1
|
Zhong Y, Du X, Wang P, Li W, Xia C, Wu D, Jiang H, Xu H, Huang L. Protective effect of Huashi Baidu formula against AKI and active ingredients that target SphK1 and PAI-1. Chin Med 2024; 19:152. [PMID: 39487526 PMCID: PMC11529477 DOI: 10.1186/s13020-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Huashi Baidu Formula (HBF) is a clinical formula known for its efficacy against coronavirus disease 2019 (COVID-19). HBF may reduce the number of patients with abnormal serum creatinine while improving respiratory symptoms, suggesting that this formula may have potential for treating acute kidney injury (AKI). However, the protective effect of HBF on AKI has not been definitively confirmed, and the mechanism remains unclear. Therefore, the present study explored the renoprotective effects and molecular mechanisms of HBF and screened for its active ingredients to identify new potential applications of renoprotection by HBF. METHODS The present study first assessed the protective effects of HBF on AKI in a DOX-induced mouse model. Then, RNA-seq and bioinformatics analyses were used to explore the related pathological processes and potential molecular mechanisms, which were subsequently validated using qRT-PCR and Western blotting. Furthermore, candidate compounds with potential binding affinity to two pivotal targets, sphingosine kinase 1 (SphK1) and plasminogen activator inhibitor-1 (PAI-1), were screened from the 29 constituents present in the blood using Microscale Thermophoresis (MST). Finally, to identify the active ingredients, the candidate components were re-screened using the SphK1 kinase activity detection system or the uPA/PAI-1 substrate colorimetric assay system. RESULTS In the DOX-induced AKI mouse model, therapeutic administration of HBF significantly reduced the levels of CRE, BUN, TNF-α, IL-1β, IL-6, and UA in plasma and the levels of MDA, T-CHO, and TG in kidney tissue. Additionally, the levels of TP and Alb in plasma and SOD and CAT in the kidney tissue were significantly increased. Histopathological assessment revealed that HBF reduced tubular vacuolation, renal interstitial inflammatory cell infiltration, tubular atrophy, and positive staining of renal interstitial collagen. RNA-seq and bioinformatics analyses showed that oxidative stress, the immune-inflammatory response, and extracellular matrix (ECM) formation could be the pathological processes that HBF targets to exerts its renoprotective effects. Furthermore, HBF regulated the APJ/SPHK1/NF-κB and APJ/PAI-1/TGFβ signaling axes and reduced the phosphorylation levels of NF-κB p65 and SMAD2 and the expression of cytokines and the ECM downstream of the axis. Finally, six SphK1 inhibitors (paeoniflorin, astragalin, emodin, glycyrrhisoflavone, quercetin, and liquiritigenin) and three PAI-1 inhibitors (glycyrrhisoflavone, licochalcone B, and isoliquiritigenin) were identified as potentially active ingredients in HBF. CONCLUSION In brief, our investigation underscores the renoprotective effect of HBF in a DOX-induced AKI model mice, elucidating its mechanisms through distinct pathological processes and identifying key bioactive compounds. These findings offer new insights for broadening the clinical applications of HBF and unravelling its molecular mode of action.
Collapse
Affiliation(s)
- Yute Zhong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xia Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cong Xia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Qi Y, Zheng J, Zi Y, Song W, Chen X, Cao S, Zhou Q, Fu H, Hu X. Loureirin C improves mitochondrial function by promoting NRF2 nuclear translocation to attenuate oxidative damage caused by renal ischemia-reperfusion injury. Int Immunopharmacol 2024; 138:112596. [PMID: 38981224 DOI: 10.1016/j.intimp.2024.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome worldwide, with no effective treatment strategy. Renal ischemia-reperfusion (IR) injury is one of the main AKI features, and the excessive reactive oxygen species (ROS) production during reperfusion causes severe oxidative damage to the kidney. Loureirin C (LC), an active ingredient in the traditional Chinese medicine Chinese dragon's blood, possesses excellent antioxidative properties, but its role in renal IR injury is not clear. In this study, we evaluated the protective effects of LC against renal IR injury in vivo and in vitro by establishing a mice renal IR injury model and a human proximal renal tubular epithelial cell (HK-2) hypoxia/reoxygenation (HR) model. We found that LC ameliorated renal function and tissue structure injury and inhibited renal oxidative stress and ferroptosis in vivo. In vitro, LC scavenged ROS and attenuated mitochondrial dysfunction in HK-2 cells, thereby inhibiting oxidative cellular injury. Furthermore, we found that LC effectively promoted nuclear factor erythroid 2-related factor 2 (NRF2) nuclear translocation and activated downstream target genes heme oxygenase 1 (HO-1) and NADPH quinone oxidoreductase-1 (NQO-1) to enhance cellular antioxidant function. Moreover, NRF2 knockdown and pharmacological inhibition of NRF2 partially eliminated the protective effect of LC. These results confirm that LC can effectively inhibit renal IR injury, and the mechanism may be associated with NRF2 activation by LC.
Collapse
Affiliation(s)
- Yucheng Qi
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China; The Fourth People's Hospital of Hengyang, China
| | - Jinli Zheng
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, China
| | - Yuan Zi
- The Fourth People's Hospital of Hengyang, China
| | - Wenke Song
- Department of Medical Department, Affiliated Nanhua Hospital, University of South China, China
| | - Xuancai Chen
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China
| | - Shahuang Cao
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China
| | - Qun Zhou
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China
| | - Hao Fu
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China.
| | - Xinyi Hu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, China.
| |
Collapse
|
4
|
Lasorsa F, Rutigliano M, Milella M, d’Amati A, Crocetto F, Pandolfo SD, Barone B, Ferro M, Spilotros M, Battaglia M, Ditonno P, Lucarelli G. Ischemia-Reperfusion Injury in Kidney Transplantation: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2024; 25:4332. [PMID: 38673917 PMCID: PMC11050495 DOI: 10.3390/ijms25084332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Kidney transplantation offers a longer life expectancy and a better quality of life than dialysis to patients with end-stage kidney disease. Ischemia-reperfusion injury (IRI) is thought to be a cornerstone in delayed or reduced graft function and increases the risk of rejection by triggering the immunogenicity of the organ. IRI is an unavoidable event that happens when the blood supply is temporarily reduced and then restored to an organ. IRI is the result of several biological pathways, such as transcriptional reprogramming, apoptosis and necrosis, innate and adaptive immune responses, and endothelial dysfunction. Tubular cells mostly depend on fatty acid (FA) β-oxidation for energy production since more ATP molecules are yielded per substrate molecule than glucose oxidation. Upon ischemia-reperfusion damage, the innate and adaptive immune system activates to achieve tissue clearance and repair. Several cells, cytokines, enzymes, receptors, and ligands are known to take part in these events. The complement cascade might start even before organ procurement in deceased donors. However, additional experimental and clinical data are required to better understand the pathogenic events that take place during this complex process.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio d’Amati
- Department of Precision and Regenerative Medicine and Ionian Area-Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Felice Crocetto
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
- Department of Urology, University of L’Aquila, 67010 L’Aquila, Italy
| | - Biagio Barone
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Marco Spilotros
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
5
|
Tie H, Kuang G, Gong X, Zhang L, Zhao Z, Wu S, Huang W, Chen X, Yuan Y, Li Z, Li H, Zhang L, Wan J, Wang B. LXA4 protected mice from renal ischemia/reperfusion injury by promoting IRG1/Nrf2 and IRAK-M-TRAF6 signal pathways. Clin Immunol 2024; 261:110167. [PMID: 38453127 DOI: 10.1016/j.clim.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Excessive inflammatory response and increased oxidative stress play an essential role in the pathophysiology of ischemia/reperfusion (I/R)-induced acute kidney injury (IRI-AKI). Emerging evidence suggests that lipoxin A4 (LXA4), as an endogenous negative regulator in inflammation, can ameliorate several I/R injuries. However, the mechanisms and effects of LXA4 on IRI-AKI remain unknown. In this study, A bilateral renal I/R mouse model was used to evaluate the role of LXA4 in wild-type, IRG1 knockout, and IRAK-M knockout mice. Our results showed that LXA4, as well as 5-LOX and ALXR, were quickly induced, and subsequently decreased by renal I/R. LXA4 pretreatment improved renal I/R-induced renal function impairment and renal damage and inhibited inflammatory responses and oxidative stresses in mice kidneys. Notably, LXA4 inhibited I/R-induced the activation of TLR4 signal pathway including decreased phosphorylation of TAK1, p36, and p65, but did not affect TLR4 and p-IRAK-1. The analysis of transcriptomic sequencing data and immunoblotting suggested that innate immune signal molecules interleukin-1 receptor-associated kinase-M (IRAK-M) and immunoresponsive gene 1 (IRG1) might be the key targets of LXA4. Further, the knockout of IRG1 or IRAK-M abolished the beneficial effects of LXA4 on IRI-AKI. In addition, IRG1 deficiency reversed the up-regulation of IRAK-M by LXA4, while IRAK-M knockout had no impact on the IRG1 expression, indicating that IRAK-M is a downstream molecule of IRG1. Mechanistically, we found that LXA4-promoted IRG1-itaconate not only enhanced Nrf2 activation and increased HO-1 and NQO1, but also upregulated IRAK-M, which interacted with TRAF6 by competing with IRAK-1, resulting in deactivation of TLR4 downstream signal in IRI-AKI. These data suggested that LXA4 protected against IRI-AKI via promoting IRG1/Itaconate-Nrf2 and IRAK-M-TRAF6 signaling pathways, providing the rationale for a novel strategy for preventing and treating IRI-AKI.
Collapse
Affiliation(s)
- Hongtao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Lidan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zizuo Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengwang Wu
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenya Huang
- Yiling Women and Children's Hospital of Yichang City, Hubei, China
| | - Xiahong Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yinglin Yuan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenhan Li
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University; Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China..
| | - Bin Wang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Maftoon-Azad MJ, Nazari S, Keshavarz S, Owji SM, Moosavi SMS. Transmission of high arterial pressure into renal microvessels during venous-clamping augments ischaemia/reperfusion-induced acute kidney injury in anaesthetized rats. Nephrology (Carlton) 2024; 29:188-200. [PMID: 38173056 DOI: 10.1111/nep.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/22/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024]
Abstract
AIM In two recent studies, we observed that a 30-min renal vein clamping caused formation of interstitial haemorrhagic congestion in ischaemic and ischaemic/reperfused kidney along with the development of severer acute kidney injury (AKI) than renal artery or pedicle clamping. It was suggested that the transmission of high arterial pressure into renal microvessels during vein occlusion probably causes the occurrence of interstitial haemorrhagic congestion that augments AKI. The present investigation aimed to evaluate this suggestion by reducing renal perfusion pressure (RPP) during renal venous occlusion. METHODS Anaesthetized male Sprague-Dawley rats were divided into three groups (n = 8), which underwent a 2-h reperfusion period following 30-min bilateral renal venous clamping along with reduced RPP (VIR-rRPP group) or without reduced RPP (VIR group) and an equivalent period after sham-operation (Sham group). RESULTS The VIR-rRPP group compared with VIR group had lower levels of kidney malondialdehyde and tissue damages as epithelial injuries of proximal tubule and thick ascending limb, vascular congestion, intratubular cast and oedema, along with the less reductions in renal blood flow, creatinine clearance, Na+ -reabsorption, K+ and urea excretion, urine osmolality and free-water reabsorption. Importantly, the formation of intensive interstitial haemorrhagic congestion in the VIR group was not observed in the VIR-rRPP group. CONCLUSION These results indicate that the transmission of high arterial pressure into renal microvessels during venous occlusion leads to rupturing of their walls and the formation of interstitial haemorrhagic congestion, which has an augmenting impact on ischaemia/reperfusion-induced renal structural damages and haemodynamic, excretory and urine-concentrating dysfunctions.
Collapse
Affiliation(s)
| | - Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshavarz
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Owji
- Department of Pathology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mostafa Shid Moosavi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Sabet Sarvestani F, Afshari A, Azarpira N. The role of non-protein-coding RNAs in ischemic acute kidney injury. Front Immunol 2024; 15:1230742. [PMID: 38390339 PMCID: PMC10881863 DOI: 10.3389/fimmu.2024.1230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Acute kidney injury (AKI) is a condition characterized by a rapid decline in kidney function within a span of 48 hours. It is influenced by various factors including inflammation, oxidative stress, excessive calcium levels within cells, activation of the renin-angiotensin system, and dysfunction in microcirculation. Ischemia-reperfusion injury (IRI) is recognized as a major cause of AKI; however, the precise mechanisms behind this process are not yet fully understood and effective treatments are still needed. To enhance the accuracy of diagnosing AKI during its early stages, the utilization of innovative markers is crucial. Numerous studies suggest that certain noncoding RNAs (ncRNAs), such as long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), play a central role in regulating gene expression and protein synthesis. These ncRNAs are closely associated with the development and recovery of AKI and have been detected in both kidney tissue and bodily fluids. Furthermore, specific ncRNAs may serve as diagnostic markers and potential targets for therapeutic interventions in AKI. This review aims to summarize the functional roles and changes observed in noncoding RNAs during ischemic AKI, as well as explore their therapeutic potential.
Collapse
Affiliation(s)
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Collett JA, Basile DP. Beast of (renal) burden? Bst1-expressing neutrophils in kidney injury. Am J Physiol Renal Physiol 2024; 326:F165-F166. [PMID: 38095024 DOI: 10.1152/ajprenal.00386.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Affiliation(s)
- Jason A Collett
- Department of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - David P Basile
- Department of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
9
|
Feng Q, Ling L, Yuan H, Guo Z, Ma J. Ginsenoside Rd: A promising target for ischemia-reperfusion injury therapy (A mini review). Biomed Pharmacother 2024; 171:116111. [PMID: 38181712 DOI: 10.1016/j.biopha.2023.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) represents a prevalent pathological phenomenon. Traditional treatment approaches primarily aim at restoring blood supply to ischemic organs, disregarding the consequent damage caused by IRI. Belonging to the class of protopanaxadiol ginsenosides that are found in Panax ginseng, ginsenoside Rd (GSRd) demonstrates notable safety alongside a diverse range of biological functions. Its active components exhibit diverse pharmacological effects, encompassing anti-inflammatory, anti-tumor, neuroprotective, cardiovascular-protective, and immune-regulatory properties, making it a promising candidate for addressing multiple medical conditions. GSRd shields against I/R injury by employing crucial cellular mechanisms, including the attenuation of oxidative stress, reduction of inflammation, promotion of cell survival signaling pathways, and inhibition of apoptotic pathways. Additionally, GSRd regulates mitochondrial function, maintains calcium homeostasis, and modulates the expression of genes involved in I/R injury. This review seeks to consolidate the pharmacological mechanism of action of GSRd within the context of IRI. Our objective is to contribute to the advancement of GSRd-related pharmaceuticals and provide novel insights for clinicians involved in developing IRI treatment strategies.
Collapse
Affiliation(s)
- Qiupeng Feng
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Lijing Ling
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Hua Yuan
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Zhiqiang Guo
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Jin Ma
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China.
| |
Collapse
|
10
|
Brezgunova AA, Andrianova NV, Saidova AA, Potashnikova DM, Abramicheva PA, Manskikh VN, Mariasina SS, Pevzner IB, Zorova LD, Manzhulo IV, Zorov DB, Plotnikov EY. Anti-Inflammatory Effect of Synaptamide in Ischemic Acute Kidney Injury and the Role of G-Protein-Coupled Receptor 110. Int J Mol Sci 2024; 25:1500. [PMID: 38338779 PMCID: PMC10855239 DOI: 10.3390/ijms25031500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The development of drugs for the treatment of acute kidney injury (AKI) that could suppress the excessive inflammatory response in damaged kidneys is an important clinical challenge. Recently, synaptamide (N-docosahexaenoylethanolamine) has been shown to exert anti-inflammatory and neurogenic properties. The aim of this study was to investigate the anti-inflammatory effect of synaptamide in ischemic AKI. For this purpose, we analyzed the expression of inflammatory mediators and the infiltration of different leukocyte populations into the kidney after injury, evaluated the expression of the putative synaptamide receptor G-protein-coupled receptor 110 (GPR110), and isolated a population of CD11b/c+ cells mainly representing neutrophils and macrophages using cell sorting. We also evaluated the severity of AKI during synaptamide therapy and the serum metabolic profile. We demonstrated that synaptamide reduced the level of pro-inflammatory interleukins and the expression of integrin CD11a in kidney tissue after injury. We found that the administration of synaptamide increased the expression of its receptor GPR110 in both total kidney tissue and renal CD11b/c+ cells that was associated with the reduced production of pro-inflammatory interleukins in these cells. Thus, we demonstrated that synaptamide therapy mitigates the inflammatory response in kidney tissue during ischemic AKI, which can be achieved through GPR110 signaling in neutrophils and a reduction in these cells' pro-inflammatory interleukin production.
Collapse
Affiliation(s)
- Anna A. Brezgunova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
| | - Aleena A. Saidova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.S.); (D.M.P.)
| | - Daria M. Potashnikova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.S.); (D.M.P.)
| | - Polina A. Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
| | - Vasily N. Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
| | - Sofia S. Mariasina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Research and Educational Resource Center “Pharmacy”, RUDN University, 117198 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Igor V. Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia;
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| |
Collapse
|
11
|
Hou Y, Lin S, Xia J, Zhang Y, Yin Y, Huang M, Xu Y, Yang W, Zhu Y. Alleviation of ischemia-reperfusion induced renal injury by chemically modified SOD2 mRNA delivered via lipid nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102067. [PMID: 38028193 PMCID: PMC10652142 DOI: 10.1016/j.omtn.2023.102067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury, which is a serious clinical condition with no effective pharmacological treatment. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) significantly alleviate kidney IRI; however, the underlying mechanisms and key molecules conferring renoprotection remain elusive. In this study, we characterized the protein composition of MSC-EVs using a proteomics approach and found that mitochondrial protein superoxide dismutase 2 (SOD2) was enriched in MSC-EVs. Using lipid nanoparticles (LNP), we successfully delivered chemically modified SOD2 mRNA into kidney cells and mice with kidney IRI. We demonstrated that SOD2 mRNA-LNP treatment decreased cellular reactive oxygen species (ROS) in cultured cells and ameliorated renal damage in IRI mice, as indicated by reduced levels of serum creatinine and restored tissue integrity compared with the control mRNA-LNP-injected group. Thus, the modulation of mitochondrial ROS levels through SOD2 upregulation by SOD2 mRNA-LNP delivery could be a novel therapeutic method for ischemia-reperfusion-induced acute kidney injury.
Collapse
Affiliation(s)
- Yutong Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Sihao Lin
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, P.R. China
| | - Jia Xia
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanan Yin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- RNAcure Biopharma, Shanghai, P.R. China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai, P.R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, P.R. China
| | - Yingjian Zhu
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, P.R. China
| |
Collapse
|
12
|
Pilichowska E, Ostrowski P, Sieńko J. The Impact of Hematological Indices on the Occurrence of Delayed Graft Function (DGF) of Transplanted Kidney. J Clin Med 2023; 12:7514. [PMID: 38137583 PMCID: PMC10744293 DOI: 10.3390/jcm12247514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND to analyse the effect of haematological indices on the occurrence of Delayed Graft Function (DGF) in patients undergoing kidney transplantation and on the function of the transplanted kidney on the 7th postoperative day. METHODS 365 recipients who underwent kidney transplantation from a donor with known brain death between 2010 and 2017 were included in this retrospective study. Information from patient medical records, donor medical records, and donation and transplantation protocols was used for analysis. Statistica 13 was used for statistical analysis. RESULTS In the study group, DGF occurred in 144 recipients (39.45%), and Non-Graft Function (NGF) occurred in 12 recipients (3.29%). Recipients who developed DGF had a significantly higher Neutrophil/Monocyte Ratio (NMR) before renal transplantation (p = 0.048), a lower NMR value on postoperative day 1 (p < 0.001), and a difference between the values on day 1 and before surgery (p < 0.001). In addition, they had a significantly lower Lymphocyte/Monocyte Ratio (LMR) on postoperative day 1 LMR 1 (p < 0.001). It was shown that the value of the indices based on the ROC curve-NMR1 > 29.29, NMR1-0 > 22.71, and LMR1 > 1.74 (respectively: AUC = 0.624; 95% CI 0.566-0.682; and p < 0.001/AUC = 0.622; 95% CI 0.563-0.680; and p < 0.001/AUC = 0.610; 95% CI 0.550-0.670; and p < 0.001)-can be used to identify recipients with a significant probability of DGF. CONCLUSIONS the NMR and LMR parameters on the first postoperative day and the difference between the NMR values on the first post-transplant day and the first pre-transplant day are predictive factors associated with the risk of DGF.
Collapse
Affiliation(s)
- Ewa Pilichowska
- Department of General Surgery and Transplantation, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Piotr Ostrowski
- Department of Nursing, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland
| | - Jerzy Sieńko
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland;
| |
Collapse
|
13
|
Liu J, Han X, Zhou J, Leng Y. Molecular Mechanisms of Ferroptosis and Their Involvement in Acute Kidney Injury. J Inflamm Res 2023; 16:4941-4951. [PMID: 37936596 PMCID: PMC10627075 DOI: 10.2147/jir.s427505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Ferroptosis is a novel way of regulating cell death, which occurs in a process that is closely linked to intracellular iron metabolism, lipid metabolism, amino acid metabolism, and multiple signaling pathways. The latest research shows that ferroptosis plays a key role in the pathogenesis of acute kidney injury (AKI). Ferroptosis may be an important target for treating AKI caused by various reasons, such as ischemia-reperfusion injury, rhabdomyolysis syndrome, sepsis, and nephrotoxic drugs. This paper provides a review on the regulatory mechanisms of ferroptosis and its role in AKI, which may help to provide new research ideas for the treatment of AKI and future research.
Collapse
Affiliation(s)
- Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoxia Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
| | - Jia Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
14
|
Nørgård MØ, Svenningsen P. Acute Kidney Injury by Ischemia/Reperfusion and Extracellular Vesicles. Int J Mol Sci 2023; 24:15312. [PMID: 37894994 PMCID: PMC10607034 DOI: 10.3390/ijms242015312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Acute kidney injury (AKI) is often caused by ischemia-reperfusion injury (IRI). IRI significantly affects kidney metabolism, which elicits pro-inflammatory responses and kidney injury. The ischemia/reperfusion of the kidney is associated with transient high mitochondrial-derived reactive oxygen species (ROS) production rates. Excessive mitochondrial-derived ROS damages cellular components and, together with other pathogenic mechanisms, elicits a range of acute injury mechanisms that impair kidney function. Mitochondrial-derived ROS production also stimulates epithelial cell secretion of extracellular vesicles (EVs) containing RNAs, lipids, and proteins, suggesting that EVs are involved in AKI pathogenesis. This literature review focuses on how EV secretion is stimulated during ischemia/reperfusion and how cell-specific EVs and their molecular cargo may modify the IRI process. Moreover, critical pitfalls in the analysis of kidney epithelial-derived EVs are described. In particular, we will focus on how the release of kidney epithelial EVs is affected during tissue analyses and how this may confound data on cell-to-cell signaling. By increasing awareness of methodological pitfalls in renal EV research, the risk of false negatives can be mitigated. This will improve future EV data interpretation regarding EVs contribution to AKI pathogenesis and their potential as biomarkers or treatments for AKI.
Collapse
Affiliation(s)
| | - Per Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark;
| |
Collapse
|
15
|
Wu X, You D, Pan M, Weng M, Xie Q, Guan Y, Zheng J, Lin S, Zhang X, Hao C, Wan J. Knockout of the C3a receptor protects against renal ischemia reperfusion injury by reduction of NETs formation. Cell Mol Life Sci 2023; 80:322. [PMID: 37816851 PMCID: PMC11072185 DOI: 10.1007/s00018-023-04967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Renal ischemia/reperfusion (I/R) injury is a local sterile inflammatory response driven by innate immunity. Emerging data have revealed that complement and neutrophils contribute to hyperinflammation and oxidative stress in I/R induced acute kidney injury (AKI). However, the interplay between the C3a/C3aR axis and neutrophil extracellular traps (NETs) is imcompletelyunderstood. Here, we utilize genetically engineered mouse models and pharmacological inhibitors to investigate this association. The C3a/C3aR axis is found to promote neutrophil recruitment and NETs formation, thereby accelerating renal damage and dysfunction. Knockout of C3aR restores NETs release and improves renal function after I/R injury. Antibody-mediated blockade of NETs can also significantly ameliorate renal tubular injury and inflammation. Consistently, under stimulation by C3a, neutrophils are activated to promote NETs formation and subsequent renal tubular epithelial cell damage, and blocking C3aR rescued the injury. Interfering with reactive oxygen species (ROS) accumulation in neutrophils by antioxidant treatment significantly attenuates NETs formation. Our findings demonstrate that the C3a/C3aR-ROS-NETs axis constitutes a promising target for prevention or treatment of renal I/R injury.
Collapse
Affiliation(s)
- Xiaoting Wu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Danyu You
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Maoen Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Mengjie Weng
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qionghong Xie
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi Guan
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jing Zheng
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Songhua Lin
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiaohong Zhang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Chuanming Hao
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
16
|
Liu X, Hu J, Liao G, Liu D, Zhou S, Zhang J, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Zhao M, Liu Y. The role of regulatory T cells in the pathogenesis of acute kidney injury. J Cell Mol Med 2023; 27:3202-3212. [PMID: 37667551 PMCID: PMC10568672 DOI: 10.1111/jcmm.17771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/06/2023] Open
Abstract
The incidence of acute kidney injury (AKI) is on the rise and is associated with high mortality; however, there are currently few effective treatments. Moreover, the relationship between Tregs and other components of the immune microenvironment (IME) in the pathogenesis of AKI remains unclear. We downloaded four publicly accessible AKI datasets, GSE61739, GSE67401, GSE19130, GSE81741, GSE19288 and GSE106993 from the gene expression omnibus (GEO) database. Additionally, we gathered two kidney single-cell sequencing (scRNA-seq) samples from the Department of Organ Transplantation at Zhujiang Hospital of Southern Medical University to investigate chronic kidney transplant rejection (CKTR). Moreover, we also collected three samples of normal kidney tissue from GSE131685. By analysing the differences in immune cells between the AKI and Non-AKI groups, we discovered that the Non-AKI group contained a significantly greater number of Tregs than the AKI group. Additionally, the activation of signalling pathways, such as inflammatory molecules secretion, immune response, glycolytic metabolism, NOTCH, FGF, NF-κB and TLR4, was significantly greater in the AKI group than in the Non-AKI group. Additionally, analysis of single-cell sequencing data revealed that Tregs in patients with chronic kidney rejection and in normal kidney tissue have distinct biology, including immune activation, cytokine production, and activation fractions of signalling pathways such as NOTCH and TLR4. In this study, we found significant differences in the IME between AKI and Non-AKI, including differences in Tregs cells and activation levels of biologically significant signalling pathways. Tregs were associated with lower activity of signalling pathways such as inflammatory response, inflammatory molecule secretion, immune activation, glycolysis.
Collapse
Affiliation(s)
- Xiaoyou Liu
- Department of Organ transplantationThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jianmin Hu
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Guorong Liao
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Ding Liu
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Song Zhou
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Jie Zhang
- Department of Organ transplantationThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liao
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Zefeng Guo
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Yuzhu Li
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Siqiang Yang
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Shichao Li
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Hua Chen
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Ying Guo
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Min Li
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Lipei Fan
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Liuyang Li
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Ming Zhao
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Yongguang Liu
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| |
Collapse
|
17
|
Rey-Serra C, Tituaña J, Lin T, Herrero JI, Miguel V, Barbas C, Meseguer A, Ramos R, Chaix A, Panda S, Lamas S. Reciprocal regulation between the molecular clock and kidney injury. Life Sci Alliance 2023; 6:e202201886. [PMID: 37487638 PMCID: PMC10366531 DOI: 10.26508/lsa.202201886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Tubulointerstitial fibrosis is the common pathological substrate for many etiologies leading to chronic kidney disease. Although perturbations in the circadian rhythm have been associated with renal disease, the role of the molecular clock in the pathogenesis of fibrosis remains incompletely understood. We investigated the relationship between the molecular clock and renal damage in experimental models of injury and fibrosis (unilateral ureteral obstruction, folic acid, and adenine nephrotoxicity), using genetically modified mice with selective deficiencies of the clock components Bmal1, Clock, and Cry We found that the molecular clock pathway was enriched in damaged tubular epithelial cells with marked metabolic alterations. In human tubular epithelial cells, TGFβ significantly altered the expression of clock components. Although Clock played a role in the macrophage-mediated inflammatory response, the combined absence of Cry1 and Cry2 was critical for the recruitment of neutrophils, correlating with a worsening of fibrosis and with a major shift in the expression of metabolism-related genes. These results support that renal damage disrupts the kidney peripheral molecular clock, which in turn promotes metabolic derangement linked to inflammatory and fibrotic responses.
Collapse
Affiliation(s)
- Carlos Rey-Serra
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jessica Tituaña
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Ignacio Herrero
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Anna Meseguer
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Ricardo Ramos
- Genomic Facility, Fundación Parque Científico de Madrid, Madrid, Spain
| | - Amandine Chaix
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
18
|
Wang L, Peng F, Li ZH, Deng YF, Ruan MN, Mao ZG, Li L. Identification of AKI signatures and classification patterns in ccRCC based on machine learning. Front Med (Lausanne) 2023; 10:1195678. [PMID: 37293297 PMCID: PMC10244623 DOI: 10.3389/fmed.2023.1195678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Background Acute kidney injury can be mitigated if detected early. There are limited biomarkers for predicting acute kidney injury (AKI). In this study, we used public databases with machine learning algorithms to identify novel biomarkers to predict AKI. In addition, the interaction between AKI and clear cell renal cell carcinoma (ccRCC) remain elusive. Methods Four public AKI datasets (GSE126805, GSE139061, GSE30718, and GSE90861) treated as discovery datasets and one (GSE43974) treated as a validation dataset were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between AKI and normal kidney tissues were identified using the R package limma. Four machine learning algorithms were used to identify the novel AKI biomarkers. The correlations between the seven biomarkers and immune cells or their components were calculated using the R package ggcor. Furthermore, two distinct ccRCC subtypes with different prognoses and immune characteristics were identified and verified using seven novel biomarkers. Results Seven robust AKI signatures were identified using the four machine learning methods. The immune infiltration analysis revealed that the numbers of activated CD4 T cells, CD56dim natural killer cells, eosinophils, mast cells, memory B cells, natural killer T cells, neutrophils, T follicular helper cells, and type 1 T helper cells were significantly higher in the AKI cluster. The nomogram for prediction of AKI risk demonstrated satisfactory discrimination with an Area Under the Curve (AUC) of 0.919 in the training set and 0.945 in the testing set. In addition, the calibration plot demonstrated few errors between the predicted and actual values. In a separate analysis, the immune components and cellular differences between the two ccRCC subtypes based on their AKI signatures were compared. Patients in the CS1 had better overall survival, progression-free survival, drug sensitivity, and survival probability. Conclusion Our study identified seven distinct AKI-related biomarkers based on four machine learning methods and proposed a nomogram for stratified AKI risk prediction. We also confirmed that AKI signatures were valuable for predicting ccRCC prognosis. The current work not only sheds light on the early prediction of AKI, but also provides new insights into the correlation between AKI and ccRCC.
Collapse
Affiliation(s)
- Li Wang
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fei Peng
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Zhen Hua Li
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yu Fei Deng
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Meng Na Ruan
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhi Guo Mao
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lin Li
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
19
|
Yang W, Li X, He L, Zhu S, Lai S, Zhang X, Huang Z, Yu B, Cui C, Wang Q. Empagliflozin improves renal ischemia-reperfusion injury by reducing inflammation and enhancing mitochondrial fusion through AMPK-OPA1 pathway promotion. Cell Mol Biol Lett 2023; 28:42. [PMID: 37202752 DOI: 10.1186/s11658-023-00457-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) is one reason for renal transplantation failure. Recent studies have shown that mitochondrial dynamics is closely related to IRI, and that inhibition or reversal of mitochondrial division protects organs against IRI. Optic atrophy protein 1 (OPA1), an important factor in mitochondrial fusion, has been shown to be upregulated by sodium-glucose cotransporter 2 inhibitor (SGLT2i). Also, the antiinflammatory effects of SGLT2i have been demonstrated in renal cells. Thus, we hypothesized that empagliflozin could prevent IRI through inhibiting mitochondrial division and reducing inflammation. METHODS Using hematoxylin-eosin staining, enzyme linked immunosorbent assay (ELISA), flow cytometry, immunofluorescent staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining, real-time PCR, RNA-sequencing, and western blot, we analyzed renal tubular tissue from in vivo and in vitro experiments. RESULTS Through animal experiments and sequencing analysis, we first confirmed the protection against IRI and the regulation of mitochondrial dynamics-related factors and inflammatory factors by empagliflozin pretreatment. Then, through hypoxia/reoxygenation (H/R) cellular experiments, we confirmed that empagliflozin could inhibit mitochondrial shortening and division and upregulate OPA1 in human renal tubular epithelial cell line (HK-2) cells. Subsequently, we knocked down OPA1, and mitochondrial division and shortening were observed, which could be alleviated by empagliflozin treatment. Combined with the previous results, we concluded that OPA1 downregulation leads to mitochondrial division and shortening, and empagliflozin can alleviate the condition by upregulating OPA1. We further explored the pathway through which empagliflozin functions. Related studies have shown the activation of AMPK pathway by empagliflozin and the close correlation between the AMPK pathway and OPA1. In our study, we blocked the AMPK pathway, and OPA1 upregulation by empagliflozin was not observed, thus demonstrating the dependence of empagliflozin on the AMPK pathway. CONCLUSION The results indicated that empagliflozin could prevent or alleviate renal IRI through antiinflammatory effects and the AMPK-OPA1 pathway. Ischemia-reperfusion injury is an inevitable challenge in organ transplantation. It is necessary to develop a new therapeutic strategy for IRI prevention in addition to refining the transplantation process. In this study, we confirmed the preventive and protective effects of empagliflozin in renal ischemia-reperfusion injury. Based on these findings, empagliflozin is promising to be a preventive agent for renal ischemia-reperfusion injury and can be applied for preemptive administration in kidney transplantation.
Collapse
Affiliation(s)
- Wenbo Yang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaoli Li
- Department of the Eighth Healthcare, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Liujie He
- Naval Medical University, Shanghai, 200433, China
| | - Shuyang Zhu
- Naval Medical University, Shanghai, 200433, China
| | - Shicong Lai
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaopeng Zhang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Zixiong Huang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Biyue Yu
- School of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Chunping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Qiang Wang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
20
|
Baek J, Kim S. Effects of Transfusion of Stored Red Blood Cells on Renal Ischemia-Reperfusion–Induced Hepatic Injury in Rats. Transplant Proc 2023; 55:629-636. [PMID: 37005156 DOI: 10.1016/j.transproceed.2023.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/24/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion (IR) injures the liver as well as the kidneys. Transfusion of stored red blood cells (RBCs) triggers inflammatory responses, oxidative stress, and activation of innate immunity. In the present study, we investigated the effect of transfusion of stored RBCs on renal IR-induced hepatic injury. METHODS Sprague-Dawley rats were randomly divided into 3 groups based on the following treatments: rats subjected to sham operation (sham group), rats subjected to the induction of renal IR only (RIR group), and rats transfused with stored RBCs 1 hour after the start of reperfusion (RIR-TF group). Renal ischemia was induced for 1 hour, and reperfusion was allowed for 24 hours. After reperfusion, blood and liver tissue samples were obtained. RESULTS Serum levels of aspartate and alanine aminotransferase were increased in the RIR-TF group compared with those in the RIR and sham groups. The hepatic mRNA expression levels of heme oxygenase-1 and neutrophil gelatinase-associated lipocalin were increased in the RIR-TF group compared with those in the RIR and sham groups. The mRNA expression level of high mobility group box-1 was also increased in the RIR-TF group compared with that in the RIR group. CONCLUSION The transfusion of stored RBCs exacerbates renal IR-induced liver damage. Oxidative stress may be responsible for hepatic injury.
Collapse
|
21
|
Yan P, Duan SB, Luo XQ, Zhang NY, Deng YH. Development and validation of a deep neural network-based model to predict acute kidney injury following intravenous administration of iodinated contrast media in hospitalized patients with chronic kidney disease: a multicohort analysis. Nephrol Dial Transplant 2023; 38:352-361. [PMID: 35218197 DOI: 10.1093/ndt/gfac049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Stratification of chronic kidney disease (CKD) patients [estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2] at risk for post-contrast acute kidney injury (PC-AKI) following intravenous administration of iodinated contrast media (ICM) is important for clinical decision-making and clinical trial enrollment. METHODS The derivation and internal validation cohorts originated from the Second Xiangya Hospital. The external validation cohort was generated from the Xiangya Hospital and the openly accessible database Medical Information Mart for Intensive CareIV. PC-AKI was defined based on the serum creatinine criteria of the Kidney Disease: Improving Global Outcomes (KDIGO). Six feature selection methods were used to identify the most influential predictors from 79 candidate variables. Deep neural networks (DNNs) were used to establish the model and compared with logistic regression analyses. Model discrimination was evaluated by area under the receiver operating characteristic curve (AUC). Low-risk and high-risk cutoff points were set to stratify patients. RESULTS Among 4218 encounters studied, PC-AKI occurred in 10.3, 10.4 and 11.4% of encounters in the derivation, internal and external validation cohorts, respectively. The 14 variables-based DNN model had significantly better performance than the logistic regression model with AUC being 0.939 (95% confidence interval: 0.916-0.958) and 0.940 (95% confidence interval: 0.909-0.954) in the internal and external validation cohorts, respectively, and showed promising discrimination in subgroup analyses (AUC ≥ 0.800). The observed PC-AKI risks increased significantly from the low- to intermediate- to high-risk group (<1.0 to >50%) and the accuracy of patients not developing PC-AKI was 99% in the low-risk category in both the internal and external validation cohorts. CONCLUSIONS A DNN model using routinely available variables can accurately discriminate the risk of PC-AKI of hospitalized CKD patients following intravenous administration of ICM.
Collapse
Affiliation(s)
- Ping Yan
- Department of Nephrology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shao-Bin Duan
- Department of Nephrology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xiao-Qin Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ning-Ya Zhang
- Information Center, The Second Xiangya Hospital of Central South University; Changsha, Hunan, China
| | - Ying-Hao Deng
- Department of Nephrology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
22
|
Reese PP, Doshi MD, Hall IE, Besharatian B, Bromberg JS, Thiessen-Philbrook H, Jia Y, Kamoun M, Mansour SG, Akalin E, Harhay MN, Mohan S, Muthukumar T, Schröppel B, Singh P, Weng FL, Parikh CR. Deceased-Donor Acute Kidney Injury and Acute Rejection in Kidney Transplant Recipients: A Multicenter Cohort. Am J Kidney Dis 2023; 81:222-231.e1. [PMID: 36191727 PMCID: PMC9868058 DOI: 10.1053/j.ajkd.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/02/2022] [Indexed: 01/26/2023]
Abstract
RATIONALE & OBJECTIVE Donor acute kidney injury (AKI) activates innate immunity, enhances HLA expression in the kidney allograft, and provokes recipient alloimmune responses. We hypothesized that injury and inflammation that manifested in deceased-donor urine biomarkers would be associated with higher rates of biopsy-proven acute rejection (BPAR) and allograft failure after transplantation. STUDY DESIGN Prospective cohort. SETTING & PARTICIPANTS 862 deceased donors for 1,137 kidney recipients at 13 centers. EXPOSURES We measured concentrations of interleukin 18 (IL-18), kidney injury molecule 1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) in deceased donor urine. We also used the Acute Kidney Injury Network (AKIN) criteria to assess donor clinical AKI. OUTCOMES The primary outcome was a composite of BPAR and graft failure (not from death). A secondary outcome was the composite of BPAR, graft failure, and/or de novo donor-specific antibody (DSA). Outcomes were ascertained in the first posttransplant year. ANALYTICAL APPROACH Multivariable Fine-Gray models with death as a competing risk. RESULTS Mean recipient age was 54 ± 13 (SD) years, and 82% received antithymocyte globulin. We found no significant associations between donor urinary IL-18, KIM-1, and NGAL and the primary outcome (subdistribution hazard ratio [HR] for highest vs lowest tertile of 0.76 [95% CI, 0.45-1.28], 1.20 [95% CI, 0.69-2.07], and 1.14 [95% CI, 0.71-1.84], respectively). In secondary analyses, we detected no significant associations between clinically defined AKI and the primary outcome or between donor biomarkers and the composite outcome of BPAR, graft failure, and/or de novo DSA. LIMITATIONS BPAR was ascertained through for-cause biopsies, not surveillance biopsies. CONCLUSIONS In a large cohort of kidney recipients who almost all received induction with thymoglobulin, donor injury biomarkers were associated with neither graft failure and rejection nor a secondary outcome that included de novo DSA. These findings provide some reassurance that centers can successfully manage immunological complications using deceased-donor kidneys with AKI.
Collapse
Affiliation(s)
- Peter P Reese
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Renal-Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mona D Doshi
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Isaac E Hall
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Behdad Besharatian
- Renal-Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jonathan S Bromberg
- Department of Surgery, Division of Transplantation and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Heather Thiessen-Philbrook
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yaqi Jia
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Malek Kamoun
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sherry G Mansour
- Program of Applied Translational Research and Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT
| | - Enver Akalin
- Kidney Transplant Program, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Meera N Harhay
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA; Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA
| | - Sumit Mohan
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY; Department of Medicine, Division of Nephrology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Thangamani Muthukumar
- Department of Medicine, Division of Nephrology and Hypertension and Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY
| | | | - Pooja Singh
- Department of Medicine, Division of Nephrology, Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Francis L Weng
- Renal and Pancreas Transplant Division at Cooperman Barnabas Medical Center, RWJ Barnabas Health, Livingston, NJ
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
23
|
Chang SN, Park JG, Kang SC. Therapeutic propensity of ginsenosides Rg1 and Rg3 in rhabdomyolysis-induced acute kidney injury and renohepatic crosstalk in rats. Int Immunopharmacol 2023; 115:109602. [PMID: 36580761 DOI: 10.1016/j.intimp.2022.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ginseng is a traditional herbal medicine used for thousands of years in Southeast Asian countries because of its medicinal properties. Ginsenosides Rg1 and Rg3 have demonstrated therapeutic properties against a broad spectrum of diseases. PURPOSE Here in this study, we investigated the therapeutic efficacy of Rg1 and Rg3 in alleviating glycerol-induced acute kidney injury, also known as rhabdomyolysis-induced acute kidney injury (RAKI). METHODS AKI was induced in male Wistar rats through intramuscular injection of 10 mL/kg glycerol and simultaneous oral treatment of ginsenosides Rg1 and Rg3 for 3 days. We also evaluated the therapeutic potential of Rg1 and Rg3 on human embryonic kidney epithelial (HEK-293). Cell viability and LDH assay were performed on HEK-293 cells to evaluate the toxicity of Rg1 and Rg3. Evaluation of important kidney damage markers such as creatinine and blood urea nitrogen (BUN) was carried out at different time points from the rat serum. Histopathological analysis was performed on kidney tissues. We also performed experiments such as ELISA assay, immunohistochemistry, immunofluorescence staining, COMET assay, western blotting, TUNEL assay, and flow cytometry to obtain results. RESULTS Rg1 and Rg3 significantly downregulated the expression of kidney damage markers such as creatinine and BUN in a dose-dependent manner. Histopathological analysis revealed damage across the glomerulus, tubules, and collecting duct rendering the kidney dysfunctional in glycerol treatment groups. However, Rg1 and Rg3 treated groups showed a significant reduction in tubular necrosis at both 10 and 20 mg/kg. There was also a sharp downregulation of oxidative and ER stress markers. Additionally, we observed nuclear translocation of Nrf2 which were more prominent in kidney tissues. Rg1 and Rg3 were also able to mitigate apoptotic cell death in vitro and in vivo evaluated through immunofluorescence staining for p53, TUNEL assay, flow cytometry, and immunoblotting for intrinsic apoptosis markers. CONCLUSION In summary, we conclude that Rg1 and Rg3 exhibited natural therapeutic remedy against AKI.
Collapse
Affiliation(s)
- Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
24
|
Tiba AT, Qassam H, Hadi NR. Semaglutide in renal ischemia-reperfusion injury in mice. J Med Life 2023; 16:317-324. [PMID: 36937464 PMCID: PMC10015556 DOI: 10.25122/jml-2022-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 03/21/2023] Open
Abstract
Ischemia and reperfusion injury (I/R) is a serious condition leading to organ failure, characterized by poor blood supply followed by rapid resuscitation of blood flow and reoxygenation. Renal failure caused by renal ischemia has high mortality and morbidity. This study aimed to explore the potential role of Semaglutide as a novel and effective therapeutic strategy for acute renal failure. Additionally, we aimed to assess the possible protective effect of Semaglutide on kidney I/R injury in mice through modulation of the inflammatory and oxidative pathways via phosphatidylinositol 3-kinase/adenosine triphosphate (PI3K/AKT) activation. We employed twenty-eight albino mice to induce the I/R injury model by clamping the renal artery for 30 min followed by a period of reperfusion for 2 hours. The control group was exposed to I/R injury, while the Semaglutide-treated group was pretreated with the drug 12 hours before induction of ischemia at a dose of 100 nmol/L/kg via the intraperitoneal route (i.p). In addition, the DMSO-treated group was subjected to similar conditions to the Semaglutide-treated group. At the end of the experiments, kidneys and blood samples were collected for investigation. Semaglutide could act as a protective agent against acute kidney injury by reducing inflammatory molecules such as tumor necrosis factor-alpha (TNF-α) and its cognate receptor, TNF-α R, interleukine-6 (IL-6). Furthermore, Semaglutide reduced F8 isoprostane levels, increased PI3K and AKT levels in renal tissues, and mitigated renal damage. Semaglutide had renoprotective effects via modulation of the inflammatory response and oxidative pathway by targeting the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Al-Tameemi Tiba
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Heider Qassam
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
- Corresponding Author: Najah Rayish Hadi, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq. E-mail:
| |
Collapse
|
25
|
Vallés PG, Gil Lorenzo AF, Garcia RD, Cacciamani V, Benardon ME, Costantino VV. Toll-like Receptor 4 in Acute Kidney Injury. Int J Mol Sci 2023; 24:ijms24021415. [PMID: 36674930 PMCID: PMC9864062 DOI: 10.3390/ijms24021415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Acute kidney injury (AKI) is a common and devastating pathologic condition, associated with considerable high morbidity and mortality. Although significant breakthroughs have been made in recent years, to this day no effective pharmacological therapies for its treatment exist. AKI is known to be connected with intrarenal and systemic inflammation. The innate immune system plays an important role as the first defense response mechanism to tissue injury. Toll-like receptor 4 (TLR4) is a well-characterized pattern recognition receptor, and increasing evidence has shown that TLR4 mediated inflammatory response, plays a pivotal role in the pathogenesis of acute kidney injury. Pathogen-associated molecular patterns (PAMPS), which are the conserved microbial motifs, are sensed by these receptors. Endogenous molecules generated during tissue injury, and labeled as damage-associated molecular pattern molecules (DAMPs), also activate pattern recognition receptors, thereby offering an understanding of sterile types of inflammation. Excessive, uncontrolled and/or sustained activation of TLR4, may lead to a chronic inflammatory state. In this review we describe the role of TLR4, its endogenous ligands and activation in the inflammatory response to ischemic/reperfusion-induced AKI and sepsis-associated AKI. The potential regeneration signaling patterns of TLR4 in acute kidney injury, are also discussed.
Collapse
Affiliation(s)
- Patricia G. Vallés
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
- Correspondence:
| | - Andrea Fernanda Gil Lorenzo
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Rodrigo D. Garcia
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Valeria Cacciamani
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
| | - María Eugenia Benardon
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Valeria Victoria Costantino
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
- Área de Biología Celular, Departamento de Morfofisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| |
Collapse
|
26
|
Abdel-Aziz HM, Ibrahem NE, Mekawy NH, Fawzy A, Mohamad NM, Samy W. Nicorandil and Bone Marrow-derived Mesenchymal Stem Cells Therapeutic Effect after Ureteral Obstruction in Adult Male Albino Rats. Curr Mol Pharmacol 2023; 16:124-138. [PMID: 35319402 DOI: 10.2174/1874467215666220322113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/09/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic kidney disease is a global health problem for which renal fibrogenesis is the final treatment target. OBJECTIVE In our work, we have highlighted two new strategies, nicorandil and Bone marrow-derived mesenchymal stem cells (BM-MSCs), as effective in reversing renal fibrosis induced by partial unilateral ureteral obstruction (PUUO). METHODS The current study included 96 male albino rats randomly divided into four groups, with 24 rats per group; Group I, the control group; Group II, PUUO, where two-thirds of the left ureter was entrenched in the psoas muscle; Group III, same surgical procedure as in Group II for 7 days, and then the rats received 15 mg/kg/day nicorandil once daily for 21 days; and Group IV, same surgical procedure as in Group II for 7 days, and then rats were given 3 × 106 of labeled MSCs injected intravenous, and left for 21 days. Blood and kidney tissues were collected for biochemical, histological, and molecular analyses. RESULTS Both the nicorandil and BM-MSCs treatment groups could ameliorate kidney damage evidenced by inhibition of MDA elevation and total antioxidant capacity reduction caused by PUUO. Also, there was a significant reduction observed in TNF, TGF, IL6, collagen I, and α-SMA in addition to improvement in histological examination. However, a significant difference was found between the BM-MSCs and nicorandil-treated groups. CONCLUSION Our results suggest that BM-MSCs and nicorandil improved renal fibrosis progression through their antiapoptotic, anti-inflammatory, and antifibrotic effects in male albino rats subjected to PUUO, with BM-MSCs being more effective compared to nicorandil.
Collapse
Affiliation(s)
- Heba M Abdel-Aziz
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nahla E Ibrahem
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Noura H Mekawy
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal Fawzy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Noura Mostafa Mohamad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
27
|
Xu M, Zhao M, Zheng D. Effect of IGF-1C domain-modified nanoparticles on renal ischemia-reperfusion injury in mice. Ren Fail 2022; 44:1376-1387. [PMID: 35969012 PMCID: PMC9389927 DOI: 10.1080/0886022x.2022.2098773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Renal ischemia–reperfusion injury (IRI) is a common prerequisite of acute renal injury (AKI) that involves the entire system and induces critical illness. The C domain of insulin-like growth factor-1 (IGF-1C) plays an important role in promoting angiogenesis and enhancing the inflammatory response. However, given the shortcomings of its short half-life and poor stability, the application of IGF-1C is restricted. In the present study, IGF-1C nanoparticles (NP-IGF-1C) were constructed by combining 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide (polye thyleneglycol)](DSPE-PEG-MAL) and IGF-1C through a Michael addition reaction to evaluate the effects of NP-IGF-1C on preventing IRI. In vitro studies have shown that NP-IGF-1C is not cytotoxic and protects cells from oxidative damage. The renal enrichment and biocompatibility of NP-IGF-1C were determined in vivo by connecting fluorescent molecules to NP-IGF-1C for in vivo imaging and pathological staining of important organs. After IRI, renal function decreased, and inflammatory cell infiltration, oxidative stress and apoptosis increased. As expected, NP-IGF-1C reversed these changes, indicating that NP-IGF-1C played a protective role in the process of IRI, which may be mediated by its antioxidant, anti-inflammatory and antiapoptotic activities.
Collapse
Affiliation(s)
- Meng Xu
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Mingyue Zhao
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Donghui Zheng
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
28
|
Rhabdomyolysis-induced acute kidney injury and concomitant apoptosis induction via ROS-mediated ER stress is efficaciously counteracted by epigallocatechin gallate. J Nutr Biochem 2022; 110:109134. [PMID: 36028100 DOI: 10.1016/j.jnutbio.2022.109134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023]
Abstract
Rhabdomyolysis induced acute kidney injury (RIAKI) is a life-threatening condition responsible for approximately 19-58% of AKI cases worldwide. We performed an intramuscular injection of glycerol (10 mL/kg) in male wistar rats to induce AKI. Epigallocatechin gallate (EGCG) was administered for 3 consecutive days to evaluate its protective effects. We observed significant downregulation in serum creatinine, blood urea nitrogen (BUN) and LDH at different time points on EGCG treatment groups in a dose-dependent manner. Similarly, H&E staining also revealed that EGCG was able to reduce the formation of damaged tubules and tubular necrosis which was prominently spread throughout the kidney tissue of glycerol treatment group. Concomitantly, we observed upregulated inflammation, ER stress and elevated oxidative stress in the glycerol treated group only, which was significantly normalized upon EGCG treatment in both in vitro and in vivo studies. The occurrence of apoptosis in kidney tubules was found to be relatively higher in glycerol treated group and H2O2 treated HEK-293 cells. The results obtained after EGCG treatment revealed a significant decrease in apoptotic cell population, which was further validated by immunofluorescence staining against p53 and comet assay in HEK-293 cells and p53 IHC in kidney tissues. Western blotting also revealed a systemic downregulation of intrinsic mitochondrial apoptotic pathway markers such as bax, bcl-2, pro and cleaved caspase 3, caspase 9 and PARP1. Additionally, the results for flow cytometry analysis and TUNEL assay corroborated apoptotic equilibrium. Conclusively, we reckon EGCG as a multi-therapeutic natural product that can be used the for treatment of AKI.
Collapse
|
29
|
Guo W, Wang Y, Wu Y, Liu J, Li Y, Wang J, Ou S, Wu W. Integration of transcriptomics and metabolomics reveals the molecular mechanisms underlying the effect of nafamostat mesylate on rhabdomyolysis-induced acute kidney injury. Front Pharmacol 2022; 13:931670. [PMID: 36532745 PMCID: PMC9748812 DOI: 10.3389/fphar.2022.931670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/17/2022] [Indexed: 11/09/2023] Open
Abstract
Objective: To investigate the role and mechanisms of action of nafamostat mesylate (NM) in rhabdomyolysis-induced acute kidney injury (RIAKI). Methods: RIAKI rats were assigned into control group (CN), RIAKI group (RM), and NM intervention group (NM). Inflammatory cytokines and proenkephalin a 119-159 (PENKID) were assessed. Cell apoptosis and glutathione peroxidase-4 (GPX4) were detected using TUNEL assay and immunohistochemical staining. Mitochondrial membrane potential (MMP) was detected by JC-1 dye. The expression of genes and metabolites after NM intervention was profiled using transcriptomic and metabolomic analysis. The differentially expressed genes (DEGs) were validated using qPCR. The KEGG and conjoint analysis of transcriptome and metabolome were used to analyze the enriched pathways and differential metabolites. The transcription factors were identified based on the animal TFDB 3.0 database. Results: Serum creatinine, blood urea nitrogen, and PENKID were remarkably higher in the RM group and lower in the NM group compared to the CN group. Pro-inflammatory cytokines increased in the RM group and notably decreased following NM treatment compared to the CN group. Tubular pathological damages were markedly attenuated and renal cell apoptosis was reduced significantly in the NM group compared to the RM group. The expression of GPX4 was lower in the RM group compared to the CN group, and it increased significantly after NM treatment. A total of 294 DEGs were identified in the RM group compared with the NM group, of which 192 signaling pathways were enriched, and glutathione metabolism, IL-17 signaling, and ferroptosis-related pathways were the top-ranking pathways. The transcriptional levels of Anpep, Gclc, Ggt1, Mgst2, Cxcl13, Rgn, and Akr1c1 were significantly different between the NM and RM group. Gclc was the key gene contributing to NM-mediated renal protection in RIAKI. Five hundred and five DEGs were annotated. Compared with the RM group, most of the upregulated DEGs in the NM group belonged to Glutathione metabolism, whereas most of the downregulated DEGs were related to the transcription factor Cytokine-cytokine receptor interaction. Conclusion: NM protects the kidneys against RIAKI, which is mainly associated with NM mediated regulation of glutathione metabolism, inflammatory response, ferroptosis-related pathways, and the related key DEGs. Targeting these DEGs might emerge as a potential molecular therapy for RIAKI.
Collapse
Affiliation(s)
- Wenli Guo
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Nephrology and Rheumatology, Sichuan Provincial People’s Hospital Qionglai Hospital, Medical Center Hospital Of Qionglai City. Chengdu, Sichuan, China
| | - Yu Wang
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuxuan Wu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiang Liu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Wang
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Santao Ou
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Weihua Wu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
30
|
Xu J, Wang Z, Zhang Q, Wang D, Jiang C, Wang H. Toll-Like Receptor 4 Is an Early and Sensitive Biomarker to Detect Acute Kidney Injury after Surgery for Type A Aortic Dissection. Rev Cardiovasc Med 2022; 23:363. [PMID: 39076193 PMCID: PMC11269082 DOI: 10.31083/j.rcm2311363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 07/31/2024] Open
Abstract
Background Acute kidney injury (AKI) is a relatively common complication after surgery for type A acute aortic dissection (ATAAD) and is associated with a poor prognosis. Preclinical models suggest that toll-like receptor 4 (TLR4) may participate in the pathogenesis of AKI. However, the correlation of serum TLR4 and post-operative AKI has not been studied in ATAAD patients. This study aimed to explore the possibility of using serum TLR4 levels to predict AKI and 30-day mortality in patients undergoing ATAAD surgery. Methods A prospective, single-center cohort study was conducted and enrolled a total of 64 patients undergoing ATAAD surgery. The level of serum TLR4 was measured and compared before and within 24 hours after the completion of surgery. Results Thirty-five (54.7%) patients developed AKI, including 7 (10.9%) diagnosed with severe AKI (Kidney Disease Improving Global Outcomes (KDIGO) stage 3). TLR4 levels at 0-hour,1-hour, 3-hour, and 6-hour after intensive care unit (ICU) admission were significantly different between patients with or without AKI. Further analysis showed that the difference was most significant at 0-hour after ICU admission which corresponded to an area under the curve (AUC) of 0.886 (95% confidence interval (CI), 0.800 to 0.973). For severe AKI, the AUC of TLR4 was the highest with 0.923 (0.852 to 0.995) at 1-hour after ICU admission. TLR4 levels before surgery and at 0-hour, 1-hour, as well as 3-hour after ICU admission were significantly different between survivors and non-survivors. Furthermore, we found that the serum level of TLR4 upon ICU admission could be used to predict the 30-day mortality with AUC of 0.805 (0.648 to 0.962). Conclusions Serum TLR4 levels can be used as a biomarker to predict the occurrence of AKI and 30-day mortality in patients undergoing ATAAD surgery. Clinical Trial Registration Number ChiCTR2200057197.
Collapse
Affiliation(s)
- Jingfang Xu
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 210008 Nanjing, Jiangsu, China
| | - Zhigang Wang
- Department of Cardio-thoracic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 210008 Nanjing, Jiangsu, China
| | - Qingyan Zhang
- Department of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 210008 Nanjing, Jiangsu, China
| | - Dongjin Wang
- Department of Cardio-thoracic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 210008 Nanjing, Jiangsu, China
| | - Chunming Jiang
- Department of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 210008 Nanjing, Jiangsu, China
| | - Hengjin Wang
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 210008 Nanjing, Jiangsu, China
- Department of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 210008 Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Juncos LA, Wieruszewski PM, Kashani K. Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review. Compr Physiol 2022; 12:3767-3780. [PMID: 36073750 DOI: 10.1002/cphy.c210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute kidney injury (AKI) is a syndrome that entails a rapid decline in kidney function with or without injury. The consequences of AKI among acutely ill patients are dire and lead to higher mortality, morbidity, and healthcare cost. To prevent AKI and its short and long-term repercussions, understanding its pathophysiology is essential. Depending on the baseline kidney histology and function reserves, the number of kidney insults, and the intensity of each insult, the clinical presentation of AKI may differ. While many factors are capable of inducing renal injury, they can be categorized into a few processes. The three primary processes reported in the literature are hemodynamic changes, inflammatory reactions, and nephrotoxicity. The majority of patients with AKI will suffer from more than one during their development and/or progression of AKI. Moreover, the development of one usually leads to the instigation of another. Thus, the interactions and progression between these mechanisms may determine the severity and duration of the AKI. Other factors such as organ crosstalk and how our concurrent therapies interact with these mechanisms complicate the pathophysiology of the progression of the AKI even further. In this narrative review article, we describe these three main pathophysiological processes that lead to the development and progression of AKI. © 2022 American Physiological Society. Compr Physiol 12: 1-14, 2022.
Collapse
Affiliation(s)
- Luis A Juncos
- Division of Nephrology, Central Arkansas Veterans' Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Patrick M Wieruszewski
- Division of Hospital Pharmacy, Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
32
|
Zhang C, Guan Y, Zou J, Yang X, Bayliss G, Zhuang S. Histone methyltransferase MLL1 drives renal tubular cell apoptosis by p53-dependent repression of E-cadherin during cisplatin-induced acute kidney injury. Cell Death Dis 2022; 13:770. [PMID: 36068197 PMCID: PMC9448773 DOI: 10.1038/s41419-022-05104-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Mixed lineage leukemia 1 (MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase that interacts with WD repeat domain 5 (WDR5) to regulate cell survival, proliferation, and senescence. The role of MLL1 in the pathogenesis of acute kidney injury (AKI) is unknown. In this study, we demonstrate that MLL1, WDR5, and trimethylated H3K4 (H3K4me3) were upregulated in renal tubular cells of cisplatin-induced AKI in mice, along with increased phosphorylation of p53 and decreased expression of E-cadherin. Administration of MM102, a selective MLL1/WDR5 complex inhibitor, improved renal function and attenuated tubular injury and apoptosis, while repressing MLL1, WDR5, and H3K4me3, dephosphorylating p53 and preserving E-cadherin. In cultured mouse renal proximal tubular cells (RPTCs) exposed to cisplatin, treatment with MM102 or transfection with siRNAs for either MLL1 or WDR5 also inhibited apoptosis and p53 phosphorylation while preserving E-cadherin expression; p53 inhibition with Pifithrin-α lowered cisplatin-induced apoptosis without affecting expression of MLL1, WDR5, and H3K4me3. Interestingly, silencing of E-cadherin offset MM102's cytoprotective effects, but had no effect on p53 phosphorylation. These findings suggest that MLL1/WDR5 activates p53, which, in turn, represses E-cadherin, leading to apoptosis during cisplatin-induced AKI. Further studies showed that MM102 effectively inhibited cisplatin-triggered DNA damage response (DDR), as indicated by dephosphorylation of ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) proteins, dephosphorylation of checkpoint kinase 1 and 2 (Chk1 and Chk2); depression of γ-H2AX; and restrained cell cycle arrest, as evidenced by decreased expression of p21 and phospho-histone H3 at serine 10 in vitro and in vivo. Overall, we identify MLL1 as a novel DDR regulator that drives cisplatin-induced RPTC apoptosis and AKI by modulating the MLL1/WDR5-/ATR/ATM-Chk-p53-E-cadherin axis. Targeting the MLL1/WDR5 complex may have a therapeutic potential for the treatment of AKI.
Collapse
Affiliation(s)
- Chunyun Zhang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
- Department of Nephrology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjie Guan
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Jianan Zou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Xu Yang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Georgia Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA.
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Huang S, Liu K, Su Y, Wang F, Feng T. Research progress of ferroptosis in glaucoma and optic nerve damage. Mol Cell Biochem 2022; 478:721-727. [PMID: 36053395 DOI: 10.1007/s11010-022-04545-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Unlike other death forms, such as autophagy, necrosis, and apoptosis, ferroptosis is a novel type of programmed cell death with iron-dependent properties. Esteroxygenase affects the content of unsaturated fatty acids and promotes lipid peroxidation. In addition, GSH can cause the reduction of GPX4, which can cause ferroptosis. P53 and its signaling pathways also regulate ferroptosis. Recent studies have confirmed that ferroptosis also promotes the death of RGC. The progressive loss of RGC is one of the pathological features of glaucoma, indicating that ferroptosis may be related to the onset of glaucoma. Down-regulation of GPX4 leads to the loss of nerve cells, which suggests that ferroptosis may also be related to diseases related to optic nerve damage. At present, ferroptosis has been extensively researched and advanced in systemic diseases, such as cardiovascular diseases, gastrointestinal tumors such as stomach, liver, and pancreas, and brain diseases. This review focuses on the research progress of ferroptosis in ophthalmic diseases, especially glaucoma and optic nerve damage.
Collapse
Affiliation(s)
- Sijia Huang
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital Harbin Medical University, Harbin, 150001, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Tao Feng
- Department of Neurology, The Hospital of Heilongjiang Province, Harbin, 150036, China
| |
Collapse
|
34
|
Src Family Kinases: A Potential Therapeutic Target for Acute Kidney Injury. Biomolecules 2022; 12:biom12070984. [PMID: 35883540 PMCID: PMC9312434 DOI: 10.3390/biom12070984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and play a key role in regulating signal transduction. The mechanism of SFKs in various tumors has been widely studied, and there are more and more studies on its role in the kidney. Acute kidney injury (AKI) is a disease with complex pathogenesis, including oxidative stress (OS), inflammation, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. In addition, fibrosis has a significant impact on the progression of AKI to developing chronic kidney disease (CKD). The mortality rate of this disease is very high, and there is no effective treatment drug at present. In recent years, some studies have found that SFKs, especially Src, Fyn, and Lyn, are involved in the pathogenesis of AKI. In this paper, the structure, function, and role of SFKs in AKI are discussed. SFKs play a crucial role in the occurrence and development of AKI, making them promising molecular targets for the treatment of AKI.
Collapse
|
35
|
Kouyoumdjian A, Tchervenkov J, Paraskevas S. TFNR2 in Ischemia-Reperfusion Injury, Rejection, and Tolerance in Transplantation. Front Immunol 2022; 13:903913. [PMID: 35874723 PMCID: PMC9300818 DOI: 10.3389/fimmu.2022.903913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) has been shown to play a crucial role in CD4+ T regulatory cells (CD4+Tregs) expansion and suppressive function. Increasing evidence has also demonstrated its role in a variety of immune regulatory cell subtypes such as CD8+ T regulatory cells (CD8+ Tregs), B regulatory cells (Bregs), and myeloid-derived suppressor cells (MDSCs). In solid organ transplantation, regulatory immune cells have been associated with decreased ischemia-reperfusion injury (IRI), improved graft survival, and improved overall outcomes. However, despite TNFR2 being studied in the context of autoimmune diseases, cancer, and hematopoietic stem cell transplantation, there remains paucity of data in the context of solid organ transplantation and islet cell transplantation. Interestingly, TNFR2 signaling has found a clinical application in islet transplantation which could guide its wider use. This article reviews the current literature on TNFR2 expression in immune modulatory cells as well as IRI, cell, and solid organ transplantation. Our results highlighted the positive impact of TNFR2 signaling especially in kidney and islet transplantation. However, further investigation of TNFR2 in all types of solid organ transplantation are required as well as dedicated studies on its therapeutic use during induction therapy or treatment of rejection.
Collapse
Affiliation(s)
- Araz Kouyoumdjian
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- *Correspondence: Araz Kouyoumdjian,
| | - Jean Tchervenkov
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Steven Paraskevas
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Aghsaeifard Z, Alizadeh R, Bagheri N. Association between neutrophil gelatinase-associated lipocalin (NGAL) and iron profile in chronic renal disease. Arch Physiol Biochem 2022; 128:703-707. [PMID: 31994917 DOI: 10.1080/13813455.2020.1720742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NGAL, also known as lipocalin 2, is a stress protein located on the cell surface that is known for its involvement in iron transport. This study is aimed to evaluate the correlation between the iron profile and NGAL concentration in serum among chronic kidney disease patients under dialysis in order to find its diagnostic value with regards to iron deficiency anaemia (IDA). 47 patients under chronic haemodialysis in end-stage renal disease (ESRD) and 15 healthy controls were evaluated to determine the correlation between serum NGAL concentration and IDA characteristics. Our results recorded a significant correlation between IDA (TSAT < 20%) and NGAL serum concentration with a Spearman's coefficient of 0.314. Serum NGAL was also significantly related to serum ferritin, TIBC, uric acid, creatinine and blood sugar whereas, an inverse relationship with albumin, total cholesterol and LDL. Our study reports a positive correlation between IDA and serum NGAL levels in CKD patients.
Collapse
Affiliation(s)
- Ziba Aghsaeifard
- Department of Internal Medicine, School of Medicine, Sina Hospital Tehran University of Medical Sciences, Tehran, Iran
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Alizadeh
- Department of Anesthesiology and Intensive Care, AJA University of Medical Sciences, Tehran, Iran
| | - Nazilla Bagheri
- Department of Adult Nephrology, School of Medicine, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Krupa A, Krupa MM, Pawlak K. Indoleamine 2,3 Dioxygenase 1-The Potential Link between the Innate Immunity and the Ischemia-Reperfusion-Induced Acute Kidney Injury? Int J Mol Sci 2022; 23:6176. [PMID: 35682852 PMCID: PMC9181334 DOI: 10.3390/ijms23116176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is of the most common causes of acute kidney injury (AKI); nevertheless, the mechanisms responsible for both early kidney injury and the reparative phase are not fully recognised. The inflammatory response following ischemia is characterised by the crosstalk between cells belonging to the innate immune system-dendritic cells (DCs), macrophages, neutrophils, natural killer (NK) cells, and renal tubular epithelial cells (RTECs). A tough inflammatory response can damage the renal tissue; it may also have a protective effect leading to the repair after IRI. Indoleamine 2,3 dioxygenase 1 (IDO1), the principal enzyme of the kynurenine pathway (KP), has a broad spectrum of immunological activity from stimulation to immunosuppressive activity in inflamed areas. IDO1 expression occurs in cells of the innate immunity and RTECs during IRI, resulting in local tryptophan (TRP) depletion and generation of kynurenines, and both of these mechanisms contribute to the immunosuppressive effect. Nonetheless, it is unknown if the above mechanism can play a harmful or preventive role in IRI-induced AKI. Despite the scarcity of literature in this field, the current review attempts to present a possible role of IDO1 activation in the regulation of the innate immune system in IRI-induced AKI.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Mikolaj M. Krupa
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| |
Collapse
|
38
|
Tsivilika M, Kavvadas D, Karachrysafi S, Kotzampassi K, Grosomanidis V, Doumaki E, Meditskou S, Sioga A, Papamitsou T. Renal Injuries after Cardiac Arrest: A Morphological Ultrastructural Study. Int J Mol Sci 2022; 23:ijms23116147. [PMID: 35682826 PMCID: PMC9180998 DOI: 10.3390/ijms23116147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND This study aims to investigate the probable lesions and injuries induced in the renal tissue after a cardiac arrest. The renal ischemia-reperfusion model in cardiac arrest describes the effects of ischemia in the kidneys, alongside a whole-body ischemia-reperfusion injury. This protocol excludes ischemic conditions caused by surgical vascular manipulation, venous injury or venous congestion. METHODS For the experimental study, 24 swine were subjected to cardiac arrest. Seven minutes later, the cardiopulmonary resuscitation technique was performed for 5 min. Afterwards, advanced life support was provided. The resuscitated swine consisted one group and the non-resuscitated the other. Tissue samples were obtained from both groups for light and electron microscopy evaluation. RESULTS Tissue lesions were observed in the tubules, parallel to destruction of the microvilli, reduction in the basal membrane invaginations, enlarged mitochondria, cellular vacuolization, cellular apoptosis and disorganization. In addition, fusion of the podocytes, destruction of the Bowman's capsule parietal epithelium and abnormal peripheral urinary space was observed. The damage appeared more extensive in the non-resuscitated swine group. CONCLUSIONS Acute kidney injury is not the leading cause of death after cardiac arrest. However, evidence suggests that the kidney damage after a cardiac arrest should be highly considered in the prognosis of the patients' health outcome.
Collapse
Affiliation(s)
- Maria Tsivilika
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
| | - Dimitrios Kavvadas
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
| | - Sofia Karachrysafi
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| | - Vasilis Grosomanidis
- Department of Anesthesiology and ICU, Aristotle University Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Doumaki
- 1st Department of Internal Medicine, Faculty of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Soultana Meditskou
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
| | - Antonia Sioga
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
- Correspondence:
| |
Collapse
|
39
|
Mizokami T, Shimada M, Suzuki K. Macrophage depletion attenuates acute renal damage after exhaustive exercise in mice. Int J Sports Med 2022; 43:964-970. [PMID: 35426091 PMCID: PMC9546585 DOI: 10.1055/a-1827-3261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exhaustive exercise is known to induce acute renal damage. However, the precise
mechanisms remain unclear. We investigated the effects of macrophage depletion
on exhaustive exercise-induced acute renal damage. Male
C57BL/6 J mice were divided into four groups: sedentary with
control liposome (n=8), sedentary with clodronate liposome
(n=8), exhaustive exercise with control liposome (n=8), and
exhaustive exercise with clodronate liposome (n=8). Mice were treated
with clodronate liposomes or control liposomes intraperitoneally for
48 h before undergoing exhaustive exercise. Renal function and renal
histology were tested at 24 h. The expression levels of kidney injury
molecule (KIM)-1 and inflammatory cytokines in kidney tissues were measured by
quantitative RT-PCR, and KIM-1 concentration was semi-quantified by
immunostaining. As a result, exhaustive exercise increased macrophage
infiltration into the kidney. However, clodronate reduced it. Although
exhaustive exercise resulted in an increase in KIM-1 mRNA expression levels and
concentration, injection of clodronate liposome reduced it. In addition, TUNEL
positive apoptotic cells were increased after exercise, but significantly
reduced by clodronate. Clodronate liposome treatment also decreased the mRNA
expression levels of inflammatory cytokines (TNF-α, IL-1β, and
IL-6) in the kidney after exhaustive exercise. These results suggest that
macrophages play a critical role in increasing renal damage by regulating
inflammation.
Collapse
Affiliation(s)
- Tsubasa Mizokami
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Michiko Shimada
- Department of Cardiology and Nephrology,, Hirosaki University School of Medicine Graduate School of Medicine, Hirosaki 036-8562, Japan
| | | |
Collapse
|
40
|
Mamillapalli R, Cho S, Mutlu L, Taylor HS. Therapeutic role of uterine-derived stem cells in acute kidney injury. Stem Cell Res Ther 2022; 13:107. [PMID: 35279204 PMCID: PMC8917641 DOI: 10.1186/s13287-022-02789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/27/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) causes abrupt deterioration in kidney function that disrupts metabolic, electrolyte and fluid homeostasis. Although the prevalence of AKI is steadily increasing, no definitive treatment options are available, leading to severe morbidity and mortality. We evaluated the role of uterine-derived multipotent stem cells in kidney regeneration after ischemic AKI. METHODS Female C57BL/6J mice were hysterectomized and subsequently subject to AKI by either unilateral or bilateral renal ischemia-reperfusion injury. Uterine-derived cells (UDCs), containing a population of uterine stem cells, were isolated from the uteri of female transgenic DsRed mice and injected intravenously to AKI mice. Engraftment of DsRed cells was analyzed by flow cytometry while serum creatinine levels were determined colorimetrically. Expression of UDC markers and cytokine markers were analyzed by immunohistochemical and qRT-PCR methods, respectively. The Kaplan-Meier method was used to analyze survival time while unpaired t test with Welch's correction used for data analysis between two groups. RESULTS Mice with an intact uterus, and hence an endogenous source of UDCs, had a higher survival rate after bilateral ischemic AKI compared to hysterectomized mice. Mice treated with infusion of exogenous UDCs after hysterectomy/AKI had lower serum creatinine levels and higher survival rates compared to controls that did not receive UDCs. Engraftment of labeled UDCs was significantly higher in kidneys of bilateral ischemic AKI mice compared to those that underwent a sham surgery. When unilateral ischemic AKI was induced, higher numbers of UDCs were found in the injured than non-injured kidney. Immunofluorescence staining demonstrated double-positive DsRed/Lotus tetragonolobus agglutinin (LTA) positive cells and DsRed/CD31 positive cells indicating contribution of UDCs in renal tubular and vascular regeneration. Expression of Cxcl12, Bmp2, Bmp4, and Ctnf in renal tissue was significantly higher in the UDCs injection group than the control group. CONCLUSIONS UDCs engrafted injured kidneys, contributed to proximal tubule and vascular regeneration, improved kidney function and increased survival in AKI mice. UDC administration is a promising new therapy for AKI. Endogenous uterine stem cells likely also preserve kidney function, suggesting a novel interaction between the uterus and kidney. We suggest that hysterectomy may have a detrimental effect on response to renal injury.
Collapse
Affiliation(s)
- Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA.
| | - SiHyun Cho
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, College of Medicine, Yonsei University, Seoul, South Korea
| | - Levent Mutlu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
41
|
Gan X, Gu J, Ju Z, Lu L. Diverse Roles of Immune Cells in Transplant Rejection and Immune Tolerance. ENGINEERING 2022; 10:44-56. [DOI: 10.1016/j.eng.2021.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
42
|
Hematological Ratios Are Associated with Acute Kidney Injury and Mortality in Patients That Present with Suspected Infection at the Emergency Department. J Clin Med 2022; 11:jcm11041017. [PMID: 35207289 PMCID: PMC8874958 DOI: 10.3390/jcm11041017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
The early recognition of acute kidney injury (AKI) is essential to improve outcomes and prevent complications such as chronic kidney disease, the need for renal-replacement therapy, and an increased length of hospital stay. Increasing evidence shows that inflammation plays an important role in the pathophysiology of AKI and mortality. Several inflammatory hematological ratios can be used to measure systemic inflammation. Therefore, the association between these ratios and outcomes (AKI and mortality) in patients suspected of having an infection at the emergency department was investigated. Data from the SPACE cohort were used. Cox regression was performed to investigate the association between seven hematological ratios and outcomes. A total of 1889 patients were included, of which 160 (8.5%) patients developed AKI and 102 (5.4%) died in <30 days. The Cox proportional-hazards model revealed that the neutrophil-to-lymphocyte ratio (NLR), segmented-neutrophil-to-monocyte ratio (SMR), and neutrophil-lymphocyte-platelet ratio (NLPR) are independently associated with AKI <30 days after emergency-department presentation. Additionally, the NLR, SMR and NLPR were associated with 30-day all-cause mortality. These findings are an important step forward for the early recognition of AKI. The use of these markers might enable emergency-department physicians to recognize and treat AKI in an early phase to potentially prevent complications.
Collapse
|
43
|
Lee K, Jang HR, Jeon J, Yang KE, Lee JE, Kwon GY, Kim DJ, Kim YG, Huh W. Repair phase modeling of ischemic acute kidney injury: recovery vs. transition to chronic kidney disease. Am J Transl Res 2022; 14:554-571. [PMID: 35173874 PMCID: PMC8829619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The repair mechanism after ischemic acute kidney injury (AKI) involves complex immunologic processes, which determine long-term renal outcomes. Through investigating two murine ischemia-reperfusion injury (IRI) models: bilateral IRI (BIRI) and unilateral IRI (UIRI), we aimed to determine an appropriate murine model that could simulate the recovery phase of ischemic AKI. Changes in renal function, phenotypes of kidney mononuclear cells, renal fibrosis, and intrarenal cytokine/chemokine expression were serially analyzed up to 12 weeks after IRI. Plasma creatinine and BUN concentrations increased and remained elevated in the BIRI group until 7 days but decreased to comparable levels with the sham control group at 2 weeks after surgery and thereafter, whereas plasma creatinine and BUN concentrations remained unchanged in the UIRI group. Intrarenal total leukocytes, and effector memory and activated phenotypes of CD4 and CD8 T cells markedly increased in the postischemic kidneys in both IRI groups. Expression of proinflammatory cytokines/chemokines and TGF-β1 was enhanced in the postischemic kidneys of both IRI groups with a higher degree in the UIRI group. Importantly, intrarenal immunologic changes of the BIRI group persisted until 6 weeks despite full functional recovery. The postischemic kidneys of the UIRI group showed earlier and more pronounced proinflammatory conditions as well as more severe atrophic and fibrotic changes compared to the BIRI group. These findings support the utility of longer follow-ups of BIRI and UIRI models for investigating the adaptive repair process, which facilitates recovery of ischemic AKI and maladaptive repair process may result in AKI to CKD transition, respectively.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Kyeong Eun Yang
- Division of Scientific Instrumentation & Management, Korea Basic Science InstituteDaejeon, Republic of Korea
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Dae Joong Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Yoon-Goo Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Wooseong Huh
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| |
Collapse
|
44
|
Deficiency of IKK α in Macrophages Mitigates Fibrosis Progression in the Kidney after Renal Ischemia-Reperfusion Injury. J Immunol Res 2021; 2021:5521051. [PMID: 34917688 PMCID: PMC8670970 DOI: 10.1155/2021/5521051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/03/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aims. Acute kidney injury (AKI) can lead to chronic kidney disease (CKD), and macrophages play a key role in this process. The aim of this study was to discover the role of IκB kinase α (IKKα) in macrophages in the process of AKI-to-CKD transition. Main Methods. We crossed lyz2-Cre mice with IKKα-floxed mice to generate mice with IKKα ablation in macrophages (Mac IKKα-/-). A mouse renal ischemia/reperfusion injury (IRI) model was induced by clamping the renal artery for 45 minutes. Treated mice were evaluated for blood biochemistry, tissue histopathology, and fibrosis markers. Macrophages were isolated from the peritoneal cavity for coculturing with tubular epithelial cells (TECs) and flow cytometry analysis. Key Findings. We found that fibrosis and kidney function loss after IRI were significantly alleviated in Mac IKKα-/- mice compared with wild-type (WT) mice. The expression of fibrosis markers and the infiltration of M2 macrophages were decreased in the kidneys of Mac IKKα-/- mice after IRI. The in vitro experiment showed that the IRI TECs cocultured with IKKα-/- macrophages (KO MΦs) downregulated the fibrosis markers accompanied by a downregulation of Wnt/β-catenin signaling. Significance. These data support the hypothesis that IKKα is involved in mediating macrophage polarization and increasing the expression of fibrosis-promoting inflammatory factors in macrophages. Therefore, knockdown of IKKα in macrophages may be a potential method that can be used to alleviate the AKI-to-CKD transition after IRI.
Collapse
|
45
|
Gambaro A, Lombardi G, Onorati F, Gottin L, Ribichini FL. Heart, kidney and left ventricular assist device: a complex trio. Eur J Clin Invest 2021; 51:e13662. [PMID: 34347897 DOI: 10.1111/eci.13662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Heart failure (HF) is a complex syndrome affecting the whole body, kidneys included. The left ventricular assist device (LVAD) is a valid option for patients with very severe HF. Focusing on renal function, LVAD implantation could theoretically reverse the detrimental effects of HF syndrome on kidneys. However, implanting an LVAD is a high-risk surgical procedure, and LVAD patients have higher risk of bleeding, device thrombosis, strokes, renal impairment, multi-organ failure and infections. Furthermore, an LVAD has its own particular effects on the renal system. METHODS In this review, we provide a comprehensive overview of the complex interaction between LVAD and the kidneys from the pathophysiological and clinical perspectives. An analysis of the different effects of pulsatile-flow and continuous-flow LVAD is provided. RESULTS Despite their limitations, creatinine-based estimated glomerular filtration rate (eGFR) formulas help to stratify patients by their post-LVAD placement prognosis. Poor basal renal function, the onset of acute kidney injury or the need for renal replacement therapy after LVAD implantation negatively influences a patient's prognosis. LVAD can also prompt an improvement in renal function, however, with some counterintuitive effects on a patient's prognosis. CONCLUSION It is still hard to say whether different trends in eGFR depend on different renal conditions before LVAD placement, on a patient's better overall status or on a particular patient management strategy before and/or after the device's implantation. Steps should be taken to solve this question because finding the best candidates for LVAD implantation is of paramount importance to ensure the best outcomes.
Collapse
Affiliation(s)
- Alessia Gambaro
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Gianmarco Lombardi
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Leonardo Gottin
- Unit of Cardiothoracic Anesthesia and Intensive Care, Department of Emergencies and Intensive Care, University of Verona, Verona, Italy
| | | |
Collapse
|
46
|
Li F, Liu L, Chen D, Zhang Y, Wang M, Zhou D, Peng L, Lin W. Efficacy of Three Renal Replacement Therapy Modalities for the Treatment of Acute Kidney Injury Caused by Wasp Sting. Blood Purif 2021; 51:365-375. [PMID: 34710874 DOI: 10.1159/000514284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM This study mainly aimed to explore the therapeutic effects of 3 renal replacement therapy (RRT) modalities on acute kidney injury (AKI) caused by wasp stings. METHODS A retrospective study from September 2016 to December 2019 was conducted. Thirty-one patients with AKIs caused by wasp sting were selected and divided into 3 groups according to the initial RRT modality received, namely, (1) the intermittent hemodialysis combined with hemoperfusion (IHD + HP) group, (2) the continuous veno-venous hemodiafiltration (CVVHDF) group, and (3) the CVVHDF combined with HP (CVVHDF + HP) group. The laboratory results were measured and analyzed before treatment on the 3rd, 7th, and 14th days of treatment. The renal function outcomes and survival of the patients were investigated at 3 months follow-up. RESULTS The laboratory results of enzyme measures and inflammatory indicators in wasp sting patients increased significantly in the early stage and 3 RRT modalities were effective in reducing these indicators. In addition, continuous RRT modality (CVVHDF and CVVHDF + HP) showed better clearance of myoglobin than IHD + HP. The serum creatinine levels of patients in the 3 groups did not recover to baseline within 14 days after beginning treatment. Nevertheless, the CVVHDF + HP group was better than the CVVHDF group, and CVVHDF was better than the IHD + HP group on the 3rd day. The interleukin (IL)-6 and IL-10 levels in CVVHDF + HP and IHD + HP groups were obviously lower than those in the CVVHDF group on the 3rd day. In the follow-up study, the recovery rate of renal function in CVVHDF and CVVHDF + HP groups was significantly better than that in the IHD + HP group. CONCLUSION Early RRT was effective in the treatment of patients with A KI caused by wasp sting. CVVHDF + HP and CVVHDF modalities were better than the IHD + HP group in venom clearance and renal function recovery.
Collapse
Affiliation(s)
- Fugang Li
- Department of Nephrology, People's Hospital of Jianyang, Jianyang, China.,Central Laboratory, People's Hospital of Jianyang, Jianyang, China
| | - Li Liu
- Department of Nephrology, People's Hospital of Jianyang, Jianyang, China
| | - Dezheng Chen
- Department of Nephrology, People's Hospital of Jianyang, Jianyang, China
| | - Yong Zhang
- Department of Nephrology, People's Hospital of Jianyang, Jianyang, China
| | - Mingli Wang
- Department of Nephrology, People's Hospital of Jianyang, Jianyang, China
| | - Dongmei Zhou
- Department of Nephrology, People's Hospital of Jianyang, Jianyang, China
| | - Li Peng
- Department of Nephrology, People's Hospital of Jianyang, Jianyang, China
| | - Wujun Lin
- Department of Nephrology, People's Hospital of Jianyang, Jianyang, China
| |
Collapse
|
47
|
Wu M, Wang C, Liu Z, Liu Z. Sequential Organ Failure Assessment Score for Prediction of Mortality of Patients With Rhabdomyolysis Following Exertional Heatstroke: A Longitudinal Cohort Study in Southern China. Front Med (Lausanne) 2021; 8:724319. [PMID: 34708052 PMCID: PMC8542709 DOI: 10.3389/fmed.2021.724319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Heatstroke is a medical emergency that causes multi-organ injury and death without intervention, but limited data are available on the illness scores in predicting the outcomes of exertional heat stroke (EHS) with rhabdomyolysis (RM). The aim of our study was to investigate the Sequential Organ Failure Assessment (SOFA) score in predicting mortality of patients with RM after EHS. Methods: A retrospective cohort study was performed, which included all patients with EHS admitted into the intensive care unit (ICU) of General Hospital of Southern Theater Command of Peoples Liberation Army from January 2008 to June 2019. RM was defined as creatine kinase (CK) > 1,000 U/L. Data, including the baseline data at admission, vital organ function indicators, and 90-day mortality, were reviewed. Results: A total of 176 patients were enrolled; among them, 85 (48.3%) had RM. Patients with RM had a significantly higher SOFA score (4.0 vs. 3.0, p = 0.021), higher occurrence rates of disseminated intravascular coagulation (DIC) (53.1 vs. 18.3%, p < 0.001) and acute liver injury (ALI) (21.4 vs. 5.5%, p = 0.002) than patients with non-RM. RM was positively correlated with ALI and DIC, and the correlation coefficients were 0.236 and 0.365, respectively (both p-values <0.01). Multivariate logistics analysis showed that the SOFA score [odds ratio (OR) 1.7, 95% CI 1.1-2.6, p = 0.024] was the risk factor for 90-day mortality in patients with RM after EHS, with the area under the curve (AUC) 0.958 (95% CI 0.908-1.000, p < 0.001) and the optimal cutoff 7.5 points. Conclusions: Patients with RM after EHS have severe clinical conditions, which are often accompanied by DIC or ALI. The SOFA score could predict the prognosis of patients with RM with EHS. Early treatment strategies based on decreasing the SOFA score at admission may be pivotal to reduce the 90-day mortality of patients with EHS.
Collapse
Affiliation(s)
- Ming Wu
- Department of Critical Care Medicine and Hospital Infection Prevention and Control, Health Science Center, The Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Peoples Liberation Army, Guangzhou, China
| | - Conglin Wang
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Peoples Liberation Army, Guangzhou, China
| | - Zheying Liu
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Peoples Liberation Army, Guangzhou, China
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Peoples Liberation Army, Guangzhou, China
- Key Laboratory of Hot Zone Trauma Care and Tissue Repair of Peoples Liberation Army, General Hospital of Southern Theatre Command of Peoples Liberation Army, Guangzhou, China
| |
Collapse
|
48
|
Netrebenko AS, Gureev VV, Pokrovskii MV, Gureeva AV, Tsuverkalova YM, Rozhkov IS. Assessment of the Nephroprotective Properties of the Erythropoietin Mimetic Peptide and Infliximab in Kidney Ischemia-Reperfusion Injury in Rats. ARCHIVES OF RAZI INSTITUTE 2021; 76:995-1004. [PMID: 35096335 DOI: 10.22092/ari.2021.355849.1728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/09/2021] [Indexed: 10/13/2022]
Abstract
Chronic kidney disease (CKD) or acute kidney injury (AKI) causes impaired kidney function, leading to cognitive impairment, neuropathy, and cerebrovascular disease. Due to kidney damage, toxins stay in the blood rather than leaving the body through the urine, and brain function is affected by kidney-brain interaction. The present study aimed to investigate the protective effects of erythropoietin mimetic peptide (pHBSP) and infliximab on ischemic renal reperfusion injury. The experiment was performed on 70 white male Wistar laboratory rats which received recombinant erythropoietin, pHBSP, and infliximab. Under anesthesia, traumatic vascular clamps were applied to the left renal pedicle for 40 min, and nephrectomy was performed on the right. Functional tests and laboratory tests were performed 5 min and 24 h after the reperfusion. Thereafter, 24 h after the surgery, the plasma creatinine and urea levels in the sham-operated animals were obtained at 45.9±0.8 mmol/L and 6.7±0.2 mmol/L, respectively. Plasma creatinine and urea levels in the control group animals were 102.63±3.6 mmol/L and 21.80±1.29 mmol/L, respectively. The administration of pHBSP and infliximab to the animals with ischemia-reperfusion kidney injury has a pronounced nephroprotective effect, as compared to erythropoietin. There was a significant decrease in blood levels of creatinine and urea, improvement of microcirculation in the kidney, normalization of glomerular filtration rate, and fractional sodium excretion. The results of the study demonstrated pointed to the prospects of pHBSP and infliximab administration in ischemia-reperfusion kidney injury and justified the feasibility of further research in this field.
Collapse
Affiliation(s)
- A S Netrebenko
- Belgorod National Research University, 85 Pobeda St., Belgorod, 308015, Russia
| | - V V Gureev
- Belgorod National Research University, 85 Pobeda St., Belgorod, 308015, Russia
| | - M V Pokrovskii
- Belgorod National Research University, 85 Pobeda St., Belgorod, 308015, Russia
| | - A V Gureeva
- Belgorod National Research University, 85 Pobeda St., Belgorod, 308015, Russia
| | - Y M Tsuverkalova
- Belgorod National Research University, 85 Pobeda St., Belgorod, 308015, Russia
| | - I S Rozhkov
- Belgorod National Research University, 85 Pobeda St., Belgorod, 308015, Russia
| |
Collapse
|
49
|
Ma X, Chen S, Yun Y, Zhao D, Li J, Wu Z, Liu Y, Shen H, Ma H, Wang Z, Zou C, Zhang H. The Predictive Role of Lymphocyte-to-Monocyte Ratio in Acute Kidney Injury in Acute Debakey Type I Aortic Dissection. Front Surg 2021; 8:704345. [PMID: 34458315 PMCID: PMC8384963 DOI: 10.3389/fsurg.2021.704345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Background: The post-operative acute kidney injury (AKI) represents a common complication in the Acute Debakey Type I Aortic Dissection (ADTIAD) and predicts a poorer prognosis. The clinical evidence is scarce supporting the predictive value of the pre-operative lymphocyte-to-monocyte ratio (LMR) in post-operative AKI in ADTIAD. Methods: In this retrospective cohort study, 190 consecutive patients with ADTIAD enrolled for surgical treatment between January 1, 2013, and December 31, 2018. The diagnosis of AKI followed the Kidney Disease: Improving Global Outcomes guidelines (KDIGO). Pre-operative LMR and other possible risk factors were analyzed for their prognostic value in the post-operative AKI in ADTIAD. Results: The subjects were assigned to the low-LMR and high-LMR groups according to the median value of pre-operative LMR. For post-operative AKI, the incidence and the severity in the low-LMR group were statistically different from that of the high-LMR group. Besides, the lower LMR was statistically associated with the more extended ICU stay and intubation time and higher incidences of ischemic stroke and in-hospital mortality. Additionally, in the multivariable analysis, the pre-operative LMR was an independent predictor for post-operative AKI in ADTIAD. A predictive model for post-operative AKI in ADTIAD was established incorporating LMR. Conclusions: LMR is an independent prognostic indicator incorporated into the predictive model with other risk factors to predict the post-operative AKI in ADTIAD.
Collapse
Affiliation(s)
- Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shanghao Chen
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Yun
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Diming Zhao
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinzhang Li
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zezhong Wu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yanwu Liu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hechen Shen
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huibo Ma
- Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
50
|
Liu Q, Kong Y, Guo X, Liang B, Xie H, Hu S, Han M, Zhao X, Feng P, Lyu Q, Dong W, Liang X, Wang W, Li C. GSK-3β inhibitor TDZD-8 prevents reduction of aquaporin-1 expression via activating autophagy under renal ischemia reperfusion injury. FASEB J 2021; 35:e21809. [PMID: 34314052 DOI: 10.1096/fj.202100549r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 11/11/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is a main cause of acute kidney injury (AKI). Aquaporin (AQP)-1 water channel in the kidney is critical for the maintenance of water homeostasis and the urinary concentrating ability. Increasing evidence supports an important role of autophagy in the pathogenesis of AKI induced by renal I/R. The purpose of the present study is to investigate whether activation of autophagy prevents downregulation of AQP1 protein induced by renal I/R and potential molecular mechanisms. Renal I/R induced consistently reduced protein expression of AQP1, 2, and 3, as well as sodium cotransporters Na+ -K+ -2Cl- cotransporter and α-Na,K-ATPase, which was associated with increased urine output and decreased creatinine clearance in rats. Renal I/R also suppressed autophagy and increased inflammatory responses in the kidney. 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), the glycogen synthase kinase-3β inhibitor, ameliorated renal injury under I/R, activated autophagy and markedly increased expression of AQPs and sodium transporters in the kidney, which was associated with improved urine output and creatinine clearance in rats. Hypoxia/reoxygenation (H/R) induced suppression of autophagy and downregulation of AQP1 in murine inner medullary collecting duct 3 (IMCD3) cells, which was fully prevented by TDZD-8 treatment. Inhibition of autophagy by 3-methyladenine or Atg5 gene knockdown attenuated recovery of AQP1 protein expression induced by TDZD-8 in IMCD3 cells with H/R. Interleukin-1 beta (IL-1β) decreased the abundance of AQP1 protein in IMCD3 cells. H/R induced increases in protein expression of nod-like receptor pyrin domain-containing 3 and IL-1β, which was reversed by TDZD-8. In conclusion, TDZD-8 treatment prevented downregulation of AQP1 expression under renal I/R injury, likely via activating autophagy and decreasing IL-1β production.
Collapse
Affiliation(s)
- Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baien Liang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haixia Xie
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengke Han
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pinning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianqian Lyu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wei Dong
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|