1
|
Lee HY, An SB, Hwang SY, Hwang GY, Lee HL, Park HJ, Shin J, Kim KN, Wee SW, Yoon SL, Ha Y. Synergistic enhancement of spinal fusion in preclinical models using low-dose rhBMP-2 and stromal vascular fraction in an injectable hydrogel composite. Mater Today Bio 2025; 30:101379. [PMID: 39759847 PMCID: PMC11699625 DOI: 10.1016/j.mtbio.2024.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Spinal fusion surgery remains a significant challenge due to limitations in current bone graft materials, particularly in terms of bioactivity, integration, and safety. This study presents an innovative approach using an injectable hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) hydrogel combined with stromal vascular fraction (SVF) and low-dose recombinant human BMP-2 (rhBMP-2) to enhance osteodifferentiation and angiogenesis. Through a series of in vitro studies and preclinical models involving rats and minipigs, we demonstrated that the hydrogel system enables the sustained release of rhBMP-2, resulting in significantly improved bone density and integration, alongside reduced inflammatory responses. The combination of rhBMP-2 and SVF in this injectable formulation yielded superior spinal fusion outcomes, with enhanced mechanical properties and increased bone mass in both small and large animal models. These findings suggest that this strategy offers a promising and safer alternative for spinal fusion, with strong potential for clinical application.
Collapse
Affiliation(s)
- Hye Yeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong Bae An
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si, 13496, Gyeonggi-do, Republic of Korea
- Graduate School, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sae Yeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gwang Yong Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun Jung Park
- Department of Research Center, CGBio., co. Ltd, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Joongkyum Shin
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Keung Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung Won Wee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sol Lip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
2
|
Papadopoulos E, Arrahmani BC, Beck K, Friess W. Lyso-phosphatidylcholine as an interfacial stabilizer for parenteral monoclonal antibody formulations. Eur J Pharm Biopharm 2024; 204:114514. [PMID: 39332745 DOI: 10.1016/j.ejpb.2024.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Therapeutic proteins suffer from physical and chemical instability in aqueous solution. Polysorbates and poloxamers are often added for protection against interfacial stress to prevent protein aggregation and particle formation. Previous studies have revealed that the hydrolysis and oxidation of polysorbates in parenteral formulations can lead to the formation of free fatty acid particles, insufficient long-term stabilization, and protein oxidation. Poloxamers, on the other hand, are considered to be less effective against protein aggregation. Here we investigated two lyso-phosphatidylcholines (LPCs) as potential alternative surfactants for protein formulations, focusing on their physicochemical behavior and their ability to protect against the formation of monoclonal antibody particles during mechanical stress. The hemolytic activity of LPC was tested in varying ratios of plasma and buffer mixtures. LPC effectively stabilized mAb formulations when shaken at concentrations several orders of magnitude below the onset of hemolysis, indicating that the potential for erythrocyte damage by LPC is non-critical. LPC formulations subjected to mechanical stress through peristaltic pumping exhibited comparable protein particle formation to those containing polysorbate 80 or poloxamer 188. Profile analysis tensiometry and dilatational rheology indicated that the stabilizing effect likely arises from the formation of a viscoelastic film at approximately the CMC. Data gathered from concentration-gradient multi-angle light scattering and isothermal titration calorimetry support this finding. Surfactant desorption was evaluated through sub-phase exchange experiments. While LPCs readily desorbed from the interface, resorption occurred rapidly enough in the bulk solution to prevent protein adsorption. Overall, LPCs behave similarly to polysorbate with respect to interfacial stabilization and show promise as a potential substitute for polysorbate in parenteral protein formulations.
Collapse
Affiliation(s)
- Eleni Papadopoulos
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13 B, 81377 Munich, Germany.
| | | | - Katharina Beck
- Albert-Ludwigs-Universität Freiburg, Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Hermann-Herder-Strasse 9, 79,104 Freiburg i. Br, Germany; Universität Augsburg, Department of Physiology, Institute of Theoretical Medicine, Universitätsstraße 2, 86159 Augsburg, Germany(1).
| | - Wolfgang Friess
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13 B, 81377 Munich, Germany.
| |
Collapse
|
3
|
Krishnan J, Poomalai P, Ravichandran A, Reddy A, Sureshkumar R. A Concise Review on Effect of PEGylation on the Properties of Lipid-Based Nanoparticles. Assay Drug Dev Technol 2024; 22:246-264. [PMID: 38828531 DOI: 10.1089/adt.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Nanoparticle-based drug delivery systems have emerged as promising platforms for enhancing therapeutic efficacy while minimizing off-target effects. Among various strategies employed to optimize these systems, polyethylene glycol (PEG) modification, known as PEGylation-the covalent attachment of PEG to nanoparticles, has gained considerable attention for its ability to impart stealth properties to nanoparticles while also extending circulation time and improving biocompatibility. PEGylation extends to different drug delivery systems, in specific, nanoparticles for targeting cancer cells, where the concentration of drug in the cancer cells is improved by virtue of PEGylation. The primary challenge linked to PEGylation lies in its confirmation. Numerous research findings provide comprehensive insights into selecting PEG for various PEGylation methods. In this review, we have endeavored to consolidate the outcomes concerning the choice of PEG and diverse PEGylation techniques.
Collapse
Affiliation(s)
- Janesha Krishnan
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Praveena Poomalai
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Ashwin Ravichandran
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Aishwarya Reddy
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| |
Collapse
|
4
|
Wang TJ, Rethi L, Ku MY, Nguyen HT, Chuang AEY. A review on revolutionizing ophthalmic therapy: Unveiling the potential of chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer in eye disease treatments. Int J Biol Macromol 2024; 273:132700. [PMID: 38879998 DOI: 10.1016/j.ijbiomac.2024.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.
Collapse
Affiliation(s)
- Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Min-Yi Ku
- School of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
5
|
Krstonošić VS, Sazdanić DB, Ćirin DM, Nikolić IR, Hadnađev MS, Atanacković Krstonošić MT. Characterization of Oil-in-Water Emulsions Prepared with Triblock Copolymer Poloxamer 407 and Low-Molecular-Mass Surfactant Mixtures as Carriers of Grape Pomace Waste Polyphenols. Pharmaceutics 2024; 16:578. [PMID: 38794240 PMCID: PMC11124189 DOI: 10.3390/pharmaceutics16050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Natural antioxidants, such as grape pomace polyphenols, can be extracted by a surfactant-based green technology and incorporated into various emulsions. Therefore, this work aimed to investigate the physical stability and rheological characteristics of oil-in-water emulsions stabilized with poloxamer 407 (P407) and its mixtures with the low-molecular-mass surfactants Brij S20 (BS20) and Tween 60 (T60). Also, the influence of polyphenolic grape pomace extracts on the physical stability and rheological characteristics of the emulsions was examined. METHODS Grape pomace polyphenols were extracted by aqueous solutions of P407 and BS20/P407 and T60/P407 mixtures. Two different types of oil-in-water emulsions were examined: emulsions prepared with pure surfactants and emulsions prepared with surfactant-based polyphenol extracts of grape pomace. Both types contained 20% sunflower oil. Characterization of the emulsions comprised droplet size evaluation, rheology characteristics and creaming stability. RESULTS All the emulsions showed shear-thinning flow, while the rheological characteristics and creaming instability depended on the proportion of P407 in the emulsifier mixtures. Incorporation of grape pomace extracts had no effect on the investigated properties of the emulsions. CONCLUSION The presence of extracted polyphenols in emulsifier mixtures had no significant effects on the emulsions' physico-chemical characteristics and stability. Therefore, the investigated emulsions can be considered suitable carriers for polyphenol-rich extracts.
Collapse
Affiliation(s)
- Veljko S. Krstonošić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Darija B. Sazdanić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dejan M. Ćirin
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Ivana R. Nikolić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Miroslav S. Hadnađev
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | | |
Collapse
|
6
|
Aguilera-Garrido A, Graván P, Navarro-Marchal SA, Medina-O'Donnell M, Parra A, Gálvez-Ruiz MJ, Marchal JA, Galisteo-González F. Maslinic acid solid lipid nanoparticles as hydrophobic anticancer drug carriers: Formulation, in vitro activity and in vivo biodistribution. Biomed Pharmacother 2023; 163:114828. [PMID: 37163783 DOI: 10.1016/j.biopha.2023.114828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
Maslinic acid (MA) is a natural pentacyclic triterpenoid with inherent antitumor activity which has a very low solubility in water. MA solid lipid nanoparticles (SLNs) were prepared using Poloxamer 407 and Dicarboxylic acid-Poloxamer 407 as surfactants. Both MA SLNs are monodisperse, with sizes around 130 nm, and stable. Curcumin has been encapsulated in both types of nanoparticles without altering their colloidal properties. Moreover, SLNs greatly improve the solubility of MA and Curcumin. The cytotoxicity of MA and SLNs has been evaluated in BxPC3 human pancreatic cancer cells, MCF7 human breast cancer cells, and in a human fibroblast primary cell line. MA shows higher cytotoxic effect in BxPC3 and MCF7 cancer cells than in human primary fibroblasts. Nile Red loaded MA SLNs are quickly uptaken by BxPC3 and MCF7 cells, and show different cytoplasmic distributions depending on the cellular line. The oral or intravenous administration of MA SLNs in mice does not report any toxic effect, and the intravenous administration of fluorescent MA SLNs shows a homogeneous distribution in mice, without site-specific accumulation. Results suggest the great potential of MA SLNs as nanocarriers of anticancer drugs and as promising targeted theranostic nanodevices.
Collapse
Affiliation(s)
- Aixa Aguilera-Garrido
- Department of Applied Physics, University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain
| | - Pablo Graván
- Department of Applied Physics, University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University of Granada, Granada 18012, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, University of Granada, Granada 18100, Spain
| | - Saúl A Navarro-Marchal
- Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Marta Medina-O'Donnell
- Department of Organic Chemistry, University of Granada, Fuentenueva, s/n, Granada 18071, Spain
| | - Andrés Parra
- Department of Organic Chemistry, University of Granada, Fuentenueva, s/n, Granada 18071, Spain
| | - María José Gálvez-Ruiz
- Department of Applied Physics, University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain
| | - Juan Antonio Marchal
- Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University of Granada, Granada 18012, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, University of Granada, Granada 18100, Spain.
| | - Francisco Galisteo-González
- Department of Applied Physics, University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain.
| |
Collapse
|
7
|
Nasal administration of a temozolomide-loaded thermoresponsive nanoemulsion reduces tumor growth in a preclinical glioblastoma model. J Control Release 2023; 355:343-357. [PMID: 36731799 DOI: 10.1016/j.jconrel.2023.01.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Glioblastoma (GB) is the worst and most common primary brain tumor. Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, at least 50% of TMZ treated patients do not respond to TMZ and the development of chemoresistance is a major problem. Here, we designed a lipid nanoemulsion containing a thermoresponsive polymer (poloxamer 407) aiming to improve TMZ release into the brain via nasal delivery. Increasing amounts of poloxamer 407 were added to preformed nanoemulsions (250 nm-range) obtained by spontaneous emulsification. The influence of the polymer concentration (from 2.5% to 12.5%) and temperature on viscosity was clearly evidenced. Such effect was also noticed on the mucoadhesiveness of formulations, as well as TMZ release rate and retention/permeation through nasal porcine mucosa using Franz-type diffusion cells. From these results, a formulation containing 10% of poloxamer (NTMZ-P10) was selected for further experiments by nasal route. A significantly higher TMZ amount was observed in the brain of rats from NTMZ-P10 in comparison with controls. Finally, our results show that formulation reduced significantly tumor growth by three-fold: 103.88 ± 43.67 mm3 (for NTMZ-P10) and 303.28 ± 95.27 mm3 (control). Overall, these results suggest the potential of the thermoresponsive formulation, administered by the non-invasive nasal route, as a future effective glioblastoma treatment.
Collapse
|
8
|
Advances in Polymeric Colloids for Cancer Treatment. Polymers (Basel) 2022; 14:polym14245445. [PMID: 36559812 PMCID: PMC9788371 DOI: 10.3390/polym14245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Polymer colloids have remarkable features and are gaining importance in many areas of research including medicinal science. Presently, the innovation of cancer drugs is at the top in the world. Polymer colloids have been used as drug delivery and diagnosis agents in cancer treatment. The polymer colloids may be of different types such as micelles, liposomes, emulsions, cationic carriers, and hydrogels. The current article describes the state-of-the-art polymer colloids for the treatment of cancer. The contents of this article are about the role of polymeric nanomaterials with special emphasis on the different types of colloidal materials and their applications in targeted cancer therapy including cancer diagnoses. In addition, attempts are made to discuss future perspectives. This article will be useful for academics, researchers, and regulatory authorities.
Collapse
|
9
|
Elbardisy B, Boraie N, Galal S. Tadalafil Nanoemulsion Mists for Treatment of Pediatric Pulmonary Hypertension via Nebulization. Pharmaceutics 2022; 14:pharmaceutics14122717. [PMID: 36559211 PMCID: PMC9784672 DOI: 10.3390/pharmaceutics14122717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oral tadalafil (TD) proved promising in treating pediatric pulmonary arterial hypertension (PAH). However, to ensure higher efficacy and reduce the systemic side effects, targeted delivery to the lungs through nebulization was proposed as an alternative approach. This poorly soluble drug was previously dissolved in nanoemulsions (NEs). However, the formulations could not resist aqueous dilution, which precluded its dilution with saline for nebulization. Thus, the current study aimed to modify the previous systems into dilutable TD-NEs and assess their suitability for a pulmonary application. In this regard, screening of various excipients was conducted to optimize the former systems; different formulations were selected and characterized in terms of physicochemical properties, nebulization performance, stability following sterilization, and biocompatibility. Results showed that the optimal system comprised of Capmul-MCM-EP:Labrafac-lipophile (1:1) (w/w) as oil, Labrasol:Poloxamer-407 (2:1) (w/w) as surfactant mixture (Smix) and water. The optimum formulation P2TD resisted aqueous dilution, exhibited reasonable drug loading (2.45 mg/mL) and globule size (25.04 nm), acceptable pH and viscosity for pulmonary administration, and could be aerosolized using a jet nebulizer. Moreover, P2TD demonstrated stability following sterilization and a favorable safety profile confirmed by both in-vitro and in-vivo toxicity studies. These favorable findings make P2TD promising for the treatment of pediatric PAH.
Collapse
Affiliation(s)
- Bassant Elbardisy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
- Correspondence: or
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sally Galal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
10
|
Hunter SJ, Armes SP. Long-Term Stability of Pickering Nanoemulsions Prepared Using Diblock Copolymer Nanoparticles: Effect of Nanoparticle Core Crosslinking, Oil Type, and the Role Played by Excess Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8021-8029. [PMID: 35737742 PMCID: PMC9261185 DOI: 10.1021/acs.langmuir.2c00821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/06/2022] [Indexed: 05/28/2023]
Abstract
A poly(N,N'-dimethylacrylamide) (PDMAC) precursor is chain-extended via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of diacetone acrylamide (PDAAM) to produce PDMAC77-PDAAM40 spherical nanoparticles. Post-polymerization core-crosslinking of such nanoparticles was performed at 20 °C, and the resulting covalently stabilized nanoparticles survive exposure to methanol. The linear and core-crosslinked nanoparticles were subjected to high-shear homogenization in turn in the presence of n-dodecane to form macroemulsions. Subsequent processing of these macroemulsions via high-pressure microfluidization produced nanoemulsions. When using the core crosslinked nanoparticles, the droplet diameter was strongly dependent on the copolymer concentration. This indicates that such nanoparticles remain intact under the processing conditions, leading to formation of genuine Pickering nanoemulsions with a z-average diameter of 244 ± 60 nm. In contrast, the linear nanoparticles undergo disassembly to afford molecularly dissolved diblock copolymer chains, which stabilize oil droplets of 170 ± 59 nm diameter. The long-term stability of these two types of n-dodecane-in-water nanoemulsions with respect to Ostwald ripening was examined using analytical centrifugation. When prepared at the same copolymer concentration, Pickering nanoemulsions stabilized by core-crosslinked nanoparticles proved to be significantly more stable than the nanoemulsion stabilized by the amphiphilic PDMAC77-PDAAM40 chains. Moreover, higher copolymer concentrations led to a significantly faster rate of droplet growth. This is attributed to excess copolymer facilitating the diffusion of n-dodecane through the aqueous phase. Finally, analytical centrifugation is used to assess the long-term stability of the analogous squalane-in-water nanoemulsions. These systems are much more stable than the corresponding n-dodecane-in-water nanoemulsions, regardless of whether the copolymer is adsorbed as sterically stabilized nanoparticles or surface-active chains.
Collapse
Affiliation(s)
- Saul J. Hunter
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
11
|
Zhang L, Wahlgren M, Bergenståhl B. Oil-Based Delivery Control Release System Targeted to the Later Part of the Gastrointestinal Tract-A Mechanistic Study. Pharmaceutics 2022; 14:pharmaceutics14050896. [PMID: 35631482 PMCID: PMC9144740 DOI: 10.3390/pharmaceutics14050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Oil-based drug delivery systems have been studied in different aspects. The present study proposes a new application for an oil-based delivery system, focusing on controlled release until the drug reaches the later part of the small intestine. Bulk surfactants and interfacial surfactants were added into the oil formulation to provide a better mechanistic understating of the lipolysis. Validation of the modified in vitro method shows the overall conversion from medium-chain triglyceride oil (MCT oil) to free fatty acids (FFA) of 100 ± 4% in five replicates. This fully converted level and high reproducibility are fundamental for the following investigations where any retarding effect can be distinguished from the experimental errors. The results show that viscosity and thermodynamic activity have limited retardation. Furthermore, the former may change the kinetics of lipolysis, while the latter changes the equilibrium level. The gel-forming retarder (ethylcellulose) displayed a strong effect. Whereas the lipolysis was significantly retarded (>50%) when the retarders altered the interfacial composition (poloxamer 407), degradable interfacial surfactants did not have the same effect. However, surface-active, lipolysis-resistant retarders with a high CMC did not show a retarding effect.
Collapse
|
12
|
Poloxamer 188 as surfactant in biological formulations - An alternative for polysorbate 20/80? Int J Pharm 2022; 620:121706. [PMID: 35367584 DOI: 10.1016/j.ijpharm.2022.121706] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 03/26/2022] [Indexed: 01/25/2023]
Abstract
Surfactants are used to stabilize biologics. Particularly, polysorbates (Tween® 20 and Tween® 80) dominate the group of surfactants in protein and especially antibody drug products. Since decades drug developers rely on the ethoxylated sorbitan fatty acid ester mixtures to stabilize sensitive molecules such as proteins. Reasons are (i) excellent stabilizing properties, and (ii) well recognized safety and tolerability profile of these polysorbates in humans, especially for parenteral applications. However, over the past decade concerns regarding the stability of these two polysorbates were raised. The search of alternatives with preferably less reservations concerning degradation and product quality reducing issues leads, among others, to poloxamer 188 (e.g. Kolliphor® P188), a nonionic triblock-copolymer surfactant. This review sums up our current knowledge related to the characterization and physico-chemical properties of poloxamer 188, its analytics and stability properties for biological formulations. Furthermore, the advantages and disadvantages as a suitable polysorbate-alternative for the stabilization of biologics are discussed.
Collapse
|
13
|
Bertsch P, Bergfreund J, Windhab EJ, Fischer P. Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomater 2021; 130:32-53. [PMID: 34077806 DOI: 10.1016/j.actbio.2021.05.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Fluid interfaces, i.e. the boundary layer of two liquids or a liquid and a gas, play a vital role in physiological processes as diverse as visual perception, oral health and taste, lipid metabolism, and pulmonary breathing. These fluid interfaces exhibit a complex composition, structure, and rheology tailored to their individual physiological functions. Advances in interfacial thin film techniques have facilitated the analysis of such complex interfaces under physiologically relevant conditions. This allowed new insights on the origin of their physiological functionality, how deviations may cause disease, and has revealed new therapy strategies. Furthermore, the interactions of physiological fluid interfaces with exogenous substances is crucial for understanding certain disorders and exploiting drug delivery routes to or across fluid interfaces. Here, we provide an overview on fluid interfaces with physiological relevance, namely tear films, interfacial aspects of saliva, lipid droplet digestion and storage in the cell, and the functioning of lung surfactant. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe therapies and drug delivery approaches targeted at fluid interfaces. STATEMENT OF SIGNIFICANCE: Fluid interfaces are inherent to all living organisms and play a vital role in various physiological processes. Examples are the eye tear film, saliva, lipid digestion & storage in cells, and pulmonary breathing. These fluid interfaces exhibit complex interfacial compositions and structures to meet their specific physiological function. We provide an overview on physiological fluid interfaces with a focus on interfacial phenomena. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe novel therapies and drug delivery approaches targeted at fluid interfaces. This sets the scene for ocular, oral, or pulmonary surface engineering and drug delivery approaches.
Collapse
|
14
|
Nanostructured lipid carriers containing chitosan or sodium alginate for co-encapsulation of antioxidants and an antimicrobial agent for potential application in wound healing. Int J Biol Macromol 2021; 183:668-680. [PMID: 33930450 DOI: 10.1016/j.ijbiomac.2021.04.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 12/23/2022]
Abstract
The high incidence and costs of chronic wounds in the elderly have motivated the search for innovations to improve product performance and the healing process while reducing costs. In this study, bioadhesive nanostructured lipid carriers (NLC) were developed for the co-encapsulation of compounds with antioxidant (α-tocopherol and quercetin) and antimicrobial (tea tree oil) activity for management of wounds. The NLC was produced with shea butter and argan oil, and modified with sodium alginate or chitosan to confer bioadhesive properties. Spherical nanoparticles of ~307-330 nm and zeta potential varying from -21.2 to +11.8 mV were obtained. Thermal analysis demonstrated that the lipid matrix reduced tea tree oil thermal loss (~1.8-fold). Regardless of the type of polysaccharide employed, the NLCs promoted cutaneous localization of antioxidants in damaged (subjected to incision) skin, with a ~74 to 180-fold higher delivery into the skin compared to percutaneous delivery. This result is consistent with the similar bioadhesive properties of chitosan or sodium alginate-modified NLC. Nanoencapsulation of tea tree oil did not preclude its antimicrobial effects against susceptible and resistant strains of S. aureus and P. aeruginosa, while co-encapsulation of antioxidants increased the NLC-induced fibroblasts migration, supporting their potential usefulness for management of wounds.
Collapse
|
15
|
Fernandez-Rodriguez MA, Martín-Molina A, Maldonado-Valderrama J. Microgels at interfaces, from mickering emulsions to flat interfaces and back. Adv Colloid Interface Sci 2021; 288:102350. [PMID: 33418470 DOI: 10.1016/j.cis.2020.102350] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022]
Abstract
In this review, we cover the topic of p(NIPAM) based microgels at interfaces, revisiting classical studies in light of the newest ones. In particular, we focus on their use as emulsifiers in the so-called mickering emulsions, i.e. Pickering emulsion stabilized by soft particles. Given the complexity of the experimental characterization and simulation of these soft particles at interfaces, the review is structured in progressive complexity levels, until we reach the highly interesting and promising responsiveness to stimuli of mickering emulsions. We start from the lowest level of complexity, the current understanding of the behavior of single microgels confined at a flat interface. Then, we discuss their collective behavior upon crowding, their responsiveness at interfaces, and their macroscopic properties as microgel films. Once we have the necessary characterization tools, we proceed to discuss the complex and convoluted picture of responsive mickering emulsions. The way is rough, with current controversial and contradicting studies, but it holds promising results as well. We state open questions worth of being tackled by the Soft Matter community, and we conclude that it is worth the trouble of continuing after the master theory of microgel interfacial activity, as it will pave the way to widely adopt responsive mickering emulsions as the worthy Pickering emulsion successors.
Collapse
Affiliation(s)
| | - Alberto Martín-Molina
- Department of Applied Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Institute Carlos I for Theoretical and Computational Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Julia Maldonado-Valderrama
- Department of Applied Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Excellence Unit "ModellingNature" (MNat), , University of Granada, Spain.
| |
Collapse
|
16
|
Kale SK, Cope AJ, Goggin DM, Samaniuk JR. A miniaturized radial Langmuir trough for simultaneous dilatational deformation and interfacial microscopy. J Colloid Interface Sci 2021; 582:1085-1098. [PMID: 32932179 DOI: 10.1016/j.jcis.2020.08.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022]
Abstract
INNOVATION Interfacial rheological properties of complex fluid-fluid interfaces are strongly influenced by the film microstructure. Experimental investigations for correlating interfacial morphology and rheology are notoriously challenging. A miniaturized radial Langmuir trough was developed to study complex fluid-fluid interfaces under purely dilatational deformations that operates in tandem with a conventional inverted microscope for simultaneous interfacial visualization. EXPERIMENTS Two materials were investigated at an air-water interface: poly(tert-butyl methacrylate) (PtBMA) and dipalmitoylphosphatidylcholine (DPPC). Surface pressure measurements made in the radial Langmuir trough were compared with a commercial rectangular Langmuir trough. Interfacial in situ visualization for each material was performed during the compression cycle in the radial trough. Challenges associated with the small size of the radial Langmuir trough, such as the influence of capillary deformation on the measured surface pressure, are also quantified. FINDINGS Measured surface pressures between the newly developed radial trough and the rectangular Langmuir trough compare well. Micrographs obtained in the radial Langmuir trough were used to obtain film properties such as Young's modulus. The new advance in colloid and interface science is the ability to capture structure-property relationships of planar interfaces using microscopy and purely dilatational deformation. This will advance the development of constitutive modeling of complex fluid-fluid interfaces.
Collapse
Affiliation(s)
- Shalaka K Kale
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Andrew J Cope
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - David M Goggin
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Joseph R Samaniuk
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
17
|
del Castillo-Santaella T, Yang Y, Martínez-González I, Gálvez-Ruiz MJ, Cabrerizo-Vílchez MÁ, Holgado-Terriza JA, Selles-Galiana F, Maldonado-Valderrama J. Effect of Hyaluronic Acid and Pluronic-F68 on the Surface Properties of Foam as a Delivery System for Polidocanol in Sclerotherapy. Pharmaceutics 2020; 12:pharmaceutics12111039. [PMID: 33143001 PMCID: PMC7693533 DOI: 10.3390/pharmaceutics12111039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
The use of foams to deliver bioactive agents and drugs is increasing in pharmaceutics. One example is the use of foam as a delivery system for polidocanol (POL) in sclerotherapy, with the addition of bioactive compounds to improve the delivery system being a current subject of study. This work shows the influence of two bioactive additives on the structure and stability of POL foam: hyaluronic acid (HA) and Pluronic-F68 (F68). HA is a natural non-surface-active biopolymer present in the extracellular matrix while F68 is a surface-active poloxamer that is biocompatible with plasma-derived fluids. Both additives increase the bulk viscosity of the sample, improving foam stability. However, HA doubled and F68 quadruplicated the foam half lifetime of POL. HA reduced the size and polydispersity of the bubble size distribution and increased the surface elasticity with respect to POL. Both facts have a positive impact in terms of foam stability. F68 also altered bubble structure and increased surface elasticity, again contributing to the enhancement of foam stability. The surface characterization of these systems is important, as in foam sclerotherapy it is crucial to assure the presence of POL at the surface of the bubbles in order to deliver the sclerosant agent in the target vein.
Collapse
Affiliation(s)
- Teresa del Castillo-Santaella
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
| | - Yan Yang
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
| | - Inmaculada Martínez-González
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
| | - María José Gálvez-Ruiz
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Miguel Ángel Cabrerizo-Vílchez
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
| | - Juan Antonio Holgado-Terriza
- Department of Software Engineering, University of Granada, C/Periodista Daniel Saucedo Aranda, sn, 18071 Granada, Spain;
| | | | - Julia Maldonado-Valderrama
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Correspondence:
| |
Collapse
|
18
|
Akay AS, Arısan V, Cevher E, Sessevmez M, Cam B. Oxytocin-loaded sustained-release hydrogel graft provides accelerated bone formation: An experimental rat study. J Orthop Res 2020; 38:1676-1687. [PMID: 32017187 DOI: 10.1002/jor.24607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/03/2020] [Indexed: 02/04/2023]
Abstract
Restoration of the lost bone volume is one of the most deliberate issues in dentistry. Sustained-release microspherical oxytocin hormone in a poloxamer hydrogel scaffold combined with a mixture of β-tricalcium phosphate and hydroxyapatite (CP) may serve as a suitable bone graft. The aim of this study was to design and test a novel thermosensitive hydrogel graft incorporating oxytocin-loaded poly(d, l-lactide-co-glycolide) (PLGA) sustained-release microspheres and CP. Thermosensitive poloxamer hydrogel containing CP (HCP graft) was prepared as a base and combined with hollow microspheres (HCPM) and oxytocin-loaded microspheres (HCPOM). Eighty Wistar rats were used for testing the grafts and a control group in 8-mm-diameter critical-sized calvarial defects (CSD); (n = 20). Bone healing at the 4th and 8th weeks was evaluated by histological, histomorphometric, and radiological (micro-computed tomography [µCT]) analyses. The results were analyzed by two-way analysis of variance (P < .05). Oxytocin-loaded PLGA microspheres prepared by the solvent displacement method yielded a high encapsulation efficiency of 89.5% and a slow drug release. Incorporation of the microspheres into the hydrogel graft slowed the release rate down and the release completed within 32 days. HCPOM revealed the highest new bone formation (26.45% ± 6.65% and 30.76% ± 4.37% at the 4th and 8th weeks, respectively; P < .0001) while HCPM and HCP groups revealed a bone formation of around 10% (P > .05). µCT findings of HCPOM group showed the highest mean bone mineral density values (42.21 ± 5.14 and 46.94 ± 3.30 g/cm3 for the 4th and 8th weeks, respectively; P < .0027). The proposed oxytocin-loaded sustained-release PLGA microspheres containing thermosensitive hydrogel graft (HCPOM) provide an accelerated bone regeneration in the rat calvaria.
Collapse
Affiliation(s)
- Ayse Sumeyye Akay
- Department of Oral Implantology, Faculty of Dentistry, Istanbul University, Istanbul, Çapa, Turkey
| | - Volkan Arısan
- Department of Oral Implantology, Faculty of Dentistry, Istanbul University, Istanbul, Çapa, Turkey
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Betul Cam
- Department of Physiology, Uludag University School of Medicine, Bursa, Turkey
| |
Collapse
|
19
|
Targeting anticancer drugs with pluronic aggregates: Recent updates. Int J Pharm 2020; 586:119544. [DOI: 10.1016/j.ijpharm.2020.119544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
|
20
|
Lee JY, Sung M, Seo H, Park YJ, Lee JB, Shin SS, Lee Y, Shin K, Kim JW. Temperature-responsive interdrop association of condensed attractive nanoemulsions. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Chernysheva MG, Shnitko AV, Ksenofontov AL, Arutyunyan AM, Petoukhov MV, Badun GA. Structural peculiarities of lysozyme - PLURONIC complexes at the aqueous-air and liquid-liquid interfaces and in the bulk of aqueous solution. Int J Biol Macromol 2020; 158:721-731. [PMID: 32387357 DOI: 10.1016/j.ijbiomac.2020.04.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Interaction between proteins and synthetic polymers that represent a perspective potential in drug delivery or/and already used in medicine plays a key role in biological functioning of both molecules along with a system as a whole. In present study association between hen egg white lysozyme and Pluronic triblock-copolymers (L121, P123 and F127) in the bulk of the solution as well as at the aqueous-air and liquid-liquid interfaces was analyzed by means of spectroscopic and radiochemical assay. In protein-Pluronic complexes lysozyme keeps the secondary structure (CD and SAXS data results), while fluorescence and UV-analysis indicates changes in the local surrounding of fluorophoric amino acid residues. Radiochemical assay in combination with molecular docking reveals the formation of the complexes, in which proline residues turned to the interface between water and hydrophobic medium.
Collapse
Affiliation(s)
| | - Alexey V Shnitko
- Dpt. Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Maxim V Petoukhov
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia; A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, 119071 Moscow, Russia
| | - Gennadii A Badun
- Dpt. Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
22
|
Kwiatkowski TA, Rose AL, Jung R, Capati A, Hallak D, Yan R, Weisleder N. Multiple poloxamers increase plasma membrane repair capacity in muscle and nonmuscle cells. Am J Physiol Cell Physiol 2020; 318:C253-C262. [PMID: 31747313 PMCID: PMC7052616 DOI: 10.1152/ajpcell.00321.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023]
Abstract
Various previous studies established that the amphiphilic tri-block copolymer known as poloxamer 188 (P188) or Pluronic-F68 can stabilize the plasma membrane following a variety of injuries to multiple mammalian cell types. This characteristic led to proposals for the use of P188 as a therapeutic treatment for various disease states, including muscular dystrophy. Previous studies suggest that P188 increases plasma membrane integrity by resealing plasma membrane disruptions through its affinity for the hydrophobic lipid chains on the lipid bilayer. P188 is one of a large family of copolymers that share the same basic tri-block structure consisting of a middle hydrophobic propylene oxide segment flanked by two hydrophilic ethylene oxide moieties [poly(ethylene oxide)80-poly(propylene oxide)27-poly(ethylene oxide)80]. Despite the similarities of P188 to the other poloxamers in this chemical family, there has been little investigation into the membrane-resealing properties of these other poloxamers. In this study we assessed the resealing properties of poloxamers P181, P124, P182, P234, P108, P407, and P338 on human embryonic kidney 293 (HEK293) cells and isolated muscle from the mdx mouse model of Duchenne muscular dystrophy. Cell membrane injuries from glass bead wounding and multiphoton laser injury show that the majority of poloxamers in our panel improved the plasma membrane resealing of both HEK293 cells and dystrophic muscle fibers. These findings indicate that many tri-block copolymers share characteristics that can increase plasma membrane resealing and that identification of these shared characteristics could help guide design of future therapeutic approaches.
Collapse
Affiliation(s)
- Thomas A Kwiatkowski
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Aubrey L Rose
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Rachel Jung
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ana Capati
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Diana Hallak
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Rosalie Yan
- Department of Anesthesiology, Duke University Health System, Durham, North Carolina
| | - Noah Weisleder
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
23
|
Macierzanka A, Torcello-Gómez A, Jungnickel C, Maldonado-Valderrama J. Bile salts in digestion and transport of lipids. Adv Colloid Interface Sci 2019; 274:102045. [PMID: 31689682 DOI: 10.1016/j.cis.2019.102045] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022]
Abstract
Because of their unusual chemical structure, bile salts (BS) play a fundamental role in intestinal lipid digestion and transport. BS have a planar arrangement of hydrophobic and hydrophilic moieties, which enables the BS molecules to form peculiar self-assembled structures in aqueous solutions. This molecular arrangement also has an influence on specific interactions of BS with lipid molecules and other compounds of ingested food and digestive media. Those comprise the complex scenario in which lipolysis occurs. In this review, we discuss the BS synthesis, composition, bulk interactions and mode of action during lipid digestion and transport. We look specifically into surfactant-related functions of BS that affect lipolysis, such as interactions with dietary fibre and emulsifiers, the interfacial activity in facilitating lipase and colipase anchoring to the lipid substrate interface, and finally the role of BS in the intestinal transport of lipids. Unravelling the roles of BS in the processing of lipids in the gastrointestinal tract requires a detailed analysis of their interactions with different compounds. We provide an update on the most recent findings concerning two areas of BS involvement: lipolysis and intestinal transport. We first explore the interactions of BS with various dietary fibres and food emulsifiers in bulk and at interfaces, as these appear to be key aspects for understanding interactions with digestive media. Next, we explore the interactions of BS with components of the intestinal digestion environment, and the role of BS in displacing material from the oil-water interface and facilitating adsorption of lipase. We look into the process of desorption, solubilisation of lipolysis, products and formation of mixed micelles. Finally, the BS-driven interactions of colloidal particles with the small intestinal mucus layer are considered, providing new findings for the overall assessment of the role of BS in lipid digestion and intestinal transport. This review offers a unique compilation of well-established and most recent studies dealing with the interactions of BS with food emulsifiers, nanoparticles and dietary fibre, as well as with the luminal compounds of the gut, such as lipase-colipase, triglycerides and intestinal mucus. The combined analysis of these complex interactions may provide crucial information on the pattern and extent of lipid digestion. Such knowledge is important for controlling the uptake of dietary lipids or lipophilic pharmaceuticals in the gastrointestinal tract through the engineering of novel food structures or colloidal drug-delivery systems.
Collapse
|
24
|
Soliman KA, Ullah K, Shah A, Jones DS, Singh TRR. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov Today 2019; 24:1575-1586. [PMID: 31175956 DOI: 10.1016/j.drudis.2019.05.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
In situ gels have recently received interest as ocular drug delivery vehicles because they combine the merits of easy instillation and sustained drug release. In this review, we focus on the use of poloxamers as in situ gelling systems in ocular drug delivery because of their thermoresponsive gelling behaviour, biocompatibility, and ease of sterilisation. Furthermore, the sol-gel transition temperature, mucoadhesive properties, and drug release profiles of poloxamer-based in situ gels can be finely tuned, enabling them to be used as vehicles for the delivery of small and large drug molecules to treat diseases of the anterior and posterior segments of the eye. Poloxamer-based ocular products have already found their way to the pharmaceutical market, but remain a potential arena for further investigation and commercial exploitation.
Collapse
Affiliation(s)
- Karim A Soliman
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - K Ullah
- Department of Pharmacy, COMSATS University Islamabad, Abottabad Campus, Pakistan
| | - A Shah
- Department of Pharmacy, COMSATS University Islamabad, Abottabad Campus, Pakistan
| | - David S Jones
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thakur R R Singh
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
25
|
Ta D, Tieu A, Zhu H, Le M, Ta T, Tran V, Wan S. Physical and chemical insights into molecular adsorption of copolymer’s monomers on Rutile surface. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
One step bulk modification of poly(L-lactic acid) composites with functional additives to improve mechanical and biological properties for cardiovascular implant applications. Colloids Surf B Biointerfaces 2019; 179:161-169. [PMID: 30954879 DOI: 10.1016/j.colsurfb.2019.03.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 01/15/2023]
Abstract
Poly(L-lactic acid) (PLLA) has been widely used as a promising biomaterial in biomedical applications due to its biodegradability and high mechanical strength. However, because of the inherent brittleness, low impact resistance, and weak thermal stability of PLLA, the modification process is usually required to utilize it for biomedical devices. Furthermore, acidic byproducts resulting from the hydrolysis of PLLA after implantation reduce the pH of the surrounding environment and cause inflammatory responses in the implanted area, leading to the failure of their clinical applications. To this end, here, we demonstrate a novel modification process for the PLLA composite with various functional additives, such as cis-aconitic anhydride (AA), triacetin (TA), isosorbide derivative (ISB), and/or Pluronic® F127 (F). The modified PLLA composite with TA and F (PLLA/TF) showed significantly improved elongation at break and Young's modulus and retained tensile strength. Moreover, incorporating magnesium hydroxide (MH) nanoparticles (PLLA/TFMH) significantly reduced acid-induced inflammation responses caused by the acidic degradation products of PLLA. Reduced plasma protein adsorption was observed in the PLLA/TFMH. These results suggest that the one step bulk modification of biodegradable PLLA using TA, F, and MH will have great potential in cardiovascular implant applications.
Collapse
|
27
|
PEG-coated vesicles from Pluronic/lipid mixtures for the carrying of photoactive erythrosine derivatives. Colloids Surf B Biointerfaces 2019; 175:530-544. [DOI: 10.1016/j.colsurfb.2018.12.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022]
|
28
|
|
29
|
Abstract
The adeno-associated viral vector (AAV) platform has developed into a primary modality for efficient in vivo, and in more limited settings, in vitro or ex vivo gene transfer. Its applications range from a tool for experimental purposes to preclinical and clinical gene therapy. The ability to accurately and reproducibly quantify vector concentration is critical for any of these applications. While several quantification assays are available, here we outline a detailed protocol for the quantification of DNase-I protected vector genomes reliant on the polymerase chain reaction (PCR) as a measure of the active component of the vector, namely its transgene cargo. With the emergence of droplet digital PCR (ddPCR), we provide side-by-side protocols for traditional TaqMan™ real-time, quantitative PCR (qPCR) and ddPCR, as well as comparative data generated with both methods. Lastly, we discuss the importance of the use of surfactant (here, Pluronic® F-68) in the execution of the assay to limit DNA and AAV adherence to various carriers during the titration, particularly at low concentrations. We believe these protocols can lead to reduced variability and increased comparability between AAV studies.
Collapse
|
30
|
Pan X, Guo X, Choi B, Feng A, Wei X, Thang SH. A facile synthesis of pH stimuli biocompatible block copolymer poly(methacrylic acid)-block-poly(N-vinylpyrrolidone) utilizing switchable RAFT agents. Polym Chem 2019. [DOI: 10.1039/c9py00110g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of block copolymer PMAA-b-PNVP utilizing switchable RAFT agents and its self-assembly.
Collapse
Affiliation(s)
- Xiangyu Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xiaofeng Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Bonnie Choi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xiaohu Wei
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - San H. Thang
- School of Chemistry
- Monash University Clayton Campus
- Australia
| |
Collapse
|
31
|
Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv 2018; 15:1085-1104. [DOI: 10.1080/17425247.2018.1529756] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Andrew M. Bodratti
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
32
|
Migotto A, Carvalho VFM, Salata GC, da Silva FWM, Yan CYI, Ishida K, Costa-Lotufo LV, Steiner AA, Lopes LB. Multifunctional nanoemulsions for intraductal delivery as a new platform for local treatment of breast cancer. Drug Deliv 2018; 25:654-667. [PMID: 29495885 PMCID: PMC7011997 DOI: 10.1080/10717544.2018.1440665] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Considering that breast cancer usually begins in the lining of the ducts, local drug administration into the ducts could target cancers and pre-tumor lesions locally while reducing systemic adverse effects. In this study, a cationic bioadhesive nanoemulsion was developed for intraductal administration of C6 ceramide, a sphingolipid that mediates apoptotic and non-apoptotic cell death. Bioadhesive properties were obtained by surface modification with chitosan. The optimized nanoemulsion displayed size of 46.3 nm and positive charge, properties that were not affected by ceramide encapsulation (0.4%, w/w). C6 ceramide concentration necessary to reduce MCF-7 cells viability to 50% (EC50) decreased by 4.5-fold with its nanoencapsulation compared to its solution; a further decrease (2.6-fold) was observed when tributyrin (a pro-drug of butyric acid) was part of the oil phase of the nanocarrier, a phenomenon attributed to synergism. The unloaded nanocarrier was considered safe, as indicated by a score <0.1 in HET-CAM models, by the high survival rates of Galleria mellonella larvae exposed to concentrations ≤500 mg/mL, and absence of histological changes when intraductally administered in rats. Intraductal administration of the nanoemulsion prolonged drug localization for more than 120 h in the mammary tissue compared to its solution. These results support the advantage of the optimized nanoemulsion to enable mammary tissue localization of C6 ceramide.
Collapse
Affiliation(s)
- Amanda Migotto
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Vanessa F M Carvalho
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Giovanna C Salata
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Fernanda W M da Silva
- b Department of Microbiology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Chao Yun Irene Yan
- c Department of Cell and Developmental Biology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Kelly Ishida
- b Department of Microbiology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Leticia V Costa-Lotufo
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Alexandre A Steiner
- d Department of Immunology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Luciana B Lopes
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
33
|
Hydrophobically modified dextrans as stabilizers for O/W highly concentrated emulsions. Comparison with commercial non-ionic polymeric stabilizers. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1426-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Zaki AM, Carbone P. How the Incorporation of Pluronic Block Copolymers Modulates the Response of Lipid Membranes to Mechanical Stress. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13284-13294. [PMID: 29084428 DOI: 10.1021/acs.langmuir.7b02244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We employ atomistic molecular dynamics simulations to investigate the effect that the incorporation of the nonionic amphiphilic copolymer known as Pluronic L64 has on the mechanical stability of a DPPC membrane. The simulations reveal that the incorporation of the polymer chains leads to membranes that can sustain increasing mechanical stresses. Analysis of mechanical, structural, and dynamic properties of the membrane shows that the polymer chains interact strongly with the lipids in the vicinity, restraining their mobility and imparting better mechanical stability to the membrane. The hybrid membranes under tension remain thicker, more ordered, and stiffer in comparison to their lipid analogues. Trans-bilayer lipid movements (flip-flop) are observed and appear to be triggered by the presence of the polymer chains. A careful analysis of the pore formation under high tensions reveals two distinctive mechanisms that depend on the distribution of the hydrophilic polymer blocks in the bilayer. Finally, the rate of growth of the formed membrane defects is slowed down in the presence of polymers. These findings show that Pluronic block copolymers could be exploited for the formation of optimized hybrid nanodevices with controlled elastic and dynamic properties.
Collapse
Affiliation(s)
- Afroditi Maria Zaki
- School of Chemical Engineering and Analytical Science, The University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Paola Carbone
- School of Chemical Engineering and Analytical Science, The University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
36
|
Shah SWH, Schwieger C, Li Z, Kressler J, Blume A. Effect of Perfluoroalkyl Endgroups on the Interactions of Tri-Block Copolymers with Monofluorinated F-DPPC Monolayers. Polymers (Basel) 2017; 9:polym9110555. [PMID: 30965858 PMCID: PMC6418721 DOI: 10.3390/polym9110555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/16/2022] Open
Abstract
We studied the interaction of amphiphilic and triphilic polymers with monolayers prepared from F-DPPC (1-palmitoyl-2-(16-fluoropalmitoyl)-sn-glycero-3-phosphocholine), a phospholipid with a single fluorine atom at the terminus of the sn-2 chain, an analogue of dipalmitoyl-phosphatidylcholine (DPPC). The amphiphilic block copolymers contained a hydrophobic poly(propylene oxide) block flanked by hydrophilic poly(glycerol monomethacrylate) blocks (GP). F-GP was derived from GP by capping both termini with perfluoro-n-nonyl segments. We first studied the adsorption of GP and F-GP to lipid monolayers of F-DPPC. F-GP was inserted into the monolayer up to a surface pressure Π of 42.4 mN m−1, much higher than GP (32.5 mN m−1). We then studied isotherms of lipid-polymer mixtures co-spread at the air-water interface. With increasing polymer content in the mixture a continuous shift of the onset of the liquid-expanded (LE) to liquid-condensed (LC) transition towards higher molecular and higher area per lipid molecule was observed. F-GP had a larger effect than GP indicating that it needed more space. At a Π-value of 32 mN m−1, GP was excluded from the mixed monolayer, whereas F-GP stayed in F-DPPC monolayers up to 42 mN m−1. F-GP is thus more stably anchored in the monolayer up to higher surface pressures. Images of mixed monolayers were acquired using different fluorescent probes and showed the presence of perfluorinated segments of F-GP at LE-LC domain boundaries.
Collapse
Affiliation(s)
- Syed W H Shah
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
- Chemistry Department, Hazara University, 21120 Mansehra, Pakistan.
| | - Christian Schwieger
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| | - Zheng Li
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| | - Jörg Kressler
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| | - Alfred Blume
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| |
Collapse
|
37
|
Oliveira LT, de Paula MA, Roatt BM, Garcia GM, Silva LSB, Reis AB, de Paula CS, Vilela JMC, Andrade MS, Pound-Lana G, Mosqueira VCF. Impact of dose and surface features on plasmatic and liver concentrations of biodegradable polymeric nanocapsules. Eur J Pharm Sci 2017; 105:19-32. [DOI: 10.1016/j.ejps.2017.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/17/2022]
|
38
|
Barradas TN, Senna JP, Cardoso SA, Nicoli S, Padula C, Santi P, Rossi F, de Holanda e Silva KG, Mansur CRE. Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies. Eur J Pharm Biopharm 2017; 116:38-50. [DOI: 10.1016/j.ejpb.2016.11.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/10/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
39
|
Bodratti AM, Sarkar B, Alexandridis P. Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid-liquid interfaces: Fundamentals and applications. Adv Colloid Interface Sci 2017; 244:132-163. [PMID: 28069108 DOI: 10.1016/j.cis.2016.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/30/2022]
Abstract
The adsorption of amphiphilic molecules of varying size on solid-liquid interfaces modulates the properties of colloidal systems. Nonionic, poly(ethylene oxide) (PEO)-based amphiphilic molecules are particularly useful because of their graded hydrophobic-hydrophilic nature, which allows for adsorption on a wide array of solid surfaces. Their adsorption also results in other useful properties, such as responsiveness to external stimuli and solubilization of hydrophobic compounds. This review focuses on the adsorption properties of PEO-based amphiphiles, beginning with a discussion of fundamental concepts pertaining to the adsorption of macromolecules on solid-liquid interfaces, and more specifically the adsorption of PEO homopolymers. The main portion of the review highlights studies on factors affecting the adsorption and surface self-assembly of PEO-PPO-PEO block copolymers, where PPO is poly(propylene oxide). Block copolymers of this type are commercially available and of interest in several fields, due to their low toxicity and compatibility in aqueous systems. Examples of applications relevant to the interfacial behavior of PEO-PPO-PEO block copolymers are paints and coatings, detergents, filtration, and drug delivery. The methods discussed herein for manipulating the adsorption properties of PEO-PPO-PEO are emphasized for their ability to shed light on molecular interactions at interfaces. Knowledge of these interactions guides the formulation of novel materials with useful mesoscale organization and micro- and macrophase properties.
Collapse
|
40
|
Ileri Ercan N, Stroeve P, Tringe JW, Faller R. Understanding the Interaction of Pluronics L61 and L64 with a DOPC Lipid Bilayer: An Atomistic Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10026-10033. [PMID: 27623289 DOI: 10.1021/acs.langmuir.6b02360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the interactions of Pluronics L61 and L64 with a dioleylphosphatidylcholine (DOPC) lipid bilayer by atomistic molecular dynamics simulations using the all-atom OPLS force field. Our results show that the initial configuration of the polymer with respect to the bilayer determines its final conformation within the bilayer. When the polymer is initially placed at the lipid/water interface, we observe partial insertion of the polymer in a U-shaped conformation. On the other hand, when the polymer is centered at the bilayer, it stabilizes to a transmembrane state, which facilitates water transport across the bilayer. We show that membrane thickness decreases while its fluidity increases in the presence of Pluronics. When the polymer concentration inside the bilayer is high, pore formation is initiated with L64. Our results show good agreement with existing experimental data and reveal that the hydrophilic/lipophilic balance of the polymer plays a critical role in the interaction mechanisms as well as in the dynamics of Pluronics with and within the bilayer.
Collapse
Affiliation(s)
- Nazar Ileri Ercan
- Chemical Engineering Department, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, United States
- Chemical Engineering Department, Bogazici University , Bebek, 34342 Istanbul, Turkey
| | - Pieter Stroeve
- Chemical Engineering Department, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Joseph W Tringe
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, United States
| | - Roland Faller
- Chemical Engineering Department, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
41
|
Worm M, Kang B, Dingels C, Wurm FR, Frey H. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs. Macromol Rapid Commun 2016; 37:775-80. [PMID: 27000789 DOI: 10.1002/marc.201600080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/25/2016] [Indexed: 12/13/2022]
Abstract
Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand."
Collapse
Affiliation(s)
- Matthias Worm
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Biao Kang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Carsten Dingels
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
42
|
Ta TD, Tieu AK, Zhu H, Zhu Q, Kosasih PB, Zhang J, Deng G. Tribological Behavior of Aqueous Copolymer Lubricant in Mixed Lubrication Regime. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5641-5652. [PMID: 26828119 DOI: 10.1021/acsami.5b10905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although a number of experiments have been attempted to investigate the lubrication of aqueous copolymer lubricant, which is applied widely in metalworking operations, a comprehensive theoretical investigation at atomistic level is still lacking. This study addresses the influence of loading pressure and copolymer concentration on the structural properties and tribological performance of aqueous copolymer solution of poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEO-PPO) at mixed lubrication using a molecular dynamic (MD) simulation. An effective interfacial potential, which has been derived from density functional theory (DFT) calculations, was employed for the interactions between the fluid's molecules and iron surface. The simulation results have indicated that the triblock copolymer is physisorption on iron surface. Under confinement by iron surfaces, the copolymer molecules form lamellar structure in aqueous solution and behave differently from its bulk state. The lubrication performance of aqueous copolymer lubricant increases with concentration, but the friction reduction is insignificant at high loading pressure. Additionally, the plastic deformation of asperity is dependent on both copolymer concentration and loading pressure, and the wear behavior shows a linear dependence of friction force on the number of transferred atoms between contacting asperities.
Collapse
Affiliation(s)
- Thi D Ta
- School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering and Information Sciences (EIS), University of Wollongong , Northfield Avenue, Wollongong, New South Wales 2522, Australia
| | - A Kiet Tieu
- School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering and Information Sciences (EIS), University of Wollongong , Northfield Avenue, Wollongong, New South Wales 2522, Australia
| | - Hongtao Zhu
- School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering and Information Sciences (EIS), University of Wollongong , Northfield Avenue, Wollongong, New South Wales 2522, Australia
| | - Qiang Zhu
- School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering and Information Sciences (EIS), University of Wollongong , Northfield Avenue, Wollongong, New South Wales 2522, Australia
| | - Prabouno B Kosasih
- School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering and Information Sciences (EIS), University of Wollongong , Northfield Avenue, Wollongong, New South Wales 2522, Australia
| | - Jie Zhang
- School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering and Information Sciences (EIS), University of Wollongong , Northfield Avenue, Wollongong, New South Wales 2522, Australia
| | - Guanyu Deng
- School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering and Information Sciences (EIS), University of Wollongong , Northfield Avenue, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
43
|
Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci 2015; 83:184-202. [PMID: 26747018 DOI: 10.1016/j.ejps.2015.12.031] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/08/2015] [Accepted: 12/27/2015] [Indexed: 01/09/2023]
Abstract
Block co-polymeric micelles receive increased attention due to their ability to load therapeutics, deliver the cargo to the site of action, improve the pharmacokinetic of the loaded drug and reduce off-target cytotoxicity. While polymeric micelles can be developed with improved drug loading capabilities by modulating hydrophobicity and hydrophilicity of the micelle forming block co-polymers, they can also be successfully cancer targeted by surface modifying with tumor-homing ligands. However, maintenance of the integrity of the self-assembled system in the circulation and disassembly for drug release at the site of drug action remain a challenge. Therefore, stimuli-responsive polymeric micelles for on demand drug delivery with minimal off-target effect has been developed and extensively investigated to assess their sensitivity. This review focuses on discussing various polymeric micelles currently utilized for the delivery of chemotherapeutic drugs. Designs of various stimuli-sensitive micelles that are able to control drug release in response to specific stimuli, either endogenous or exogenous have been delineated.
Collapse
Affiliation(s)
- Swati Biswas
- Birla Institute of Technology and Science-Pilani, Hyderabad, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana, India
| | - Preeti Kumari
- Birla Institute of Technology and Science-Pilani, Hyderabad, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana, India
| | - Prit Manish Lakhani
- Birla Institute of Technology and Science-Pilani, Hyderabad, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Birla Institute of Technology and Science-Pilani, Hyderabad, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana, India.
| |
Collapse
|
44
|
Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem Rev 2015; 116:2170-243. [PMID: 26713458 DOI: 10.1021/acs.chemrev.5b00441] [Citation(s) in RCA: 460] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.
Collapse
Affiliation(s)
- Jana Herzberger
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| | - Kerstin Niederer
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Hannah Pohlit
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Department of Dermatology, University Medical Center , Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Jan Seiwert
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Matthias Worm
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| |
Collapse
|
45
|
Bayati S, Galantini L, Knudsen KD, Schillén K. Effects of Bile Salt Sodium Glycodeoxycholate on the Self-Assembly of PEO-PPO-PEO Triblock Copolymer P123 in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13519-13527. [PMID: 26616587 DOI: 10.1021/acs.langmuir.5b03828] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A comprehensive experimental study on the interaction between the PEO-PPO-PEO block copolymer P123 (EO20PO68EO20) and the anionic bile salt sodium glycodeoxycholate (NaGDC) in water has been performed. The work was aimed at investigating the suitability of using P123 as bile salt sequestrant beside the fundamental aspects of PEO-PPO-PEO block copolymer-bile salt interactions. Various experimental techniques including dynamic and static light scattering, small-angle X-ray scattering, and differential scanning calorimetry (DSC) were employed in combination with electrophoretic mobility measurements. The system was investigated at a constant P123 concentration of 1.74 mM and with varying bile salt concentrations up to approximately 250 mM NaGDC (or a molar ratio n(NaGDC)/n(P123) = 144). In the mixed P123-NaGDC solutions, the endothermic process related to the self-assembly of P123 was observed to gradually decrease in enthalpy and shift to higher temperatures upon progressive addition of NaGDC. To explain this effect, the formation of NaGDC micelles carrying partly dehydrated P123 unimers was proposed and translated into a stoichiometric model, which was able to fit the experimental DSC data. In the mixtures at low molar ratios, NaGDC monomers associated with the P123 micelle forming a charged "P123 micelle-NaGDC" complex with a dehydrated PPO core. These complexes disintegrated upon increasing NaGDC concentration to form small "NaGDC-P123" complexes visualized as bile salt micelles including one or a few P123 copolymer chains.
Collapse
Affiliation(s)
- Solmaz Bayati
- Division of Physical Chemistry, Department of Chemistry, Lund University , P.O. Box 124, SE-221 00 Lund, Sweden
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome , P. le A. Moro 5, 00185 Rome, Italy
| | - Kenneth D Knudsen
- Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller, Norway
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University , P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
46
|
Hörmann K, Zimmer A. Drug delivery and drug targeting with parenteral lipid nanoemulsions - A review. J Control Release 2015; 223:85-98. [PMID: 26699427 DOI: 10.1016/j.jconrel.2015.12.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/12/2015] [Indexed: 12/18/2022]
Abstract
Lipid nanosized emulsions or nanoemulsions (NE) are oil in water dispersions with an oil droplet size of about 200nm. This size of oil droplets dispersed in a continuous water phase is a prerequisite for the parenteral, namely intravenous administration. Many parenteral nutrition and drug emulsions on the market confirm the safe use of NE over years. Parenteral emulsions loaded with APIs (active pharmaceutical ingredients) are considered as drug delivery systems (DDS). DDS focuses on the regulation of the in vivo dynamics, such as absorption, distribution, metabolism, and extended bioavailability, thereby improving the effectiveness and the safety of the drugs. Using an emulsion as a DDS, or through the use of surface diversification of the dispersed oil droplets of emulsions, a targeted increase of the API concentration in some parts of the human body can be achieved. This review focuses on NE similar to the marketed once with no or only low amount of additional surfactants beside the emulsifier from a manufacturing point of view (technique, used raw materials).
Collapse
Affiliation(s)
- Karl Hörmann
- Fresenius Kabi Austria GmbH, Hafnerstraße 36, A-8055 Graz, Austria
| | - Andreas Zimmer
- Karl-Franzens-University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Member of BioTechMed Graz, Universitätsplatz 1, A-8010 Graz, Austria.
| |
Collapse
|
47
|
Djekic L, Martinovic M, Stepanović-Petrović R, Tomić M, Micov A, Primorac M. Design of Block Copolymer Costabilized Nonionic Microemulsions and Their In Vitro and In Vivo Assessment as Carriers for Sustained Regional Delivery of Ibuprofen via Topical Administration. J Pharm Sci 2015; 104:2501-12. [DOI: 10.1002/jps.24494] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 11/08/2022]
|
48
|
Sánchez-Moreno P, Buzón P, Boulaiz H, Peula-García J, Ortega-Vinuesa J, Luque I, Salvati A, Marchal J. Balancing the effect of corona on therapeutic efficacy and macrophage uptake of lipid nanocapsules. Biomaterials 2015; 61:266-78. [DOI: 10.1016/j.biomaterials.2015.04.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022]
|
49
|
Pérez-Mosqueda LM, Trujillo-Cayado LA, Carrillo F, Ramírez P, Muñoz J. Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene. Colloids Surf B Biointerfaces 2015; 128:127-131. [PMID: 25734966 DOI: 10.1016/j.colsurfb.2015.02.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/28/2015] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
d-Limonene is a natural occurring solvent that can replace more pollutant chemicals in agrochemical formulations. In the present work, a comprehensive study of the influence of dispersed phase mass fraction, ϕ, and of the surfactant/oil ratio, R, on the emulsion stability and droplet size distribution of d-limonene-in-water emulsions stabilized by a non-ionic triblock copolymer surfactant has been carried out. An experimental full factorial design 3(2) was conducted in order to optimize the emulsion formulation. The independent variables, ϕ and R were studied in the range 10-50 wt% and 0.02-0.1, respectively. The emulsions studied were mainly destabilized by both creaming and Ostwald ripening. Therefore, initial droplet size and an overall destabilization parameter, the so-called turbiscan stability index, were used as dependent variables. The optimal formulation, comprising minimum droplet size and maximum stability was achieved at ϕ=50 wt%; R=0.062. Furthermore, the surface response methodology allowed us to obtain the formulation yielding sub-micron emulsions by using a single step rotor/stator homogenizer process instead of most commonly used two-step emulsification methods. In addition, the optimal formulation was further improved against Ostwald ripening by adding silicone oil to the dispersed phase. The combination of these experimental findings allowed us to gain a deeper insight into the stability of these emulsions, which can be applied to the rational development of new formulations with potential application in agrochemical formulations.
Collapse
Affiliation(s)
- Luis M Pérez-Mosqueda
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, P. García González 1, 41012 Sevilla, Spain
| | - Luis A Trujillo-Cayado
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, P. García González 1, 41012 Sevilla, Spain
| | - Francisco Carrillo
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, P. García González 1, 41012 Sevilla, Spain
| | - Pablo Ramírez
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, P. García González 1, 41012 Sevilla, Spain.
| | - José Muñoz
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, P. García González 1, 41012 Sevilla, Spain
| |
Collapse
|
50
|
Newby GE, Watkins EB, Merino DH, Staniec PA, Bikondoa O. In situ Rheo-GISANS of triblock copolymers: gelation and shear effects on quasi-crystalline structures at interfaces. RSC Adv 2015. [DOI: 10.1039/c5ra20215a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The behaviour of polymeric systems at surfaces and under flow is very important in many applications, from drug delivery to lubrication. Here, we have studied the thermotropic phases formed by a model tri-block copolymer using in situ Rheo-GISANS.
Collapse
Affiliation(s)
- Gemma E. Newby
- ESRF-The European Synchrotron
- F-38043 Grenoble Cedex 9
- France
| | | | - Daniel Hermida Merino
- DUBBLE CRG BM26 ESRF
- Netherlands Organization for Scientific Research
- ESRF-The European Synchrotron
- Grenoble
- France
| | | | - Oier Bikondoa
- XMaS
- The UK CRG Beamline
- ESRF-The European Synchrotron
- F-38043 Grenoble Cedex 9
- France
| |
Collapse
|