1
|
Ribeiro VP, Bajsa-Hirschel J, Bastos JK, Reichley A, Duke SO, Meepagala KM. Characterization of the Phytotoxic Potential of Seven Copaifera spp. Essential Oils: Analyzing Active Compounds through Gas Chromatography-Mass Spectrometry Molecular Networking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18528-18536. [PMID: 39105735 DOI: 10.1021/acs.jafc.4c04586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In recent years, there has been a need for environmentally friendly compounds for weed management in agriculture. This study is aimed to assess the phytotoxic constituents of oils obtained from oleoresins of seven Copaifera species (known as copaiba oils). Copaiba oils were separated from the resins by hydro-distillation, and the distillates were analyzed using gas chromatography-mass spectrometry (GC-MS) to characterize their chemical compositions. Multivariate analyses and molecular networking of GC-MS data were conducted to discern patterns in the chemical composition and phytotoxic activity of the oils, with the aim of identifying key compounds associated with phytotoxic activity. Seed germination bioassay revealed strong or complete germination inhibition against the monocot, Agrostis stolonifera but not the dicot Lactuca sativa. GC-MS analysis showed variations in composition among Copaifera species with some common compounds identified across multiple species. Caryophyllene oxide and junenol were associated with the observed phytotoxic effects. Automated flash chromatography was used to isolate the major compounds of the oils. Isolated compounds exhibited differing levels of phytotoxicity compared to the oils, suggesting the importance of interactions or synergism among oil components. These findings highlight the potential of copaiba oils as natural herbicidal agents and underscore the importance of considering species-specific responses in weed management strategies.
Collapse
Affiliation(s)
- Victor Pena Ribeiro
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Joanna Bajsa-Hirschel
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP 14440-903,Brazil
| | - Amber Reichley
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 39677, United States
| | - Kumudini M Meepagala
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| |
Collapse
|
2
|
Aguila FA, Bastos JK, Veneziani RCS, Nardotto GHB, Oliveira LC, Rocha A, Lanchote VL, Ambrósio SR. Population Pharmacokinetic of the Diterpenes ent-Polyalthic Acid and Dihydro-ent-Agathic Acid from Copaifera Duckei Oil Resin in Rats. PLANTA MEDICA 2024; 90:810-820. [PMID: 38749480 DOI: 10.1055/a-2328-2644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Copaifera duckei oleoresin is a plant product extensively used by the Brazilian population for multiple purposes, such as medicinal and cosmetic. Despite its ethnopharmacological relevance, there is no pharmacokinetic data on this important medicinal plant. Due to this, we determined the pharmacokinetic profile of the major nonvolatile compounds of C. duckei oleoresin. The diterpenes ent-polyalthic acid and dihydro-ent-agathic acid correspond to approximately 40% of the total oleoresin. Quantification was performed using LC-MS/MS, and the validated analytical method showed to be precise, accurate, robust, reliable, and linear between 0.57 and 114.74 µg/mL plasma and 0.09 to 18.85 µg/mL plasma, respectively, for ent-polyalthic acid and dihydro-ent-agathic acid, making it suitable for application in preclinical pharmacokinetic studies. Wistar rats received a single 200 mg/kg oral dose (gavage) of C. duckei oleoresin, and blood was collected from their caudal vein through 48 h. Population pharmacokinetics analysis of ent-polyalthic and dihydro-ent-agathic acids in rats was evaluated using nonlinear mixed-effects modeling conducted in NONMEN software. The pharmacokinetic parameters of ent-polyalthic acid were absorption constant rate = 0.47 h-1, central and peripheral apparent volume of distribution = 0.04 L and 2.48 L, respectively, apparent clearance = 0.15 L/h, and elimination half-life = 11.60 h. For dihydro-ent-agathic acid, absorption constant rate = 0.28 h-1, central and peripheral apparent volume of distribution = 0.01 L and 0.18 L, respectively, apparent clearance = 0.04 L/h, and elimination half-life = 3.49 h. The apparent clearance, central apparent volume of distribution, and peripheral apparent volume of distribution of ent-polyalthic acid were approximately 3.75, 4.00-, and 13.78-folds higher than those of dihydro-ent-agathic.
Collapse
Affiliation(s)
- Fábio Alves Aguila
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, Brazil
| | - Rodrigo C S Veneziani
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | | | - Larissa Costa Oliveira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Adriana Rocha
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, Brazil
| | - Vera Lucia Lanchote
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, Brazil
| | - Sérgio Ricardo Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| |
Collapse
|
3
|
de Mello NP, Carlos Ramos Espinoza F, da Silva Claudiano G, Yunis-Aguinaga J, Graça de Oliveira Carvalho J, Elizabeth Almeida Silva J, Cristina Pacheco de Oliveira E, Rodini Engrácia de Moraes J. Copaiba oil's bactericidal activity and its effects on health and zootechnical performance for Nile tilapia after oral supplementation. Sci Rep 2024; 14:17405. [PMID: 39075092 PMCID: PMC11286787 DOI: 10.1038/s41598-024-66024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Tilapia is one of the most important farmed fish in the world and the most cultivated in Brazil. The increase of this farming favors the appearance of diseases, including bacterial diseases. Therefore, the aim of this study was to evaluate the bactericidal activity of copaiba oil, Copaifera duckei, against Streptococcus agalactiae and Flavobacterium columnare and the dietary effect of copaiba oil on zootechnical performance, hematological, biochemical, immunological, and histological analysis before and after an intraperitoneal infection (body cavity) with S. agalactiae in Nile tilapia. For this, fish were randomly distributed into 15 fiber tanks in five treatments (0, 0.25, 0.50, 0.75, and 1.0%) and fed with a commercial diet supplemented with copaiba oil for 30 days. After this period, the fish were randomly redistributed for the experimental challenge with S. agalactiae into six treatments (T0, T1, T2, T3, T4, and T5), the fish were anesthetized, and blood samples were collected to assess hematological, biochemical, immunological, and histological parameters. Copaiba oil showed bactericidal activity against Streptococcus spp. and Flavobacterium spp. in vitro. In addition, concentrations of 0.75 and 1.0% of copaiba oil have an anti-inflammatory effect and improve hematological and immunological parameters, increasing leukocyte numbers, albumin, and serum lytic activity. Furthermore, there is an increase in the intestinal villus length and tissue damage in groups at concentrations of 0.75 and 1.0% of copaiba oil. In conclusion, copaiba oil presented bactericidal activity against Streptococcus spp. and Flavobacterium spp. in vitro, and oral supplementation at concentrations of 0.75 and 1.0% compared to the control group enhanced non-specific immune parameters and digestibility in Nile Tilapia.
Collapse
Affiliation(s)
- Nicoli Paganoti de Mello
- Postgraduated Program in Aquaculture/Aquaculture Center of UNESP, Caunesp, Jaboticabal, , São Paulo, Brazil
| | | | - Gustavo da Silva Claudiano
- Institute of Biodversity and Forests, Federal University of Western Pará, UFOPA-IBEF, Rua Vera Paz, s/n (Unidade Tapajós) Bairro Salé, Santarém, PA, CEP 68040-255, Brazil.
| | | | | | | | - Elaine Cristina Pacheco de Oliveira
- Institute of Biodversity and Forests, Federal University of Western Pará, UFOPA-IBEF, Rua Vera Paz, s/n (Unidade Tapajós) Bairro Salé, Santarém, PA, CEP 68040-255, Brazil
| | - Julieta Rodini Engrácia de Moraes
- Department of Pathology, Theriogenology and One Health, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil.
- UNESP / Access Road Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, Jaboticabal, 14884-900, Brazil.
| |
Collapse
|
4
|
Sweilam SH, Ali DE, Atwa AM, Elgindy AM, Mustafa AM, Esmail MM, Alkabbani MA, Senna MM, El-Shiekh RA. A First Metabolite Analysis of Norfolk Island Pine Resin and Its Hepatoprotective Potential to Alleviate Methotrexate (MTX)-Induced Hepatic Injury. Pharmaceuticals (Basel) 2024; 17:970. [PMID: 39065818 PMCID: PMC11279851 DOI: 10.3390/ph17070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Drug-induced liver injury (DILI) represents a significant clinical challenge characterized by hepatic dysfunction following exposure to diverse medications. Methotrexate (MTX) is a cornerstone in treating various cancers and autoimmune disorders. However, the clinical utility of MTX is overshadowed by its ability to induce hepatotoxicity. The current study aims to elucidate the hepatoprotective effect of the alcoholic extract of Egyptian Araucaria heterophylla resin (AHR) on MTX-induced liver injury in rats. AHR (100 and 200 mg/kg) significantly decreased hepatic markers (AST, ALT, and ALP), accompanied by an elevation in the antioxidant's markers (SOD, HO-1, and NQO1). AHR extract also significantly inhibited the TGF-β/NF-κB signaling pathway as well as the downstream cascade (IL-6, JAK, STAT-3, and cyclin D). The extract significantly reduced the expression of VEGF and p38 with an elevation in the BCL2 levels, in addition to a significant decrease in the IL-1β and TNF-α levels, with a prominent effect at a high dose (200 mg/kg). Using LC-HRMS/MS analysis, a total of 43 metabolites were tentatively identified, and diterpenes were the major class. This study presents AHR as a promising hepatoprotective agent through inhibition of the TGF-β/NF-κB and JAK/STAT3 pathways, besides its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Dalia E. Ali
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University, Alexandria 21648, Egypt;
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Ali M. Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Aya M. Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Manar M. Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Mahmoud Abdelrahman Alkabbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
5
|
Teixeira SC, de Souza G, Junior JPDL, Rosini AM, Martínez AFF, Fernandes TADM, Ambrósio SR, Veneziani RCS, Bastos JK, Martins CHG, Barbosa BF, Ferro EAV. Copaifera spp. oleoresins and two isolated compounds (ent-kaurenoic and ent-polyalthic acid) inhibit Toxoplasma gondii growth in vitro. Exp Parasitol 2024; 262:108771. [PMID: 38723847 DOI: 10.1016/j.exppara.2024.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Joed Pires de Lima Junior
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Sergio Ricardo Ambrósio
- Nucleus of Research in Technological and Exact Sciences, Universidade de Franca, Franca, SP, Brazil
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos Henrique Gomes Martins
- Department of Microbiology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
6
|
Santos MFC, Mirada GS, do Couto JO, de Oliveira Costa G, Rangel Rosa AC, Gambeta Borges CH, Crevelin EJ, de Araújo LS, Bastos JK, Veneziani RCS, Ambrósio SR. A validated ultra-performance liquid chromatography with tandem mass spectrometry method for the quantification of Brazilian green propolis main compounds. Nat Prod Res 2024:1-7. [PMID: 38768436 DOI: 10.1080/14786419.2024.2356654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Brazilian green propolis is used in folk medicine because of its various biological properties. The hydroalcoholic extract of Brazilian green propolis is characteristic for possessing several pharmacological properties. Phytochemical investigations have attributed some of these properties to the presence of compounds, which were chosen as analytical markers. This paper reports the development and analytical validation using UPLC-MS/MS in MRM mode. Veratraldehyde was used as an internal standard in qualitative and quantitative analyses of the extracts. Relative standard deviation values obtained for intra-day and inter-day precision were lower than 4%. Of the five parameters for robustness, wavelength detection and flow rate were the critical ones. Limits of detection and quantification ranged from 0.300 to 39.500 ng.mL-1 and from 1.400 to 85.00 ng.mL-1, respectively. The recoveries were between 94.00 and 119.00%, with relative standard deviation values around 5.0%. The developed method is precise, sensitive, and reliable for analysing Brazilian green propolis.
Collapse
Affiliation(s)
- Mário Ferreira Conceição Santos
- Center of Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alto Universitário, Alegre, Espírito Santo, Brazil
| | - Giulia Stavrakas Mirada
- Center of Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alto Universitário, Alegre, Espírito Santo, Brazil
| | - Joice Olinda do Couto
- Center for Agricultural Engineering Sciences, Federal University of Espírito Santo - UFES, Alto Universitário, Alegre, Espírito Santo, Brazil
| | - Gilvana de Oliveira Costa
- Center of Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alto Universitário, Alegre, Espírito Santo, Brazil
| | - Ana Carla Rangel Rosa
- Center of Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alto Universitário, Alegre, Espírito Santo, Brazil
| | | | - Eduardo José Crevelin
- Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo,University of São Paulo, Ribeirão Preto, Brazil
| | | | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Rodrigo C S Veneziani
- Research Center for Exact and Technological Sciences, University of Franca, Franca, SP, Brazil
| | - Sérgio R Ambrósio
- Research Center for Exact and Technological Sciences, University of Franca, Franca, SP, Brazil
| |
Collapse
|
7
|
Çiçek SS, Mangoni A, Hanschen FS, Agerbirk N, Zidorn C. Essentials in the acquisition, interpretation, and reporting of plant metabolite profiles. PHYTOCHEMISTRY 2024; 220:114004. [PMID: 38331135 DOI: 10.1016/j.phytochem.2024.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Plant metabolite profiling reveals the diversity of secondary or specialized metabolites in the plant kingdom with its hundreds of thousands of species. Specialized plant metabolites constitute a vast class of chemicals posing significant challenges in analytical chemistry. In order to be of maximum scientific relevance, reports dealing with these compounds and their source species must be transparent, make use of standards and reference materials, and be based on correctly and traceably identified plant material. Essential aspects in qualitative plant metabolite profiling include: (i) critical review of previous literature and a reasoned sampling strategy; (ii) transparent plant sampling with wild material documented by vouchers in public herbaria and, optimally, seed banks; (iii) if possible, inclusion of generally available reference plant material; (iv) transparent, documented state-of-the art chemical analysis, ideally including chemical reference standards; (v) testing for artefacts during preparative extraction and isolation, using gentle analytical methods; (vi) careful chemical data interpretation, avoiding over- and misinterpretation and taking into account phytochemical complexity when assigning identification confidence levels, and (vii) taking all previous scientific knowledge into account in reporting the scientific data. From the current stage of the phytochemical literature, selected comments and suggestions are given. In the past, proposed revisions of botanical taxonomy were sometimes based on metabolite profiles, but this approach ("chemosystematics" or "chemotaxonomy") is outdated due to the advent of DNA sequence-based phylogenies. In contrast, systematic comparisons of plant metabolite profiles in a known phylogenetic framework remain relevant. This approach, known as chemophenetics, allows characterizing species and clades based on their array of specialized metabolites, aids in deducing the evolution of biosynthetic pathways and coevolution, and can serve in identifying new sources of rare and economically interesting natural products.
Collapse
Affiliation(s)
- Serhat S Çiçek
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts- Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| |
Collapse
|
8
|
Teixeira MVS, Fernandes LM, de Paula VS, Ferreira AG, Pires LM, Santos RA, Furtado NAJC. Production of new ent-hardwickiic acid derivatives by microbial transformation and their antifungal activity. Fitoterapia 2024; 173:105810. [PMID: 38163448 DOI: 10.1016/j.fitote.2023.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Ent-hardwickiic acid is the major compound of Copaifera pubiflora Benth oleoresin traditionally used in Brazilian folk medicine as an antimicrobial agent. Microbial transformation of ent-hardwickiic by Cunninghamella elegans ATCC 10028b resulted in two and five antifungal derivatives (four new ones) produced in the Czapek modified and Koch's K1 media, respectively. The derivatives were isolated and their structures were determined by spectral analysis, namely 1D/2D NMR and HR-ESIMS. All compounds were tested for cytotoxic and antifungal activities and they were not cytotoxic to the tested cell lines, but all derivatives showed fungicidal activity against Candida glabrata and Candida krusei, which have emerged as resistant to fluconazole. One of the yet unreported biotransformation products displayed the strongest activity with minimum fungicidal concentration values smaller than the other compounds, including fluconazole.
Collapse
Affiliation(s)
- Maria V S Teixeira
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Lívia M Fernandes
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Vinícius S de Paula
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Antonio G Ferreira
- Laboratory of Nuclear Magnetic Resonance, Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Loren M Pires
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil
| | - Raquel A Santos
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil
| | - Niege A J C Furtado
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil.
| |
Collapse
|
9
|
Carneiro LJ, Bastos JK, Veneziani RCS, Santos MFC, Ambrósio SR. A reliable validated high-performance liquid chromatography-photodiode array detection method for quantification of terpenes in Copaifera pubiflora, Copaifera trapezifolia, and Copaifera langsdorffii oleoresins. Nat Prod Res 2024; 38:341-346. [PMID: 36008872 DOI: 10.1080/14786419.2022.2116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/29/2022] [Accepted: 08/21/2022] [Indexed: 10/15/2022]
Abstract
The Copaifera oleoresins are widely used in folk medicine to treat various diseases. The goal of this study was to develop a validated reverse-phase high-performance liquid chromatography method with photodiode array detection (RP-HPLC-PDA) to quantify eight terpenes: ent-hardwickiic acid, ent-copalic acid, ent-7α-acetoxy hardwickiic acid, ent-16-hydroxy-3,13-clerodadiene-15,18-dioic acid, ent-5,13-labdadiene-15-oic acid, junenol, ent-kaurenoic acid, and 13E-ent-labda-7,13-dien-15-oic acid in the oleoresins of Copaifera pubiflora L. (OCP), Copaifera trapezifolia L. (OCT) and Copaifera langsdorffii L. (OCL). The linearity of the method was confirmed in the range of 20.00-500 µg.mL-1 (r2 > 0.999). The limit of quantification was between 1,05 and 16.89 µg.mL-1. Precision and accuracy ranges were found to be %RSD <0.2 and 96% to 110%, respectively. Based on the obtained results, the developed analytical method is rapid, precise, accurate, and sensitive for quantifying these terpenes in Copaifera's oleoresins.
Collapse
Affiliation(s)
- Luiza J Carneiro
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Braszil
| | - Jairo K Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Braszil
| | - Rodrigo C S Veneziani
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Braszil
| | - Mario F C Santos
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Sérgio R Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Braszil
| |
Collapse
|
10
|
da Silva JJM, Campanharo SC, da Silva AFB, de Jesus RB, Figueredo TAM, Pilarski F, Heleno VCG, Paschoal JAR. Combination of extractive techniques followed by HPLC-MS/MS analysis to monitor ent-agathic acid in fish treated with Copaifera duckei Dwyer. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1224:123763. [PMID: 37245447 DOI: 10.1016/j.jchromb.2023.123763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Plants are used as therapeutic alternatives in Veterinary Medicine, including therapies for food-producing animals. However, these medicinal resources can sometimes contain dangerous substances, and when used in animals that supply food, they stand out from the point of view of food safety. The diterpene ent-agathic acid, a component of Copaifera duckei oleoresin, is an example of substances already described with toxic activity in mammals. Thus, this study aimed to propose combining two extractive techniques followed by high-performance liquid chromatography coupled mass spectrometry analysis to monitor residues of ent-agathic acid in Piaractus mesopotamicus fillet treated in an immersion bath with Copaifera duckei oleoresin. An optimized combination of solid-liquid extraction (using acidified acetonitrile) and dispersive liquid-liquid microextraction (using acidified water and chloroform as dispersive and extracting solvent, respectively) was performed to recover the target analyte, added to the development of HPLC-MS/MS method with adequate validation parameters to quantify the ent-agathic acid present in the fish fillet. In vivo tests of residual persistence of ent-agathic acid in fishes treated with C. duckei oleoresin were performed, indicating the non-detection of the target diterpene (< 6.1 µg/mL). The combined extractive procedure followed by quantitative analysis in the in vivo test of residual persistence of the target analyte in fish indicated the absence of ent-agathic acid in all samples. Thus, the data found might contribute to understanding the use of oleoresins from C. duckei as an alternative to traditional veterinary products.
Collapse
Affiliation(s)
- Jonas Joaquim Mangabeira da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Science - University of São Paulo (FCFRP-USP), 14040-903, Ribeirão Preto-SP, Brazil; Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, Department of Chemistry - University of São Paulo (FCFRP-USP), 14040-903, Ribeirão Preto-SP, Brazil
| | - Sarah Chagas Campanharo
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Science - University of São Paulo (FCFRP-USP), 14040-903, Ribeirão Preto-SP, Brazil
| | - Agnaldo Fernando Baldo da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Science - University of São Paulo (FCFRP-USP), 14040-903, Ribeirão Preto-SP, Brazil
| | - Raphael Barbetta de Jesus
- Laboratory of Microbiology and Parasitology of Aquatic Organisms (LAPOA), Aquaculture Center (CAUNESP) - São Paulo State University (UNESP), 14884-900, Jaboticabal-SP, Brazil
| | | | - Fabiana Pilarski
- Laboratory of Microbiology and Parasitology of Aquatic Organisms (LAPOA), Aquaculture Center (CAUNESP) - São Paulo State University (UNESP), 14884-900, Jaboticabal-SP, Brazil
| | | | - Jonas Augusto Rizzato Paschoal
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Science - University of São Paulo (FCFRP-USP), 14040-903, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
11
|
Teixeira SC, Rosini AM, de Souza G, Fajardo Martínez AF, Silva RJ, Ambrósio SR, Sola Veneziani RC, Bastos JK, Gomes Martins CH, Barbosa BF, Vieira Ferro EA. Polyalthic acid and oleoresin from Copaifera trapezifolia Hayne reduce Toxoplasma gondii growth in human villous explants, even triggering an anti-inflammatory profile. Exp Parasitol 2023; 250:108534. [PMID: 37100271 DOI: 10.1016/j.exppara.2023.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Due to the lack of efficient antiparasitic therapy and vaccines, as well as emerging resistance strains, congenital toxoplasmosis is still a public health issue worldwide. The present study aimed to assess the effects of an oleoresin obtained from the species Copaifera trapezifolia Hayne (CTO), and an isolated molecule found in the CTO, ent-polyalthic acid (ent-15,16-epoxy-8(17),13(16),14-labdatrien-19-oic acid) (named as PA), against T. gondii infection. We used human villous explants as an experimental model of human maternal-fetal interface. Uninfected and infected villous explants were exposed to the treatments; the parasite intracellular proliferation and the cytokine levels were measured. Also, T. gondii tachyzoites were pre-treated and the parasite proliferation was determined. Our findings showed that CTO and PA reduced efficiently the parasite growth with an irreversible action, but without causing toxicity to the villi. Also, treatments reduced the levels of IL-6, IL-8, MIF and TNF by villi, what configures a valuable treatment option for the maintenance of a pregnancy in an infectious context. In addition to a possible direct effect on parasites, our data suggest an alternative mechanism by which CTO and PA alter the villous explants environment and then impair parasite growth, since the pre-treatment of villi resulted in lower parasitic infection. Here, we highlighted PA as an interesting tool for the design of new anti-T. gondii compounds.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Sergio Ricardo Ambrósio
- Nucleus of Research in Technological and Exact Sciences, University of Franca, Franca, SP, Brazil.
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carlos Henrique Gomes Martins
- Department of Microbiology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
12
|
Lower Concentrations of Amphotericin B Combined with Ent-Hardwickiic Acid Are Effective against Candida Strains. Antibiotics (Basel) 2023; 12:antibiotics12030509. [PMID: 36978378 PMCID: PMC10044661 DOI: 10.3390/antibiotics12030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Life-threatening Candida infections have increased with the COVID-19 pandemic, and the already limited arsenal of antifungal drugs has become even more restricted due to its side effects associated with complications after SARS-CoV-2 infection. Drug combination strategies have the potential to reduce the risk of side effects without loss of therapeutic efficacy. The aim of this study was to evaluate the combination of ent-hardwickiic acid with low concentrations of amphotericin B against Candida strains. The minimum inhibitory concentration (MIC) values were determined for amphotericin B and ent-hardwickiic acid as isolated compounds and for 77 combinations of amphotericin B and ent-hardwickiic acid concentrations that were assessed by using the checkerboard microdilution method. Time–kill assays were performed in order to assess the fungistatic or fungicidal nature of the different combinations. The strategy of combining both compounds markedly reduced the MIC values from 16 µg/mL to 1 µg/mL of amphotericin B and from 12.5 µg/mL to 6.25 µg/mL of ent-hardwickiic acid, from isolated to combined, against C. albicans resistant to azoles. The combination of 1 µg/mL of amphotericin B with 6.25 µg/mL of ent-hardwickiic acid killed all the cells of the same strain within four hours of incubation.
Collapse
|
13
|
Sousa Teixeira MV, Fernandes LM, Stefanelli de Paula V, Ferreira AG, Jacometti Cardoso Furtado NA. Ent-hardwickiic acid from C. pubiflora and its microbial metabolites are more potent than fluconazole in vitro against Candida glabrata. Lett Appl Microbiol 2022; 74:622-629. [PMID: 34995375 DOI: 10.1111/lam.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
The incidence of Candida glabrata infections has rapidly grown and this species is among those responsible for causing invasive candidiasis with a high mortality rate. The diterpene ent-hardwickiic acid is a major constituent in Copaifera pubiflora oleoresin and the ethnopharmacological uses of this oleoresin by people from Brazilian Amazonian region point to a potential use of this major constituent as an antimicrobial. Therefore, the goal of this study was to evaluate the antifungal activity of ent-hardwickiic acid against Candida species and to produce derivatives of this diterpene by using microbial models for simulating the mammalian metabolism. The microbial transformations of ent-hardwickiic acid were carried out by Aspergillus brasiliensis and Cunninghamella elegans and hydroxylated metabolites were isolated and their chemical structures were determined. The antifungal activity of ent-hardwickiic acid and its metabolites was assessed by using the microdilution broth method in 96-well microplates and compared with that of fluconazole. All the diterpenes showed fungistatic effects (ranging from 19·7 to 75·2 µmol l-1 ) against C. glabrata at lower concentrations than fluconazole (163·2 µmol l-1 ) and were more potent fungicides (ranging from 39·5 to 150·4 µmol l-1 ) than fluconazole, which showed fungicidal effect at the concentration of 326·5 µmol l-1 .
Collapse
Affiliation(s)
- M V Sousa Teixeira
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - L M Fernandes
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - V Stefanelli de Paula
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - A G Ferreira
- Laboratory of Nuclear Magnetic Resonance, Chemistry Department, Federal University of São Carlos, São Carlos, Brazil
| | - N A Jacometti Cardoso Furtado
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Símaro GV, Lemos M, Mangabeira da Silva JJ, Ribeiro VP, Arruda C, Schneider AH, Wagner de Souza Wanderley C, Carneiro LJ, Mariano RL, Ambrósio SR, Faloni de Andrade S, Banderó-Filho VC, Sasse A, Sheridan H, Andrade E Silva ML, Bastos JK. Antinociceptive and anti-inflammatory activities of Copaifera pubiflora Benth oleoresin and its major metabolite ent-hardwickiic acid. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113883. [PMID: 33508366 DOI: 10.1016/j.jep.2021.113883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Copaifera species folkloric names are "copaíbas, copaibeiras, copaívas or oil stick", which are widely used in Brazilian folk medicine. Among all ethnopharmacological applications described for Copaifera spp oleoresins, their anti-inflammatory effect stands out. However, the knowledge of anti-inflammatory and antinociceptive properties of Copaifera pubiflora Benth is scarce. AIM OF THE STUDY To investigate the cytotoxic, anti-inflammatory, and antinociceptive activities of C. pubiflora oleoresin (CPO), and its major compound ent-hardwickiic acid (HA). MATERIAL AND METHODS The phosphatase assay was used to evaluate the cytotoxicity of CPO and HA in three different cell lines. CPO and HA doses of 1, 3, and 10 mg/kg were employed in the biological assays. The assessment of motor activity was performed using open-field and rotarod tests. Anti-inflammatory activity of CPO and HA was assessed through luciferase assay, measurement of INF-γ, IL-1β, IL-6, IL-10, and TNF-α in a multi-spot system with the immortalized cell line THP-1, zymosan-induced arthritis, and carrageenan-induced paw edema. Acetic acid-induced abdominal writhing and formalin tests were undertaken to evaluate the antinociceptive potential of CPO and HA. In addition, the evaluation using carrageenan was performed to investigate the effect of CPO in pain intensity to a mechanical stimulus (mechanical hyperalgesia), using the von Frey filaments. A tail-flick test was used to evaluate possible central CPO and HA actions. RESULTS In the cytotoxicity evaluation, CPO and HA were not cytotoxic to the cell lines tested. CPO and HA (10 mg/kg) did not affect animals' locomotor capacity in both open-field and rotarod tests. In the luciferase assay, CPO and HA significantly reduced luciferase activity (p < 0.05). This reduction indicates a decrease in NF-κB activity. HA and CPO decreased INF-γ, IL-1β, IL-6, IL-10, and TNF-α at 24 and 72 h in the multi-spot system. In zymosan-induced arthritis, CPO and HA decreased the number of neutrophils in the joint of arthritic mice and the number of total leukocytes (p < 0.05). In experimental arthritis HA significantly decreased joint swelling (p < 0.05). CPO and HA also increased the mechanical threshold during experimental arthritis. HA and CPO significantly inhibited the carrageenan-induced paw edema, being the doses of 10 mg/kg the most effective, registering maximum inhibitions of 58 ± 8% and 76 ± 6% respectively, p < 0.05. CPO and HA reduced the nociceptive behavior in both phases of formalin at all tested doses. The highest doses tested displayed inhibitions of 87 ± 1% and 72 ± 4%, respectively, p < 0.001, in the first phase, and 87 ± 1% and 81 ± 2%, respectively, p < 0.001, in the second phase. Oral treatment of CPO and HA (1, 3, 10 mg/kg) significantly reduced the nociceptive response in acetic acid-induced abdominal writhings, and the 10 mg/kg dose was the most effective with maximum inhibitions of 86 ± 2% and 82 ± 1%, respectively, p < 0.001. Both HA and CPO significantly decreased the intensity of mechanical inflammatory hyper-nociception on carrageenan-induced hyperalgesia at all tested doses, and 10 mg/kg was the most effective dose with maximum inhibitions of 73 ± 5% and 74 ± 7%, respectively, p < 0.05.CPO increased the tail-flick latencies in mice, and concomitant administration of naloxone partially reduced its effect. CONCLUSIONS CPO and HA may inhibit the production of inflammatory cytokines by suppressing the NF-κB signaling pathway, resulting in anti-inflammatory and antinociceptive activities.
Collapse
Affiliation(s)
- Guilherme Venâncio Símaro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Marivane Lemos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Jonas Joaquim Mangabeira da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Ayda Henriques Schneider
- Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes S/N, 14049-900, Ribeirão Preto, SP, Brazil
| | | | - Luiza Junqueira Carneiro
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Roberta Lopes Mariano
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Sérgio Ricardo Ambrósio
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Sérgio Faloni de Andrade
- Universidade Lusófona, CBIOS, Research Center for Biosciences and Health Technologies, Av. Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Vilmar C Banderó-Filho
- Universidade Lusófona, CBIOS, Research Center for Biosciences and Health Technologies, Av. Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Astrid Sasse
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Helen Sheridan
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Márcio Luis Andrade E Silva
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Oleoresins and naturally occurring compounds of Copaifera genus as antibacterial and antivirulence agents against periodontal pathogens. Sci Rep 2021; 11:4953. [PMID: 33654123 PMCID: PMC7925542 DOI: 10.1038/s41598-021-84480-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Invasion of periodontal tissues by Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can be associated with aggressive forms of periodontitis. Oleoresins from different copaifera species and their compounds display various pharmacological properties. The present study evaluates the antibacterial and antivirulence activity of oleoresins obtained from different copaifera species and of ten isolated compounds against two causative agents of periodontitis. The following assays were performed: determination of the minimum inhibitory concentration (MIC), determination of the minimum bactericidal concentration (MBC), and determination of the antibiofilm activity by inhibition of biofilm formation and biofilm eradication tests. The antivirulence activity was assessed by hemagglutination, P. gingivalis Arg-X and Lis-X cysteine protease inhibition assay, and A. actinomycetemcomitans leukotoxin inhibition assay. The MIC and MBC of the oleoresins and isolated compounds 1, 2, and 3 ranged from 1.59 to 50 μg/mL against P. gingivalis (ATCC 33277) and clinical isolates and from 6.25 to 400 μg/mL against A. actinomycetemcomitans (ATCC 43717) and clinical isolates. About the antibiofilm activity, the oleoresins and isolated compounds 1, 2, and 3 inhibited biofilm formation by at least 50% and eradicated pre-formed P. gingivalis and A. actinomycetemcomitans biofilms in the monospecies and multispecies modes. A promising activity concerning cysteine protease and leucotoxin inhibition was also evident. In addition, molecular docking analysis was performed. The investigated oleoresins and their compounds may play an important role in the search for novel sources of agents that can act against periodontal pathogens.
Collapse
|
16
|
Símaro GV, Lemos M, Silva JJMD, Cunha WR, Carneiro LJ, Ambrósio SR, Cunha NL, de Andrade SF, Arruda C, Banderó-Filho VC, Sasse A, Sheridan H, Bastos JK, Silva MLAE. In vivo study of anti-inflammatory and antinociceptive activities of Copaifera pubiflora Benth oleoresin. Nat Prod Res 2020; 36:1129-1133. [PMID: 33291984 DOI: 10.1080/14786419.2020.1855639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Copaifera pubiflora Benth oleoresin (CPO) is used as an anti-inflammatory, wound healing, and antimicrobial. This paper reports the cytotoxic, anti-inflammatory, and antinociceptive activities of CPO. CPO (10 mg/kg) did not affect locomotor capacity in the open-field and rotarod tests and was not cytotoxic to CHO-k1, THP-1, and L929 cell lines. It was active in the formalin test at 3 mg/kg by 86 ± 3% and 96 ± 3%, respectively, for the first and second phases. At 10 mg/kg, CPO inhibited 90 ± 7%, the pain in the mechanical hyperalgesia test. In the tail-flick test, CPO at 3 mg/kg affected the tail-flick latencies in mice by 77 ± 20%, which in combination with naloxone was only partially reduced. At 3 mg/kg CPO inhibited 80 ± 12% the carrageenan-induced paw edema, and at 3 mg/kg it reduced by 91 ± 5% the nociception on acetic acid-induced abdominal writhing. Therefore, CPO possesses anti-inflammatory and antinociceptive activities.
Collapse
Affiliation(s)
- Guilherme Venâncio Símaro
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil.,School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Marivane Lemos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Wilson Roberto Cunha
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | | | | | | | - Sérgio Faloni de Andrade
- CBIOS - Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisboa, Portugal
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Vilmar C Banderó-Filho
- CBIOS - Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisboa, Portugal
| | - Astrid Sasse
- NatPro Centre. School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Helen Sheridan
- NatPro Centre. School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
17
|
Oliveira LC, Porto TS, Junior AHC, Santos MFC, Ramos HP, Braun GH, de Lima Paula LA, Bastos JK, Furtado NAJC, Parreira RLT, Veneziani RCS, Magalhães LG, Ambrósio SR. Schistosomicidal activity of kaurane, labdane and clerodane-type diterpenes obtained by fungal transformation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Alves JA, Abrão F, da Silva Moraes T, Damasceno JL, dos Santos Moraes MF, Sola Veneziani RC, Ambrósio SR, Bastos JK, Dantas Miranda ML, Gomes Martins CH. Investigation of Copaifera genus as a new source of antimycobaterial agents. Future Sci OA 2020; 6:FSO587. [PMID: 32802394 PMCID: PMC7421775 DOI: 10.2144/fsoa-2020-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
AIM This paper reports on the antimycobacterial activity of the oleoresins and extracts obtained from Copaifera spp. MATERIALS & METHODS The minimum inhibitory concentration (MIC) and fractional inhibitory concentration index techniques helped to evaluate the effect of these oleoresins and extracts against six strains of mycobacteria that cause tuberculosis. RESULTS & CONCLUSION Among the assayed oleoresins and plant extracts, the Copaifera langsdorffii, Copaifera duckei, Copaifera reticulata and Copaifera trapezifolia oleoresins provided the lowest MIC values against some of the tested strains. The combination of Copaifera spp. samples with isoniazid did not evidence any synergistic action. Some Copaifera spp. oleoresins may represent a future source for the discovery of new antimycobacterial drugs due to their low MIC values.
Collapse
Affiliation(s)
| | - Fariza Abrão
- Research Laboratory of Applied Microbiology, University of Franca, Franca, SP, Brazil
| | - Thaís da Silva Moraes
- Research Laboratory of Applied Microbiology, University of Franca, Franca, SP, Brazil
| | | | | | | | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Carlos Henrique Gomes Martins
- Research Laboratory of Applied Microbiology, University of Franca, Franca, SP, Brazil
- Laboratory of Research on Antimicrobial Trials (LaPEA), Institute of Biomedical Sciences – ICBIM, Federal University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
19
|
Abstract
The oleoresin of Copaifera reticulata Ducke, Fabaceae, is a traditional Brazilian remedy used for a wide range of applications. Commonly named copaiba, the oleoresin has been found to exhibit strong antimicrobial effects in our previous study, which could be attributed to some of its diterpenoid constituents. In order to find new biological activities and to eventually enhance the before observed effects, (−)-polyalthic acid (1) and kaurenoic acid (2), together with eight prepared semi-synthetic derivatives (1a–1c and 2a–2e) were evaluated for their cytotoxic, antibacterial and antifungal properties. Regarding the gram-positive bacteria Enterococcus faecium and methicillin-resistant Staphylococcus aureus, we found that both the exocylic methylene group and the carboxyl group were crucial for the activity against these two clinically relevant bacterial strains. Investigation of the antifungal activity, in contrast, showed that the carboxyl group is unnecessary for the effect against the dermatophytes Trichophyton rubrum and Cryptococcus neoformans, indicated by low micromolar IC50 values for both (−)-polyalthic acid diethylamide (1a) as well as (−)-polyalthic acid methyl ester (1b). Apart from studying the biological activity, the structure of one semi-synthetic derivative, compound 1c, is being reported for the first time. During the course of the structure elucidation of the new compound, we discovered inconsistencies regarding the stereochemistry of polyalthic acid and its stereoisomers, which we clarified in the present work. . ![]()
Collapse
|
20
|
Ergun E, Kantoğlu Ö, Aydın B. A validated high performance liquid chromatography method for simultaneous determination of PPO and POPOP in plastic scintillators. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Abstract
It has been reported that Sanoshashinto (SanHuangXieXinTang, 三黃瀉心湯), which is composed of Rhei Rhizoma, Scutellariae Radix, and Coptidis Rhizoma, exhibits vasorelaxant effects in vitro and lowers blood pressure of patients. Based on this discovery, in this study, a mixture containing those three materials and combinations of them were extracted with methanol, and the extracts were fractionated into different parts. Effects of all extracts and fractions on high concentration of potassium chloride (High K+)- or noradrenaline (NA)-induced contractions of isolated rat aortic rings or helical strips were examined. Qualitative and quantitative HPLC analyses of the extracts and the fractions revealed that the contents of baicalin and berberine in Sanoshashinto methanol extract (SHXXTM) were higher than those of the other constituents. All pharmacological and HPLC data were analyzed by principal component analysis (PCA) software and the results indicated that baicalin, berberine, palmatine, baicalein, and wogonoside contributed significantly to the pharmacological activity. Furthermore, spontaneously hypertensive rats (SHRs) that were orally given SHXXTM or a baicalin–berberine combination showed significantly reduced increase in the rate of systolic blood pressure (SBP) compared to the control group. These findings suggested that Sanoshashinto has significant vasorelaxant effects in vitro and antihypertensive effects in vivo, and baicalin and berberine, which were the principal constituents of Scutellariae Radix and Coptidis Rhizoma, were the main antihypertensive constituents in Sanoshashinto. It was speculated that baicalin and berberine produced vasorelaxant effects by activating the NO/cGMP pathway and that the BKCa channel and the DAG/PKC/CPI-17 pathway were also involved.
Collapse
|
22
|
Mangabeira da Silva JJ, Pena Ribeiro V, Lemos M, Miller Crotti AE, Rogez H, Kenupp Bastos J. Reliable Methods for Analyses of Volatile Compounds of
Copaifera
Oleoresins Combining Headspace and Gas Chromatography. Chem Biodivers 2019; 17:e1900440. [DOI: 10.1002/cbdv.201900440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/29/2019] [Indexed: 11/06/2022]
Affiliation(s)
| | - Victor Pena Ribeiro
- School of Pharmaceutical SciencesUniversity of São Paulo Av. do Café s/n, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| | - Marivane Lemos
- School of Pharmaceutical SciencesUniversity of São Paulo Av. do Café s/n, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| | - Antônio Eduardo Miller Crotti
- Chemistry DepartmentSchool of PhilosophySciences and LanguagesUniversity of São Paulo Av. Bandeirantes No. 3900, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| | - Hervé Rogez
- Center for Valorization of Amazonian Bioactive Compounds (CVACBA)Federal University of Pará Av. Perimetral No. 01, Guamá CEP 66.075-110 Belém-PA Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical SciencesUniversity of São Paulo Av. do Café s/n, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| |
Collapse
|
23
|
Morguette AEB, Bigotto BG, Varella RDL, Andriani GM, Spoladori LFDA, Pereira PML, de Andrade FG, Lancheros CAC, Nakamura CV, Syogo Arakawa N, Bruschi ML, Carlos Tomaz J, Lonni AASG, Kerbauy G, Tavares ER, Yamauchi LM, Yamada-Ogatta SF. Hydrogel Containing Oleoresin From Copaifera officinalis Presents Antibacterial Activity Against Streptococcus agalactiae. Front Microbiol 2019; 10:2806. [PMID: 31866975 PMCID: PMC6904337 DOI: 10.3389/fmicb.2019.02806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
Streptococcus agalactiae or Group B Streptococcus (GBS) remains a leading cause of neonatal infections worldwide; and the maternal vaginal-rectal colonization increases the risk of vertical transmission of GBS to neonates and development of infections. This study reports the in vitro antibacterial effect of the oleoresin from Copaifera officinalis Jacq. L. in natura (copaiba oil) and loaded into carbomer-hydrogel against planktonic and sessile cells of GBS. First, the naturally extracted copaiba oil was tested for the ability to inhibit the growth and metabolic activity of planktonic and sessile GBS cells. The time-kill kinetics showed that copaiba oil exhibited a dose-dependent bactericidal activity against planktonic GBS strains, including those resistant to erythromycin and/or clindamycin [minimal bactericidal concentration (MBC) ranged from 0.06 mg/mL to 0.12 mg/mL]. Copaiba oil did not inhibit the growth of different Lactobacillus species, the indigenous members of the human microbiota. The mass spectral analyses of copaiba oil showed the presence of diterpenes, and the kaurenoic acid appears to be one of the active components of oleoresin from C. officinalis related to antibacterial activity against GBS. Microscopy analyses of planktonic GBS cells treated with copaiba oil revealed morphological and ultrastructural alterations, displaying disruption of the cell wall, damaged cell membrane, decreased electron density of the cytoplasm, presence of intracellular condensed material, and asymmetric septa. Copaiba oil also exhibited antibacterial activity against established biofilms of GBS strains, inhibiting the viability of sessile cells. Low-cost and eco-friendly carbomer-based hydrogels containing copaiba oil (0.5% – CARB-CO 0.5; 1.0% – CARB-CO 1.0) were then developed. However, only CARB-CO 1.0 preserved the antibacterial activity of copaiba oil against GBS strains. This formulation was homogeneous, soft, exhibited a viscoelastic behavior, and showed good biocompatibility with murine vaginal mucosa. Moreover, CARB-CO 1.0 showed a slow and sustained release of the copaiba oil, killing the planktonic and sessile (established biofilm) cells and inhibiting the biofilm formation of GBS on pre-coated abiotic surface. These results indicate that carbomer-based hydrogels may be useful as topical systems for delivery of copaiba oil directly into de vaginal mucosa and controlling S. agalactiae colonization and infection.
Collapse
Affiliation(s)
- Ana Elisa Belotto Morguette
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Programa de Pós-Graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Briani Gisele Bigotto
- Laboratório de Habilidades Farmacêuticas, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Brazil
| | - Renata de Lima Varella
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Gabriella Maria Andriani
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Programa de Pós-Graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Laís Fernanda de Almeida Spoladori
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Patrícia Moraes Lopes Pereira
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Programa de Pós-Graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Fabio Goulart de Andrade
- Laboratório de Análise Histopatológica, Departamento de Histologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Cesar Armando Contreras Lancheros
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-Graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - Nilton Syogo Arakawa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Brazil
| | - Marcos Luciano Bruschi
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - José Carlos Tomaz
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Audrey Alesandra Stinghen Garcia Lonni
- Laboratório de Habilidades Farmacêuticas, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Brazil
| | - Gilselena Kerbauy
- Departamento de Enfermagem, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Brazil
| | - Eliandro Reis Tavares
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Programa de Pós-Graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Lucy Megumi Yamauchi
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Programa de Pós-Graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Programa de Pós-Graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
24
|
Chemopreventive role of Copaifera reticulata Ducke oleoresin in colon carcinogenesis. Biomed Pharmacother 2019; 111:331-337. [DOI: 10.1016/j.biopha.2018.12.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023] Open
|
25
|
Arruda C, Mejía JAA, Pena Ribeiro V, Costa Oliveira L, E Silva MLA, Bastos JK. Development of a Validated High-Performance Liquid Chromatography Method and Optimization of the Extraction of Lignans from Piper cubeba. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:753-759. [PMID: 30583698 DOI: 10.1021/acs.jafc.8b05359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Piper cubeba L. f. is a food seasoning, which contains secondary metabolites displaying several biological properties, such as cytotoxic, anti-inflammatory, and antiparasitic activities. The lignans (+)-dihydroclusin, (-)-clusin, (-)-cubebin, (-)-yatein, and (-)-haplomyrfolin were isolated, with (-)-haplomyrfolin reported for the first time in P. cubeba seeds. Chromatographic standards were used to develop a reliable reverse-phase high-performance liquid chromatography analytical method according to the Agência Nacional de Vigilância Sanitária and International Conference on Harmonization guidelines to quantitate these lignans in both P. cubeba seeds and their extracts. The extraction of the lignans was also optimized, with the best conditions being ultrasound-assisted extraction, with 84% aqueous ethanol for 38 min in a single extraction. This procedure allows for the extraction of more than 80% of the total lignans, which is better in comparison to other techniques, such as maceration and Soxhlet extraction.
Collapse
Affiliation(s)
- Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Avenida do Café s/n , Ribeirão Preto , São Paulo 14040-930 , Brazil
| | - Jennyfer Andrea Aldana Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Avenida do Café s/n , Ribeirão Preto , São Paulo 14040-930 , Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Avenida do Café s/n , Ribeirão Preto , São Paulo 14040-930 , Brazil
| | - Larissa Costa Oliveira
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas , Universidade de Franca , Avenida Dr. Armando Salles de Oliveira, 2001 , Franca , São Paulo 14404-600 , Brazil
| | - Márcio Luis Andrade E Silva
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas , Universidade de Franca , Avenida Dr. Armando Salles de Oliveira, 2001 , Franca , São Paulo 14404-600 , Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Avenida do Café s/n , Ribeirão Preto , São Paulo 14040-930 , Brazil
| |
Collapse
|
26
|
Ribeiro VP, Arruda C, da Silva JJM, Aldana Mejia JA, Furtado NAJC, Bastos JK. Use of spinning band distillation equipment for fractionation of volatile compounds of Copaifera
oleoresins for developing a validated gas chromatographic method and evaluating antimicrobial activity. Biomed Chromatogr 2018; 33:e4412. [DOI: 10.1002/bmc.4412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | | | | | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
27
|
Arruda C, Aldana Mejía JA, Ribeiro VP, Gambeta Borges CH, Martins CHG, Sola Veneziani RC, Ambrósio SR, Bastos JK. Occurrence, chemical composition, biological activities and analytical methods on Copaifera genus-A review. Biomed Pharmacother 2018; 109:1-20. [PMID: 30396065 DOI: 10.1016/j.biopha.2018.10.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Copaifera is a genus of large trees found in Brazil, mainly in Amazon forest, but also in Atlantic forest and cerrado biomes. It has also been found in other countries in South America. In Africa, it is found mainly in Congo, Cameroon, Guinea and Angola. Its oleoresin has been used in folk medicine in the treatment of numerous healthy disorders, such as urinary, respiratory, skin and inflammatory diseases, for which there are several studies corroborating its ethnopharmacological uses. It is also extensively employed in the pharmaceutical and cosmetic industries in the development of ointments, pills, soaps, perfumes, among others. Copaifera oleoresin contains mainly diterpenes, such as: kaurenoic acid, kaurenol, copalic acid, agathic acid, hardwiickic acid, polyalthic acid, and sesquiterpenes, comprising β-caryophyllene, caryophyllene oxide, α-copaene, α-humulene, γ-muurolene and β-bisabolol, among other compounds. On the other hand, Copaifera leaves contain mainly phenolic compounds, such as flavonoids and methylated galloylquinic acid derivatives. Therefore, considering the economic importance of Copaifera oleoresin, its ethnopharmacological uses, the need to develop new pharmaceuticals for the treatment of many diseases, as well as the pharmacological potential of the compounds found in Copaifera spp., it was undertaken a review covering mostly the last two decades on the distribution, chemistry, pharmacology, quality control and safety of Copaifera species.
Collapse
Affiliation(s)
- Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Jennyfer Andrea Aldana Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | | | | | | | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
28
|
Aguiar GP, Crevelin EJ, Dias HJ, Ambrósio SR, Bastos JK, Heleno VCG, Vessecchi R, Crotti AEM. Electrospray ionization tandem mass spectrometry of labdane-type acid diterpenes. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1086-1096. [PMID: 30120805 DOI: 10.1002/jms.4284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/09/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Copaifera (Leguminoseae) species produce a commercially interesting oleoresin that displays several biological activities, including antimicrobial and anti-inflammatory properties. Labdane-type diterpenes are the main chemical constituents of these oleoresins, and copalic acid is the only compound that has been detected in all Copaifera oleoresins. In this study, we investigate some aspects of the gas-phase fragmentation reactions involved in the formation of the product ions from the deprotonated compounds (-)-ent-copalic acid (1), (-)-ent-3β-hydroxy-copalic acid (2), (-)-ent-3β-acetoxy-copalic acid (3), and (-)-ent-agathic acid (4) by electrospray ionization tandem mass spectrometry (ESI-MS/MS) and multiple stage mass spectrometry (MSn ). Our results reveal that the product ion with m/z 99 is common to all the analyzed compounds, whereas the product ion with m/z 217 is diagnostic for compounds 2 and 3. Moreover, only compound 4 undergoes CO2 (44 u) and acetic acid (60 u) elimination from the precursor ion. Thermochemical data obtained by computational chemistry at the B3LYP/6-31G(d) level of theory support the proposed ion structures. These data helped us to identify these compounds in a crude commercial Copaifera langsdorffii oleoresin by selective multiple reaction monitoring (MRM). Finally, a precursor ion scan (PIS) strategy aided screening of labdane-type acid diterpenes other than 1 to 4 in the same Copaifera oleoresin sample and led us to propose the structures of 8,17-dihydro-ent-agathic acid (5) and 3-keto-ent-copalic acid (6), which have not been previously reported in Copaifera oleoresins.
Collapse
Affiliation(s)
- Gabriela P Aguiar
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Eduardo J Crevelin
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Herbert J Dias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Sérgio R Ambrósio
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vladimir C G Heleno
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Ricardo Vessecchi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antônio E M Crotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
29
|
Çiçek SS, Pfeifer Barbosa AL, Girreser U. Quantification of diterpene acids in Copaiba oleoresin by UHPLC-ELSD and heteronuclear two-dimensional qNMR. J Pharm Biomed Anal 2018; 160:126-134. [DOI: 10.1016/j.jpba.2018.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
|
30
|
Furtado RA, de Oliveira PF, Senedese JM, Ozelin SD, de Souza LDR, Leandro LF, de Oliveira WL, da Silva JJM, Oliveira LC, Rogez H, Ambrósio SR, Veneziani RCS, Bastos JK, Tavares DC. Assessment of genotoxic activity of oleoresins and leaves extracts of six Copaifera species for prediction of potential human risks. JOURNAL OF ETHNOPHARMACOLOGY 2018; 221:119-125. [PMID: 29625274 DOI: 10.1016/j.jep.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Copaifera species are used in folk medicine for a wide variety of pharmacological properties. This paper reports the cytotoxic and genotoxic analyses of oleoresins and leaves extracts of Copaifera species: C. duckei, C. multijuga, C. paupera, C. pubiflora, C. reticulata and C. trapezifolia. MATERIALS AND METHODS In vitro assays were performed using Chinese hamster lung fibroblasts (V79 cells). The clonogenic efficiency and cytokinesis-block micronucleus assays were employed for the cytotoxicity and genotoxicity assessment, respectively. The mouse bone marrow micronucleus test was used for in vivo studies. RESULTS The cytotoxicity results using the clonogenic efficiency assay showed IC50 values ranging from 9.8 to 99.2 µg/mL for oleoresins and 66.4-721.5 for leaves extracts. However, no cytotoxic effect was observed in the in vivo studies. Additionally, the treatments with oleoresins and leaves extracts did not significantly increase the frequency of micronuclei in both in vitro and in vivo mammalian cells. The UPLC-MS/MS and CG/MS analyses of Copaifera oleoresins allowed the identification of 10 acid diterpenes and 11 major volatile sesquiterpenes. Leaves are rich in phenolic compounds including two flavonoid heterosides and 16 galloylquinic acid derivatives. CONCLUSIONS The oleoresins and leaves extracts of studied Copaifera species were not cytotoxic in vivo, as well as not genotoxic in both in vitro and vivo assays, under the experimental conditions used. Therefore, the obtained results should be sufficient to demonstrate the absence of significant genotoxic risk of these Copaifera products for human use in the evaluated concentrations range.
Collapse
Affiliation(s)
- Ricardo Andrade Furtado
- University of Franca, Avenida Dr. Armando Salles de Oliveira 201, 14404-600 Franca, São Paulo, Brazil.
| | | | - Juliana Marques Senedese
- University of Franca, Avenida Dr. Armando Salles de Oliveira 201, 14404-600 Franca, São Paulo, Brazil; School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Saulo Duarte Ozelin
- University of Franca, Avenida Dr. Armando Salles de Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | | | - Luís Fernando Leandro
- University of Franca, Avenida Dr. Armando Salles de Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Wendel Luiz de Oliveira
- University of Franca, Avenida Dr. Armando Salles de Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Jonas Joaquim Mangabeira da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Larissa Costa Oliveira
- University of Franca, Avenida Dr. Armando Salles de Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Hervé Rogez
- School of Food Engineering, Institute of Technology, Federal University of Pará, 66095-780, Belém, PA, Brazil
| | - Sérgio Ricardo Ambrósio
- University of Franca, Avenida Dr. Armando Salles de Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Denise Crispim Tavares
- University of Franca, Avenida Dr. Armando Salles de Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| |
Collapse
|
31
|
Alves JM, Leandro LF, Senedese JM, Castro PTD, Pereira DE, Resende FA, Campos DL, Silva JJMD, Varanda EA, Bastos JK, Ambrósio SR, Tavares DC. Antigenotoxicity properties of Copaifera multijuga oleoresin and its chemical marker, the diterpene (-)-copalic acid. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 81:116-129. [PMID: 29286884 DOI: 10.1080/15287394.2017.1420505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED In view of the biological activities and growing therapeutic interest in oleoresin obtained from Copaifera multijuga, this study aimed to determine the genotoxic and antigenotoxic potential of this oleoresin (CMO) and its chemical marker, diterpene (-)-copalic acid (CA). The micronucleus (MN) assay in V79 cell cultures and the Ames test were used for in vitro analyses, as well as MN and comet assays in Swiss mice for in vivo analyses. The in vitro genotoxicity/mutagenicity results showed that either CMO (30, 60, or 120 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) or CA (2.42; 4.84, or 9.7 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) did not induce a significant effect on the frequency of MN and number of revertants, demonstrating an absence of genotoxic and mutagenic activities, respectively, in vitro. In contrast, these natural products significantly reduced the frequency of MN induced by methyl methanesulfonate (MMS), and exerted a marked inhibitory effect against indirect-acting mutagens in the Ames test. In the in vivo test system, animals treated with CMO (6.25 mg/kg b.w.) exhibited a significant decrease in rate of MN occurrence compared to those treated only with MMS. An antigenotoxic effect of CA was noted in the MN test (1 and 2 mg/kg b.w.) and the comet assay (0.5 mg/kg b.w.). Data suggest that the chemical marker of the genus Copaifera, CA, may partially be responsible for the observed chemopreventive effect attributed to CMO exposure. ABBREVIATIONS 2-AA, 2-anthramine; 2-AF, 2-aminofluorene; AFB1, aflatoxin B1; B[a]P, benzo[a]pyrene; BOD, biological oxygen demand; BPDE, benzo[a]pyrene-7,8-diol-9,10-epoxide; CA, (-)-copalic acid; CMO, oleoresin of Copaifera multijuga, DMEM, Dulbecco`s Modified Eagles`s Medium; DMSO, dimethylsulfoxide; EMBRAPA, Brazilian agricultural research corporation; GC-MS, gas chromatography-mass spectrometry; HAM-F10, nutrient mixture F-10 Ham; HPLC, high performance liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; MI, mutagenic index; MMC, mitomycin C; MMS, methyl methanesulfonate; MN, micronucleus; MNPCE, micronucleated polychromatic erythrocyte; NCE, normochromatic erythrocyte; NDI, nuclear division index; NMR, nuclear magnetic resonance; NPD, 4-nitro-o-phenylenediamine; PBS, phosphate-buffered saline; PCE, polychromatic erythrocyte; SA, sodium azide; V79, Chinese hamster lung fibroblast.
Collapse
Affiliation(s)
| | | | | | | | | | - Flávia Aparecida Resende
- b Grupo de Pesquisa em Química Medicinal e Medicina Regenerativa Universidade de Araraquara , Araraquara , São Paulo , Brazil
| | - Débora Leite Campos
- c Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas de Araraquara , Universidade Estadual Paulista , Araraquara , São Paulo , Brazil
| | - Jonas Joaquim Mangabeira da Silva
- d Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Eliana Aparecida Varanda
- c Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas de Araraquara , Universidade Estadual Paulista , Araraquara , São Paulo , Brazil
| | - Jairo Kenupp Bastos
- d Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | | | | |
Collapse
|