1
|
Koumpis E, Papoudou-Bai A, Papathanasiou K, Kolettas E, Kanavaros P, Hatzimichael E. Unraveling the Immune Microenvironment in Diffuse Large B-Cell Lymphoma: Prognostic and Potential Therapeutic Implications. Curr Issues Mol Biol 2024; 46:7048-7064. [PMID: 39057061 PMCID: PMC11276293 DOI: 10.3390/cimb46070420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a multifaceted condition characterized by significant diversity in its molecular and pathological subtypes and clinical manifestation. Despite the progress made in the treatment of DLBCL through the development of novel drugs, an estimated one-third of patients encounter relapse or acquire refractory disease. The tumor microenvironment (TME) of DLBCL, a complex network consisting of cellular and noncellular components that engage in interactions with the tumor, is a parameter that is gaining increasing attention. The TME comprises both the immune and nonimmune microenvironments. The immune microenvironment comprises natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, myeloid-derived suppressor cells (MDSCs), and T and B lymphocytes. The nonimmune microenvironment consists of the extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells, and other molecules that are secreted. Despite ongoing research, the exact impact of these components and their interaction on the progression of the disease remains elusive. A comprehensive review of significant discoveries concerning the cellular and noncellular constituents, molecular characteristics, and treatment response and prognosis of the TME in DLBCL, as well as the potential targeting of the TME with novel therapeutic approaches, is provided in this article.
Collapse
Affiliation(s)
- Epameinondas Koumpis
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece;
| | - Konstantina Papathanasiou
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Evangelos Kolettas
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
- Biomedical Research Institute, Foundation for Research and Technology, 45 110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| |
Collapse
|
2
|
Amini L, Kaeda J, Weber O, Reinke P. Low-dose Interleukin-2 Therapy: Fine-tuning Treg in Solid Organ Transplantation? Transplantation 2024; 108:1492-1508. [PMID: 38294829 PMCID: PMC11188637 DOI: 10.1097/tp.0000000000004866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 02/01/2024]
Abstract
Regulatory T cells (Treg), a subset of CD4 + T cells, are potent regulators of immune reactions, which have been shown to be a promising therapeutic alternative to toxic immunosuppressive drugs. Data support the utility of Treg in managing immunopathologies, including solid organ transplant rejection, graft-versus-host disease, and autoimmune disorders. Notably, reports suggest that interleukin-2 (IL-2) is critical to survival of Treg, which constitutively express high levels of CD25, that is, the IL-2 receptor α-chain, and are exquisitely sensitive to IL-2, even at very low concentrations in contrast to effector T cells, which only upregulate IL-2 receptor α-chain on activation. This has led to the notion of using low doses of exogenous IL-2 therapeutically to modulate the immune system, specifically Treg numbers and function. Here, we summarize developments of clinical experience with low-dose IL-2 (LD-IL-2) as a therapeutic agent. So far, no clinical data are available to support the therapeutic use of LD-IL-2 therapy in the solid organ transplant setting. For the latter, fine-tuning by biotechnological approaches may be needed because of the narrow therapeutic window and off-target effects of LD-IL-2 therapy and so to realize the therapeutic potential of this molecule.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health – Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jaspal Kaeda
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Weber
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), University of Bonn, Bonn, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health – Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Park HJ, Shin MS, Shin JJ, Kim H, Kang B, Par-Young J, Unlu S, Afinogenova Y, Catanzaro J, Young J, Kim M, Lee SJ, Jeon S, You S, Racke MK, Bucala R, Kang I. IL-1 receptor 1 signaling shapes the development of viral antigen-specific CD4 + T cell responses following COVID-19 mRNA vaccination. EBioMedicine 2024; 103:105114. [PMID: 38640835 PMCID: PMC11041015 DOI: 10.1016/j.ebiom.2024.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND The innate immune cytokine interleukin (IL)-1 can affect T cell immunity, a critical factor in host defense. In a previous study, we identified a subset of human CD4+ T cells which express IL-1 receptor 1 (IL-1R1). However, the expression of such receptor by viral antigen-specific CD4+ T cells and its biological implication remain largely unexplored. This led us to investigate the implication of IL-1R1 in the development of viral antigen-specific CD4+ T cell responses in humans, including healthy individuals and patients with primary antibody deficiency (PAD), and animals. METHODS We characterized CD4+ T cells specific for SARS-CoV-2 spike (S) protein, influenza virus, and cytomegalovirus utilizing multiplexed single cell RNA-seq, mass cytometry and flow cytometry followed by an animal study. FINDINGS In healthy individuals, CD4+ T cells specific for viral antigens, including S protein, highly expressed IL-1R1. IL-1β promoted interferon (IFN)-γ expression by S protein-stimulated CD4+ T cells, supporting the functional implication of IL-1R1. Following the 2nd dose of COVID-19 mRNA vaccines, S protein-specific CD4+ T cells with high levels of IL-1R1 increased, likely reflecting repetitive antigenic stimulation. The expression levels of IL-1R1 by such cells correlated with the development of serum anti-S protein IgG antibody. A similar finding of increased expression of IL-1R1 by S protein-specific CD4+ T cells was also observed in patients with PAD following COVID-19 mRNA vaccination although the expression levels of IL-1R1 by such cells did not correlate with the levels of serum anti-S protein IgG antibody. In mice immunized with COVID-19 mRNA vaccine, neutralizing IL-1R1 decreased IFN-γ expression by S protein-specific CD4+ T cells and the development of anti-S protein IgG antibody. INTERPRETATION Our results demonstrate the significance of IL-1R1 expression in CD4+ T cells for the development of viral antigen-specific CD4+ T cell responses, contributing to humoral immunity. This provides an insight into the regulation of adaptive immune responses to viruses via the IL-1 and IL-1R1 interface. FUNDING Moderna to HJP, National Institutes of Health (NIH) 1R01AG056728 and R01AG055362 to IK and KL2 TR001862 to JJS, Quest Diagnostics to IK and RB, and the Mathers Foundation to RB.
Collapse
Affiliation(s)
- Hong-Jai Park
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Min Sun Shin
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Junghee J Shin
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hyoungsu Kim
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Internal Medicine, Hallym University School of Medicine, Chuncheon, Gangwon-do, 24252, South Korea
| | - Byunghyun Kang
- Mucosal Immunology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Jennefer Par-Young
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Serhan Unlu
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yuliya Afinogenova
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jason Catanzaro
- Section of Pulmonary, Allergy, Immunology and Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Juan Young
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Minhyung Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sang Jin Lee
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, 41944, South Korea
| | - Sangchoon Jeon
- Yale University School of Nursing, West Haven, CT, 06516, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | - Richard Bucala
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Insoo Kang
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Bhattacharya D, Theodoropoulos J, Nurmi K, Juutilainen T, Eklund KK, Koivuniemi R, Kelkka T, Mustjoki S, Lönnberg T. Single-cell characterisation of tissue homing CD4 + and CD8 + T cell clones in immune-mediated refractory arthritis. Mol Med 2024; 30:48. [PMID: 38594612 PMCID: PMC11005137 DOI: 10.1186/s10020-024-00802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Immune-mediated arthritis is a group of autoinflammatory diseases, where the patient's own immune system attacks and destroys synovial joints. Sustained remission is not always achieved with available immunosuppressive treatments, warranting more detailed studies of T cell responses that perpetuate synovial inflammation in treatment-refractory patients. METHODS In this study, we investigated CD4 + and CD8 + T lymphocytes from the synovial tissue and peripheral blood of patients with treatment-resistant immune-mediated arthritis using paired single-cell RNA and TCR-sequencing. To gain insights into the trafficking of clonal families, we compared the phenotypes of clones with the exact same TCRß amino acid sequence between the two tissues. RESULTS Our results show that both CD4 + and CD8 + T cells display a more activated and inflamed phenotype in the synovial tissue compared to peripheral blood both at the population level and within individual T cell families. Furthermore, we found that both cell subtypes exhibited clonal expansion in the synovial tissue. CONCLUSIONS Our findings suggest that the local environment in the synovium drives the proliferation of activated cytotoxic T cells, and both CD4 + and CD8 + T cells may contribute to tissue destruction and disease pathogenesis.
Collapse
Affiliation(s)
- Dipabarna Bhattacharya
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jason Theodoropoulos
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Katariina Nurmi
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Faculty of Medicine, Clinicum, Translational Immunology Program, University of Helsinki, Helsinki, Finland
| | | | - Kari K Eklund
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Faculty of Medicine, Clinicum, Translational Immunology Program, University of Helsinki, Helsinki, Finland
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riitta Koivuniemi
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tiina Kelkka
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFlames Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
5
|
Guo Y, Chen J, Huang Y, Ke S, Xie F, Li D, Li B, Lu H. Increased infiltration of CD4 + IL-17A + FOXP3 + T cells in Helicobacter pylori-induced gastritis. Eur J Immunol 2024; 54:e2350662. [PMID: 38366919 DOI: 10.1002/eji.202350662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Helicobacter pylori is one of the main predisposing factors for gastric cancer, causing chronic inflammation and proper glands atrophy in the gastric mucosa. Although H. pylori-induced inflammation is a key inducer of precancerous lesions in the gastric mucosa, it remains unclear which precise immune cell subsets are responsible for the progression of H. pylori-induced gastritis. Here, we observed an abundance of CD4+ IL-17A+ FOXP3+ T cells exhibiting a Th17-like phenotype within the microenvironment of H. pylori-induced gastritis. Mechanistically, H. pylori upregulated the expression of IL-6 in Dendritic cells and macrophages, by activating NF-κB signaling through the virulence factor CagA and thus, induced IL-17A expression in FOXP3+ T cells. Moreover, CD4+ IL-17A+ FOXP3+ T cells were positively associated with advanced precancerous lesions. Therefore, these findings offer essential insights into how FOXP3+ T cells sense inflammatory signals from the environment, such as IL-6, during H. pylori infections, thereby guiding the effector immune response and aggravating the gastritis.
Collapse
Affiliation(s)
- Yixian Guo
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinnan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Huang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shouyu Ke
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Xie
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Lee J, Park N, Nicosia M, Park JY, Pruett SB, Seo KS. Stimulation Strength Determined by Superantigen Dose Controls Subcellular Localization of FOXP3 Isoforms and Suppressive Function of CD4+CD25+FOXP3+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:421-432. [PMID: 38108423 PMCID: PMC10784726 DOI: 10.4049/jimmunol.2300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Staphylococcal superantigens induce massive activation of T cells and inflammation, leading to toxic shock syndrome. Paradoxically, increasing evidence indicates that superantigens can also induce immunosuppression by promoting regulatory T cell (Treg) development. In this study, we demonstrate that stimulation strength plays a critical role in superantigen-mediated induction of immunosuppressive human CD4+CD25+FOXP3+ T cells. Suboptimal stimulation by a low dose (1 ng/ml) of staphylococcal enterotoxin C1 (SEC1) led to de novo generation of Treg-like CD4+CD25+FOXP3+ T cells with strong suppressive activity. In contrast, CD4+CD25+ T cells induced by optimal stimulation with high-dose SEC1 (1 µg/ml) were not immunosuppressive, despite high FOXP3 expression. Signal transduction pathway analysis revealed differential activation of the PI3K signaling pathway and expression of PTEN in optimal and suboptimal stimulation with SEC1. Additionally, we identified that FOXP3 isoforms in Treg-like cells from the suboptimal condition were located in the nucleus, whereas FOXP3 in nonsuppressive cells from the optimal condition localized in cytoplasm. Sequencing analysis of FOXP3 isoform transcripts identified five isoforms, including a FOXP3 isoform lacking partial exon 3. Overexpression of FOXP3 isoforms confirmed that both an exon 2-lacking isoform and a partial exon 3-lacking isoform confer suppressive activity. Furthermore, blockade of PI3K in optimal stimulation conditions led to induction of suppressive Treg-like cells with nuclear translocation of FOXP3, suggesting that PI3K signaling impairs induction of Tregs in a SEC1 dose-dependent manner. Taken together, these data demonstrate that the strength of activation signals determined by superantigen dose regulates subcellular localization of FOXP3 isoforms, which confers suppressive functionality.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Nogi Park
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Joo Youn Park
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Stephen B. Pruett
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| |
Collapse
|
7
|
Cassano A, Chong AS, Alegre ML. Tregs in transplantation tolerance: role and therapeutic potential. FRONTIERS IN TRANSPLANTATION 2023; 2:1217065. [PMID: 38993904 PMCID: PMC11235334 DOI: 10.3389/frtra.2023.1217065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 07/13/2024]
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) are indispensable for preventing autoimmunity, and they play a role in cancer and transplantation settings by restraining immune responses. In this review, we describe evidence for the importance of Tregs in the induction versus maintenance of transplantation tolerance, discussing insights into mechanisms of Treg control of the alloimmune response. Further, we address the therapeutic potential of Tregs as a clinical intervention after transplantation, highlighting engineered CAR-Tregs as well as expansion of donor and host Tregs.
Collapse
Affiliation(s)
- Alexandra Cassano
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anita S. Chong
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Georgoulis V, Papoudou-Bai A, Makis A, Kanavaros P, Hatzimichael E. Unraveling the Immune Microenvironment in Classic Hodgkin Lymphoma: Prognostic and Therapeutic Implications. BIOLOGY 2023; 12:862. [PMID: 37372147 PMCID: PMC10294989 DOI: 10.3390/biology12060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Classic Hodgkin lymphoma (cHL) is a lymphoid neoplasm composed of rare neoplastic Hodgkin and Reed-Sternberg (HRS) cells surrounded by a reactive tumor microenvironment (TME) with suppressive properties against anti-tumor immunity. TME is mainly composed of T cells (CD4 helper, CD8 cytotoxic and regulatory) and tumor-associated macrophages (TAMs), but the impact of these cells on the natural course of the disease is not absolutely understood. TME contributes to the immune evasion of neoplastic HRS cells through the production of various cytokines and/or the aberrant expression of immune checkpoint molecules in ways that have not been fully understood yet. Herein, we present a comprehensive review of findings regarding the cellular components and the molecular features of the immune TME in cHL, its correlation with treatment response and prognosis, as well as the potential targeting of the TME with novel therapies. Among all cells, macrophages appear to be a most appealing target for immunomodulatory therapies, based on their functional plasticity and antitumor potency.
Collapse
Affiliation(s)
- Vasileios Georgoulis
- Department of Hematology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Alexandra Papoudou-Bai
- Department of Pathology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Alexandros Makis
- Department of Child Health, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 000 Ioannina, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| |
Collapse
|
9
|
Backman M, Strell C, Lindberg A, Mattsson JSM, Elfving H, Brunnström H, O'Reilly A, Bosic M, Gulyas M, Isaksson J, Botling J, Kärre K, Jirström K, Lamberg K, Pontén F, Leandersson K, Mezheyeuski A, Micke P. Spatial immunophenotyping of the tumour microenvironment in non-small cell lung cancer. Eur J Cancer 2023; 185:40-52. [PMID: 36963351 DOI: 10.1016/j.ejca.2023.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 02/12/2023] [Indexed: 03/12/2023]
Abstract
INTRODUCTION Immune cells in the tumour microenvironment are associated with prognosis and response to therapy. We aimed to comprehensively characterise the spatial immune phenotypes in the mutational and clinicopathological background of non-small cell lung cancer (NSCLC). METHODS We established a multiplexed fluorescence imaging pipeline to spatially quantify 13 immune cell subsets in 359 NSCLC cases: CD4 effector cells (CD4-Eff), CD4 regulatory cells (CD4-Treg), CD8 effector cells (CD8-Eff), CD8 regulatory cells (CD8-Treg), B-cells, natural killer cells, natural killer T-cells, M1 macrophages (M1), CD163+ myeloid cells (CD163), M2 macrophages (M2), immature dendritic cells (iDCs), mature dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs). RESULTS CD4-Eff cells, CD8-Eff cells and M1 macrophages were the most abundant immune cells invading the tumour cell compartment and indicated a patient group with a favourable prognosis in the cluster analysis. Likewise, single densities of lymphocytic subsets (CD4-Eff, CD4-Treg, CD8-Treg, B-cells and pDCs) were independently associated with longer survival. However, when these immune cells were located close to CD8-Treg cells, the favourable impact was attenuated. In the multivariable Cox regression model, including cell densities and distances, the densities of M1 and CD163 cells and distances between cells (CD8-Treg-B-cells, CD8-Eff-cancer cells and B-cells-CD4-Treg) demonstrated positive prognostic impact, whereas short M2-M1 distances were prognostically unfavourable. CONCLUSION We present a unique spatial profile of the in situ immune cell landscape in NSCLC as a publicly available data set. Cell densities and cell distances contribute independently to prognostic information on clinical outcomes, suggesting that spatial information is crucial for diagnostic use.
Collapse
Affiliation(s)
- Max Backman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Amanda Lindberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johanna S M Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hedvig Elfving
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Aine O'Reilly
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martina Bosic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miklos Gulyas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Isaksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Klas Kärre
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Kristina Lamberg
- Department of Respiratory Medicine, Akademiska Sjukhuset, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Norouzian M, Mehdipour F, Ashraf MJ, Khademi B, Ghaderi A. Regulatory and effector T cell subsets in tumor-draining lymph nodes of patients with squamous cell carcinoma of head and neck. BMC Immunol 2022; 23:56. [PMCID: PMC9664675 DOI: 10.1186/s12865-022-00530-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
A crucial role for the immune system has been proposed in the establishment and progression of head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the cytokine and regulatory profiles of T cells in tumor draining lymph nodes (TDLNs) of patients with HNSCC.
Results
The frequencies of CD4+TNF-α+ and CD4+TNF-αhi negatively were associated with poor prognostic factors such as LN involvement (P = 0.015 and P = 0.019, respectively), stage of the disease (P = 0.032 and P = 0.010, respectively) and tumor size (P = 0.026 and P = 0.032, respectively). Frequencies of CD8+IFN-γ+ and CD8+IFN-γ+ TNF-α+ T cells showed negative relationship with tumor grade (P = 0.035 and P = 0.043, respectively). While, the frequencies of CD4+IL-4+, CD8+IL-10+, CD8+IL-4+T cells were higher in advanced stages of the disease (P = 0.042, P = 0.041 and P = 0.030, respectively) and CD4+IFN-γ+TNF-α−, CD8+IL-4+ and CD8+IFN-γ+TNF-α− T cells were higher in patients with larger tumor size (P = 0.026 and P = 0.032, respectively). Negative associations were found between the frequencies of CD4+CD25+Foxp3+ and CD4+CD25+Foxp3+CD127low/− Treg cells and cancer stage (P = 0.015 and P = 0.059).
Conclusion
This study shed more lights on the changes in immune profile of T cells in TDLNs of HNSCC. Larger tumor size and/or LN involvement were associated with lower frequencies of CD4+TNF-α+, CD8+IFN-γ+ and CD8+IFN-γ+TNF-α+ but higher frequency of CD4+IL-4+ T cells. Moreover, Foxp3+Tregs correlated with good prognostic indicators.
Collapse
|
11
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
12
|
Alfaar AS, Stürzbecher L, Diedrichs-Möhring M, Lam M, Roubeix C, Ritter J, Schumann K, Annamalai B, Pompös IM, Rohrer B, Sennlaub F, Reichhart N, Wildner G, Strauß O. FoxP3 expression by retinal pigment epithelial cells: transcription factor with potential relevance for the pathology of age-related macular degeneration. J Neuroinflammation 2022; 19:260. [PMID: 36273134 PMCID: PMC9588251 DOI: 10.1186/s12974-022-02620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background Forkhead-Box-Protein P3 (FoxP3) is a transcription factor and marker of regulatory T cells, converting naive T cells into Tregs that can downregulate the effector function of other T cells. We previously detected the expression of FoxP3 in retinal pigment epithelial (RPE) cells, forming the outer blood–retina barrier of the immune privileged eye. Methods We investigated the expression, subcellular localization, and phosphorylation of FoxP3 in RPE cells in vivo and in vitro after treatment with various stressors including age, retinal laser burn, autoimmune inflammation, exposure to cigarette smoke, in addition of IL-1β and mechanical cell monolayer destruction. Eye tissue from humans, mouse models of retinal degeneration and rats, and ARPE-19, a human RPE cell line for in vitro experiments, underwent immunohistochemical, immunofluorescence staining, and PCR or immunoblot analysis to determine the intracellular localization and phosphorylation of FoxP3. Cytokine expression of stressed cultured RPE cells was investigated by multiplex bead analysis. Depletion of the FoxP3 gene was performed with CRISPR/Cas9 editing. Results RPE in vivo displayed increased nuclear FoxP3-expression with increases in age and inflammation, long-term exposure of mice to cigarette smoke, or after laser burn injury. The human RPE cell line ARPE-19 constitutively expressed nuclear FoxP3 under non-confluent culture conditions, representing a regulatory phenotype under chronic stress. Confluently grown cells expressed cytosolic FoxP3 that was translocated to the nucleus after treatment with IL-1β to imitate activated macrophages or after mechanical destruction of the monolayer. Moreover, with depletion of FoxP3, but not of a control gene, by CRISPR/Cas9 gene editing decreased stress resistance of RPE cells. Conclusion Our data suggest that FoxP3 is upregulated by age and under cellular stress and might be important for RPE function. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02620-w.
Collapse
Affiliation(s)
- Ahmad Samir Alfaar
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.,Department of Ophthalmology, University Hospital of Ulm, 89075, Ulm, Germany
| | - Lucas Stürzbecher
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Maria Diedrichs-Möhring
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Marion Lam
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Christophe Roubeix
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Julia Ritter
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Kathrin Schumann
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Balasubramaniam Annamalai
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Inga-Marie Pompös
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Bärbel Rohrer
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Florian Sennlaub
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany.
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.
| |
Collapse
|
13
|
Low Activation of CD8+ T Cells in response to Viral Peptides in Mexican Patients with Severe Dengue. J Immunol Res 2022; 2022:9967594. [PMID: 35372587 PMCID: PMC8975689 DOI: 10.1155/2022/9967594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
It is acknowledged that antiviral immune response contributes to dengue immunopathogenesis. To identify immunological markers that distinguish dengue fever (DF) and dengue hemorrhagic fever (DHF), 113 patients with confirmed dengue infection were analyzed at 6 or 7 days after fever onset. Peripheral blood mononuclear cells (PBMC) were isolated, lymphocyte subsets and activation biomarkers were identified by flow cytometry, and differentiation of T helper (Th) lymphocytes was achieved by the relative expression analysis of T-bet (Th1), GATA-3 (Th2), ROR-γ (Th17), and FOXP-3 (T regulatory) transcription factors quantified by real-time PCR. CD8+, CD40L+, and CD45+ cells show higher numbers in DF compared to DHF patients, whereas CD4+, CD19+, and CD25+ cells show higher numbers in DHF than DF patients. High expression of GATA-3 accompanied by low expression of T-bet indicates predominance of Th2 response. In addition, higher expression of FOXP-3 and reduced functional cytotoxic T cells (CD8+perforin+) were observed in DHF patients. In further experiments, PBMC were stimulated ex vivo with dengue virus E, NS3, NS4, and NS5 peptides, and proliferating T cell subsets were determined. Lower proliferative responses to NS3 and NS4 peptides and reduced CD8+ cytotoxic T cells were observed in DHF patients. Our results suggest that immune response to dengue is dysregulated with predominance of CD4+ T cells, low activation of Th1 cells, and downregulation of the antiviral cytotoxic activity during severe dengue, likely induced by regulatory T cells.
Collapse
|
14
|
TCR-induced FOXP3 expression by CD8 + T cells impairs their anti-tumor activity. Cancer Lett 2022; 528:45-58. [PMID: 34973390 DOI: 10.1016/j.canlet.2021.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/09/2021] [Accepted: 12/25/2021] [Indexed: 11/23/2022]
Abstract
Adoptive cell transfer therapy using CD8+ T lymphocytes showed promising results eradicating metastatic malignancies. However, several regulatory mechanisms limit its efficacy. We studied the role of the expression of the transcription factor FOXP3 on CD8+ T cell function and anti-tumor immunity. Here we show that suboptimal T cell receptor stimulation of CD8+ T cells upregulates FOXP3 in vitro. Similarly, CD8 T cells transferred into tumor-bearing mice upregulate FOXP3 in vivo. Cell-intrinsic loss of FOXP3 by CD8+ T cells resulted in improved functionality after TCR stimulation and better antitumor responses in vivo. Inhibition of the FOXP3/NFAT interaction likewise improved CD8+ T cell functionality. Transcriptomic analysis of cells after TCR stimulation revealed an enrichment of genes implicated in the response to IFN-γ, IFN-α, inflammatory response, IL-6/JAK/STAT, G2M checkpoint and IL-2/STAT signaling in FOXP3-deficient CD8+ T cells with respect to FOXP3-wt CD8+ T cells. Our results suggest that transient expression of FOXP3 by CD8+ T cells in the tumor microenvironment restrains their anti-tumor activity, with clear implications for improving T cell responses during immunotherapy.
Collapse
|
15
|
Volta V, Pérez-Baos S, de la Parra C, Katsara O, Ernlund A, Dornbaum S, Schneider RJ. A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells. Nat Commun 2021; 12:6979. [PMID: 34848685 PMCID: PMC8632918 DOI: 10.1038/s41467-021-27087-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Treg cells) inhibit effector T cells and maintain immune system homeostasis. Treg cell maturation in peripheral sites requires inhibition of protein kinase mTORC1 and TGF-beta-1 (TGF-beta). While Treg cell maturation requires protein synthesis, mTORC1 inhibition downregulates it, leaving unanswered how Treg cells achieve essential mRNA translation for development and immune suppression activity. Using human CD4+ T cells differentiated in culture and genome-wide transcription and translation profiling, here we report that TGF-beta transcriptionally reprograms naive T cells to express Treg cell differentiation and immune suppression mRNAs, while mTORC1 inhibition impairs translation of T cell mRNAs but not those induced by TGF-beta. Rather than canonical mTORC1/eIF4E/eIF4G translation, Treg cell mRNAs utilize the eIF4G homolog DAP5 and initiation factor eIF3d in a non-canonical translation mechanism that requires cap-dependent binding by eIF3d directed by Treg cell mRNA 5' noncoding regions. Silencing DAP5 in isolated human naive CD4+ T cells impairs their differentiation into Treg cells. Treg cell differentiation is mediated by mTORC1 downregulation and TGF-beta transcriptional reprogramming that establishes a DAP5/eIF3d-selective mechanism of mRNA translation.
Collapse
Affiliation(s)
- Viviana Volta
- Synthis LLC, 430 East 29th Street, Launch Labs, Alexandria Center for Life Sciences, New York, NY, 10016, USA
| | - Sandra Pérez-Baos
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Columba de la Parra
- Department of Chemistry, Herbert H. Lehman College, City University of New York, The Graduate Center, Biochemistry Ph.D. Program, City University of New York, New York, NY, 10016, USA
| | - Olga Katsara
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Amanda Ernlund
- Johns Hopkins Applied Physics Lab, 11000 Johns Hopkins Road, Laurel, MD, 20723, USA
| | - Sophie Dornbaum
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
16
|
Cortés-Hernández A, Alvarez-Salazar EK, Arteaga-Cruz S, Rosas-Cortina K, Linares N, Alberú Gómez JM, Soldevila G. Highly Purified Alloantigen-Specific Tregs From Healthy and Chronic Kidney Disease Patients Can Be Long-Term Expanded, Maintaining a Suppressive Phenotype and Function in the Presence of Inflammatory Cytokines. Front Immunol 2021; 12:686530. [PMID: 34777330 PMCID: PMC8581357 DOI: 10.3389/fimmu.2021.686530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023] Open
Abstract
The adoptive transfer of alloantigen-specific regulatory T cells (alloTregs) has been proposed as a therapeutic alternative in kidney transplant recipients to the use of lifelong immunosuppressive drugs that cause serious side effects. However, the clinical application of alloTregs has been limited due to their low frequency in peripheral blood and the scarce development of efficient protocols to ensure their purity, expansion, and stability. Here, we describe a new experimental protocol that allows the long-term expansion of highly purified allospecific natural Tregs (nTregs) from both healthy controls and chronic kidney disease (CKD) patients, which maintain their phenotype and suppressive function under inflammatory conditions. Firstly, we co-cultured CellTrace Violet (CTV)-labeled Tregs from CKD patients or healthy individuals with allogeneic monocyte-derived dendritic cells in the presence of interleukin 2 (IL-2) and retinoic acid. Then, proliferating CD4+CD25hiCTV− Tregs (allospecific) were sorted by fluorescence-activated cell sorting (FACS) and polyclonally expanded with anti-CD3/CD28-coated beads in the presence of transforming growth factor beta (TGF-β), IL-2, and rapamycin. After 4 weeks, alloTregs were expanded up to 2,300 times the initial numbers with a purity of >95% (CD4+CD25hiFOXP3+). The resulting allospecific Tregs showed high expressions of CTLA-4, LAG-3, and CD39, indicative of a highly suppressive phenotype. Accordingly, expanded alloTregs efficiently suppressed T-cell proliferation in an antigen-specific manner, even in the presence of inflammatory cytokines (IFN-γ, IL-4, IL-6, or TNF-α). Unexpectedly, the long-term expansion resulted in an increased methylation of the specific demethylated region of Foxp3. Interestingly, alloTregs from both normal individuals and CKD patients maintained their immunosuppressive phenotype and function after being expanded for two additional weeks under an inflammatory microenvironment. Finally, phenotypic and functional evaluation of cryopreserved alloTregs demonstrated the feasibility of long-term storage and supports the potential use of this cellular product for personalized Treg therapy in transplanted patients.
Collapse
Affiliation(s)
- Arimelek Cortés-Hernández
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Evelyn Katy Alvarez-Salazar
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Saúl Arteaga-Cruz
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Katya Rosas-Cortina
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nadyeli Linares
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Josefina M Alberú Gómez
- National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Vanhaver C, van der Bruggen P, Bruger AM. MDSC in Mice and Men: Mechanisms of Immunosuppression in Cancer. J Clin Med 2021; 10:jcm10132872. [PMID: 34203451 PMCID: PMC8268873 DOI: 10.3390/jcm10132872] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand during pathological conditions in both humans and mice and their presence is linked to poor clinical outcomes for cancer patients. Studying MDSC immunosuppression is restricted by MDSCs’ rarity, short lifespan, heterogeneity, poor viability after freezing and the lack of MDSC-specific markers. In this review, we will compare identification and isolation strategies for human and murine MDSCs. We will also assess what direct and indirect immunosuppressive mechanisms have been attributed to MDSCs. While some immunosuppressive mechanisms are well-documented in mice, e.g., generation of ROS, direct evidence is still lacking in humans. In future, bulk or single-cell genomics could elucidate which phenotypic and functional phenotypes MDSCs adopt in particular microenvironments and help to identify potential targets for therapy.
Collapse
Affiliation(s)
- Christophe Vanhaver
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- Correspondence: (C.V.); (A.M.B.)
| | - Pierre van der Bruggen
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- WELBIO, Avenue Hippocrate 74, 1200 Brussels, Belgium
| | - Annika M. Bruger
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- Correspondence: (C.V.); (A.M.B.)
| |
Collapse
|
18
|
Horellou P, de Chalus A, Giorgi L, Leroy C, Chrétien P, Hacein-Bey-Abina S, Bourgeois C, Mariette X, Serguera C, Le Grand R, Deiva K. Regulatory T Cells Increase After rh-MOG Stimulation in Non-Relapsing but Decrease in Relapsing MOG Antibody-Associated Disease at Onset in Children. Front Immunol 2021; 12:679770. [PMID: 34220827 PMCID: PMC8243969 DOI: 10.3389/fimmu.2021.679770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Myelin oligodendrocytes glycoprotein (MOG) antibody-associated disease (MOGAD) represent 25% of pediatric acquired demyelinating syndrome (ADS); 40% of them may relapse, mimicking multiple sclerosis (MS), a recurrent and neurodegenerative ADS, which is MOG-Abs negative. Aims To identify MOG antigenic immunological response differences between MOGAD, MS and control patients, and between relapsing versus non-relapsing subgroups of MOGAD. Methods Three groups of patients were selected: MOGAD (n=12 among which 5 relapsing (MOGR) and 7 non-relapsing (MOGNR)), MS (n=10) and control patients (n=7). Peripheral blood mononuclear cells (PBMC) collected at the time of the first demyelinating event were cultured for 48 h with recombinant human (rh)-MOG protein (10 μg/ml) for a specific stimulation or without stimulation as a negative control. The T cells immunophenotypes were analyzed by flow cytometry. CD4+ T cells, T helper (Th) cells including Th1, Th2, and Th17 were analyzed by intracellular staining of cytokines. Regulatory T cells (Tregs, Foxp3+), CD45RA-Foxp3+ Tregs and subpopulation naive Tregs (CD45RA+Foxp3int), effector Tregs (CD45RA-Foxp3high) and non-suppressive Tregs (CD45RA-Foxp3int) proportions were determined. Results The mean onset age of each group, ranging from 9.9 to 13.8, and sex ratio, were similar between MOGR, MOGNR, MS and control patients as analyzed by one-way ANOVA and Chi-square test. When comparing unstimulated to rh-MOG stimulated T cells, a significant increase in the proportion of Th2 and Th17 cells was observed in MOGAD. Increase of Th17 cells was significant in MOGNR (means: 0.63 ± 0.15 vs. 1.36 ± 0.43; Wilcoxon-test p = 0.03) but not in MOGR. CD4+ Tregs were significantly increased in MOGNR (means: 3.51 ± 0.7 vs. 4.59 ± 1.33; Wilcoxon-test p = 0.046) while they decreased in MOGR. CD45RA-Foxp3+ Tregs were significantly decreased in MOGR (means: 2.37 ± 0.23 vs. 1.99 ± 0.17; paired t-test p = 0.021), but not in MOGNR. MOGR showed the highest ratio of effector Tregs/non suppressive-Tregs, which was significantly higher than in MOGNR. Conclusions Our findings suggest that CD4+ Th2 and Th17 cells are involved in the pathophysiology of MOGAD in children. The opposite response of Tregs to rh-MOG in MOGNR, where CD4+ Tregs increased, and in MOGR, where CD45RA-Foxp3+ Tregs decreased, suggests a probable loss of tolerance toward MOG autoantigen in MOGR which may explain relapses in this recurrent pediatric autoimmune disease.
Collapse
Affiliation(s)
- Philippe Horellou
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France
| | - Aliénor de Chalus
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Paris-Saclay University Hospitals, Bicêtre Hospital, Pediatric Neurology Department, Le Kremlin Bicêtre, France
| | - Laetitia Giorgi
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Paris-Saclay University Hospitals, Bicêtre Hospital, Pediatric Neurology Department, Le Kremlin Bicêtre, France
| | - Carole Leroy
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Paris-Saclay University Hospitals, Bicêtre Hospital, Pediatric Neurology Department, Le Kremlin Bicêtre, France
| | - Pascale Chrétien
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France.,Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France.,Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | | | - Xavier Mariette
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France.,Department of Rheumatology, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Ché Serguera
- Institut du Cerveau (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Paris-Saclay University Hospitals, Bicêtre Hospital, Pediatric Neurology Department, Le Kremlin Bicêtre, France.,National Referral Center for Rare Inflammatory and Auto-Immune Brain and Spinal Diseases (MIRCEM), Pediatric Neurology Department, Hôpital Bicêtre, AP-HP, Le Kremlin Bicêtre, France
| |
Collapse
|
19
|
Multiple sclerosis patients have reduced resting and increased activated CD4 +CD25 +FOXP3 +T regulatory cells. Sci Rep 2021; 11:10476. [PMID: 34006899 PMCID: PMC8131694 DOI: 10.1038/s41598-021-88448-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Resting and activated subpopulations of CD4+CD25+CD127loT regulatory cells (Treg) and CD4+CD25+CD127+ effector T cells in MS patients and in healthy individuals were compared. Peripheral blood mononuclear cells isolated using Ficoll Hypaque were stained with monoclonal antibodies and analysed by flow cytometer. CD45RA and Foxp3 expression within CD4+ cells and in CD4+CD25+CD127loT cells identified Population I; CD45RA+Foxp3+, Population II; CD45RA−Foxp3hi and Population III; CD45RA−Foxp3+ cells. Effector CD4+CD127+ T cells were subdivided into Population IV; memory /effector CD45RA− CD25−Foxp3− and Population V; effector naïve CD45RA+CD25−Foxp3−CCR7+ and terminally differentiated RA+ (TEMRA) effector memory cells. Chemokine receptor staining identified CXCR3+Th1-like Treg, CCR6+Th17-like Treg and CCR7+ resting Treg. Resting Treg (Population I) were reduced in MS patients, both in untreated and treated MS compared to healthy donors. Activated/memory Treg (Population II) were significantly increased in MS patients compared to healthy donors. Activated effector CD4+ (Population IV) were increased and the naïve/ TEMRA CD4+ (Population V) were decreased in MS compared to HD. Expression of CCR7 was mainly in Population I, whereas expression of CCR6 and CXCR3 was greatest in Populations II and intermediate in Population III. In MS, CCR6+Treg were lower in Population III. This study found MS is associated with significant shifts in CD4+T cells subpopulations. MS patients had lower resting CD4+CD25+CD45RA+CCR7+ Treg than healthy donors while activated CD4+CD25hiCD45RA−Foxp3hiTreg were increased in MS patients even before treatment. Some MS patients had reduced CCR6+Th17-like Treg, which may contribute to the activity of MS.
Collapse
|
20
|
Jiang M, Wu C, Zhang L, Sun C, Wang H, Xu Y, Sun H, Zhu J, Zhao W, Fang Q, Yu J, Chen P, Wu S, Zheng Z, He Y, Zhou C. FOXP3-based immune risk model for recurrence prediction in small-cell lung cancer at stages I-III. J Immunother Cancer 2021; 9:jitc-2021-002339. [PMID: 34006632 PMCID: PMC8137193 DOI: 10.1136/jitc-2021-002339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Immunotherapies may prolong the survival of patients with small-cell lung cancer (SCLC) to some extent. The role of forkhead box protein P3 (FOXP3) in tumor microenvironment (TME) remains controversial. We aimed to examine FOXP3-related expression characteristics and prognostic values and to develop a clinically relevant predictive system for SCLC. METHODS We enrolled 102 patients with histologically confirmed SCLC at stages I-III. Through immunohistochemistry, we determined the expression pattern of FOXP3 and its association with other immune biomarkers. By machine learning and statistical analysis, we constructed effective immune risk score models. Furthermore, we examined FOXP3-related enrichment pathways and TME traits in distinct cohorts. RESULTS In SCLC, FOXP3 level was significantly associated with status of programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), CD4, CD8, and CD3 (p=0.002, p=0.001, p=0.002, p=0.030, and p<0.001). High FOXP3 expression showed longer relapse-free survival (RFS) than the low-level group (41.200 months, 95% CI 26.937 to 55.463, vs 14.000 months, 95% CI 8.133 to 19.867; p=0.008). For tumor-infiltrating lymphocytes (TILs), subgroup analysis demonstrated FOXP3 and PD-1, PD-L1, lymphocyte activation gene-3, CD3, CD4, or CD8 double positive were significantly correlated with longer RFS. We further performed importance evaluation for immune biomarkers, constructed an immune risk score incorporating the top three important biomarkers, FOXP3, TIL PD-L1, and CD8, and found their independently prognostic role to predict SCLC relapse. Better predictive performance was achieved in this immune risk model compared with single-indicator-based or two-indicator-based prediction systems (area under the curve 0.715 vs 0.312-0.711). Then, relapse prediction system integrating clinical staging and immune risk score was established, which performed well in different cohorts. High FOXP3-related genes were enriched in several immune-related pathways, and the close relationships of interleukin-2, CD28, basic excision repair genes MUTYH, POLD1, POLD2, and oxidative phosphorylation related gene cytochrome c oxidase subunit 8A with FOXP3 expression were revealed. Moreover, we found low-immune risk score group had statistically higher activated CD4+ memory T cells (p=0.014) and plasma cells (p=0.049) than the high-risk group. The heterogeneity of tumor-infiltrating immune cells might represent a promising feature for risk prediction in SCLC. CONCLUSION FOXP3 interacts closely with immune biomarkers on tumor-infiltrating cells in TME. This study highlighted the crucial prognostic value and promising clinical applications of FOXP3 in SCLC.
Collapse
Affiliation(s)
- Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Liping Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Chenglong Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Yi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Hui Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Jun Zhu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Qiyu Fang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Jia Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Zixuan Zheng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| |
Collapse
|
21
|
Dolina JS, Lee J, Griswold RQ, Labarta-Bajo L, Kannan S, Greenbaum JA, Bahia El Idrissi N, Pont MJ, Croft M, Schoenberger SP. TLR9 Sensing of Self-DNA Controls Cell-Mediated Immunity to Listeria Infection via Rapid Conversion of Conventional CD4 + T Cells to T reg. Cell Rep 2021; 31:107249. [PMID: 32268093 PMCID: PMC8903023 DOI: 10.1016/j.celrep.2020.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/02/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T lymphocytes are crucial for controlling a range of innate and adaptive immune effectors. For CD8+ cytotoxic T lymphocyte (CTL) responses, CD4+ T cells can function as helpers (TH) to amplify magnitude and functionality or as regulatory cells (Treg) capable of profound inhibition. It is unclear what determines differentiation to these phenotypes and whether pathogens provoke alternate programs. We find that, depending on the size of initial dose, Listeria infection drives CD4+ T cells to act as TH or induces rapid polyclonal conversion to immunosuppressive Treg. Conversion to Treg depends on the TLR9 and IL-12 pathways elicited by CD8a+ dendritic cell (DC) sensing of danger-associated neutrophil self-DNA. These findings resolve long-standing questions regarding the conditional requirement for TH amongst pathogens and reveal a remarkable degree of plasticity in the function of CD4+ T cells, which can be quickly converted to Tregin vivo by infection-mediated immune modulation. Dolina et al. show that Listeria infectious dose drives conventional CD4+ T cells to act as TH or mediates conversion to Treg. Differentiation to Treg dominates heightened doses and is promoted by CD8α+ DC TLR9 engagement of neutrophil self-DNA and IL-12 production, revealing plasticity in the function of CD4+ T cells.
Collapse
Affiliation(s)
- Joseph S Dolina
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| | - Joey Lee
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ryan Q Griswold
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Lara Labarta-Bajo
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sumetha Kannan
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jason A Greenbaum
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nawal Bahia El Idrissi
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Neurogenetics, Academic Medical Center, Amsterdam, the Netherlands
| | - Margot J Pont
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen P Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Niederlova V, Tsyklauri O, Chadimova T, Stepanek O. CD8 + Tregs revisited: A heterogeneous population with different phenotypes and properties. Eur J Immunol 2021; 51:512-530. [PMID: 33501647 DOI: 10.1002/eji.202048614] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) play a key role in the peripheral self-tolerance and preventing autoimmunity. While classical CD4+ Foxp3+ Tregs are well established, their CD8+ counterparts are still controversial in many aspects including their phenotypic identity and their mechanisms of suppression. Because of these controversies and because of only a limited number of studies documenting the immunoregulatory function of CD8+ Tregs in vivo, the concept of CD8+ Tregs is still not unanimously accepted. We propose that any T-cell subset considered as true regulatory must be distinguishable from other cell types and must suppress in vivo immune responses via a known mechanism. In this article, we revisit the concept of CD8+ Tregs by focusing on the characterization of individual CD8+ T-cell subsets with proposed regulatory capacity separately. Therefore, we review the phenotype and function of CD8+ FOXP3+ T cells, CD8+ CD122+ T cells, CD8+ CD28low/- T cells, CD8+ CD45RClow T cells, T cells expressing CD8αα homodimer and Qa-1-restricted CD8+ T cells to show whether there is sufficient evidence to establish these subsets as bona fide Tregs. Based on the intrinsic ability of CD8+ Treg subsets to promote immune tolerance in animal models, we elaborate on their potential use in clinics.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Chadimova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
23
|
Xydia M, Rahbari R, Ruggiero E, Macaulay I, Tarabichi M, Lohmayer R, Wilkening S, Michels T, Brown D, Vanuytven S, Mastitskaya S, Laidlaw S, Grabe N, Pritsch M, Fronza R, Hexel K, Schmitt S, Müller-Steinhardt M, Halama N, Domschke C, Schmidt M, von Kalle C, Schütz F, Voet T, Beckhove P. Common clonal origin of conventional T cells and induced regulatory T cells in breast cancer patients. Nat Commun 2021; 12:1119. [PMID: 33602930 PMCID: PMC7893042 DOI: 10.1038/s41467-021-21297-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Regulatory CD4+ T cells (Treg) prevent tumor clearance by conventional T cells (Tconv) comprising a major obstacle of cancer immune-surveillance. Hitherto, the mechanisms of Treg repertoire formation in human cancers remain largely unclear. Here, we analyze Treg clonal origin in breast cancer patients using T-Cell Receptor and single-cell transcriptome sequencing. While Treg in peripheral blood and breast tumors are clonally distinct, Tconv clones, including tumor-antigen reactive effectors (Teff), are detected in both compartments. Tumor-infiltrating CD4+ cells accumulate into distinct transcriptome clusters, including early activated Tconv, uncommitted Teff, Th1 Teff, suppressive Treg and pro-tumorigenic Treg. Trajectory analysis suggests early activated Tconv differentiation either into Th1 Teff or into suppressive and pro-tumorigenic Treg. Importantly, Tconv, activated Tconv and Treg share highly-expanded clones contributing up to 65% of intratumoral Treg. Here we show that Treg in human breast cancer may considerably stem from antigen-experienced Tconv converting into secondary induced Treg through intratumoral activation.
Collapse
Affiliation(s)
- Maria Xydia
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany.
- Translational Immunology Department, German Cancer Research Centre, Heidelberg, Germany.
| | - Raheleh Rahbari
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
| | - Eliana Ruggiero
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Iain Macaulay
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
- Technical Development, Earlham Institute, Norwich, UK
| | - Maxime Tarabichi
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
- The Francis Crick Institute, London, UK
| | - Robert Lohmayer
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany
- Institute for Theoretical Physics, University of Regensburg, Regensburg, Germany
| | - Stefan Wilkening
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Tillmann Michels
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany
| | - Daniel Brown
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Sebastiaan Vanuytven
- The Francis Crick Institute, London, UK
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Svetlana Mastitskaya
- Medical Oncology Department, National Centre for Tumor Diseases, Heidelberg, Germany
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Sean Laidlaw
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
| | - Niels Grabe
- Medical Oncology Department, National Centre for Tumor Diseases, Heidelberg, Germany
- Hamamatsu Tissue Imaging and Analysis Centre, BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Maria Pritsch
- Translational Immunology Department, German Cancer Research Centre, Heidelberg, Germany
| | - Raffaele Fronza
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Klaus Hexel
- Flow Cytometry Core Facility, German Cancer Research Centre, Heidelberg, Germany
| | - Steffen Schmitt
- Flow Cytometry Core Facility, German Cancer Research Centre, Heidelberg, Germany
| | - Michael Müller-Steinhardt
- German Red Cross (DRK Blood Donation Service in Baden-Württemberg-Hessen) and Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Niels Halama
- Medical Oncology Department, National Centre for Tumor Diseases, Heidelberg, Germany
- Hamamatsu Tissue Imaging and Analysis Centre, BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Christoph Domschke
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, Heidelberg, Germany
| | - Manfred Schmidt
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Christof von Kalle
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
- Clinical Study Centre, Charité/BIH, Berlin, Germany
| | - Florian Schütz
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, Heidelberg, Germany
| | - Thierry Voet
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Philipp Beckhove
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany.
- Translational Immunology Department, German Cancer Research Centre, Heidelberg, Germany.
| |
Collapse
|
24
|
Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4 + T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020; 22:E73. [PMID: 33374787 PMCID: PMC7796221 DOI: 10.3390/ijms22010073] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.
Collapse
Affiliation(s)
- Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| |
Collapse
|
25
|
Drescher HK, Bartsch LM, Weiskirchen S, Weiskirchen R. Intrahepatic T H17/T Reg Cells in Homeostasis and Disease-It's All About the Balance. Front Pharmacol 2020; 11:588436. [PMID: 33123017 PMCID: PMC7566778 DOI: 10.3389/fphar.2020.588436] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Both acute and chronic hepatic inflammation likely result from an imbalance in the TH1/TH2 cell response and can lead to liver fibrosis and end-stage liver disease. More recently, a novel CD4+ T helper cell subset was described, characterized by the production of IL-17 and IL-22. These TH17 cells 50were predominantly implicated in host defense against infections and in autoimmune diseases. Interestingly, studies over the last 10 years revealed that the development of TH17 cells favors pro-inflammatory responses in almost all tissues and there is a reciprocal relationship between TH17 and TReg cells. The balance between TH17and TReg cells is critical for immune reactions, especially in injured liver tissue and the return to immune homeostasis. The pathogenic contribution of TH17 and TReg cells in autoimmunity, acute infection, and chronic liver injury is diverse and varies among disease etiologies. Understanding the mechanisms underlying TH17 cell development, recruitment, and maintenance, along with the suppression of TReg cells, will inform the development of new therapeutic strategies in liver diseases. Active manipulation of the balance between pathogenic and regulatory processes in the liver may assist in the restoration of homeostasis, especially in hepatic inflammation.
Collapse
Affiliation(s)
- Hannah K Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lea M Bartsch
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen, Aachen, Germany
| |
Collapse
|
26
|
Brown CY, Sadlon T, Hope CM, Wong YY, Wong S, Liu N, Withers H, Brown K, Bandara V, Gundsambuu B, Pederson S, Breen J, Robertson SA, Forrest A, Beyer M, Barry SC. Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease. Front Immunol 2020; 11:1269. [PMID: 33072063 PMCID: PMC7533603 DOI: 10.3389/fimmu.2020.01269] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
There has been much interest in the ability of regulatory T cells (Treg) to switch function in vivo, either as a result of genetic risk of disease or in response to environmental and metabolic cues. The relationship between levels of FOXP3 and functional fitness plays a significant part in this plasticity. There is an emerging role for Treg in tissue repair that may be less dependent on FOXP3, and the molecular mechanisms underpinning this are not fully understood. As a result of detailed, high-resolution functional genomics, the gene regulatory networks and key functional mediators of Treg phenotype downstream of FOXP3 have been mapped, enabling a mechanistic insight into Treg function. This transcription factor-driven programming of T-cell function to generate Treg requires the switching on and off of key genes that form part of the Treg gene regulatory network and raises the possibility that this is reversible. It is plausible that subtle shifts in expression levels of specific genes, including transcription factors and non-coding RNAs, change the regulation of the Treg gene network. The subtle skewing of gene expression initiates changes in function, with the potential to promote chronic disease and/or to license appropriate inflammatory responses. In the case of autoimmunity, there is an underlying genetic risk, and the interplay of genetic and environmental cues is complex and impacts gene regulation networks frequently involving promoters and enhancers, the regulatory elements that control gene expression levels and responsiveness. These promoter–enhancer interactions can operate over long distances and are highly cell type specific. In autoimmunity, the genetic risk can result in changes in these enhancer/promoter interactions, and this mainly impacts genes which are expressed in T cells and hence impacts Treg/conventional T-cell (Tconv) function. Genetic risk may cause the subtle alterations to the responsiveness of gene regulatory networks which are controlled by or control FOXP3 and its target genes, and the application of assays of the 3D organization of chromatin, enabling the connection of non-coding regulatory regions to the genes they control, is revealing the direct impact of environmental/metabolic/genetic risk on T-cell function and is providing mechanistic insight into susceptibility to inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Cheryl Y Brown
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Timothy Sadlon
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Women's and Children's Health Network, North Adelaide, SA, Australia
| | | | - Ying Y Wong
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Soon Wong
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Ning Liu
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - Holly Withers
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Katherine Brown
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Veronika Bandara
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Pederson
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - Sarah Anne Robertson
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Alistair Forrest
- QEII Medical Centre and Centre for Medical Research, Harry Perkins Institute of Medical Research, Murdoch, WA, Australia
| | - Marc Beyer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Simon Charles Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Women's and Children's Health Network, North Adelaide, SA, Australia
| |
Collapse
|
27
|
Zohouri M, Mehdipour F, Razmkhah M, Faghih Z, Ghaderi A. CD4 +CD25 -FoxP3 + T cells: a distinct subset or a heterogeneous population? Int Rev Immunol 2020; 40:307-316. [PMID: 32705909 DOI: 10.1080/08830185.2020.1797005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to generating effective immunity against infectious agents, the immune system helps to fight against different noninfectious human diseases while maintaining the balance between self and non-self discrimination. The breakdown of tolerance in autoimmune diseases or sustainable tolerance in an abnormal microenvironment such as chronic inflammation may initiate the process of malignancy. Immune system regulation is controlled by a complex, dynamic network of cells and mediators. Understanding the cellular and molecular basis of immune regulation provides better insight into the mechanisms governing the immune pathology of diseases. Among several cellular subsets and mediators with regulatory roles, a subpopulation of CD4+ T cells was recently reported to be positive for FoxP3 and negative for CD25, with a suggested range of functional activities in both cancer and autoimmune diseases. This CD4 subset was first reported in 2006 and thought to have a role in the pathogenesis of cancer. However, the spectrum of roles played by this T cell subset is broad, and no consensus has been reached regarding its immunological functions. In this review, we focused on the possible origin of CD4+CD25‒FoxP3+ T cells and their function in cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Mahshid Zohouri
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 2020; 19:116. [PMID: 32680511 PMCID: PMC7367382 DOI: 10.1186/s12943-020-01234-1] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) characterized by the expression of the master transcription factor forkhead box protein p3 (Foxp3) suppress anticancer immunity, thereby hindering protective immunosurveillance of tumours and hampering effective antitumour immune responses in tumour-bearing hosts, constitute a current research hotspot in the field. However, Tregs are also essential for the maintenance of the immune tolerance of the body and share many molecular signalling pathways with conventional T cells, including cytotoxic T cells, the primary mediators of tumour immunity. Hence, the inability to specifically target and neutralize Tregs in the tumour microenvironment without globally compromising self-tolerance poses a significant challenge. Here, we review recent advances in characterizing tumour-infiltrating Tregs with a focus on the functional roles of costimulatory and inhibitory receptors in Tregs, evaluate their potential as clinical targets, and systematically summarize their roles in potential treatment strategies. Also, we propose modalities to integrate our increasing knowledge on Tregs phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Finally, we propose possible treatment strategies that can be used to develop Treg-targeted therapies.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
29
|
Zavvar M, Assadiasl S, Zargaran S, Akhtari M, Poopak B, Dinarvand R, Fatahi Y, Tayebi L, Soleimanifar N, Nicknam MH. Adoptive Treg cell-based immunotherapy: Frontier therapeutic aspects in rheumatoid arthritis. Immunotherapy 2020; 12:933-946. [PMID: 32635779 DOI: 10.2217/imt-2020-0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The major current focus on treating rheumatoid arthritis is to put an end to long-term treatments and instead, specifically block widespread immunosuppression by developing antigen-specific tolerance, while also permitting an intact immune response toward other antigens to occur. There have been promising preclinical findings regarding adoptive Treg cells immunotherapy with a critically responsible function in the prevention of autoimmunity, tissue repair and regeneration, which make them an attractive candidate to develop effective therapeutic approaches to achieve this interesting concept in many human immune-mediated diseases, such as rheumatoid arthritis. Ex vivo or invivo manipulation protocols are not only utilized to correct Treg cells defect, but also to benefit from their specific immunosuppressive properties by identifying specific antigens that are expressed in the inflamedjoint. The methods able to address these deficiencies can be considered as a target for immunity interventions to restore appropriate immune function.
Collapse
Affiliation(s)
- Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Zargaran
- Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Akhtari
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Narjes Soleimanifar
- Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Schulze AB, Evers G, Görlich D, Mohr M, Marra A, Hillejan L, Rehkämper J, Schmidt LH, Heitkötter B. Tumor infiltrating T cells influence prognosis in stage I-III non-small cell lung cancer. J Thorac Dis 2020; 12:1824-1842. [PMID: 32642087 PMCID: PMC7330340 DOI: 10.21037/jtd-19-3414a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background T cell infiltration in non-small cell lung cancer (NSCLC) is essential for the immunological response to malignant tissue, especially in the era of immune-checkpoint inhibition. To investigate the prognostic impact of CD4+ T helper cells (Th), CD8+ cytotoxic (Tc) and FOXP3+ regulatory T (Treg) cells in NSCLC, we performed this analysis. Methods By counterstaining of CD4, CD8 and FOXP3 we used immunohistochemistry on tissue microarrays (TMA) to evaluate peritumoral Th cells, Treg cells and Tc cells in n=294 NSCLC patients with pTNM stage I–III disease. Results Strong CD4+ infiltration was associated with higher tumor stages and lymphonodal spread. However, strong CD4+ infiltration yielded improved overall survival (OS) (P=0.014) in adenocarcinoma (ADC) and large cell carcinoma (LCC) but not in squamous cell carcinoma (SCC). A CD4/CD8 ratio <1 was associated with high grade NSCLC tumors (P=0.020). High CD8+ T cell infiltration was an independent prognostic factor for OS (P=0.040) and progression-free survival (PFS) (P=0.012) in the entire study collective. The OS benefit of high CD8+ infiltration was especially prominent in PD-L1 negative NSCLC (P=0.001) but not in PD-L1 positive tissue (P=0.335). Moreover, positive FOXP3+ expression in tumor infiltrating lymphocytes was associated with increased OS (P=0.007) and PFS (P=0.014) in SCC but not in ADC and LCC (all P>0.05). Here, prognostic effects were prominent in PD-L1 positive SCC (P=0.023) but not in PD-L1 negative SCC (P=0.236). Conclusions High proportion of CD8+ Tc cells correlated with improved prognostic outcome in stage I–III NSCLC. Th cells and Treg cells have implications on outcome with respect to tumor histology and biology.
Collapse
Affiliation(s)
- Arik Bernard Schulze
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Georg Evers
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, Westfaelische-Wilhelms University Muenster, Muenster, Germany
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Alessandro Marra
- Department of Thoracic Surgery, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Ludger Hillejan
- Department of Thoracic Surgery, Niels-Stensen-Kliniken, Ostercappeln, Germany
| | - Jan Rehkämper
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany.,IV. Medical Department, Pulmonary Medicine and Thoracic Oncology, Klinikum Ingolstadt, Ingolstadt, Germany
| | - Birthe Heitkötter
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
31
|
Poli A, Fiume R, Mongiorgi S, Zaurito A, Sheth B, Vidalle MC, Hamid SA, Kimber S, Campagnoli F, Ratti S, Rusciano I, Faenza I, Manzoli L, Divecha N. Exploring the controversial role of PI3K signalling in CD4 + regulatory T (T-Reg) cells. Adv Biol Regul 2020; 76:100722. [PMID: 32362560 DOI: 10.1016/j.jbior.2020.100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
The immune system is a complex network that acts to protect vertebrates from foreign microorganisms and carries out immunosurveillance to combat cancer. In order to avoid hyper-activation of the immune system leading to collateral damage tissues and organs and to prevent self-attack, the network has the intrinsic control mechanisms that negatively regulate immune responses. Central to this negative regulation are regulatory T (T-Reg) cells, which through cytokine secretion and cell interaction limit uncontrolled clonal expansion and functions of activated immune cells. Given that positive or negative manipulation of T-Regs activity could be utilised to therapeutically treat host versus graft rejection or cancer respectively, understanding how signaling pathways impact on T-Regs function should reveal potential targets with which to intervene. The phosphatidylinositol-3-kinase (PI3K) pathway controls a vast array of cellular processes and is critical in T cell activation. Here we focus on phosphoinositide 3-kinases (PI3Ks) and their ability to regulate T-Regs cell differentiation and function.
Collapse
Affiliation(s)
- Alessandro Poli
- The FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Sara Mongiorgi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Antonio Zaurito
- Center for Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Magdalena Castellano Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Shidqiyyah Abdul Hamid
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - ScottT Kimber
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Francesca Campagnoli
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Isabella Rusciano
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
32
|
Massalska M, Radzikowska A, Kuca-Warnawin E, Plebanczyk M, Prochorec-Sobieszek M, Skalska U, Kurowska W, Maldyk P, Kontny E, Gober HJ, Maslinski W. CD4 +FOXP3 + T Cells in Rheumatoid Arthritis Bone Marrow Are Partially Impaired. Cells 2020; 9:E549. [PMID: 32111105 PMCID: PMC7140449 DOI: 10.3390/cells9030549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
There is evolving evidence that dysregulation of immune homeostasis in the bone marrow (BM) adjacent to the inflamed joints is involved in the pathogenesis of. In this study, we are addressing the phenotype and function of regulatory T cells (Tregs) residing in the BM of patients with rheumatoid arthritis (RA) and osteoarthritis (OA). BM and peripheral blood samples were obtained from RA and OA patients undergoing hip replacement surgery. The number and phenotype of Tregs were analyzed by flow cytometry and immunohistochemistry. The function of Tregs was investigated ex vivo, addressing their suppressive activity on effector T cells. [3H]-Thymidine incorporation assay and specific enzyme-linked immunosorbent assay were used for quantification of cell proliferation and pro-inflammatory (TNF, IFN-γ) cytokine release, respectively. Significantly lower numbers of CD4+FOXP3+ T cells were found in the BM of patients with RA compared to control patients with OA. High expression of CD127 (IL-7 receptor) and relatively low expression of CXCR4 (receptor for stromal cell-derived factor CXCL12) are characteristics of the CD4+FOXP3+ cells residing in the BM of RA patients. The BM-resident Tregs of RA patients demonstrated a limited suppressive activity on the investigated immune response. Our results indicate that the reduced number and impaired functional properties of CD4+FOXP3+ T cells present in the BM of RA patients may favor the inflammatory process, which is observed in RA BM.
Collapse
Affiliation(s)
- Magdalena Massalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Anna Radzikowska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Magdalena Plebanczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Monika Prochorec-Sobieszek
- Department of Pathology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland;
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Urszula Skalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Weronika Kurowska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Pawel Maldyk
- Department of Rheumoorthopaedic Surgery, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland;
- Clinical Department of Orthopedic and Traumatology of Locomotor System, Enfant-Jesus Clinical Hospital, 02-005 Warsaw, Poland
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Hans-Jürgen Gober
- Department of Pharmacy, Kepler University Hospital, 4020 Linz, Austria;
- Pharmaceutical Outcomes Programme, British Columbia Children’s Hospital, Vancouver, BC V5Z 4H4, Canada
| | - Wlodzimierz Maslinski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| |
Collapse
|
33
|
Epigenetical Targeting of the FOXP3 Gene by S-Adenosylmethionine Diminishes the Suppressive Capacity of Regulatory T Cells Ex Vivo and Alters the Expression Profiles. J Immunother 2020; 42:11-22. [PMID: 30407230 DOI: 10.1097/cji.0000000000000247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Regulatory T cells (Treg cells), a subgroup of CD4 lymphocytes, play a crucial role in serving as an immune suppressor and in maintaining peripheral tolerance. As the accumulation of Treg cells in the tumor microenvironment is significantly associated with a decreased survival time of patients, they are considered as an important therapeutic target in the immunotherapy of human cancers. These cells are either derived from the thymus, which are called (CD4CD25CD127) natural Treg cells (nTreg cells), or they are generated from CD4CD25 naive T cells by transforming growth factor-beta 1 and interleukin 2 (IL-2) in the periphery, which are called induced Treg cells (iTreg cells). Although iTreg cells are unstable, nTreg cells stably express forkhead box P3 (FOXP3) protein. Moreover, nTreg cells can be classified as memory (CD45RA) and naive (CD45RA) Treg cells, and this classification is based on the expression of CD45RA. FOXP3, which is a master regulator transcription factor, is essential for the functions of Treg cells, and it is mainly controlled by epigenetic mechanisms. The cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) pathway is also reported to contribute to the regulatory functions of tumor-infiltrating Treg cells. As a new approach, we investigated whether S-adenosylmethionine (SAM), a substrate of DNA methyltransferase, attenuates the immune-suppressive capacity of the naive subtype of nTreg cells (CD4CD25CD127CD45RA). Moreover, we examined the effects of PGE2/COX2 pathway blockers on the suppressive capacity of Treg cells. We found that SAM diminished the suppression competency of Treg cells by decreasing the FOXP3 mRNA and protein levels in a dose-dependent manner. SAM increased the DNA methylation of FOXP3 at the first intron site. In addition, SAM decreased the mRNA and protein levels of the IL-10 cytokine, which has suppressive roles in the immune system. Moreover, mRNA levels of interferon gamma (IFNG) were found to be increased. COX2 inhibition and blockage of PGE2 receptors also reduced the protein and mRNA levels of IL-10, but they did not exhibit any significant effect on Treg cells' suppression in the coculture system. Our results show that SAM might be considered and investigated as a promising agent for immunotherapy in the future.
Collapse
|
34
|
Wang YX, Gu ZW, Cao ZW. Difference between CD25 +Tregs and Helios +Tregs in a murine model of allergic rhinitis. Braz J Otorhinolaryngol 2020; 87:550-556. [PMID: 31974056 PMCID: PMC9422529 DOI: 10.1016/j.bjorl.2019.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
Introduction Regulatory T or Treg cells, balance the peripheral immune response to allergens in allergic rhinitis. Traditionally, Treg (CD25+ Treg) is identified by the coexpression of Foxp3 and CD25, but this strategy does not represent the true inhibitory function of Treg cells. Helios has been thought of as novel marker of activated Tregs, with an important inhibitory function. Consequently, Helios was proposed as a marker of Treg. Recent articles have shown that Foxp3 and Helios co-expression (Helios+Tregs) is an important functional stage of Treg. Objective To compare the prevalence of CD25+Tregs and Helios+Tregs using a mouse model of allergic rhinitis. Methods Twenty mice were randomized into two groups. The test group comprised 10 allergic rhinitis model mice exposed to ovalbumin; the control group was exposed to saline. The fractions of CD25+Tregs, Helios+Tregs, Helios+CD25+, and Helios+Foxp3+CD25+Tregs present in the two groups were determined using flow cytometry. Results CD25+Tregs and Helios+Tregs were less abundant in the spleen and nasal mucosa cells of the allergic rhinitis model compared with the control. We also observed fewer Helios+Tregs than CD25+Tregs in nasal mucosa and splenic cells of both control and test groups. Moreover, we observed fewer Helios+Foxp3+, Helios+CD25+, and Helios+Foxp3+CD25+ Tregs in the nasal mucosa in the allergic rhinitis model. Helios was expressed the most in CD4+ CD25+Foxp3+ T-cells, followed by CD4+ CD25−Foxp3− T-cells. Approximately 75% of CD25+Tregs were Helios+ in spleens of allergic rhinitis and control mice. Conclusion This is the first report of the proportions of Helios+Tregs in nasal mucosa and spleens of allergic rhinitis mice. Gating true inhibitory Tregs with the coexpression of Foxp3 and Helios might be more useful than relying on the expression of CD25. This study provides a new insight for Treg studies of allergic rhinitis, and the potential utility of the marker as a therapeutic target.
Collapse
Affiliation(s)
- Yun-Xiu Wang
- Shengjing Hospital of China Medical University, Department of Medical Insurance, Shenyang, Liaoning, China
| | - Zhao-Wei Gu
- Shengjing Hospital of China Medical University, Department of Otolaryngology Head and Neck Surgery, Shenyang, Liaoning, China.
| | - Zhi-Wei Cao
- Shengjing Hospital of China Medical University, Department of Otolaryngology Head and Neck Surgery, Shenyang, Liaoning, China
| |
Collapse
|
35
|
Pakshir K, Badali H, Nami S, Mirzaei H, Ebrahimzadeh V, Morovati H. Interactions between immune response to fungal infection and microRNAs: The pioneer tuners. Mycoses 2019; 63:4-20. [PMID: 31597205 DOI: 10.1111/myc.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Due to their physiological and biological characteristics, numerous fungi are potentially emerging pathogens. Active dynamicity of fungal pathogens causes life-threatening infections annually impose high costs to the health systems. Although immune responses play crucial roles in controlling the fate of fungal infections, immunocompromised patients are at high risk with high mortality. Tuning the immune response against fungal infections might be an effective strategy for controlling and reducing the pathological damages. MicroRNAs (miRNAs) are known as the master regulators of immune response. These single-stranded tuners (18-23 bp non-coding RNAs) are endogenously expressed by all metazoan eukaryotes and have emerged as the master gene expression controllers of at least 30% human genes. In this review article, following the review of biology and physiology (biogenesis and mechanism of actions) of miRNAs and immune response against fungal infections, the interactions between them were scrutinised. In conclusion, miRNAs might be considered as one of the potential goals in immunotherapy for fungal infections. Undoubtedly, advanced studies in this field, further identifying of miRNA roles in governing the immune response, pave the way for inclusion of miRNA-related immunotherapeutic in the treatment of life-threatening fungal infections.
Collapse
Affiliation(s)
- Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Veghar Ebrahimzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Meng ZJ, Wu JH, Zhou M, Sun SW, Miao SY, Han HL, Chen L, Xiong XZ. Peripheral blood CD4+ T cell populations by CD25 and Foxp3 expression as a potential biomarker: reflecting inflammatory activity in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14:1669-1680. [PMID: 31440043 PMCID: PMC6679698 DOI: 10.2147/copd.s208977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022] Open
Abstract
Background The temporally dynamic changes of CD25 and Foxp3 expression in CD4+ T cells are initiated by T cell receptor (TCR) signals strength or frequency. There is a deficiency of peripheral markers for assessing COPD activity, and the current study was conducted to explore whether peripheral CD4+ T cell populations based on CD25 and Foxp3 expression could serve as an indicator for COPD inflammatory activity. Methods The distribution and phenotypic characteristics of CD4+CD25±Foxp3± T cells from peripheral blood in different populations were determined by flow cytometry. The model for the differentiation of CD4+ T cells populations by CD25 and Foxp3 expression was explored in vitro. Results The frequencies of peripheral CD4+CD25+Foxp3- T cells and CD4+CD25+Foxp3+ T cells were increased in AECOPD patients, whereas the frequency of CD4+CD25-Foxp3+ T cells was increased in SCOPD patients without receiving systemic treatment. Phenotypic analysis revealed that CD4+CD25+Foxp3- T cells, CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells had received antigenic stimulation and resembled central memory or effector memory T cells. The differentiation of CD4+ T cells populations by CD25 and Foxp3 expression was dictated by TCR signals. The paired study indicated that the frequencies of CD4+CD25+Foxp3- T cells, CD4+CD25+Foxp3+ T cells and CD4+CD25- Foxp3+ T cells were decreased while the frequency of CD4+CD25-Foxp3- T cells were increased in the same patients from AECOPD to convalescence. Conclusions Collectively, we propose that the dynamic changes of CD4+ T cell populations by CD25 and Foxp3 expression could function as potential biomarkers for reflecting inflammatory activity in COPD.
Collapse
Affiliation(s)
- Zhao-Ji Meng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jiang-Hua Wu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Sheng-Wen Sun
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Shuai-Ying Miao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong-Li Han
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
37
|
Ryba-Stanisławowska M, Sakowska J, Zieliński M, Ławrynowicz U, Trzonkowski P. Regulatory T cells: the future of autoimmune disease treatment. Expert Rev Clin Immunol 2019; 15:777-789. [PMID: 31104510 DOI: 10.1080/1744666x.2019.1620602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: CD4 + T regulatory cells (Tregs) have been described as the most potent immunosuppressive cells in the human body. They have been found to control autoimmunity, and clinical attempts have been made to apply them to treat autoimmune diseases. Some specific pathways utilized by Tregs in the regulation of immune response or Tregs directly as cellular products are tested in the clinic. Areas covered: Here, we present recent advances in the research on the biology and clinical applications of Tregs in the treatment of autoimmune diseases. Expert opinion: Regulatory T cells seem to be a promising tool for the treatment of autoimmune diseases. The development of both cell-based therapies and modern pharmacotherapies which affect Tregs may strongly improve the treatment of autoimmune disorders. Growing knowledge about Treg biology together with the latest biotechnology tools may give an opportunity for personalized therapies in these conditions.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
| | - Justyna Sakowska
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| | - Maciej Zieliński
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| | - Urszula Ławrynowicz
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
| | - Piotr Trzonkowski
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| |
Collapse
|
38
|
Hope CM, Welch J, Mohandas A, Pederson S, Hill D, Gundsambuu B, Eastaff-Leung N, Grosse R, Bresatz S, Ang G, Papademetrios M, Zola H, Duhen T, Campbell D, Brown CY, Krumbiegel D, Sadlon T, Couper JJ, Barry SC. Peptidase inhibitor 16 identifies a human regulatory T-cell subset with reduced FOXP3 expression over the first year of recent onset type 1 diabetes. Eur J Immunol 2019; 49:1235-1250. [PMID: 31127857 DOI: 10.1002/eji.201948094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 05/23/2019] [Indexed: 01/04/2023]
Abstract
CD4+ T-cell subsets play a major role in the host response to infection, and a healthy immune system requires a fine balance between reactivity and tolerance. This balance is in part maintained by regulatory T cells (Treg), which promote tolerance, and loss of immune tolerance contributes to autoimmunity. As the T cells which drive immunity are diverse, identifying and understanding how these subsets function requires specific biomarkers. From a human CD4 Tconv/Treg cell genome wide analysis we identified peptidase inhibitor 16 (PI16) as a CD4 subset biomarker and we now show detailed analysis of its distribution, phenotype and links to Treg function in type 1 diabetes. To determine the clinical relevance of Pi16 Treg, we analysed PI16+ Treg cells from type 1 diabetes patient samples. We observed that FOXP3 expression levels declined with disease progression, suggesting loss of functional fitness in these Treg cells in Type 1 diabetes, and in particular the rate of loss of FOXP3 expression was greatest in the PI16+ve Treg. We propose that PI16 has utility as a biomarker of functional human Treg subsets and may be useful for tracking loss of immune function in vivo. The ability to stratify at risk patients so that tailored interventions can be applied would open the door to personalised medicine for Type 1 diabetes.
Collapse
Affiliation(s)
- Christoper M Hope
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Department of Gastroenterology, Women's and Children's Hospital, SA, Australia
| | - John Welch
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia.,Robinson Research Institute, University of Adelaide, SA, Australia
| | - Arunesh Mohandas
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Stephen Pederson
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Bioinformatics Hub, School of Biological Sciences, University of Adelaide, SA, Australia
| | - Danika Hill
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Nicola Eastaff-Leung
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Randall Grosse
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Suzanne Bresatz
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Grace Ang
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Michael Papademetrios
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Heddy Zola
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia.,Robinson Research Institute, University of Adelaide, SA, Australia
| | | | | | - Cheryl Y Brown
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia
| | - Doreen Krumbiegel
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Timothy Sadlon
- Department of Gastroenterology, Women's and Children's Hospital, SA, Australia
| | | | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Department of Gastroenterology, Women's and Children's Hospital, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| |
Collapse
|
39
|
Wu JH, Zhou M, Jin Y, Meng ZJ, Xiong XZ, Sun SW, Miao SY, Han HL, Tao XN. Generation and Immune Regulation of CD4 +CD25 -Foxp3 + T Cells in Chronic Obstructive Pulmonary Disease. Front Immunol 2019; 10:220. [PMID: 30842769 PMCID: PMC6392103 DOI: 10.3389/fimmu.2019.00220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
The imbalance of CD4+Foxp3+ T cell subsets is reportedly involved in abnormal inflammatory immune responses in patients with chronic obstructive pulmonary disease (COPD). However, the possible role of CD4+CD25-Foxp3+ T cells in immune regulation in COPD remains to be investigated. In the current study, distribution and phenotypic characteristics of CD4+CD25-Foxp3+ T cells from peripheral blood were determined by flow cytometry; the origin, immune function and ultimate fate of CD4+CD25-Foxp3+ T cells were further explored in vitro. It was observed that circulating CD4+CD25-Foxp3+ T cells were significantly increased in stable COPD patients (SCOPD) and resembled central memory or effector memory T cells. Compared with peripheral CD4+CD25+Foxp3+ T cells, peripheral CD4+CD25-Foxp3+ T cells showed a lower expression of Foxp3, CTLA-4, HELIOS, and TIGIT, but a higher expression of CD127 and KI-67, suggesting that CD4+CD25-Foxp3+ T cells lost the expression of Tregs-associated molecules following the reduction in CD25. Unexpectedly, our study found that transforming growth factor-β1 (TGFβ1) decreased CD25 expression and played a critical role in the generation of CD4+CD25-Foxp3+ T cells from CD4+CD25+Foxp3+ T cells. Phenotypic analysis further revealed that both inducible and peripheral CD4+CD25-Foxp3+ T cells exhibited the features of activated conventional T cells. Importantly, memory CD4+CD25-Foxp3+ T cells facilitated the proliferation and differentiation of naïve CD4+ T cells into Th17 cells in the presence of IL-1β, IL-6, IL-23, and TGFβ1. Finally, a fraction of CD4+CD25-Foxp3+ T cells, exhibiting instability and plasticity, were converted to Th17 cells when subjected to Th17 cell-polarizing condition. Taken together, we propose that TGFβ1 is responsible for the generation of CD4+CD25-Foxp3+ T cells, and these cells functionally exert an auxiliary effect on Th17 cells generation and might perpetuate chronic inflammation in COPD.
Collapse
Affiliation(s)
- Jiang-Hua Wu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Ji Meng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-Wen Sun
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai-Ying Miao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Li Han
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Nan Tao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Are rats more human than mice? Immunobiology 2019; 224:172-176. [DOI: 10.1016/j.imbio.2018.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 11/23/2022]
|
41
|
Christakoudi S, Runglall M, Mobillo P, Rebollo-Mesa I, Tsui TL, Nova-Lamperti E, Norris S, Kamra Y, Hilton R, Bhandari S, Baker R, Berglund D, Carr S, Game D, Griffin S, Kalra PA, Lewis R, Mark PB, Marks SD, Macphee I, McKane W, Mohaupt MG, Pararajasingam R, Kon SP, Serón D, Sinha M, Tucker B, Viklický O, Lechler RI, Lord GM, Stahl D, Hernandez-Fuentes MP. Steroid regulation: An overlooked aspect of tolerance and chronic rejection in kidney transplantation. Mol Cell Endocrinol 2018; 473:205-216. [PMID: 29427591 DOI: 10.1016/j.mce.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
Abstract
Steroid conversion (HSD11B1, HSD11B2, H6PD) and receptor genes (NR3C1, NR3C2) were examined in kidney-transplant recipients with "operational tolerance" and chronic rejection (CR), independently and within the context of 88 tolerance-associated genes. Associations with cellular types were explored. Peripheral whole-blood gene-expression levels (RT-qPCR-based) and cell counts were adjusted for immunosuppressant drug intake. Tolerant (n = 17), stable (n = 190) and CR patients (n = 37) were compared. Healthy controls (n = 14) were used as reference. The anti-inflammatory glucocorticoid receptor (NR3C1) and the cortisol-activating HSD11B1 and H6PD genes were up-regulated in CR and were lowest in tolerant patients. The pro-inflammatory mineralocorticoid gene (NR3C2) was downregulated in stable and CR patients. NR3C1 was associated with neutrophils and NR3C2 with T-cells. Steroid conversion and receptor genes, alone, enabled classification of tolerant patients and were major contributors to gene-expression signatures of both, tolerance and CR, alongside known tolerance-associated genes, revealing a key role of steroid regulation and response in kidney transplantation.
Collapse
Affiliation(s)
- Sofia Christakoudi
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Manohursingh Runglall
- NIHR Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Paula Mobillo
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Irene Rebollo-Mesa
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Tjir-Li Tsui
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | | | - Sonia Norris
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Yogesh Kamra
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Rachel Hilton
- Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Sunil Bhandari
- Hull and East Yorkshire Hospitals NHS Trust, Anlaby Rd, Hull HU3 2JZ, UK
| | - Richard Baker
- St James's University Hospital, Beckett St, Leeds LS9 7TF, UK
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbecklaboratoriet, 751 85 Uppsala, Sweden
| | - Sue Carr
- Leicester General Hospital, Gwendolen Rd, Leicester LE5 4PW, UK
| | - David Game
- Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Sian Griffin
- Cardiff and Vale University Health Board, Cardiff CF14 4XW, UK
| | - Philip A Kalra
- Salford Royal NHS Foundation Trust, Stott Ln, Salford M6 8HD, UK
| | - Robert Lewis
- Queen Alexandra Hospital, Southwick Hill Rd, Cosham, Portsmouth PO6 3LY, UK
| | - Patrick B Mark
- University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Stephen D Marks
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St, London WC1N 3JH, UK
| | - Iain Macphee
- St George's Hospital, Blackshaw Rd, London SW17 0QT, UK
| | - William McKane
- Northern General Hospital, Herries Rd, Sheffield S5 7AU, UK
| | - Markus G Mohaupt
- INSELSPITAL, Universitätsspital Department of Nephrology, Hypertension and Clinical Pharmacology, University Hospital, Freiburgstrasse 8, 3010 Bern, Switzerland
| | | | - Sui Phin Kon
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Daniel Serón
- Hospital Universitario Vall d'Hebrón, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Manish Sinha
- Evelina London Children's Hospital, Westminster Bridge Rd, Lambeth, London SE1 7EH, UK
| | - Beatriz Tucker
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Ondrej Viklický
- Transplantační laboratoř, Institut klinické a experimentální medicíny (IKEM), Vídeňská 1958/9, 140 21 Praha 4, Czech Republic
| | - Robert I Lechler
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; King's Health Partners, Guy's Hospital, London SE1 9RT, UK
| | - Graham M Lord
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; NIHR Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, Great Maze Pond, London SE1 9RT, UK; Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Daniel Stahl
- Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Maria P Hernandez-Fuentes
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; King's Health Partners, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
42
|
Description of CD8 + Regulatory T Lymphocytes and Their Specific Intervention in Graft-versus-Host and Infectious Diseases, Autoimmunity, and Cancer. J Immunol Res 2018; 2018:3758713. [PMID: 30155493 PMCID: PMC6098849 DOI: 10.1155/2018/3758713] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/09/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Gershon and Kondo described CD8+ Treg lymphocytes as the first ones with regulating activity due to their tolerance ability to foreign antigens and their capacity to inhibit the proliferation of other lymphocytes. Regardless, CD8+ Treg lymphocytes have not been fully described-unlike CD4+ Treg lymphocytes-because of their low numbers in blood and the lack of specific and accurate population markers. Still, these lymphocytes have been studied for the past 30 years, even after finding difficulties during investigations. As a result, studies have identified markers that define their subpopulations. This review is focused on the expression of cell membrane markers as CD25, CD122, CD103, CTLA-4, CD39, CD73, LAG-3, and FasL as well as soluble molecules such as FoxP3, IFN-γ, IL-10, TGF-β, IL-34, and IL-35, in addition to the lack of expression of cell activation markers such as CD28, CD127 CD45RC, and CD49d. This work also underlines the importance of identifying some of these markers in infections with several pathogens, autoimmunity, cancer, and graft-versus-host disease as a strategy in their prevention, monitoring, and cure.
Collapse
|
43
|
El-Maraghy N, Ghaly MS, Dessouki O, Nasef SI, Metwally L. CD4+CD25-Foxp3+ T cells as a marker of disease activity and organ damage in systemic lupus erythematosus patients. Arch Med Sci 2018; 14:1033-1040. [PMID: 30154885 PMCID: PMC6111364 DOI: 10.5114/aoms.2016.63597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION T regulatory cells (Treg) play an important role in the maintenance of immune cell homeostasis, as it has been reported that CD4+CD25+ T cells suppress the auto-reactive responses in autoimmune diseases such as systemic lupus erythematosus (SLE). The clinical significance of the recently identified population of CD4+CD25-Foxp3+ T cells and whether they are associated with particular organ involvement is still not clear. So, the aim of our study was to evaluate the presence of CD4+CD25-Foxp3+ cells in SLE patients in comparison to healthy controls and to determine whether their frequency is associated with disease activity and particular clinical manifestations in these SLE patients. MATERIAL AND METHODS The frequency of CD4+CD25-Foxp3+ T cells was analyzed in 56 female SLE patients and 30 healthy female control subjects, using flow cytometry (FACS). CD4+CD25-Foxp3+ T cells were correlated with clinical and laboratory data and the SLE Disease Activity Index (SLEDAI). RESULTS The level of CD4+CD25-Foxp3+ T cells was significantly increased in SLE patients (15.57 ±4.32%) as compared with the control group (2.46 ±0.65%). A significant correlation was observed for the percentage of CD4+CD25-Foxp3+ T cells with clinical disease activity scores and disease duration (r = 0.6, p < 0.001; r = 0.3, p = 0.02 respectively). It was also positively correlated with renal impairment and hematological involvement. CONCLUSIONS Systemic lupus erythematosus patients exhibited an altered level of their CD4+Foxp3+ T cells with increased levels of CD4+CD25-Foxp3+ cells.
Collapse
Affiliation(s)
- Nermine El-Maraghy
- Department of Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona S. Ghaly
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Omar Dessouki
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samah Ismail Nasef
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Lobna Metwally
- Department of Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
44
|
Saini C, Tarique M, Ramesh V, Khanna N, Sharma A. γδ T cells are associated with inflammation and immunopathogenesis of leprosy reactions. Immunol Lett 2018; 200:55-65. [PMID: 30006101 DOI: 10.1016/j.imlet.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Leprosy reactions appear episodically in leprosy patients, which lead to high inflammation, morbidity and peripheral nerve damage. The role of Th17 cell has been well studied in leprosy reactions but the role of γδ or unconventional T cells which is an other major source of IL-17 in many diseases, not studied in leprosy reactional episodes. OBJECTIVE The aim of the present study to elucidate the role of γδ T cells in leprosy reactions. METHODOLOGY A total of 40 untreated non-reaction and reactions patients were recruited. PBMCs were isolated and stimulated with M. leprae sonicated antigen (MLSA) for 48 h and immuno-phenotyping was done using flow cytometry. Moreover, γδ T cells were isolated by Magnetic beads technology and mRNA expression of IL-17, IFN-γ, TGF-β and FOXP3 were analyzed by real-time PCR (qPCR) and cytokine was estimated in the culture supernatant by ELISA. RESULTS γδ T cells were significantly increased in both Reversal reaction (RR) and Erythema nodosum leprosum (ENL) reaction patients. These cells produced significant amount of IL-17 and IFN-γ. Furthermore, CD3+TCRγδ+ T cells expressed transient FOXP3 with a low amount of TGF-β in both reactions as compared to stable patients. Moreover, low TGF-β producing TCR-γδ cells were associated with low phosphorylation of STAT5A. CONCLUSION This study will add to our understanding of the immunological features that mediate and regulate the pathogenesis of leprosy and may helpful to reduce the immuno-pathogenesis of leprosy reaction by targeting these cells.
Collapse
Affiliation(s)
- Chaman Saini
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Mohd Tarique
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - V Ramesh
- Dermatology and Venereology SJH, New Delhi, 110029, India
| | - Neena Khanna
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
45
|
Diedrichs-Möhring M, Kaufmann U, Wildner G. The immunopathogenesis of chronic and relapsing autoimmune uveitis – Lessons from experimental rat models. Prog Retin Eye Res 2018; 65:107-126. [DOI: 10.1016/j.preteyeres.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
|
46
|
Time-resolved transcriptome and proteome landscape of human regulatory T cell (Treg) differentiation reveals novel regulators of FOXP3. BMC Biol 2018; 16:47. [PMID: 29730990 PMCID: PMC5937035 DOI: 10.1186/s12915-018-0518-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background Regulatory T cells (Tregs) expressing the transcription factor FOXP3 are crucial mediators of self-tolerance, preventing autoimmune diseases but possibly hampering tumor rejection. Clinical manipulation of Tregs is of great interest, and first-in-man trials of Treg transfer have achieved promising outcomes. Yet, the mechanisms governing induced Treg (iTreg) differentiation and the regulation of FOXP3 are incompletely understood. Results To gain a comprehensive and unbiased molecular understanding of FOXP3 induction, we performed time-series RNA sequencing (RNA-Seq) and proteomics profiling on the same samples during human iTreg differentiation. To enable the broad analysis of universal FOXP3-inducing pathways, we used five differentiation protocols in parallel. Integrative analysis of the transcriptome and proteome confirmed involvement of specific molecular processes, as well as overlap of a novel iTreg subnetwork with known Treg regulators and autoimmunity-associated genes. Importantly, we propose 37 novel molecules putatively involved in iTreg differentiation. Their relevance was validated by a targeted shRNA screen confirming a functional role in FOXP3 induction, discriminant analyses classifying iTregs accordingly, and comparable expression in an independent novel iTreg RNA-Seq dataset. Conclusion The data generated by this novel approach facilitates understanding of the molecular mechanisms underlying iTreg generation as well as of the concomitant changes in the transcriptome and proteome. Our results provide a reference map exploitable for future discovery of markers and drug candidates governing control of Tregs, which has important implications for the treatment of cancer, autoimmune, and inflammatory diseases. Electronic supplementary material The online version of this article (10.1186/s12915-018-0518-3) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Sadlon T, Brown CY, Bandara V, Hope CM, Schjenken JE, Pederson SM, Breen J, Forrest A, Beyer M, Robertson S, Barry SC. Unravelling the molecular basis for regulatory T-cell plasticity and loss of function in disease. Clin Transl Immunology 2018; 7:e1011. [PMID: 29497530 PMCID: PMC5827651 DOI: 10.1002/cti2.1011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Treg) are critical for preventing autoimmunity and curtailing responses of conventional effector T cells (Tconv). The reprogramming of T‐cell fate and function to generate Treg requires switching on and off of key gene regulatory networks, which may be initiated by a subtle shift in expression levels of specific genes. This can be achieved by intermediary regulatory processes that include microRNA and long noncoding RNA‐based regulation of gene expression. There are well‐documented microRNA profiles in Treg and Tconv, and these can operate to either reinforce or reduce expression of a specific set of target genes, including FOXP3 itself. This type of feedforward/feedback regulatory loop is normally stable in the steady state, but can alter in response to local cues or genetic risk. This may go some way to explaining T‐cell plasticity. In addition, in chronic inflammation or autoimmunity, altered Treg/Tconv function may be influenced by changes in enhancer–promoter interactions, which are highly cell type‐specific. These interactions are impacted by genetic risk based on genome‐wide association studies and may cause subtle alterations to the gene regulatory networks controlled by or controlling FOXP3 and its target genes. Recent insights into the 3D organisation of chromatin and the mapping of noncoding regulatory regions to the genes they control are shedding new light on the direct impact of genetic risk on T‐cell function and susceptibility to inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Timothy Sadlon
- Women's and Children's Health Network North Adelaide SA Australia.,Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| | - Cheryl Y Brown
- Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| | - Veronika Bandara
- Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| | | | - John E Schjenken
- Reproductive Immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| | - Stephen M Pederson
- Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia.,University of Adelaide Bioinformatics Hub University of Adelaide Adelaide SA Australia
| | - James Breen
- Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia.,University of Adelaide Bioinformatics Hub University of Adelaide Adelaide SA Australia
| | - Alistair Forrest
- Harry Perkins Institute of Medical Research University of Western Australia Perth, WA Australia
| | - Marc Beyer
- Deutsches Zentrum fur Neurodegenerative Erkrankungen Bonn Germany
| | - Sarah Robertson
- Reproductive Immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| | - Simon C Barry
- Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| |
Collapse
|
48
|
Nowak A, Lock D, Bacher P, Hohnstein T, Vogt K, Gottfreund J, Giehr P, Polansky JK, Sawitzki B, Kaiser A, Walter J, Scheffold A. CD137+CD154- Expression As a Regulatory T Cell (Treg)-Specific Activation Signature for Identification and Sorting of Stable Human Tregs from In Vitro Expansion Cultures. Front Immunol 2018; 9:199. [PMID: 29467769 PMCID: PMC5808295 DOI: 10.3389/fimmu.2018.00199] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/23/2018] [Indexed: 01/30/2023] Open
Abstract
Regulatory T cells (Tregs) are an attractive therapeutic tool for several different immune pathologies. Therapeutic Treg application often requires prolonged in vitro culture to generate sufficient Treg numbers or to optimize their functionality, e.g., via genetic engineering of their antigen receptors. However, purity of clinical Treg expansion cultures is highly variable, and currently, it is impossible to identify and separate stable Tregs from contaminating effector T cells, either ex vivo or after prior expansion. This represents a major obstacle for quality assurance of expanded Tregs and raises significant safety concerns. Here, we describe a Treg activation signature that allows identification and sorting of epigenetically imprinted Tregs even after prolonged in vitro culture. We show that short-term reactivation resulted in expression of CD137 but not CD154 on stable FoxP3+ Tregs that displayed a demethylated Treg-specific demethylated region, high suppressive potential, and lack of inflammatory cytokine expression. We also applied this Treg activation signature for rapid testing of chimeric antigen receptor functionality in human Tregs and identified major differences in the signaling requirements regarding CD137 versus CD28 costimulation. Taken together, CD137+CD154- expression emerges as a universal Treg activation signature ex vivo and upon in vitro expansion allowing the identification and isolation of epigenetically stable antigen-activated Tregs and providing a means for their rapid functional testing in vitro.
Collapse
Affiliation(s)
- Anna Nowak
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Dominik Lock
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| | - Thordis Hohnstein
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| | - Katrin Vogt
- Institute for Medical Immunology, Charité - University Medicine, Berlin, Germany
| | - Judith Gottfreund
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Pascal Giehr
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Julia K Polansky
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine, Berlin, Germany
| | - Birgit Sawitzki
- Institute for Medical Immunology, Charité - University Medicine, Berlin, Germany
| | | | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Alexander Scheffold
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany.,Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| |
Collapse
|
49
|
|
50
|
Molecular adjuvants that modulate regulatory T cell function in vaccination: A critical appraisal. Pharmacol Res 2017; 129:237-250. [PMID: 29175113 DOI: 10.1016/j.phrs.2017.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Adjuvants are substances used to enhance the efficacy of vaccines. They influence the magnitude and alter the quality of the adaptive immune response to vaccine antigens by amplifying or modulating different signals involved in the innate immune response. The majority of known adjuvants have been empirically identified. The limited immunogenicity of new vaccine antigens and the need for safer vaccines have increased the importance of identifying single, well-defined adjuvants with known cellular and molecular mechanisms for rational vaccine design. Depletion or functional inhibition of CD4+CD25+FoxP3+ regulatory T cells (Tregs) by molecular adjuvants has become an emergent approach in this field. Different successful results have been obtained for specific vaccines, but there are still unresolved issues such as the risk of autoimmune disease induction, the involvement of cells other than Tregs and optimization for different conditions. This work provides a comprehensive analysis of current approaches to inhibit Tregs with molecular adjuvants for vaccine improvement, highlights the progress being made, and describes ongoing challenges.
Collapse
|