1
|
Yan R, Chen T. SLC35A2 is a novel prognostic biomarker and promotes cell proliferation and metastasis via Wnt/β-catenin/EMT signaling pathway in breast cancer. Sci Rep 2025; 15:130. [PMID: 39748019 PMCID: PMC11695858 DOI: 10.1038/s41598-024-84584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Although it is a leading cause of cancer-related mortality among women globally, breast cancer (BC) has drawn increased attention owing to its poor prognosis and the challenges associated with limited treatment options. SLC35A2 was shown to be dysregulated in a number of tumor types according to multiple investigations. However, its function in BC was rarely reported. This study aims to investigate the expression of SLC35A2 in BC and its impact on the functionality and prognosis of BC cells. We collected 11 pairs of BC tissues and normal specimens, obtaining clinical information from 1,118 BC patients through RNA sequencing analysis. Different BC cell lines were used in experiments, and the roles of SLC35A2 in cell proliferation, invasion, and migration was assessed through gene silencing and functional assays. Additionally, a prognostic model, including SLC35A2 expression levels, age, T-stage, M-stage, N-stage, and clinical stage, was constructed, and its predictive performance in overall survival was validated using time-dependent receiver operating characteristic curves. High SLC35A2 expression was correlated positively with patient age and T-stage. Kaplan-Meier survival curves and Cox regression analysis confirmed the independent and significant prognostic value of SLC35A2 in overall survival. Functional experiments demonstrated that SLC35A2 silencing inhibited the proliferation, migration, and invasion of BC cells, affecting their metastatic potential through modulation of the Wnt/β-catenin/EMT signaling pathway. In conclusion, our study reveals the crucial role of SLC35A2 in BC, providing a novel biomarker for clinical management and valuable insights into the underlying mechanisms of BC pathogenesis.
Collapse
Affiliation(s)
- Rushu Yan
- Department of Surgery, Medical School Shenzhen University, Shenzhen, China
| | - Tianwen Chen
- Department of Breast Surgery, Huazhong University of Science and Technology Union Medical College Shenzhen Hospital, No. 89 Taoyuan Road, Shenzhen, China.
| |
Collapse
|
2
|
Xue Y, Hou W, He Y, Xu A, Li X. Predicting solitary pulmonary lesions in breast cancer patients using 18fluorodeoxyglucose-positron emission tomography/computed tomography combined with clinicopathological characteristics. BMC Pulm Med 2024; 24:595. [PMID: 39614273 DOI: 10.1186/s12890-024-03418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Solitary pulmonary nodules (SPNs) remain difficult to diagnose for clinical therapeutic purposes in patients with a history of breast cancer. This study try to investigate the value of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) combined with clinicopathological predictors for the differential diagnosis of SPNs in breast cancer patients. METHODS One hundred and twenty breast cancer patients with newly detected SPNs were enrolled in the study and divided into a primary lung cancer (PLC) group and a breast cancer metastasis (BCM) group. The clinicopathological characteristics as well as metabolic and morphological characteristics on 18F-FDG-PET/CT images of 120 patients were retrospectively reviewed. The differences of clinicopathological and 18F-FDG-PET/CT characteristics between the two groups were analyzed, and multivariate analyses for the diagnosis of SPNs were performed. RESULTS Clinicopathological terms of carcinoembryonic antigen (CEA) and CA15-3 levels exhibited significant differences between PLC and BCM groups (P = 0.005 and P = 0.001, respectively). Metabolic characteristics of 18F-FDG-PET/CT images included FDG uptake, SUVmax of SPNs, hilar and/or mediastinal lymph node metastasis, SUVmax of hilar and/or mediastinal lymph node, and extrapulmonary metastasis showed significant differences between PLC and BCM groups (P = 0.004, P < 0.001, P = 0.01, P = 0.032 and P = 0.023, respectively). The lobulation sign, spicule sign, and pleural indentation sign were identified as statistically different morphological features of PLC in CT images (all P < 0.001). Among these, the SUVmax of SPNs, lobulation sign, and pleural indentation sign were valuable predictive factors for accurate diagnosis of SPNs in breast cancer patients. CONCLUSIONS 18F-FDG-PET/CT combined with serum tumor markers are valuable for the diagnosis of SPNs in breast cancer patients.
Collapse
Affiliation(s)
- Yangyang Xue
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Weishu Hou
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Yanhui He
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Alei Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
3
|
Herrera-Quintana L, Vázquez-Lorente H, Silva RCMC, Olivares-Arancibia J, Reyes-Amigo T, Pires BRB, Plaza-Diaz J. The Role of the Microbiome and of Radiotherapy-Derived Metabolites in Breast Cancer. Cancers (Basel) 2024; 16:3671. [PMID: 39518108 PMCID: PMC11545256 DOI: 10.3390/cancers16213671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiome has emerged as a crucial player in modulating cancer therapies, including radiotherapy. In the case of breast cancer, the interplay between the microbiome and radiotherapy-derived metabolites may enhance therapeutic outcomes and minimize adverse effects. In this review, we explore the bidirectional relationship between the gut microbiome and breast cancer. We explain how gut microbiome composition influences cancer progression and treatment response, and how breast cancer and its treatments influence microbiome composition. A dual role for radiotherapy-derived metabolites is explored in this article, highlighting both their therapeutic benefits and potential hazards. By integrating genomics, metabolomics, and bioinformatics tools, we present a comprehensive overview of these interactions. The study provides real-world insight through case studies and clinical trials, while therapeutic innovations such as probiotics, and dietary interventions are examined for their potential to modulate the microbiome and enhance treatment effectiveness. Moreover, ethical considerations and patient perspectives are discussed, ensuring a comprehensive understanding of the subject. Towards revolutionizing treatment strategies and improving patient outcomes, the review concludes with future research directions. It also envisions integrating microbiome and metabolite research into personalized breast cancer therapy.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | | | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Tomás Reyes-Amigo
- Physical Activity Sciences Observatory (OCAF), Department of Physical Activity Sciences, Universidad de Playa Ancha, Valparaíso 2360072, Chile;
| | - Bruno Ricardo Barreto Pires
- Biometry and Biophysics Department, Institute of Biology Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil;
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- School of Health Sciences, Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| |
Collapse
|
4
|
Schroeder C, Campilan B, Leary OP, Arditi J, Michles MJ, De La Garza Ramos R, Akinduro OO, Gokaslan ZL, Martinez Moreno M, Sullivan PLZ. Therapeutic Opportunities for Biomarkers in Metastatic Spine Tumors. Cancers (Basel) 2024; 16:3152. [PMID: 39335124 PMCID: PMC11430692 DOI: 10.3390/cancers16183152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
For many spine surgeons, patients with metastatic cancer are often present in an emergent situation with rapidly progressive neurological dysfunction. Since the Patchell trial, scoring systems such as NOMS and SINS have emerged to guide the extent of surgical excision and fusion in the context of chemotherapy and radiation therapy. Yet, while multidisciplinary decision-making is the gold standard of cancer care, in the middle of the night, when a patient needs spinal surgery, the wealth of chemotherapy data, clinical trials, and other medical advances can feel overwhelming. The goal of this review is to provide an overview of the relevant molecular biomarkers and therapies driving patient survival in lung, breast, prostate, and renal cell cancer. We highlight the molecular differences between primary tumors (i.e., the patient's original lung cancer) and the subsequent spinal metastasis. This distinction is crucial, as there are limited data investigating how metastases respond to their primary tumor's targeted molecular therapies. Integrating information from primary and metastatic markers allows for a more comprehensive and personalized approach to cancer treatment.
Collapse
Affiliation(s)
- Christian Schroeder
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Beatrice Campilan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Owen P Leary
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jonathan Arditi
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Madison J Michles
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Rafael De La Garza Ramos
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Oluwaseun O Akinduro
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Margot Martinez Moreno
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
5
|
Ye C, Lukas H, Wang M, Lee Y, Gao W. Nucleic acid-based wearable and implantable electrochemical sensors. Chem Soc Rev 2024; 53:7960-7982. [PMID: 38985007 PMCID: PMC11308452 DOI: 10.1039/d4cs00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rapid advancements in nucleic acid-based electrochemical sensors for implantable and wearable applications have marked a significant leap forward in the domain of personal healthcare over the last decade. This technology promises to revolutionize personalized healthcare by facilitating the early diagnosis of diseases, monitoring of disease progression, and tailoring of individual treatment plans. This review navigates through the latest developments in this field, focusing on the strategies for nucleic acid sensing that enable real-time and continuous biomarker analysis directly in various biofluids, such as blood, interstitial fluid, sweat, and saliva. The review delves into various nucleic acid sensing strategies, emphasizing the innovative designs of biorecognition elements and signal transduction mechanisms that enable implantable and wearable applications. Special perspective is given to enhance nucleic acid-based sensor selectivity and sensitivity, which are crucial for the accurate detection of low-level biomarkers. The integration of such sensors into implantable and wearable platforms, including microneedle arrays and flexible electronic systems, actualizes their use in on-body devices for health monitoring. We also tackle the technical challenges encountered in the development of these sensors, such as ensuring long-term stability, managing the complexity of biofluid dynamics, and fulfilling the need for real-time, continuous, and reagentless detection. In conclusion, the review highlights the importance of these sensors in the future of medical engineering, offering insights into design considerations and future research directions to overcome existing limitations and fully realize the potential of nucleic acid-based electrochemical sensors for healthcare applications.
Collapse
Affiliation(s)
- Cui Ye
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Minqiang Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Yerim Lee
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Li X, Li X, Zhang K, Guan Y, Fan M, Wu Q, Li Y, Holmdahl R, Lu S, Zhu W, Wang X, Meng L. Autoantibodies against Endophilin A2 as a novel biomarker are beneficial to early diagnosis of breast cancer. Clin Chim Acta 2024; 560:119748. [PMID: 38796051 DOI: 10.1016/j.cca.2024.119748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/24/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Due to the lack of early symptoms, breast cancer is frequently overlooked, leading to distant metastases and multi-organ lesions that directly threaten patients' lives. We have identified a novel tumor marker, antibodies to endophilin A2 (EA2), to improve early diagnosis of breast cancer. METHODS Antibody levels of EA2 were analyzed in sera of patients with cancers of different origins and stages by indirect enzyme-linked immunosorbent assay (ELISA). Diagnostic accuracy and reference range were determined by the area under the receiver operating curve and distribution curve. The levels of EA2 antigen in sera were determined by sandwich ELISA. RESULTS The levels of antibodies against EA2 were higher in sera of patients with breast cancer (P < 0.0001), liver cancer (P = 0.0005), gastric cancer (P = 0.0026), and colon cancer (P = 0.0349) than those in healthy controls, but not in patients with rectal cancer (P = 0.1151), leukemia (P = 0.7508), or lung cancer (P = 0.2247). The highest diagnostic value was for breast cancer, particularly in early cases (AUC = 0.8014) and those with distant metastases (AUC = 0.7885). The titers of EA2 antibodies in sera were correlated with levels of EA2 antigen in breast cancer patients. CONCLUSION Antibodies to EA2 are novel blood biomarkers for early diagnosis of breast cancer that warrants further study in larger-scale cohort studies.
Collapse
Affiliation(s)
- Xiaomeng Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiaowei Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Kaige Zhang
- School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan 453003, China; Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanglong Guan
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Qian Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yue Li
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Rikard Holmdahl
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| | - Shemin Lu
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Wenhua Zhu
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
| | - Xiaoqin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Liesu Meng
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| |
Collapse
|
7
|
Abdul-Rahman T, Roy P, Herrera-Calderón RE, Khidri FF, Omotesho QA, Rumide TS, Fatima M, Roy S, Wireko AA, Atallah O, Roy S, Amekpor F, Ghosh S, Agyigra IA, Horbas V, Teslyk T, Bumeister V, Papadakis M, Alexiou A. Extracellular vesicle-mediated drug delivery in breast cancer theranostics. Discov Oncol 2024; 15:181. [PMID: 38780753 PMCID: PMC11116322 DOI: 10.1007/s12672-024-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer (BC) continues to be a significant global challenge due to drug resistance and severe side effects. The increasing prevalence is alarming, requiring new therapeutic approaches to address these challenges. At this point, Extracellular vesicles (EVs), specifically small endosome-released nanometer-sized EVs (SEVs) or exosomes, have been explored by literature as potential theranostics. Therefore, this review aims to highlight the therapeutic potential of exosomes in BC, focusing on their advantages in drug delivery and their ability to mitigate metastasis. Following the review, we identified exosomes' potential in combination therapies, serving as miRNA carriers and contributing to improved anti-tumor effects. This is evident in clinical trials investigating exosomes in BC, which have shown their ability to boost chemotherapy efficacy by delivering drugs like paclitaxel (PTX) and doxorubicin (DOX). However, the translation of EVs into BC therapy is hindered by various challenges. These challenges include the heterogeneity of EVs, the selection of the appropriate parent cell, the loading procedures, and determining the optimal administration routes. Despite the promising therapeutic potential of EVs, these obstacles must be addressed to realize their benefits in BC treatment.
Collapse
Affiliation(s)
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | - Ranferi Eduardo Herrera-Calderón
- Center for Research in Health Sciences (CICSA), Faculty of Medicine, Anahuac University North Campus, 52786, Huixquilucan, Mexico
| | | | | | | | | | - Sakshi Roy
- School of Medicine, Queens University Belfast, Northern Ireland, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Subham Roy
- Hull York Medical School, University of York, York, UK
| | - Felix Amekpor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | | | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India.
- Department of Research and Development, Funogen, 11741, Athens, Greece.
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria.
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.
| |
Collapse
|
8
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Shen HT, Hung CS, Davis C, Su CM, Liao LM, Shih HM, Lee KD, Ansar M, Lin RK. Hypermethylation of the Gene Body in SRCIN1 Is Involved in Breast Cancer Cell Proliferation and Is a Potential Blood-Based Biomarker for Early Detection and a Poor Prognosis. Biomolecules 2024; 14:571. [PMID: 38785978 PMCID: PMC11118508 DOI: 10.3390/biom14050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer is a leading cause of cancer mortality in women worldwide. Using the Infinium MethylationEPIC BeadChip, we analyzed plasma sample methylation to identify the SRCIN1 gene in breast cancer patients. We assessed SRCIN1-related roles and pathways for their biomarker potential. To verify the methylation status, quantitative methylation-specific PCR (qMSP) was performed on genomic DNA and circulating cell-free DNA samples, and mRNA expression analysis was performed using RT‒qPCR. The results were validated in a Western population; for this analysis, the samples included plasma samples from breast cancer patients from the USA and from The Cancer Genome Atlas (TCGA) cohort. To study the SRCIN1 pathway, we conducted cell viability assays, gene manipulation and RNA sequencing. SRCIN1 hypermethylation was identified in 61.8% of breast cancer tissues from Taiwanese patients, exhibiting specificity to this malignancy. Furthermore, its presence correlated significantly with unfavorable 5-year overall survival outcomes. The levels of methylated SRCIN1 in the blood of patients from Taiwan and the USA correlated with the stage of breast cancer. The proportion of patients with high methylation levels increased from 0% in healthy individuals to 63.6% in Stage 0, 80% in Stage I and 82.6% in Stage II, with a sensitivity of 78.5%, an accuracy of 90.3% and a specificity of 100%. SRCIN1 hypermethylation was significantly correlated with increased SRCIN1 mRNA expression (p < 0.001). Knockdown of SRCIN1 decreased the viability of breast cancer cells. SRCIN1 silencing resulted in the downregulation of ESR1, BCL2 and various cyclin protein expressions. SRCIN1 hypermethylation in the blood may serve as a noninvasive biomarker, facilitating early detection and prognosis evaluation, and SRCIN1-targeted therapies could be used in combination regimens for breast cancer patients.
Collapse
Affiliation(s)
- Hsieh-Tsung Shen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
- EG BioMed US Inc., Covina, CA 91722, USA;
| | - Chin-Sheng Hung
- EG BioMed US Inc., Covina, CA 91722, USA;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Clilia Davis
- International Master Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chih-Ming Su
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
| | - Li-Min Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
| | - Hsiu-Ming Shih
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
| | - Kuan-Der Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
- Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Muhamad Ansar
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ruo-Kai Lin
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
- EG BioMed US Inc., Covina, CA 91722, USA;
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Pharmacognosy, Ph.D. Program in Drug Discovery and Development Industry, Masters Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Clinical Trial Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
10
|
Wang J, Liu X, Li J, Chen W. Digital Circulating Tumor Cells Quantification. Anal Chem 2024; 96:6881-6888. [PMID: 38659346 DOI: 10.1021/acs.analchem.3c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Circulating tumor cells (CTCs) are an emerging but vital biomarker for cancer management. An efficient methodology for accurately quantifying CTCs remains challenging due to their rareness. Here, we develop a digital CTC detection strategy using partitioning instead of enrichment to quantify CTCs. By utilizing the characteristics of droplet microfluidics that can rapidly generate a large number of parallel independent reactors, combined with Poisson distribution, we realize the quantification of CTCs in the blood directly. The limit of detection of our digital CTCs quantification assay is five cells per 5 mL of whole blood. By simultaneously detecting multiple genetic mutations, our approach achieves highly sensitive and specific detection of CTCs in peripheral blood from NSCLC patients (AUC = 1). Our digital platform offers a potential approach and strategy for the quantification of CTCs, which could contribute to the advancement of cancer medical management.
Collapse
Affiliation(s)
- Jidong Wang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the Sixth Affiliated Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen 518052, People's Republic of China
| | - Xiaolei Liu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Jiang Li
- Gynecology Department, Huazhong University of Science and Technology Union Shenzhen Hospital, the Sixth Affiliated Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen 518052, People's Republic of China
| | - Wenwen Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
11
|
Kubeczko M, Tudrej P, Tyszkiewicz T, Krzywon A, Oczko-Wojciechowska M, JarzĄb M. Liquid biopsy utilizing miRNA in patients with advanced breast cancer treated with cyclin‑dependent kinase 4/6 inhibitors. Oncol Lett 2024; 27:181. [PMID: 38464342 PMCID: PMC10921259 DOI: 10.3892/ol.2024.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) are the mainstay of treatment of hormone receptor+/human epidermal growth factor receptor 2-patients with advanced breast cancer (ABC). Despite improvements in overall survival, most patients experience disease progression. Biomarkers derived from a liquid biopsy are appealing for their potential to detect resistance to treatment earlier than computed tomography imaging. However, clinical data concerning microRNAs (miRNAs/miRs) in the context of CDK4/6is are lacking. Thus, the present study assessed the use of miRNAs in patients with ABC treated with CDK4/6is. Patients treated for ABC with CDK4/6is between June and August 2022 were eligible. miRNA expression analyses were performed using a TaqMan™ low-density miRNA array. A total of 80 consecutive patients with ABC treated with CDK4/6is at Maria Sklodowska-Curie National Research Institute of Oncology (Gliwice, Poland) were assessed, with 14 patients diagnosed with progressive disease at the time of sampling, 55 patients exhibited clinical benefit from CDK4/6i treatment and 11 patients were at the beginning of CDK4/6i treatment. Patients with disease progression had significantly higher levels of miR-21 (P=0.027), miR-34a (P=0.011), miR-193b (P=0.032), miR-200a (P=0.027) and miR-200b (P=0.003) compared with patients who benefitted from CDK4/6i treatment. Significantly higher levels of miR-34a expression were observed in patients with progressive disease than in patients beginning treatment (P=0.031). The present study demonstrated the potential innovative role of circulating miRNAs during CDK4/6i treatment. Plasma-based expression of miR-21, -34a, -193b, -200a and -200b effectively distinguished patients with ABC who responded to CDK4/6i treatment from patients who were resistant. However, longitudinal studies are required to verify the predictive and prognostic potential of miRNA.
Collapse
Affiliation(s)
- Marcin Kubeczko
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Patrycja Tudrej
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Tomasz Tyszkiewicz
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Aleksandra Krzywon
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MaŁgorzata Oczko-Wojciechowska
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MichaŁ JarzĄb
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| |
Collapse
|
12
|
Varzaru VB, Eftenoiu AE, Vlad DC, Vlad CS, Moatar AE, Popescu R, Cobec IM. The Influence of Tumor-Specific Markers in Breast Cancer on Other Blood Parameters. Life (Basel) 2024; 14:458. [PMID: 38672729 PMCID: PMC11051489 DOI: 10.3390/life14040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed cancer among women, responsible for the highest number of cancer-related deaths worldwide. There is limited data available related to serum tumor markers in breast cancer and other blood parameters or other glandular laboratory parameters. This study aims to evaluate the correlation of tumor-specific markers for breast cancer with other blood parameters and how these correlations could impact clinical management. MATERIAL AND METHOD This retrospective study represents a data analysis from 1 January 2020 to 31 May 2023, in the County Hospital of Timisoara, Romania. We reviewed all the cases where, in the laboratory analyses, the serum tumor specific biomarkers for breast cancer were analyzed. RESULTS A statistical analysis was performed in order to identify a possible relationship between CA 15-3 and the various biomarkers and blood parameters included in the present study. Values were classified according to reference ranges. The tests revealed no statistically significant associations between CA 15-3 values and the levels of CA125 (χ2(1) = 1.852, p = 0.174), CEA (χ2(1) = 1.139, p = 0.286), AFP (Fisher's exact test, p = 0.341), fT4 (Fisher's exact test, p = 0.310), TSH (Fisher's exact test, p = 0.177), or PTH (Fisher's exact test, p = 0.650). CONCLUSION The findings indicate a lack of strong correlation between CA 15-3 and CA125, CEA, AFP, thyroid function markers, or PTH within this cohort.
Collapse
Affiliation(s)
- Vlad Bogdan Varzaru
- Doctoral School, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Anca-Elena Eftenoiu
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Daliborca Cristina Vlad
- Department of Pharmacology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Emergency County Clinical Hospital Pius Brinzeu Timisoara, 300723 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department of Pharmacology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Aurica Elisabeta Moatar
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Internal Medicine-Cardiology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| | - Roxana Popescu
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Emergency County Clinical Hospital Pius Brinzeu Timisoara, 300723 Timisoara, Romania
| | - Ionut Marcel Cobec
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| |
Collapse
|
13
|
Kalita B, Coumar MS. Deciphering Breast Cancer Metastasis Cascade: A Systems Biology Approach Integrating Transcriptome and Interactome Insights for Target Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:148-161. [PMID: 38484298 DOI: 10.1089/omi.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Breast cancer is the lead cause of cancer-related deaths among women globally. Breast cancer metastasis is a complex and still inadequately understood process and a key dimension of mortality attendant to breast cancer. This study reports dysregulated genes across metastatic stages and tissues, shedding light on their molecular interplay in disease pathogenesis and new possibilities for drug discovery. Comprehensive analyses of gene expression data from primary breast tumor, circulating tumor cells, and distant metastatic sites in the brain, lung, liver, and bone were conducted. Genes dysregulated across multiple stages and tissues were identified as metastatic cascade genes, and are further classified based on functional associations with metastasis-related mechanisms. Their interactions with HUB genes in interactome networks were scrutinized, followed by pathway enrichment analysis. Validation for their potential as targets included assessments for survival, druggability, prognostic marker status, secretome annotation, protein expression, and cell type marker association. Results displayed critical genes in the metastatic cascade and those specific to metastatic sites, revealing the involvement of the collagen degradation and assembly of collagen fibrils and other multimeric structure pathways in driving metastasis. Notably, pivotal cascade genes FABP4, CXCL12, APOD, and IGF1 emerged with high metastatic potential, linked to significant druggability and survival scores, establishing them as potential molecular targets. The significance of this research lies in its potential to uncover novel biomarkers for early detection, therapeutic targets, and a deeper understanding of the molecular mechanisms underpinning the metastatic cascade in breast cancer, and with an eye to precision/personalized medicine.
Collapse
Affiliation(s)
- Bikashita Kalita
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
14
|
Huang Z, Fu Y, Yang H, Zhou Y, Shi M, Li Q, Liu W, Liang J, Zhu L, Qin S, Hong H, Liu Y. Liquid biopsy in T-cell lymphoma: biomarker detection techniques and clinical application. Mol Cancer 2024; 23:36. [PMID: 38365716 PMCID: PMC10874034 DOI: 10.1186/s12943-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
T-cell lymphoma is a highly invasive tumor with significant heterogeneity. Invasive tissue biopsy is the gold standard for acquiring molecular data and categorizing lymphoma patients into genetic subtypes. However, surgical intervention is unfeasible for patients who are critically ill, have unresectable tumors, or demonstrate low compliance, making tissue biopsies inaccessible to these patients. A critical need for a minimally invasive approach in T-cell lymphoma is evident, particularly in the areas of early diagnosis, prognostic monitoring, treatment response, and drug resistance. Therefore, the clinical application of liquid biopsy techniques has gained significant attention in T-cell lymphoma. Moreover, liquid biopsy requires fewer samples, exhibits good reproducibility, and enables real-time monitoring at molecular levels, thereby facilitating personalized health care. In this review, we provide a comprehensive overview of the current liquid biopsy biomarkers used for T-cell lymphoma, focusing on circulating cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), Epstein-Barr virus (EBV) DNA, antibodies, and cytokines. Additionally, we discuss their clinical application, detection methodologies, ongoing clinical trials, and the challenges faced in the field of liquid biopsy.
Collapse
Affiliation(s)
- Zongyao Huang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Fu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Yang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Min Shi
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qingyun Li
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junheng Liang
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Liuqing Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Sheng Qin
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yang Liu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
15
|
Abd ELhafeez AS, Ghanem HM, Swellam M, Taha AM. Involvement of FAM170B-AS1, hsa-miR-1202, and hsa-miR-146a-5p in breast cancer. Cancer Biomark 2024; 39:313-333. [PMID: 38250762 PMCID: PMC11091646 DOI: 10.3233/cbm-230396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND FAM170B-AS1 is usually expressed low in all organs except for testicular tissues. No study was performed to explore its role in breast cancer (BC). Contradictory results were reported about hsa-miR-1202 and hsa-miR-146a-5p in BC. OBJECTIVE The present study aimed to explore the involvement of FAM170B-AS1 in BC using bioinformatics predictive tools, followed by a practical validation besides exploring the impact of hsa-miR-1202 and hsa-miR-146a-5p in BC. METHODS This study enrolled 96 female patients with BC, 30 patients with benign breast diseases (BBD), and 25 control subjects. The expressions of circulating FAM170B-AS1, hsa-miR-1202, and hsa-miR-146a-5p were quantified using qRT-PCR. These ncRNAs' associations, predictive, and diagnostic roles in BC were statistically tested. The underlying miRNA/mRNA targets of FAM170B-AS1 in BC were bioinformatically predicted followed by confirmation based on the GEPIA and TCGA databases. RESULTS The expression of FAM170B-AS1 was upregulated in sera of BC patients and hsa-miR-1202 was upregulated in sera of BBD and BC patients while that of hsa-miR-146a-5p was downregulated in BC. These FAM170B-AS1 was significantly associated with BC when compared to BBD. FAM170B-AS1 and hsa-miR-1202 were statistically associated with the BC's stage, grade, and LN metastasis. FAM170B-AS1 and hsa-miR-146a-5p gave the highest specificity and sensitivity for BC. KRAS and EGFR were predicted to be targeted by FAM170B-AS1 through interaction with hsa-miR-143-3p and hsa-miR-7-5p, respectively. Based on the TCGA database, cancer patients having mutations in FAM170B show good overall survival. CONCLUSIONS The present study reported that for the first time, FAM170B-AS1 may be a potential risk factor, predictive, and diagnostic marker for BC. In addition, FAM170B-AS1 might be involved in BC by interacting with hsa-miR-143-3p/KRAS and hsa-miR-7-5p/EGFR through enhancement or repression that may present a new therapeutic option for BC.
Collapse
Affiliation(s)
| | - Hala Mostafa Ghanem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Menha Swellam
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic laboratory, Central Laboratories Network and the Centers of Excellence, National Research Centre, Dokki, Giza, Egypt
| | | |
Collapse
|
16
|
Nie C, Shaw I, Chen C. Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review. J Pharm Anal 2023; 13:1429-1451. [PMID: 38223444 PMCID: PMC10785256 DOI: 10.1016/j.jpha.2023.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
With the continuous discovery and research of predictive cancer-related biomarkers, liquid biopsy shows great potential in cancer diagnosis. Surface-enhanced Raman scattering (SERS) and microfluidic technology have received much attention among the various cancer biomarker detection methods. The former has ultrahigh detection sensitivity and can provide a unique fingerprint. In contrast, the latter has the characteristics of miniaturization and integration, which can realize accurate control of the detection samples and high-throughput detection through design. Both have the potential for point-of-care testing (POCT), and their combination (lab-on-a-chip SERS (LoC-SERS)) shows good compatibility. In this paper, the basic situation of circulating proteins, circulating tumor cells, exosomes, circulating tumor DNA (ctDNA), and microRNA (miRNA) in the diagnosis of various cancers is reviewed, and the detection research of these biomarkers by the LoC-SERS platform in recent years is described in detail. At the same time, the challenges and future development of the platform are discussed at the end of the review. Summarizing the current technology is expected to provide a reference for scholars engaged in related work and interested in this field.
Collapse
Affiliation(s)
- Changhong Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
17
|
Shen L, Huang H, Wei Z, Chen W, Li J, Yao Y, Zhou J, Liu J, Sun S, Xia W, Zhang T, Yu X, Shen J, Wang W, Jiang J, Huang J, Jiang M, Ni C. Integrated transcriptomics, proteomics, and functional analysis to characterize the tissue-specific small extracellular vesicle network of breast cancer. MedComm (Beijing) 2023; 4:e433. [PMID: 38053815 PMCID: PMC10694390 DOI: 10.1002/mco2.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
Small extracellular vesicles (sEVs) are essential mediators of intercellular communication within the tumor microenvironment (TME). Although the biological features of sEVs have been characterized based on in vitro culture models, recent evidence indicates significant differences between sEVs derived from tissue and those derived from in vitro models in terms of both content and biological function. However, comprehensive comparisons and functional analyses are still limited. Here, we collected sEVs from breast cancer tissues (T-sEVs), paired normal tissues (N-sEVs), corresponding plasma (B-sEVs), and tumor organoids (O-sEVs) to characterize their transcriptomic and proteomic profiles. We identified the actual cancer-specific sEV signatures characterized by enriched cell adhesion and immunomodulatory molecules. Furthermore, we revealed the significant contribution of cancer-associated fibroblasts in the sEV network within the TME. In vitro model-derived sEVs did not entirely inherit the extracellular matrix- and immunity regulation-related features of T-sEVs. Also, we demonstrated the greater immunostimulatory ability of T-sEVs on macrophages and CD8+ T cells compared to O-sEVs. Moreover, certain sEV biomarkers derived from noncancer cells in the circulation exhibited promising diagnostic potential. This study provides valuable insights into the functional characteristics of tumor tissue-derived sEVs, highlighting their potential as diagnostic markers and therapeutic agents for breast cancer.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Huanhuan Huang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Zichen Wei
- Center for Genetic MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Department of AnesthesiologyTaihe HospitalHubei University of MedicineShiyanChina
| | - Wuzhen Chen
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jiaxin Li
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Yao Yao
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jun Zhou
- Department of Breast SurgeryAffiliated Hangzhou First People's HospitalZhejiang UniversityHangzhouChina
| | - Jian Liu
- Department of Breast SurgeryAffiliated Hangzhou First People's HospitalZhejiang UniversityHangzhouChina
| | - Shanshan Sun
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Wenjie Xia
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhouChina
| | - Ting Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
- Department of Radiation OncologySecond Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Xiuyan Yu
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jun Shen
- Department of Surgical OncologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
| | - Weilan Wang
- Department of Breast SurgeryChangxing People's HospitalHuzhouChina
| | - Jingxin Jiang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jian Huang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Ming Jiang
- Center for Genetic MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersHangzhouChina
| | - Chao Ni
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
18
|
Saroj S, Paul D, Ali A, Andreou C, Pal S, Rakshit T. Probing Aberrantly Glycosylated Mucin 1 in Breast Cancer Extracellular Vesicles. ACS APPLIED BIO MATERIALS 2023; 6:4944-4951. [PMID: 37824707 DOI: 10.1021/acsabm.3c00651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Aberrantly glycosylated mucin 1 is a critical prognostic biomarker in breast epithelial cancers. Hypoglycosylated mucin 1 coats the surface of the cancer cells, where O-glycans are predominantly linked via an N-acetylgalactosamine moiety (GalNAc). Cancer cell-derived extracellular vesicles (EVs) carry biomarkers from parent cancer cells to the recipient cells and, therefore, could potentially be leveraged for diagnostics and noninvasive disease monitoring. We devised a label-free approach for identifying glycoprotein mucin 1 overexpression on breast cancer EVs. While exploring a plethora of biochemical (enzyme-linked immunosorbent assay, flow cytometry, and SDS-PAGE) and label-free biophysical techniques (circular dichroism and infrared spectroscopy (IR)) along with multivariate analysis, we discovered that mucin 1 is significantly overexpressed in breast cancer EVs and aberrant glycosylation in mucin 1 could be critically addressed using IR and multivariate analysis targeting the GalNAc sugar. This approach emerges as a convenient and comprehensive method of distinguishing cancer EVs from normal samples and holds potential for nonintrusive breast cancer liquid biopsy screening.
Collapse
Affiliation(s)
- Saroj Saroj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Debashish Paul
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Akbar Ali
- Department of Chemistry, Indian Institute of Technology, IIT Bhilai, Durg, Chhattisgarh 491001, India
| | - Chrysafis Andreou
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 20537, Cyprus
| | - Suchetan Pal
- Department of Chemistry, Indian Institute of Technology, IIT Bhilai, Durg, Chhattisgarh 491001, India
- Department of Bioscience and Biomedical Engineering, IIT Bhilai, Bhilai, Chhattisgarh 491001, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
19
|
Winter P, Fuksiewicz M, Jagiello-Gruszfeld A, Nowecki Z, Kotowicz B. Expression of Soluble Form of Aurora A as a Predictive Factor for Neoadjuvant Therapy in Breast Cancer Patients: A Single-Center Pilot Study. Cancers (Basel) 2023; 15:5446. [PMID: 38001709 PMCID: PMC10670120 DOI: 10.3390/cancers15225446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE To search for new predictive breast cancer biomarkers. We analyzed the serum concentrations of biomarkers involved in carcinogenesis, which can also be targeted by therapy. METHODS In a single-center prospective study, the serum levels of Aurora A, thymidine kinase 1, and human epidermal growth factor receptor type 3 (HER3) were determined in 119 women with BC before neoadjuvant treatment using ELISA kits. RESULTS The following clinical data were analyzed: age; TNM; the expression of ER, PGR, HER2, and Ki67; histological grade (G); and the response to neoadjuvant treatment (NAT) in the residual tumor burden classification (RCB). A complete pathological response (pCR) was achieved after NAT in 41 patients (34%). The highest proportion of the patients with a confirmed pCR was found for triple negative breast cancer (TNBC) (62.5%); non-luminal HER2-positive (52.6%) cancer subtypes (p = 0.0003); and in the G3 group (50%; p = 0.0078). The patients with higher levels of Aurora A were more likely to achieve pCR (p = 0.039). In the multivariate analysis, the serum Aurora A levels ≥ 4.75 ng/mL correlated with a higher rate of pCR (OR: 3.5; 95% CI: 1.2-10.1; p = 0.023). CONCLUSIONS We showed that in a biologically heterogeneous group of BC patients, the pretreatment serum Aurora A levels were of significant value in predicting the response to NAT.
Collapse
Affiliation(s)
- Pawel Winter
- Breast Cancer and Reconstructive Surgery Department, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (P.W.); (A.J.-G.); (Z.N.)
| | - Malgorzata Fuksiewicz
- Cancer Biomarker and Cytokines Laboratory Unit, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Agnieszka Jagiello-Gruszfeld
- Breast Cancer and Reconstructive Surgery Department, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (P.W.); (A.J.-G.); (Z.N.)
| | - Zbigniew Nowecki
- Breast Cancer and Reconstructive Surgery Department, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (P.W.); (A.J.-G.); (Z.N.)
| | - Beata Kotowicz
- Cancer Biomarker and Cytokines Laboratory Unit, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
20
|
Swaminathan H, Saravanamurali K, Yadav SA. Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med Oncol 2023; 40:238. [PMID: 37442848 DOI: 10.1007/s12032-023-02111-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
As the most frequent and vulnerable malignancy among women, breast cancer universally manifests a formidable healthcare challenge. From a biological and molecular perspective, it is a heterogenous disease and is stratified based on the etiological factors driving breast carcinogenesis. Notably, genetic predispositions and epigenetic impacts often constitute the heterogeneity of this disease. Typically, breast cancer is classified intrinsically into histological subtypes in clinical landscapes. These stratifications empower physicians to tailor precise treatments among the spectrum of breast cancer therapeutics. In this pursuit, numerous prognostic algorithms are extensively characterized, drastically changing how breast cancer is portrayed. Therefore, it is a basic requisite to comprehend the multidisciplinary rationales of breast cancer to assist the evolution of novel therapeutic strategies. This review aims at highlighting the molecular and genetic grounds of cancer additionally with therapeutic and phytotherapeutic context. Substantially, it also renders researchers with an insight into the breast cancer cell lines as a model paradigm for breast cancer research interventions.
Collapse
Affiliation(s)
- Harshini Swaminathan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - K Saravanamurali
- Virus Research and Diagnostics Laboratory, Department of Microbiology, Coimbatore Medical College, Coimbatore, India
| | - Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
| |
Collapse
|
21
|
Motyka J, Kicman A, Kulesza M, Ławicki S. CXC ELR-Positive Chemokines as Diagnostic and Prognostic Markers for Breast Cancer Patients. Cancers (Basel) 2023; 15:3118. [PMID: 37370728 DOI: 10.3390/cancers15123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
As the most common type of malignant lesison, breast cancer is a leading challenge for clinicians. Currently, diagnosis is based on self-examination and imaging studies that require confirmation by tissue biopsy. However, there are no easily accessible diagnostic tools that can serve as diagnostic and prognostic markers for breast cancer patients. One of the possible candidates for such markers is a group of chemokines that are closely implicated in each stage of tumorigenesis. Many researchers have noted the potential of this molecule group to become tumor markers and have tried to establish their clinical utility. In this work, we summarize the results obtained by scientists on the usefulness of the ELR-positive CXC group of chemokines in ancillary diagnosis of breast cancer.
Collapse
Affiliation(s)
- Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland
| | - Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
22
|
Safari F, Kehelpannala C, Safarchi A, Batarseh AM, Vafaee F. Biomarker Reproducibility Challenge: A Review of Non-Nucleotide Biomarker Discovery Protocols from Body Fluids in Breast Cancer Diagnosis. Cancers (Basel) 2023; 15:2780. [PMID: 37345117 DOI: 10.3390/cancers15102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Breast cancer has now become the most commonly diagnosed cancer, accounting for one in eight cancer diagnoses worldwide. Non-invasive diagnostic biomarkers and associated tests are superlative candidates to complement or improve current approaches for screening, early diagnosis, or prognosis of breast cancer. Biomarkers detected from body fluids such as blood (serum/plasma), urine, saliva, nipple aspiration fluid, and tears can detect breast cancer at its early stages in a minimally invasive way. The advancements in high-throughput molecular profiling (omics) technologies have opened an unprecedented opportunity for unbiased biomarker detection. However, the irreproducibility of biomarkers and discrepancies of reported markers have remained a major roadblock to clinical implementation, demanding the investigation of contributing factors and the development of standardised biomarker discovery pipelines. A typical biomarker discovery workflow includes pre-analytical, analytical, and post-analytical phases, from sample collection to model development. Variations introduced during these steps impact the data quality and the reproducibility of the findings. Here, we present a comprehensive review of methodological variations in biomarker discovery studies in breast cancer, with a focus on non-nucleotide biomarkers (i.e., proteins, lipids, and metabolites), highlighting the pre-analytical to post-analytical variables, which may affect the accurate identification of biomarkers from body fluids.
Collapse
Affiliation(s)
- Fatemeh Safari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Cheka Kehelpannala
- BCAL Diagnostics Ltd., Suite 506, 50 Clarence St, Sydney, NSW 2000, Australia
- BCAL Dx, The University of Sydney, Sydney Knowledge Hub, Merewether Building, Sydney, NSW 2006, Australia
| | - Azadeh Safarchi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
- Microbiomes for One Systems Health, Health and Biosecurity, CSIRO, Westmead, NSW 2145, Australia
| | - Amani M Batarseh
- BCAL Diagnostics Ltd., Suite 506, 50 Clarence St, Sydney, NSW 2000, Australia
- BCAL Dx, The University of Sydney, Sydney Knowledge Hub, Merewether Building, Sydney, NSW 2006, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
- UNSW Data Science Hub (uDASH), University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
- OmniOmics.ai Pty Ltd., Sydney, NSW 2035, Australia
| |
Collapse
|
23
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
24
|
Negahdary M, Angnes L. Recent advances in electrochemical nanomaterial-based aptasensors for the detection of cancer biomarkers. Talanta 2023; 259:124548. [PMID: 37062088 DOI: 10.1016/j.talanta.2023.124548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
New technologies have provided suitable tools for rapid diagnosis of cancer which can reduce treatment costs and even increase patients' survival rates. Recently, the development of electrochemical aptamer-based nanobiosensors has raised great hopes for early, sensitive, selective, and low-cost cancer diagnosis. Here, we reviewed the flagged recent research (2021-2023) developed as a series of biosensors equipped with nanomaterials and aptamer sequences (nanoaptasensors) to diagnose/prognosis of various types of cancers. Equipping these aptasensors with nanomaterials and using advanced biomolecular technologies have provided specified biosensing interfaces for more optimal and reliable detection of cancer biomarkers. The primary intention of this review was to present and categorize the latest innovations used in the design of these diagnostic tools, including the hottest surface modifications and assembly of sensing bioplatforms considering diagnostic mechanisms. The main classification is based on applying various nanomaterials and sub-classifications considered based on the type of analyte and other vital features. This review may help design subsequent electrochemical aptasensors. Likewise, the up-to-date status, remaining limitations, and possible paths for translating aptasensors to clinical cancer assay tools can be clarified.
Collapse
Affiliation(s)
- Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
25
|
Čelešnik H, Potočnik U. Blood-Based mRNA Tests as Emerging Diagnostic Tools for Personalised Medicine in Breast Cancer. Cancers (Basel) 2023; 15:1087. [PMID: 36831426 PMCID: PMC9954278 DOI: 10.3390/cancers15041087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Molecular diagnostic tests help clinicians understand the underlying biological mechanisms of their patients' breast cancer (BC) and facilitate clinical management. Several tissue-based mRNA tests are used routinely in clinical practice, particularly for assessing the BC recurrence risk, which can guide treatment decisions. However, blood-based mRNA assays have only recently started to emerge. This review explores the commercially available blood mRNA diagnostic assays for BC. These tests enable differentiation of BC from non-BC subjects (Syantra DX, BCtect), detection of small tumours <10 mm (early BC detection) (Syantra DX), detection of different cancers (including BC) from a single blood sample (multi-cancer blood test Aristotle), detection of BC in premenopausal and postmenopausal women and those with high breast density (Syantra DX), and improvement of diagnostic outcomes of DNA testing (variant interpretation) (+RNAinsight). The review also evaluates ongoing transcriptomic research on exciting possibilities for future assays, including blood transcriptome analyses aimed at differentiating lymph node positive and negative BC, distinguishing BC and benign breast disease, detecting ductal carcinoma in situ, and improving early detection further (expression changes can be detected in blood up to eight years before diagnosing BC using conventional approaches, while future metastatic and non-metastatic BC can be distinguished two years before BC diagnosis).
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
26
|
Djokoski F, Kadifkova Panovska T, Hiljadnikova-Bajro M. Proteomic markers in breast cancer diagnosis and treatment. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Filip Djokoski
- Faculty of Pharmacy, Institute of Applied Biochemistry, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| | - Tatjana Kadifkova Panovska
- Faculty of Pharmacy, Institute of Applied Biochemistry, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| | - Marija Hiljadnikova-Bajro
- Faculty of Pharmacy, Institute of Applied Biochemistry, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| |
Collapse
|
27
|
Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Yi X, Huang D, Li Z, Wang X, Yang T, Zhao M, Wu J, Zhong T. The role and application of small extracellular vesicles in breast cancer. Front Oncol 2022; 12:980404. [PMID: 36185265 PMCID: PMC9515427 DOI: 10.3389/fonc.2022.980404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related deaths in women worldwide. Currently, patients’ survival remains a challenge in BC due to the lack of effective targeted therapies and the difficult condition of patients with higher aggressiveness, metastasis and drug resistance. Small extracellular vesicles (sEVs), which are nanoscale vesicles with lipid bilayer envelopes released by various cell types in physiological and pathological conditions, play an important role in biological information transfer between cells. There is growing evidence that BC cell-derived sEVs may contribute to the establishment of a favorable microenvironment that supports cancer cells proliferation, invasion and metastasis. Moreover, sEVs provide a versatile platform not only for the diagnosis but also as a delivery vehicle for drugs. This review provides an overview of current new developments regarding the involvement of sEVs in BC pathogenesis, including tumor proliferation, invasion, metastasis, immune evasion, and drug resistance. In addition, sEVs act as messenger carriers carrying a variety of biomolecules such as proteins, nucleic acids, lipids and metabolites, making them as potential liquid biopsy biomarkers for BC diagnosis and prognosis. We also described the clinical applications of BC derived sEVs associated MiRs in the diagnosis and treatment of BC along with ongoing clinical trials which will assist future scientific endeavors in a more organized direction.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
29
|
Saunders CM. Breast surgery: a narrative review. Med J Aust 2022; 217:262-267. [PMID: 35988063 PMCID: PMC9541238 DOI: 10.5694/mja2.51678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Breast cancer is the commonest human cancer globally and one in seven Australian women will develop it in their lifetime. Surgery is the mainstay of management both for women who are at high risk of breast cancer and for those who have been diagnosed. Increased understanding of how to predict who is most at risk of breast cancer is leading to the possibility of risk‐based screening, allowing better and more targeted early detection for women at high risk, and contrast imaging techniques are proving more accurate in diagnosing and staging cancer. The evolution of surgical practice includes the widespread use of oncoplastic surgery, allowing better cosmetic and oncological outcomes; reconstructive surgical advances, using free flap techniques; and sequencing of systemic and local therapies to better tailor treatments to the patient’s cancer and improve outcomes. Recognition of side effects of breast cancer treatment have led to improvement in the management of conditions such as chronic pain and lymphoedema, as well as addressing the psychosocial, body image and sexual complications caused by the cancer and its treatment.
Collapse
|
30
|
Carmona-Ule N, Gal N, Abuín Redondo C, De La Fuente Freire M, López López R, Dávila-Ibáñez AB. Peptide-Functionalized Nanoemulsions as a Promising Tool for Isolation and Ex Vivo Culture of Circulating Tumor Cells. Bioengineering (Basel) 2022; 9:380. [PMID: 36004905 PMCID: PMC9405120 DOI: 10.3390/bioengineering9080380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Circulating Tumor Cells (CTCs) are shed from primary tumors and travel through the blood, generating metastases. CTCs represents a useful tool to understand the biology of metastasis in cancer disease. However, there is a lack of standardized protocols to isolate and culture them. In our previous work, we presented oil-in-water nanoemulsions (NEs) composed of lipids and fatty acids, which showed a benefit in supporting CTC cultures from metastatic breast cancer patients. Here, we present Peptide-Functionalized Nanoemulsions (Pept-NEs), with the aim of using them as a tool for CTC isolation and culture in situ. Therefore, NEs from our previous work were surface-decorated with the peptides Pep10 and GE11, which act as ligands towards the specific cell membrane proteins EpCAM and EGFR, respectively. We selected the best surface to deposit a layer of these Pept-NEs through a Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) method. Next, we validated the specific recognition of Pept-NEs for their protein targets EpCAM and EGFR by QCM-D and fluorescence microscopy. Finally, a layer of Pept-NEs was deposited in a culture well-plate, and cells were cultured on for 9 days in order to confirm the feasibility of the Pept-NEs as a cell growth support. This work presents peptide-functionalized nanoemulsions as a basis for the development of devices for the isolation and culture of CTCs in situ due to their ability to specifically interact with membrane proteins expressed in CTCs, and because cells are capable of growing on top of them.
Collapse
Affiliation(s)
- Nuria Carmona-Ule
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Hospital Gil Casares, 15706 Santiago de Compostela, Spain
| | - Noga Gal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Carmen Abuín Redondo
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Hospital Gil Casares, 15706 Santiago de Compostela, Spain
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - María De La Fuente Freire
- Cancer Network Research (CIBERONC), 28029 Madrid, Spain
- Nano-Oncology Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Rafael López López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Hospital Gil Casares, 15706 Santiago de Compostela, Spain
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), 28029 Madrid, Spain
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Ana Belén Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Hospital Gil Casares, 15706 Santiago de Compostela, Spain
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
31
|
Liu X, Papukashvili D, Wang Z, Liu Y, Chen X, Li J, Li Z, Hu L, Li Z, Rcheulishvili N, Lu X, Ma J. Potential utility of miRNAs for liquid biopsy in breast cancer. Front Oncol 2022; 12:940314. [PMID: 35992785 PMCID: PMC9386533 DOI: 10.3389/fonc.2022.940314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) remains the most prevalent malignancy due to its incidence rate, recurrence, and metastasis in women. Conventional strategies of cancer detection– mammography and tissue biopsy lack the capacity to detect the complete cancer genomic landscape. Besides, they often give false- positive or negative results. The presence of this and other disadvantages such as invasiveness, high-cost, and side effects necessitates developing new strategies to overcome the BC burden. Liquid biopsy (LB) has been brought to the fore owing to its early detection, screening, prognosis, simplicity of the technique, and efficient monitoring. Remarkably, microRNAs (miRNAs)– gene expression regulators seem to play a major role as biomarkers detected in the samples of LB. Particularly, miR-21 and miR-155 among other possible candidates seem to serve as favorable biomarkers in the diagnosis and prognosis of BC. Hence, this review will assess the potential utility of miRNAs as biomarkers and will highlight certain promising candidates for the LB approach in the diagnosis and management of BC that may optimize the patient outcome.
Collapse
Affiliation(s)
- Xiangrong Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhixiang Wang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yan Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoxia Chen
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jianrong Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhiyuan Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Linjie Hu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zheng Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| | - Jinfeng Ma
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| |
Collapse
|
32
|
Graphene Oxide and Fluorescent-Aptamer-Based Novel Aptasensors for Detection of Metastatic Colorectal Cancer Cells. Polymers (Basel) 2022; 14:polym14153040. [PMID: 35956554 PMCID: PMC9370758 DOI: 10.3390/polym14153040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Early diagnosis of metastatic colorectal cancer (mCRC) is extremely critical to improve treatment and extend survival. W3 is an aptamer that can specifically bind to mCRC cells with high affinity. Graphene oxide (GO) is a two-dimensional graphitic carbon nanomaterial, which has widely used in constructing biosensors. In this study, we have developed a no-wash fluorescent aptasensor for one-step and sensitive detection of mCRC LoVo cells. It is based on fluorescence resonance energy transfer (FRET) between GO and the W3 aptamer labeled with 5-carboxyfluorescein (FAM). GO can quench the green fluorescence of the FAM-labeled W3 (FAM-W3). In the presence of the target cells, FAM-W3 preferentially binds the target cells and detaches from the surface of GO, leading to the fluorescence of FAM recovery. It was demonstrated that the fluorescence recovery increases linearly in a wide range of 0~107 cells/mL (R2 = 0.99). The GO-based FAM-labeled W3 aptasensor (denoted as FAM-W3-GO) not only specifically recognizes mCRC cell lines (LoVo and HCT116), but also sensitively differentiates the target cells from mixed cells, even in the presence of only 5% of the target cells. Furthermore, FAM-W3-GO was applied to detect LoVo cells in human whole blood, which showed good reproducibility with an RSD range of 1.49% to 1.80%. Therefore, FAM-W3-GO may have great potential for early diagnosis of mCRC. This strategy of GO-based fluorescent aptasensor provides a simple, one-step, and highly sensitive approach for the detection of mCRC cells.
Collapse
|
33
|
Hu Y, Xie J, Chen L, Tang Q, Wei W, Lin W, Du W, Xiang T, Yin L, Ji J. Integrated Analysis of Genomic and Transcriptomic Profiles Identified the Role of GTP Binding Protein-4 (GTPBP4) in Breast Cancer. Front Pharmacol 2022; 13:880445. [PMID: 35784753 PMCID: PMC9243593 DOI: 10.3389/fphar.2022.880445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To explore the significance of GTP-binding protein 4 (GTPBP4) in breast cancer. Methods: Firstly, GTPBP4 expression analysis was performed in TIMER and UALCAN databases. Subsequently, the TCGA cohort and multiple Gene Expression Omnibus Cohorts were used as validation for GTPBP4 expression. Besides, we also evaluated the diagnostic value of GTPBP4 in TCGA Cohort and multiple GEO Cohorts. The predictive effect of GTPBP4 in breast cancer was then assessed using survival analysis. Then we look at the role of GTPBP4 in the immune milieu and create a Nomogram to help patients with breast cancer understand their prognosis. Finally, in vitro tests were carried out to look at GTPBP4 expression and function in breast cancer cell lines. Results: GTPBP4 is an independent breast cancer prognostic factor that is upregulated in the disease (p < 0.05). Enrichment analysis showed that GTPBP4 was associated with multiple functions and pathways. In addition, GTPBP4 is associated with a variety of immune cell types (p < 0.05). PCR assay showed that GTPBP4 expression was up-regulated in breast cancer cell lines. The activity, migration, and proliferation of breast cancer cells were considerably reduced after GTPBP4 knockdown in the CCK-8, Transwell, and Scratch assays. Conclusions: Our research discovered a new breast cancer biomarker that can be used as a guide for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yiming Hu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wei Wei
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Wenfeng Lin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wang Du
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Tinghong Xiang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Yin
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Ji
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Jing Ji,
| |
Collapse
|
34
|
Wu HJ, Chu PY. Current and Developing Liquid Biopsy Techniques for Breast Cancer. Cancers (Basel) 2022; 14:2052. [PMID: 35565189 PMCID: PMC9105073 DOI: 10.3390/cancers14092052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and leading cause of cancer mortality among woman worldwide. The techniques of diagnosis, prognosis, and therapy monitoring of breast cancer are critical. Current diagnostic techniques are mammography and tissue biopsy; however, they have limitations. With the development of novel techniques, such as personalized medicine and genetic profiling, liquid biopsy is emerging as the less invasive tool for diagnosing and monitoring breast cancer. Liquid biopsy is performed by sampling biofluids and extracting tumor components, such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free mRNA (cfRNA) and microRNA (miRNA), proteins, and extracellular vehicles (EVs). In this review, we summarize and focus on the recent discoveries of tumor components and biomarkers applied in liquid biopsy and novel development of detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and microfluidic devices.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| |
Collapse
|
35
|
The EGFR Signaling Modulates in Mesenchymal Stem Cells the Expression of miRNAs Involved in the Interaction with Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14071851. [PMID: 35406622 PMCID: PMC8997927 DOI: 10.3390/cancers14071851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
We previously demonstrated that the epidermal growth factor receptor (EGFR) modulates in mesenchymal stem cells (MSCs) the expression of a number of genes coding for secreted proteins that promote breast cancer progression. However, the role of the EGFR in modulating in MSCs the expression of miRNAs potentially involved in the progression of breast cancer remains largely unexplored. Following small RNA-sequencing, we identified 36 miRNAs differentially expressed between MSCs untreated or treated with the EGFR ligand transforming growth factor α (TGFα), with a fold change (FC) < 0.56 or FC ≥ 1.90 (CI, 95%). KEGG analysis revealed a significant enrichment in signaling pathways involved in cancer development and progression. EGFR activation in MSCs downregulated the expression of different miRNAs, including miR-23c. EGFR signaling also reduced the secretion of miR-23c in conditioned medium from MSCs. Functional assays demonstrated that miR-23c acts as tumor suppressor in basal/claudin-low MDA-MB-231 and MDA-MB-468 cells, through the repression of IL-6R. MiR-23c downregulation promoted cell proliferation, migration and invasion of these breast cancer cell lines. Collectively, our data suggested that the EGFR signaling regulates in MSCs the expression of miRNAs that might be involved in breast cancer progression, providing novel information on the mechanisms that regulate the MSC-tumor cell cross-talk.
Collapse
|
36
|
Richard V, Davey MG, Annuk H, Miller N, Kerin MJ. The double agents in liquid biopsy: promoter and informant biomarkers of early metastases in breast cancer. Mol Cancer 2022; 21:95. [PMID: 35379239 PMCID: PMC8978379 DOI: 10.1186/s12943-022-01506-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Breast cancer continues to be a major global problem with significant mortality associated with advanced stage and metastases at clinical presentation. However, several findings suggest that metastasis is indeed an early occurrence. The standard diagnostic techniques such as invasive core needle biopsy, serological protein marker assays, and non-invasive radiological imaging do not provide information about the presence and molecular profile of small fractions of early metastatic tumor cells which are prematurely dispersed in the circulatory system. These circulating tumor cells (CTCs) diverge from the primary tumors as clusters with a defined secretome comprised of circulating cell-free nucleic acids and small microRNAs (miRNAs). These circulatory biomarkers provide a blueprint of the mutational profile of the tumor burden and tumor associated alterations in the molecular signaling pathways involved in oncogenesis. Amidst the multitude of circulatory biomarkers, miRNAs serve as relatively stable and precise biomarkers in the blood for the early detection of CTCs, and promote step-wise disease progression by executing paracrine signaling that transforms the microenvironment to guide the metastatic CTCs to anchor at a conducive new organ. Random sampling of easily accessible patient blood or its serum/plasma derivatives and other bodily fluids collectively known as liquid biopsy (LB), forms an efficient alternative to tissue biopsies. In this review, we discuss in detail the divergence of early metastases as CTCs and the involvement of miRNAs as detectable blood-based diagnostic biomarkers that warrant a timely screening of cancer, serial monitoring of therapeutic response, and the dynamic molecular adaptations induced by miRNAs on CTCs in guiding primary and second-line systemic therapy.
Collapse
|
37
|
Chiang CC, Lin GL, Yang SY, Tu CW, Huang WL, Wei CF, Wang FC, Lin PJ, Huang WH, Chuang YM, Lee YT, Yeh CC, Chan M, Hsu YC. PCDHB15 as a potential tumor suppressor and epigenetic biomarker for breast cancer. Oncol Lett 2022; 23:117. [PMID: 35261631 PMCID: PMC8855166 DOI: 10.3892/ol.2022.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is among the most frequently diagnosed cancer types and the leading cause of cancer-related death in women. The mortality rate of patients with breast cancer is currently increasing, perhaps due to a lack of early screening tools. In the present study, using The Cancer Genome Atlas (TCGA) breast cancer dataset (n=883), it was determined that methylation of the protocadherin β15 (PCDHB15) promoter was higher in breast cancer samples than that in normal tissues. A negative association between promoter methylation and expression of PCDHB15 was observed in the TCGA dataset and breast cancer cell lines. In TCGA cohort, lower PCDHB15 expression was associated with shorter relapse-free survival times. Treatment with the DNA methyltransferase inhibitor restored PCDHB15 expression in a breast cancer cell line; however, overexpression of PCDHB15 was shown to suppress colony formation. PCDHB15 methylation detected in circulating cell-free DNA (cfDNA) isolated from serum samples was higher in patients with breast cancer (40.8%) compared with that in patients with benign tumors (22.4%). PCDHB15 methylation was not correlated with any clinical parameters. Taken together, PCDHB15 is a potential tumor suppressor in cases of breast cancer, which can be epigenetically silenced via promoter methylation. PCDHB15 methylation using cfDNA is a novel minimally invasive epigenetic biomarker for the diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Ching-Chung Chiang
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Guan-Ling Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Shu-Yi Yang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Chi-Wen Tu
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Wen-Long Huang
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan, R.O.C
| | - Chun-Feng Wei
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Feng-Chi Wang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Pin-Ju Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Wan-Hong Huang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Ming Chuang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Ting Lee
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Chia-Chou Yeh
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan, R.O.C
| | - Michael Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Chen Hsu
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| |
Collapse
|