivity for these analytes via the optimization of advanced parameters, including quadrupole profile, ion guide parameters, and duty cycle, has been achieved. The optimization of the method was carried out using a large spectrum of structurally different compounds including (iso)flavonoids and their known metabolites. These compounds can be categorized into two major groups, that is, compounds with (iso)flavonoid core and low-molecular weight phenolics. The optimization of the duty cycle enabled up to a 15-fold increase in analyte responses while the contribution of tuning ion optics and quadrupole profile was negligible. The limits of quantifications of our new method were assessed using both standard solutions and rat plasma. They were decreased at least 10 times for several low-molecular weight phenolics enabling measurement of their concentrations in a range of 1-50 ng/mL in rat plasma after protein precipitation. Concurrently, the limits of quantifications for compounds with (iso)flavonoid core did not increase distinctly allowing their detection in a range of 0.5-10 ng/mL. The new method was used for the targeting of phenolics in biological samples from pharmacokinetics experiments.
Collapse
Affiliation(s)
- Hana Kočová Vlčková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Maria Carmen Catapano
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucia Mitašík
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | - Iveta Nejmanová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
21
|
Lu F, Li Y, Zhou B, Guo Q, Zhang Y. Early-life supplementation of grape polyphenol extract promotes polyphenol absorption and modulates the intestinal microbiota in association with the increase in mRNA expression of the key intestinal barrier genes. Food Funct 2021; 12:602-613. [PMID: 33346297 DOI: 10.1039/d0fo02231d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Early-life nutritional supplementation can dramatically influence health status. Dietary polyphenols are a widespread group of phytochemicals with potential bioactive functions. However, how polyphenol intake during early life affects health status remains largely unknown. Mice aged 3- and 6-weeks were used to investigate how grape polyphenol extract (GPE) administration during early life altered polyphenol absorption, the intestinal microbiota, and the intestinal barrier. After a 2-week GPE supplementation, there were more diverse polyphenol metabolites in the plasma of 3-week-old mice than in the plasma of 6-week-old mice. Correspondingly, GPE supplementation increased the mRNA expression of genes related to polyphenol absorption in 3-week-old mice but not 6-week-old mice. Early-life GPE administration also stimulated the key genes of the small intestinal barrier in mice. Moreover, the key genes of the small intestinal barrier were positively associated with the genes related to polyphenol absorption in the small intestine of 3-week-old mice. In addition, fecal Akkermansia and Lactobacillus were increased, as evidenced by 16S rRNA gene sequencing. As a result, the acetate and butyrate production in the large intestinal content was enhanced, and the mRNA expression of the key genes involved in the large intestinal barrier was also increased. Thus, our study demonstrates that dietary polyphenol intake in early life induces improvements in polyphenol absorption, the intestinal microbiota, and the intestinal barrier, suggesting the importance of polyphenol-rich nutritional programming during early life on health status.
Collapse
Affiliation(s)
- Feng Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | | | | | | | | |
Collapse
|
22
|
Domínguez-Fernández M, Xu Y, Young Tie Yang P, Alotaibi W, Gibson R, Hall WL, Barron L, Ludwig IA, Cid C, Rodriguez-Mateos A. Quantitative Assessment of Dietary (Poly)phenol Intake: A High-Throughput Targeted Metabolomics Method for Blood and Urine Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:537-554. [PMID: 33372779 DOI: 10.1021/acs.jafc.0c07055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many studies have associated the consumption of (poly)phenol-rich diets with health benefits. However, accurate high-throughput quantitative methods for estimating exposure covering a broad spectrum of (poly)phenols are lacking. We have developed and validated a high-throughput method for the simultaneous quantification of 119 (poly)phenol metabolites in plasma and urine using ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry, with a very fast sample treatment and a single run time of 16 min. This method is highly sensitive, precise, accurate, and shows good linearity for all compounds (R2 > 0.992). This novel method will allow a quantitative assessment of habitual (poly)phenol intake in large epidemiological studies as well as clinical studies investigating the health benefits of dietary (poly)phenols.
Collapse
Affiliation(s)
- Maite Domínguez-Fernández
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
- Departamento de Ciencias de la Alimentación y Fisiología, Facultad de Farmacia y Nutrición, Universidad de Navarra, C/ Irunlarrea 1, E-31008 Pamplona, Spain
| | - Yifan Xu
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| | - Paul Young Tie Yang
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| | - Wafa Alotaibi
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| | - Rachel Gibson
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| | - Wendy L Hall
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| | - Leon Barron
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, U.K
| | - Iziar A Ludwig
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avda. Pío XII, 55, E-31008 Pamplona, Spain
| | - Concepción Cid
- Departamento de Ciencias de la Alimentación y Fisiología, Facultad de Farmacia y Nutrición, Universidad de Navarra, C/ Irunlarrea 1, E-31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
23
|
Correia MSP, Jain A, Alotaibi W, Young Tie Yang P, Rodriguez-Mateos A, Globisch D. Comparative dietary sulfated metabolome analysis reveals unknown metabolic interactions of the gut microbiome and the human host. Free Radic Biol Med 2020; 160:745-754. [PMID: 32927015 DOI: 10.1016/j.freeradbiomed.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
The gut microbiome converts dietary compounds that are absorbed in the gastrointestinal tract and further metabolized by the human host. Sulfated metabolites are a major compound class derived from this co-metabolism and have been linked to disease development. In the present multidisciplinary study, we have investigated human urine samples from a dietary intervention study with 22 individuals collected before and after consumption of a polyphenol rich breakfast. These samples were analyzed utilizing our method combining enzymatic metabolite hydrolysis using an arylsulfatase and mass spectrometric metabolomics. Key to this study is the validation of 235 structurally diverse sulfated metabolites. We have identified 48 significantly upregulated metabolites upon dietary intervention including 11 previously unknown sulfated metabolites for this diet. We observed a large variation in subjects based on their potential to sulfate metabolites, which may be the foundation for classification of subjects as high and low sulfate metabolizers in future large cohort studies. The reported sulfatase-based method is a robust tool for the discovery of unknown microbiota-derived metabolites in human samples.
Collapse
Affiliation(s)
- Mario S P Correia
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
| | - Abhishek Jain
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
| | - Wafa Alotaibi
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Paul Young Tie Yang
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Daniel Globisch
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123, Uppsala, Sweden.
| |
Collapse
|
24
|
Magnetic porous aromatic framework with a core–shell structure as a sorbent for rapid extraction of phenols and their quantitation in urine by HPLC-UV. Anal Bioanal Chem 2020; 412:8361-8370. [DOI: 10.1007/s00216-020-02972-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
|
25
|
Kolot C, Rodriguez-Mateos A, Feliciano R, Bottermann K, Stahl W. Bioavailability of naringenin chalcone in humans after ingestion of cherry tomatoes. INT J VITAM NUTR RES 2020; 90:411-416. [DOI: 10.1024/0300-9831/a000574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract. Chalcones are a type of flavonoids characterized by an α-β unsaturated structural element which may react with thiol groups to activate pathways such as the Nrf2-Keap-1 system. Naringenin chalcone is abundant in the diet but little is known about its bioavailability. In this work, the bioavailability of naringenin chalcone from tomatoes was investigated in a group of healthy men (n=10). After ingestion of 600 grams of tomatoes providing a single dose of 17.3 mg naringenin chalcone, 0.2 mg of naringenin, and 195 mg naringin plasma levels of free and conjugated naringenin and naringenin chalcone (glucuronide and sulfate) were analyzed by UHPLC-QTOF-MS at 0.5, 1, 3, and 6 h post-consumption. Plasma levels of conjugated naringenin increased to about 12 nmol/L with a maximum at about 3 h. Concentrations of free naringenin hardly elevated above baseline. Plasma levels of free and conjugated naringenin chalcone significantly increased. A maximum of the conjugated chalcone was reached at about 3 h after ingestion with an average concentration of about 0.5 nmol/L. No free chalcone was detectable at baseline but low amounts of the unconjugated compound could be detected with an average maximum of 0.8 nmol/L at about 1 h after ingestion. The data demonstrate that naringenin chalcone is bioavailable in humans from cherry tomatoes as a dietary source. However, availability is poor and intramolecular cyclisation as well as extended metabolism likely contribute to the inactivation of the reactive alpha-beta unsaturated reactive center as well as the excretion of the biologically active molecule, respectively.
Collapse
Affiliation(s)
- Carina Kolot
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University of Düsseldorf
| | - Ana Rodriguez-Mateos
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University of Düsseldorf
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Rodrigo Feliciano
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University of Düsseldorf
| | - Katharina Bottermann
- Institute for Cardiovascular Physiology, Medical Faculty, University of Düsseldorf
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University of Düsseldorf
| |
Collapse
|
26
|
Bullón-Vela V, Abete I, Zulet MA, Xu Y, Martínez-González MA, Sayón-Orea C, Ruiz-Canela M, Toledo E, Sánchez VM, Estruch R, Lamuela-Raventós RM, Almanza-Aguilera E, Fitó M, Salas-Salvadó J, Díaz-López A, Tinahones FJ, Tur JA, Romaguera D, Konieczna J, Pintó X, Daimiel L, Rodriguez-Mateos A, Alfredo Martínez J. Urinary Resveratrol Metabolites Output: Differential Associations with Cardiometabolic Markers and Liver Enzymes in House-Dwelling Subjects Featuring Metabolic Syndrome. Molecules 2020; 25:molecules25184340. [PMID: 32971870 PMCID: PMC7570830 DOI: 10.3390/molecules25184340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) components are strongly associated with increased risk of non-alcoholic fatty liver disease (NAFLD) development. Several studies have supported that resveratrol is associated with anti-inflammatory and antioxidant effects on health status. The main objective of this study was to assess the putative associations between some urinary resveratrol phase II metabolites, cardiometabolic, and liver markers in individuals diagnosed with MetS. In this cross-sectional study, 266 participants from PREDIMED Plus study (PREvención con DIeta MEDiterránea) were divided into tertiles of total urinary resveratrol phase II metabolites (sum of five resveratrol conjugation metabolites). Urinary resveratrol metabolites were analyzed by ultra- performance liquid chromatography coupled to triple quadrupole mass spectrometry (UPLC-Q-q-Q MS), followed by micro-solid phase extraction (µ-SPE) method. Liver function markers were assessed using serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). Moreover, lipid profile was measured by triglycerides, very-low-density lipoprotein cholesterol (VLDL-c), and total cholesterol/high-density lipoprotein ratio (total cholesterol/HDL). Linear regression adjusted models showed that participants with higher total urine resveratrol concentrations exhibited improved lipid and liver markers compared to the lowest tertile. For lipid determinations: log triglycerides (βT3= −0.15, 95% CI; −0.28, −0.02, p-trend = 0.030), VLDL-c, (βT3= −4.21, 95% CI; −7.97, −0.46, p-trend = 0.039), total cholesterol/HDL ratio Moreover, (βT3= −0.35, 95% CI; −0.66, −0.03, p-trend = 0.241). For liver enzymes: log AST (βT3= −0.12, 95% CI; −0.22, −0.02, p-trend = 0.011, and log GGT (βT3= −0.24, 95% CI; −0.42, −0.06, p-trend = 0.002). However, there is no difference found on glucose variables between groups. To investigate the risk of elevated serum liver markers, flexible regression models indicated that total urine resveratrol metabolites were associated with a lower risk of higher ALT (169.2 to 1314.3 nmol/g creatinine), AST (599.9 to 893.8 nmol/g creatinine), and GGT levels (169.2 to 893.8 nmol/g creatinine). These results suggested that higher urinary concentrations of some resveratrol metabolites might be associated with better lipid profile and hepatic serum enzymes. Moreover, urinary resveratrol excreted showed a reduced odds ratio for higher liver enzymes, which are linked to NAFLD.
Collapse
Affiliation(s)
- Vanessa Bullón-Vela
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (V.B.-V.); (M.A.Z.); (J.A.M.)
| | - Itziar Abete
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (V.B.-V.); (M.A.Z.); (J.A.M.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Correspondence: ; Tel.: +34-94-842-5600 (ext. 806357)
| | - Maria Angeles Zulet
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (V.B.-V.); (M.A.Z.); (J.A.M.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
| | - Yifan Xu
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK; (Y.X.); (A.R.-M.)
| | - Miguel A. Martínez-González
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
| | - Carmen Sayón-Orea
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
| | - Miguel Ruiz-Canela
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
| | - Estefanía Toledo
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
| | - Vicente Martín Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
| | - Ramon Estruch
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Internal Medicine, IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Rosa María Lamuela-Raventós
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, School of Pharmacy and Food Sciences, Nutrition and Food Safety Research Institute, University of Barcelona, 08028 Barcelona, Spain
| | - Enrique Almanza-Aguilera
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), 08007 Barcelona, Spain;
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Santa Coloma de Gramenet, 08921 Barcelona, Spain
| | - Montserrat Fitó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), 08007 Barcelona, Spain;
| | - Jordi Salas-Salvadó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, 43201 Reus, Spain
- Institut d’Investigació Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Andrés Díaz-López
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, 43201 Reus, Spain
- Institut d’Investigació Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Francisco J. Tinahones
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Endocrinology, Instituto de Investigación Biomédica de Málaga-IBIMA, University of Málaga, Virgen de la Victoria Hospital, 29010 Málaga, Spain
| | - Josep A. Tur
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Dora Romaguera
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), 07120 Palma de Mallorca, Spain
| | - Jadwiga Konieczna
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), 07120 Palma de Mallorca, Spain
| | - Xavier Pintó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Lidia Daimiel
- Precision Nutrition Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain;
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK; (Y.X.); (A.R.-M.)
| | - José Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (V.B.-V.); (M.A.Z.); (J.A.M.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Precision Nutrition Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain;
| |
Collapse
|
27
|
González-Domínguez R, Jáuregui O, Mena P, Hanhineva K, Tinahones FJ, Angelino D, Andrés-Lacueva C. Quantifying the human diet in the crosstalk between nutrition and health by multi-targeted metabolomics of food and microbiota-derived metabolites. Int J Obes (Lond) 2020; 44:2372-2381. [PMID: 32541919 DOI: 10.1038/s41366-020-0628-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Metabolomics is a powerful tool for investigating the association between nutrition and health status. Although urine is commonly employed for studying the metabolism and transformation of food components, the use of blood samples could be preferable to gain new insights into the bioavailability of diet-derived compounds and their involvement in health. However, the chemical complexity of blood samples hinders the analysis of this biological fluid considerably, which makes the development of novel and comprehensive analytical methods mandatory. METHODS In this work, we optimized a multi-targeted metabolomics platform for the quantitative and simultaneous analysis of 450 food-derived metabolites by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. To handle the chemical complexity of blood samples, three complementary extraction methods were assayed and compared in terms of recovery, sensitivity, precision and matrix effects with the aim of maximizing metabolomics coverage: protein precipitation, reversed solid-phase extraction, and hybrid protein precipitation with solid-phase extraction-mediated phospholipid removal. RESULTS After careful optimization of the extraction conditions, protein precipitation enabled the most efficient and high-throughput extraction of the food metabolome in plasma, although solid-phase extraction-based protocols provided complementary performance for the analysis of specific polyphenol classes. The developed method yielded accurate recovery rates with negligible matrix effects, and good linearity, as well as high sensitivity and precision for most of the analyzed metabolites. CONCLUSIONS The multi-targeted metabolomics platform optimized in this work enables the simultaneous detection and quantitation of 450 dietary metabolites in short-run times using small volumes of biological sample, which facilitates its application to epidemiological studies.
Collapse
Affiliation(s)
- Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory; Department of Nutrition, Food Sciences and Gastronomy; Food Technology Reference Net (XaRTA); Nutrition and Food Safety Research Institute (INSA); Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Barcelona, Spain
| | - Olga Jáuregui
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Barcelona, Spain.,Scientific and Technological Center of University of Barcelona (CCiTUB), 08028, Barcelona, Spain
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Francisco José Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Donato Angelino
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory; Department of Nutrition, Food Sciences and Gastronomy; Food Technology Reference Net (XaRTA); Nutrition and Food Safety Research Institute (INSA); Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
28
|
Pereira-Caro G, Gaillet S, Ordóñez JL, Mena P, Bresciani L, Bindon KA, Del Rio D, Rouanet JM, Moreno-Rojas JM, Crozier A. Bioavailability of red wine and grape seed proanthocyanidins in rats. Food Funct 2020; 11:3986-4001. [PMID: 32347279 DOI: 10.1039/d0fo00350f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study explored plasma levels and urinary and fecal excretion of metabolites and microbial-derived catabolites over a 24 h period following the ingestion of red wine (RWP) or grape seed (GSP) proanthocyanidin-rich extracts by rats. In total, 35 structurally-related (epi)catechin metabolites (SREMs) and 5-carbon side chain ring fission metabolites (5C-RFMs) (phenyl-γ-valerolactones and phenylvaleric acids), and 50 phenolic acid and aromatic catabolites were detected after intakes of both extracts. The consumption of the RWP extract, but not the GSP extract, led to the appearance of a ∼200 nmol L-1 peak plasma concentration of SREMs formed from flavan-3-ol monomers. In contrast, ingestion of the GSPs, but not the RWPs, resulted in a substantial increase in microbiota-derived 5-carbon side chain ring fission metabolites (5C-RFMs) in plasma. 5C-RFMs, along with low molecular weight phenolic catabolites were detected in urine after ingestion of both extracts. The GSP and RWP extracts had respective mean degrees of polymerisation 5.9 and 6.5 subunits, and the RWP extract had an upper polymer size of 21 subunits compared to 44 subunits for the GSP extract. The differences in plasma metabolite profiles might, therefore, be a consequence of this polydispersity impacting on the microbiota-mediated rates of cleavage of the proanthocyanidin subunits and their subsequent metabolism and absorption. Urinary excretion of phenolic catabolites indicated that 11% of RWPs and 7% for GSPs were subjected to microbial degradation. In all probability these figures, rather than representing the percentage of proanthocyanidins that are completely degraded, indicate partial cleavage of monomer subunits producing a much higher percentage of shortened proanthocyanidin chains. Obtaining more detailed information on the in vivo fate of proanthocyanidins is challenging because of the difficulties in analysing unabsorbed parent proanthocyanidins and their partially degraded flavan-3-ol subunit chains in feces. Further progress awaits the development of improved purification and analytical techniques for proanthocyanidins and their use in feeding studies, and in vitro fecal and bacterial incubations, with radio and/or stable isotope-labelled substrates.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Food Science and Health. Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menéndez-Pidal, SN, 14004, Córdoba, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rodriguez-Mateos A, Istas G, Boschek L, Feliciano RP, Mills CE, Boby C, Gomez-Alonso S, Milenkovic D, Heiss C. Circulating Anthocyanin Metabolites Mediate Vascular Benefits of Blueberries: Insights From Randomized Controlled Trials, Metabolomics, and Nutrigenomics. J Gerontol A Biol Sci Med Sci 2020; 74:967-976. [PMID: 30772905 DOI: 10.1093/gerona/glz047] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Indexed: 01/07/2023] Open
Abstract
Potential health benefits of blueberries may be due to vascular effects of anthocyanins that predominantly circulate in blood as phenolic acid metabolites. We investigated which role blueberry anthocyanins and circulating metabolites play in mediating improvements in vascular function and explore potential mechanisms using metabolomics and nutrigenomics. Purified anthocyanins exerted a dose-dependent improvement of endothelial function in healthy humans, as measured by flow-mediated dilation. The effects were similar to those of wild blueberries containing similar amounts of anthocyanins, whereas control drinks containing fiber, minerals, or vitamins had no significant effect. Daily 1-month wild blueberry consumption increased flow-mediated dilation and lowered 24-hour ambulatory systolic blood pressure. Of the 63 anthocyanin plasma metabolites quantified, 14 and 21 correlated with acute and chronic flow-mediated dilation improvements, respectively. Injection of these metabolites improved flow-mediated dilation in mice. Daily wild blueberry consumption led to differential expression (>1.2-fold) of 608 genes and 3 microRNAs, with Mir-181c showing a 13-fold increase in peripheral blood mononuclear cells. Patterns of 13 metabolites were independent predictors of gene expression changes and pathway enrichment analysis revealed significantly modulated biological processes involved in cell adhesion, migration, immune response, and cell differentiation. Our results identify anthocyanin metabolites as major mediators of vascular bioactivities of blueberries and changes of cellular gene programs. Trial registration: NCT025208.
Collapse
Affiliation(s)
- Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, UK.,Division of Cardiology, Pulmonology, and Vascular Medicine, University Düsseldorf, Germany
| | - Geoffrey Istas
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, UK.,Division of Cardiology, Pulmonology, and Vascular Medicine, University Düsseldorf, Germany
| | - Lisa Boschek
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Düsseldorf, Germany
| | - Rodrigo P Feliciano
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Düsseldorf, Germany
| | - Charlotte E Mills
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, UK.,Department of Food and Nutritional Sciences, University of Reading, UK
| | - Céline Boby
- Unité de Nutrition Humaine, INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Sergio Gomez-Alonso
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, Spain
| | - Dragan Milenkovic
- Unité de Nutrition Humaine, INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis
| | - Christian Heiss
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Düsseldorf, Germany.,Faculty of Health and Medical Sciences, University of Surrey, Guildford.,Surrey and Sussex Healthcare NHS Trust, Redhill, UK
| |
Collapse
|
30
|
Noerman S, Kolehmainen M, Hanhineva K. Profiling of Endogenous and Gut Microbial Metabolites to Indicate Metabotype-Specific Dietary Responses: A Systematic Review. Adv Nutr 2020; 11:1237-1254. [PMID: 32271864 PMCID: PMC7490160 DOI: 10.1093/advances/nmaa031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/21/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022] Open
Abstract
Upon dietary exposure, the endogenous metabolism responds to the diet-derived nutrients and bioactive compounds, such as phytochemicals. However, the responses vary remarkably due to the interplay with other dietary components, lifestyle exposures, and intrinsic factors, which lead to differences in endogenous regulatory metabolism. These physiological processes are evidenced as a signature profile composed of various metabolites constituting metabolic phenotypes, or metabotypes. The metabolic profiling of biological samples following dietary intake hence would provide information about diet-that is, as the intake biomarkers and the ongoing physiological reactions triggered by this intake-thereby enable evaluation of the metabolic basis required to distinguish the different metabotypes. The capacity of nontargeted metabolomics to also encompass the unprecedented metabolite species has enabled the profiling of multiple metabolites and the corresponding metabotypes with a single analysis, decoding the complex interplay between diet, other relevant factors, and health. In this systematic review, we screened 345 articles published in English in January 2007-July 2018, which applied the metabolomics approach to profile the changes of endogenous metabolites in the blood related to dietary interventions, either derived by metabolism of gut microbiota or the human host. We excluded all the compounds that were directly derived from diet, and also the dietary interventions focusing on supplementation with individual compounds. After the removal of less relevant studies and assessment of eligibility, 49 articles were included in this review. First, we mention the contribution of individual factors, either modifiable or nonmodifiable factors, in shaping metabolic profile. Then, how different aspects of the diet would affect the metabolic profiles are disentangled. Next, the classes of endogenous metabolites altered following included dietary interventions are listed. We also discuss the current challenges in the field, along with future research opportunities.
Collapse
Affiliation(s)
- Stefania Noerman
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Address correspondence to SN (e-mail: )
| | - Marjukka Kolehmainen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Address correspondence to KH ()
| |
Collapse
|
31
|
Baron G, Altomare A, Regazzoni L, Fumagalli L, Artasensi A, Borghi E, Ottaviano E, Del Bo C, Riso P, Allegrini P, Petrangolini G, Morazzoni P, Riva A, Arnoldi L, Carini M, Aldini G. Profiling Vaccinium macrocarpon components and metabolites in human urine and the urine ex-vivo effect on Candida albicans adhesion and biofilm-formation. Biochem Pharmacol 2020; 173:113726. [DOI: 10.1016/j.bcp.2019.113726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/18/2019] [Indexed: 01/23/2023]
|
32
|
González-Domínguez R, Urpi-Sarda M, Jáuregui O, Needs PW, Kroon PA, Andrés-Lacueva C. Quantitative Dietary Fingerprinting (QDF)-A Novel Tool for Comprehensive Dietary Assessment Based on Urinary Nutrimetabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1851-1861. [PMID: 30799616 DOI: 10.1021/acs.jafc.8b07023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Accurate dietary assessment is a challenge in nutritional research, needing powerful and robust tools for reliable measurement of food intake biomarkers. In this work, we have developed a novel quantitative dietary fingerprinting (QDF) approach, which enables for the first time the simultaneous quantitation of about 350 urinary food-derived metabolites, including (poly)phenolic aglycones, phase II metabolites, and microbial-transformed compounds, as well as other compounds (e.g., glucosinolates, amino acid derivatives, methylxanthines, alkaloids, and markers of alcohol and tobacco consumption). This method was fully validated for 220 metabolites, yielding good linearity, high sensitivity and precision, accurate recovery rates, and negligible matrix effects. Furthermore, 127 additional phase II metabolites were also included in this method after identification in urines collected from acute dietary interventions with various foods. Thus, this metabolomic approach represents one-step further toward precision nutrition and the objective of improving the accurateness and comprehensiveness in the assessment of dietary patterns and lifestyles.
Collapse
Affiliation(s)
- Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Olga Jáuregui
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
- Scientific and Technological Center of University of Barcelona (CCiTUB) , 08028 Barcelona , Spain
| | - Paul W Needs
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UA , United Kingdom
| | - Paul A Kroon
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UA , United Kingdom
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| |
Collapse
|
33
|
Monfoulet LE, Buffière C, Istas G, Dufour C, Le Bourvellec C, Mercier S, Bayle D, Boby C, Remond D, Borel P, Rodriguez-Mateos A, Milenkovic D, Morand C. Effects of the apple matrix on the postprandial bioavailability of flavan-3-ols and nutrigenomic response of apple polyphenols in minipigs challenged with a high fat meal. Food Funct 2020; 11:5077-5090. [DOI: 10.1039/d0fo00346h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Food matrix interactions with polyphenols can affect their bioavailability and as a consequence may modulate their biological effects.
Collapse
Affiliation(s)
| | | | - Geoffrey Istas
- Department of Nutritional Sciences
- School of Life Course Sciences
- Faculty of Life Sciences and Medicine
- King's College
- London
| | - Claire Dufour
- INRAE
- Université d′Avignon
- UMR408
- Sécurité et Qualité des Produits d′Origine Végétale (SQPOV)
- Avignon
| | - Carine Le Bourvellec
- INRAE
- Université d′Avignon
- UMR408
- Sécurité et Qualité des Produits d′Origine Végétale (SQPOV)
- Avignon
| | - Sylvie Mercier
- Université Clermont Auvergne
- INRAE
- UNH
- Clermont-Ferrand
- France
| | | | - Céline Boby
- INRAE
- Unité Mixte de Recherches sur les Herbivores
- Clermont-Ferrand
- France
| | - Didier Remond
- Université Clermont Auvergne
- INRAE
- UNH
- Clermont-Ferrand
- France
| | | | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences
- School of Life Course Sciences
- Faculty of Life Sciences and Medicine
- King's College
- London
| | | | | |
Collapse
|
34
|
Mena P, Bresciani L, Brindani N, Ludwig IA, Pereira-Caro G, Angelino D, Llorach R, Calani L, Brighenti F, Clifford MN, Gill CIR, Crozier A, Curti C, Del Rio D. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep 2019; 36:714-752. [PMID: 30468210 DOI: 10.1039/c8np00062j] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1958 to June 2018 Phenyl-γ-valerolactones (PVLs) and their related phenylvaleric acids (PVAs) are the main metabolites of flavan-3-ols, the major class of flavonoids in the human diet. Despite their presumed importance, these gut microbiota-derived compounds have, to date, in terms of biological activity, been considered subordinate to their parent dietary compounds, the flavan-3-ol monomers and proanthocyanidins. In this review, the role and prospects of PVLs and PVAs as key metabolites in the understanding of the health features of flavan-3-ols have been critically assessed. Among the topics covered, are proposals for a standardised nomenclature for PVLs and PVAs. The formation, bioavailability and pharmacokinetics of PVLs and PVAs from different types of flavan-3-ols are discussed, taking into account in vitro and animal studies, as well as inter-individual differences and the existence of putative flavan-3-ol metabotypes. Synthetic strategies used for the preparation of PVLs are considered and the methodologies for their identification and quantification assessed. Metabolomic approaches unravelling the role of PVLs and PVAs as biomarkers of intake are also described. Finally, the biological activity of these microbial catabolites in different experimental models is summarised. Knowledge gaps and future research are considered in this key area of dietary (poly)phenol research.
Collapse
Affiliation(s)
- Pedro Mena
- Department of Food & Drugs, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mocciaro G, Bresciani L, Tsiountsioura M, Martini D, Mena P, Charron M, Brighenti F, Bentley S, Harvey M, Collins D, Del Rio D, Ray S. Dietary absorption profile, bioavailability of (poly)phenolic compounds, and acute modulation of vascular/endothelial function by hazelnut skin drink. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
36
|
Marhuenda-Muñoz M, Laveriano-Santos EP, Tresserra-Rimbau A, Lamuela-Raventós RM, Martínez-Huélamo M, Vallverdú-Queralt A. Microbial Phenolic Metabolites: Which Molecules Actually Have an Effect on Human Health? Nutrients 2019; 11:nu11112725. [PMID: 31717653 PMCID: PMC6893422 DOI: 10.3390/nu11112725] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The role of gut microbiota in human health has been investigated extensively in recent years. The association of dysbiosis, detrimental changes in the colonic population, with several health conditions has led to the development of pro-, pre- and symbiotic foods. If not absorbed in the small intestine or secreted in bile, polyphenols and other food components can reach the large intestine where they are susceptible to modification by the microbial population, resulting in molecules with potentially beneficial health effects. This review provides an overview of studies that have detected and/or quantified microbial phenolic metabolites using high-performance liquid chromatography as the separation technique, followed by detection through mass spectrometry. Both in vitro experimental studies and human clinical trials are covered. Although many of the microbial phenolic metabolites (MPM) reported in in vitro studies were identified in human samples, further research is needed to associate them with clinical health outcomes.
Collapse
Affiliation(s)
- María Marhuenda-Muñoz
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Emily P. Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
| | - Anna Tresserra-Rimbau
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Hospital Universitari San Joan de Reus, Institut d’Investigació Pere Virgili (IISPV), 43002 Reus, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Miriam Martínez-Huélamo
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Correspondence: ; Tel.: +34-934-024-510
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| |
Collapse
|
37
|
Shafaei A, Croft K, Hodgson J, Boyce MC. Simultaneous quantitative analysis of polyphenolic compounds in human plasma by liquid chromatography tandem mass spectrometry. J Sep Sci 2019; 42:2909-2921. [DOI: 10.1002/jssc.201900339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational BiologySchool of ScienceEdith Cowan University Western Australia Australia
| | - Kevin Croft
- School of Biomedical ScienceUniversity of Western AustraliaRoyal Perth Hospital Perth Australia
| | - Jonathan Hodgson
- School of Medical and Health SciencesEdith Cowan University Western Australia Australia
- Medical SchoolUniversity of Western AustraliaRoyal Perth Hospital Perth Australia
| | - Mary C. Boyce
- Centre for Integrative Metabolomics and Computational BiologySchool of ScienceEdith Cowan University Western Australia Australia
| |
Collapse
|
38
|
Istas G, Wood E, Le Sayec M, Rawlings C, Yoon J, Dandavate V, Cera D, Rampelli S, Costabile A, Fromentin E, Rodriguez-Mateos A. Effects of aronia berry (poly)phenols on vascular function and gut microbiota: a double-blind randomized controlled trial in adult men. Am J Clin Nutr 2019; 110:316-329. [PMID: 31152545 DOI: 10.1093/ajcn/nqz075] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aronia melanocarpa is a rich source of (poly)phenols. Previous research has demonstrated that these berries may provide cardiovascular health benefits in high-risk populations. However, very few studies have investigated the effects of daily consumption of dietary achievable amounts of the berries in healthy subjects. OBJECTIVES The aim of this study was to investigate the effects of aronia berries on vascular function and gut microbiota composition in a healthy population. METHODS A double-blind, placebo-controlled, parallel designed study was conducted in 66 healthy men randomly allocated to consume a (poly)phenol-rich extract (116 mg, 75 g berries), a whole fruit powder (12 mg, 10 g berries), or placebo (maltodextrin) for 12 wk. Flow-mediated dilation (FMD), arterial stiffness, blood pressure, heart rate, and serum biochemistry were assessed. Plasma (poly)phenol metabolites were analyzed by LC-MS. Gut microbiota composition was determined via 16S rRNA sequencing in stool samples. RESULTS Consumption of aronia whole fruit and extract powder for 12 wk led to a significant increase in FMD over control of 0.9% ± 0.4% (95% CI: 0.13%, 1.72%) and 1.2% ± 0.4% (95% CI: 0.36%, 1.97%), respectively. Acute improvements in FMD were also observed 2 h after consumption of aronia extract on day 1 (1.1% ± 0.3%, P = 0.003) and 12 wk later (1.5% ± 0.4%, P = 0.0001). Circulating plasma phenolic metabolites increased upon consumption of the aronia treatments. Although no changes were found in gut microbiota diversity, consumption of aronia extract increased the growth of Anaerostipes (+10.6%, P = 0.01), whereas aronia whole fruit showed significant increases in Bacteroides (+193%, P = 0.01). Correlation analysis identified significant associations between changes in FMD, aronia-derived phenolic metabolites, and specific gut microbial genera. CONCLUSIONS In healthy men, consumption of aronia berry (poly)phenols improved endothelial function and modulated gut microbiota composition, indicating that regular aronia consumption has the potential to maintain cardiovascular health in individuals at low risk of cardiovascular disease. This trial was registered at CLINICALTRIALs.gov as NCT03041961.
Collapse
Affiliation(s)
- Geoffrey Istas
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Eleanor Wood
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Melanie Le Sayec
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Claudia Rawlings
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Jeeyoung Yoon
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vaishnavi Dandavate
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Debora Cera
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Adele Costabile
- Health Sciences Research Centre, Life Sciences Department, Whitelands College, University of Roehampton, London, United Kingdom
| | | | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
39
|
Schmitt S, Tratzka S, Schieber A, Passon M. Hemisynthesis of Anthocyanin Phase II Metabolites by Porcine Liver Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6177-6189. [PMID: 31083903 DOI: 10.1021/acs.jafc.9b01315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this work was to obtain phase II metabolites of cyanidin-3- O-glucoside and its aglycone using porcine liver enzymes. For this purpose, anthocyanins extracted from blackberry concentrate and containing mostly cyanidin-3- O-glucoside were incubated with the S9, microsomal, and cytosolic fractions of porcine liver. The reactions were targeted to the direction of the respective phase II transformation by the addition of activated cofactors. LC-MS n and LC-IMS-QTOF-MS analyses showed that one methylated, three glucuronidated and three sulfated metabolites of cyanidin-3- O-glucoside were generated. The aglycone, cyanidin, was sulfated and glucuronidated by the liver enzymes. In addition, both were glucuronidated and methylated simultaneously. The detected compounds and the generated data like exact masses, mass spectra, and CCS values may serve as a basis in the search for metabolites formed in vivo. As their effects are largely unexplored, the described synthesis may contribute to a better understanding of the metabolism of anthocyanins.
Collapse
Affiliation(s)
- Sarah Schmitt
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| | - Sebastian Tratzka
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| | - Andreas Schieber
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| | - Maike Passon
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| |
Collapse
|
40
|
Shell thickness controlled hydrophilic magnetic molecularly imprinted resins for high-efficient extraction of benzoic acids in aqueous samples. Talanta 2019; 194:969-976. [DOI: 10.1016/j.talanta.2018.10.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022]
|
41
|
Arevström L, Bergh C, Landberg R, Wu H, Rodriguez-Mateos A, Waldenborg M, Magnuson A, Blanc S, Fröbert O. Freeze-dried bilberry (Vaccinium myrtillus) dietary supplement improves walking distance and lipids after myocardial infarction: an open-label randomized clinical trial. Nutr Res 2018; 62:13-22. [PMID: 30803503 DOI: 10.1016/j.nutres.2018.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022]
Abstract
Bilberries, Vaccinium myrtillus, have a high content of phenolic compounds including anthocyanins, which could provide cardiometabolic health benefits following acute myocardial infarction (AMI). We hypothesized that standard medical therapy supplemented with freeze-dried bilberry after AMI would have a more beneficial effect on cardiovascular risk markers and exercise capacity than medical therapy alone. Patients were allocated in a 1:1 ratio within 24 hours of percutaneous coronary intervention in an 8-week trial either to V myrtillus powder (40 g/d, equivalent to 480 g fresh bilberries) and standard medical therapy or to a control group receiving standard medical therapy alone. High-sensitivity C-reactive protein and exercise capacity measured with the 6-minute walk test were the primary biochemical and clinical end points, respectively. Fifty subjects completed the study. No statistically significant difference in high-sensitivity C-reactive protein was detected between groups. The mean 6-minute walk test distance increased significantly more in the bilberry group compared to the control group: mean difference 38 m at follow-up (95% confidence interval 14-62, P = .003). Ex vivo oxidized low-density lipoprotein was significantly lowered in the bilberry group compared to control, geometric mean ratio 0.80 (95% confidence interval 0.66-0.96, P = .017), whereas total cholesterol and low-density lipoprotein cholesterol did not differ significantly between groups. Anthocyanin-derived metabolites in blood increased significantly in the bilberry group during the intervention and were different after 8 weeks between the bilberry group and control. Findings in the present study suggest that bilberries may have clinically relevant beneficial effects following AMI; a larger, double-blind clinical trial is warranted to confirm this.
Collapse
Affiliation(s)
- Lilith Arevström
- Department of Cardiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Cecilia Bergh
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden.
| | - Rikard Landberg
- Department of Food Science, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Göteborg, Sweden
| | - Huaxing Wu
- Department of Food Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Micael Waldenborg
- Department of Cardiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anders Magnuson
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Stepháne Blanc
- Department of Ecology, Physiology and Ethology, Hubert Curien Pluridisciplinary Institute, University of Strasbourg, Strasbourg, France
| | - Ole Fröbert
- Department of Cardiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
42
|
Moreno-Rojas JM, Moreno-Ortega A, Ordóñez JL, Moreno-Rojas R, Pérez-Aparicio J, Pereira-Caro G. Development and validation of UHPLC-HRMS methodology for the determination of flavonoids, amino acids and organosulfur compounds in black onion, a novel derived product from fresh shallot onions (Allium cepa var. aggregatum). Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Ordóñez JL, Pereira-Caro G, Ludwig I, Muñoz-Redondo JM, Ruiz-Moreno MJ, Crozier A, Moreno-Rojas JM. A critical evaluation of the use of gas chromatography- and high performance liquid chromatography-mass spectrometry techniques for the analysis of microbial metabolites in human urine after consumption of orange juice. J Chromatogr A 2018; 1575:100-112. [PMID: 30228007 DOI: 10.1016/j.chroma.2018.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022]
Abstract
The present study compared and validated two analytical methods, HPLC-HRMS, and GC-MS using MSTFA as derivatization agent, for the analysis of microbiota-derived phenolic acids and aromatic compounds accumulating in urine, collected over a 24 h period after the consumption of 500 mL of orange juice. In addition, purification procedures using SDB-L and HLB solid phase cartridges were compared when HPLC-HRMS technique was used. Both HPLC-HRMS and GC-MS methodologies were successfully validated in terms of specificity, sensitivity, limit of detection and quantification, recovery and matrix effects. HPLC-HRMS, unlike GC-MS, does not require sample derivatization prior to analysis. GC-MS was not suitable for the analysis of phenolic sulfate and glucuronide metabolites because of their lack of volatility. These phase II metabolites could, however, be analysed by HPLC-HRMS which, as a consequence, provided more detailed and complete information on the phenolic compounds derived from microbiota-mediated degradation of orange juice (poly)phenols. Furthermore, the use of SDB-L and HLB cartridges for sample purification prior to HPLC-HRMS analysis is suitable for free phenolics and glucuronide metabolites but not sulfate derivatives. These findings highlight that the use of an inappropriate analytical protocol can adversely affect studies on the bioavailability of dietary (poly)phenols in which microbiota-derived phenolic catabolites play an important role.
Collapse
Affiliation(s)
- José Luis Ordóñez
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menéndez-Pidal, SN, 14004, Córdoba, Spain
| | - Gema Pereira-Caro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menéndez-Pidal, SN, 14004, Córdoba, Spain.
| | - Iziar Ludwig
- Department of Food and Technology, Universidad de Lleida, 25198, Lleida, Spain
| | - José Manuel Muñoz-Redondo
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menéndez-Pidal, SN, 14004, Córdoba, Spain
| | - María José Ruiz-Moreno
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menéndez-Pidal, SN, 14004, Córdoba, Spain
| | - Alan Crozier
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK; Department of Nutrition, University of California, Davis, CA 95616-5270, USA
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menéndez-Pidal, SN, 14004, Córdoba, Spain
| |
Collapse
|
44
|
Interlaboratory Coverage Test on Plant Food Bioactive Compounds and their Metabolites by Mass Spectrometry-Based Untargeted Metabolomics. Metabolites 2018; 8:metabo8030046. [PMID: 30149593 PMCID: PMC6161174 DOI: 10.3390/metabo8030046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022] Open
Abstract
Bioactive compounds present in plant-based foods, and their metabolites derived from gut microbiota and endogenous metabolism, represent thousands of chemical structures of potential interest for human nutrition and health. State-of-the-art analytical methodologies, including untargeted metabolomics based on high-resolution mass spectrometry, are required for the profiling of these compounds in complex matrices, including plant food materials and biofluids. The aim of this project was to compare the analytical coverage of untargeted metabolomics methods independently developed and employed in various European platforms. In total, 56 chemical standards representing the most common classes of bioactive compounds spread over a wide chemical space were selected and analyzed by the participating platforms (n = 13) using their preferred untargeted method. The results were used to define analytical criteria for a successful analysis of plant food bioactives. Furthermore, they will serve as a basis for an optimized consensus method.
Collapse
|
45
|
Ottaviani JI, Fong RY, Borges G, Schroeter H, Crozier A. Use of LC-MS for the quantitative analysis of (poly)phenol metabolites does not necessarily yield accurate results: Implications for assessing existing data and conducting future research. Free Radic Biol Med 2018; 124:97-103. [PMID: 29870748 DOI: 10.1016/j.freeradbiomed.2018.05.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/31/2018] [Indexed: 11/22/2022]
Abstract
Plant-derived, dietary (poly)phenols have potential effects on disease-risk reduction and primary disease prevention. The characterization of (poly)phenol absorption, distribution, metabolism and excretion (ADME) is recognized as crucial step to further advance nutritional and biomedical research of these compounds; and given that (poly)phenols are extensively metabolized after ingestion, accurate assessments of their in vivo metabolites is required. It has become common practice to use unmetabolized parent compounds as reference standards when quantifying (poly)phenol metabolites by LC-MS, although little is known about the accuracy of this approach. To investigate this situation with routinely used LC-MS conditions, the signal yielded by the flavan-3-ol (-)-epicatechin was compared to those of authentic standards of its phase II and microbiota-derived metabolites. The results obtained revealed underestimations up to 94% and overestimations up to 113% of individual epicatechin metabolites. Inaccurate quantitative estimates were also obtained when phase II metabolites of other (poly)phenols were quantified by reference to their unmetabolized parent compounds. This demonstrates the importance of using structurally-identical authentic metabolites as reference compounds when quantifying (poly)phenol metabolites by LC-MS. This is of importance, not just to the accuracy of ADME studies, but for the identification and validation of (poly)phenol metabolites as biomarkers of intake in epidemiological studies.
Collapse
Affiliation(s)
- Javier I Ottaviani
- Mars Inc., McLean, VA 22101, USA; Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Reedmond Y Fong
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Gina Borges
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | - Alan Crozier
- Department of Nutrition, University of California, Davis, CA 95616, USA.
| |
Collapse
|
46
|
Achaintre D, Gicquiau A, Li L, Rinaldi S, Scalbert A. Quantification of 38 dietary polyphenols in plasma by differential isotope labelling and liquid chromatography electrospray ionization tandem mass spectrometry. J Chromatogr A 2018; 1558:50-58. [PMID: 29759646 DOI: 10.1016/j.chroma.2018.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/10/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
Polyphenols constitute one of the most complex classes of phytochemicals in the human diet and have been suggested to play a role in the prevention of chronic diseases such as cardiovascular diseases, diabetes and cancers. However, evidence from epidemiological studies is still needed to better understand their role in disease prevention. To do so, robust methods for the accurate measurement of these molecules in large series of samples are needed. We report here the development of a highly-sensitive method based on differential isotope labelling with 13C- and 12C-dansyl chloride for the analysis of 38 structurally diverse polyphenols in 50 μL plasma by tandem mass spectrometry with limits of quantification varying between 0.11 to 44 nmol/L. Full validation of the method was achieved for 37 compounds out of the 38 tested. The method showed intra- and inter-batch coefficients of variations of 2.3-9.0% and 2.8-20.3% respectively depending on polyphenols when applied to 1163 plasma samples from the European Prospective Investigation on Cancer and Nutrition (EPIC) study. For the first time this method allowed to quantify with high accuracy and reproducibility a large selection of compounds representative of the main classes of dietary polyphenols in low volumes of plasma.
Collapse
Affiliation(s)
- David Achaintre
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372, Lyon Cedex 08, France.
| | - Audrey Gicquiau
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372, Lyon Cedex 08, France
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Sabina Rinaldi
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372, Lyon Cedex 08, France
| | - Augustin Scalbert
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372, Lyon Cedex 08, France.
| |
Collapse
|
47
|
Makkliang F, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C. A miniaturized monolith-MWCNTs-COOH multi-stir-rod microextractor device for trace parabens determination in cosmetic and personal care products. Talanta 2018; 184:429-436. [DOI: 10.1016/j.talanta.2018.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 11/30/2022]
|
48
|
Banerjee A, Dhar P. Amalgamation of polyphenols and probiotics induce health promotion. Crit Rev Food Sci Nutr 2018; 59:2903-2926. [PMID: 29787290 DOI: 10.1080/10408398.2018.1478795] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The residing microbiome with its vast repertoire of genes provide distinctive properties to the host by which they can degrade and utilise nutrients that otherwise pass the gastro-intestinal tract unchanged. The polyphenols in our diet have selective growth promoting effects which is of utmost importance as the state of good health has been linked to dominance of particular microbial genera. The polyphenols in native form might more skilfully exert anti-oxidative and anti-inflammatory properties but in a living system it is the microbial derivatives of polyphenol that play a key role in determining health outcome. This two way interaction has invoked great interest among researchers who have commenced several clinical surveys and numerous studies in in-vitro, simulated environment and living systems to find out in detail about the biomolecules involved in such interaction along with their subsequent physiological benefits. In this review, we have thoroughly discussed these studies to develop a fair idea on how the amalgamation of probiotics and polyphenol has an immense potential as an adjuvant therapeutic for disease prevention as well as treatment.
Collapse
Affiliation(s)
- Arpita Banerjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| |
Collapse
|
49
|
Development and validation of an UHPLC-HRMS protocol for the analysis of flavan-3-ol metabolites and catabolites in urine, plasma and feces of rats fed a red wine proanthocyanidin extract. Food Chem 2018; 252:49-60. [DOI: 10.1016/j.foodchem.2018.01.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
|
50
|
Castello F, Costabile G, Bresciani L, Tassotti M, Naviglio D, Luongo D, Ciciola P, Vitale M, Vetrani C, Galaverna G, Brighenti F, Giacco R, Del Rio D, Mena P. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Arch Biochem Biophys 2018; 646:1-9. [DOI: 10.1016/j.abb.2018.03.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/28/2023]
|