1
|
Tu Y, Deng M, Zhang X, Xiang T, Wu D. Dabie bandavirus and Mycoplasma pneumoniae co-infection: a case report. BMC Infect Dis 2025; 25:47. [PMID: 39789442 PMCID: PMC11721597 DOI: 10.1186/s12879-024-10392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by Dabie bandavirus (DBV). We report a case of DBV and Mycoplasma pneumoniae (MP) co-infection. CASE PRESENTATION Here we reported a 57-year-old healthy male who was admitted with the presentations of fever, cough, hemoptysis, and hypotension. Laboratory investigations revealed thrombocytopenia, leukopenia, and organ dysfunction of liver and kidney. Seroconversion from Mycoplasma IgM antibody to IgG was recorded, and SFTS was confirmed through metagenomic next-generation sequencing. In addition, hemophagocytic lymphohistiocytosis was diagnosed in the context of DBV and MP coinfection. The patient exhibited a rapid recovery following treatment with omadacycline and essential symptomatic and supportive treatment. CONCLUSIONS We firstly reported a case with DBV and MP coinfection, which reminded us that the symptoms of DBV infection were bewildering and easy to miss diagnosis when it was co-infection with other etiologies.
Collapse
Affiliation(s)
- Yasi Tu
- Jiangxi Medical Center for Critical Public Health Events, Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Miao Deng
- Jiangxi Medical Center for Critical Public Health Events, Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Xueying Zhang
- Jiangxi Medical Center for Critical Public Health Events, Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Tianxin Xiang
- Jiangxi Medical Center for Critical Public Health Events, Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Daxian Wu
- Jiangxi Medical Center for Critical Public Health Events, Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
2
|
Zhou CM, Jiang ZZ, Liu N, Yu XJ. Current insights into human pathogenic phenuiviruses and the host immune system. Virulence 2024; 15:2384563. [PMID: 39072499 PMCID: PMC11290763 DOI: 10.1080/21505594.2024.2384563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Phenuiviruses are a class of segmented negative-sense single-stranded RNA viruses, typically consisting of three RNA segments that encode four distinct proteins. The emergence of pathogenic phenuivirus strains, such as Rift Valley fever phlebovirus (RVFV) in sub-Saharan Africa, Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) in East and Southeast Asia, and Heartland Virus (HRTV) in the United States has presented considerable challenges to global public health in recent years. The innate immune system plays a crucial role as the initial defense mechanism of the host against invading pathogens. In addition to continued research aimed at elucidating the epidemiological characteristics of phenuivirus, significant advancements have been made in investigating its viral virulence factors (glycoprotein, non-structural protein, and nucleoprotein) and potential host-pathogen interactions. Specifically, efforts have focused on understanding mechanisms of viral immune evasion, viral assembly and egress, and host immune networks involving immune cells, programmed cell death, inflammation, nucleic acid receptors, etc. Furthermore, a plethora of technological advancements, including metagenomics, metabolomics, single-cell transcriptomics, proteomics, gene editing, monoclonal antibodies, and vaccines, have been utilized to further our understanding of phenuivirus pathogenesis and host immune responses. Hence, this review aims to provide a comprehensive overview of the current understanding of the mechanisms of host recognition, viral immune evasion, and potential therapeutic approaches during human pathogenic phenuivirus infections focusing particularly on RVFV and SFTSV.
Collapse
Affiliation(s)
- Chuan-Min Zhou
- Gastrointestinal Disease Diagnosis and Treatment Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ze-Zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ning Liu
- Department of Quality and Operations Management, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Zhang Y, Sun Q, Liu T, Chang C, Chen X, Duan Q, Wen Z, Zhang X, Pang B, Jiang X. Transcriptome Profiles Characteristics of the Peripheral Immune in Patients with Severe Fever with Thrombocytopenia Syndrome. J Inflamm Res 2024; 17:8357-8374. [PMID: 39530000 PMCID: PMC11552436 DOI: 10.2147/jir.s485118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Severe fever with thrombocytopenia syndrome (SFTS) is an acute viral infection disease with a high mortality, but there are no specific effective drugs or vaccines available for use. To develop effective treatment methods, more basic researches are urgently needed to elucidate the response mechanisms of patients. Patients and Methods Here, we conducted the transcriptomic analysis of peripheral immunity in 14 SFTS patients, ranging from moderate infection to severe and fatal disease. Results The results showed orderly cytokine signaling pathway modulation in moderate patients, cellular immunosuppression in severe patients, and significant dysregulation of the inflammatory response and coagulation dysfunction characteristic of deceased patients. In addition, WGCNA further showed a significant positive correlation between fatal outcomes and B cell and immunoglobulin mediated immune function modules, as well as a significant negative correlation with coagulation function modules. Conclusion Overall, our research findings systematically observed potential immune mechanisms underlying clinical symptom heterogeneity and noteworthily revealed multiple signaling pathways leading to coagulation dysfunction in fatal outcomes, not just related to decreased platelet count, which can further elucidate the interaction between viruses and hosts and contribute to clinical treatment.
Collapse
Affiliation(s)
- Yuwei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Qingshuai Sun
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| | - Tao Liu
- Department of Infectious Disease Control, Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, People’s Republic of China
| | - Caiyun Chang
- Institute for Infectious Disease Control, Jinan Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Xiangjuan Chen
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| | - Qing Duan
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Zixuan Wen
- School of Public Health, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Xiaomei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Bo Pang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Xiaolin Jiang
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
- School of Public Health, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
4
|
Xiao W, Zhang L, Cao C, Dong W, Hu J, Jiang M, Zhang Y, Zhang J, Hua T, Yang M. Development and validation of a clinical and laboratory-based nomogram to predict mortality in patients with severe fever with thrombocytopenia syndrome. BMC Infect Dis 2024; 24:1206. [PMID: 39455906 PMCID: PMC11515123 DOI: 10.1186/s12879-024-10106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging global infectious disease with a high mortality rate. Clinicians lack a convenient tool for early identification of critically ill SFTS patients. The aim of this study was to construct a simple and accurate nomogarm to predict the prognosis of SFTS patients. METHODS We retrospectively analyzed the clinical data of 372 SFTS patients collected between May 2015 and June 2023, which were divided 7:3 into a training set and an internal validation set. We used LASSO regression to select predictor variables and multivariable logistic regression to identify independent predictor variables. Prognostic nomograms for SFTS were constructed based on these factors and analysed for concordance index, calibration curves and area under the curve (AUC) to determine the predictive accuracy and consistency of the model. RESULTS In the training set, LASSO and multivariate logistic regression analyses showed that age, SFTSV RNA, maximum body temperature, pancreatitis, gastrointestinal bleeding, pulmonary fungal infection (PFI), BUN, and PT were independent risk factors for death in SFTS patients. There was a strong correlation between neurological symptoms and mortality (P < 0.001, OR = 108.92). Excluding neurological symptoms, nomograms constructed based on the other eight variables had AUCs of 0.937 and 0.943 for the training and validation sets, respectively. Furthermore, we found that age, gastrointestinal bleeding, PFI, bacteraemia, SFTSV RNA, platelets, and PT were the independent risk factors for neurological symptoms, with SFTSV RNA having the highest diagnostic value (AUC = 0.785). CONCLUSIONS The nomogram constructed on the basis of eight common clinical variables can easily and accurately predict the prognosis of SFTS patients. Moreover, the diagnostic value of neurological symptoms far exceeded that of other predictors, and SFTSV RNA was the strongest independent risk factor for neurological symptoms, but these need to be further verified by external data.
Collapse
Affiliation(s)
- Wenyan Xiao
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
| | - Liangliang Zhang
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
| | - Chang Cao
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
| | - Wanguo Dong
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
| | - Juanjuan Hu
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
| | - Mengke Jiang
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
| | - Yang Zhang
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
| | - Jin Zhang
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China
| | - Tianfeng Hua
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China.
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China.
| | - Min Yang
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China.
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, Hefei, P.R. China.
| |
Collapse
|
5
|
Li MM, Hu SS, Xu L, Gao J, Zheng X, Li XL, Liu LL. TLR2/NF-кB signaling may control expansion and function of regulatory T cells in patients with severe fever with thrombocytopenia syndrome (SFTS). Heliyon 2024; 10:e35950. [PMID: 39224371 PMCID: PMC11367551 DOI: 10.1016/j.heliyon.2024.e35950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a recently identified infectious ailment triggered by a new strain of bunyavirus. It is distinguished by elevated fatality rates, ranging from 12 % to 30 %. The mechanism underlying the development of severe illness caused by SFTS bunyavirus (SFTSV) is not yet fully understood. To evaluate the role of the TLR2 receptor pathway in regulating Treg function in the progression of SFTS disease and possible mechanisms, sequential serum samples from 29 patients with SFTS (15 mild, 14 severe cases) were examined. Flow cytometry was employed to scrutinize the phenotypic and functional characteristics of TLR2 expression on circulating CD4 T cells, CD8 T cells, and Tregs. In all admitted patients, the evaluation of correlations between the frequencies of the aforementioned cells and SFTS index (SFTSI) was conducted. For SFTS, the levels of TLR2 on CD4 T cells and Tregs were significantly heightened when compared to those in healthy subjects. Additionally, the expression of TLR2 on Tregs exhibited a positive correlation with Ki-67 expression in Tregs and the severity of disease. Additionally, compared with those in uninfected controls, the expression levels of NF-κB in Tregs were significantly increased. Collectively, Tregs may be activated and proliferate through the stimulation of the TLR2/NF-кB pathway in reaction to SFTSV infection.
Collapse
Affiliation(s)
- Meng-Meng Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shan-Shan Hu
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Ling Xu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Gao
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Xiu-Ling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Le-Le Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Niu Y, Liu Y, Huang L, Liu W, Cheng Q, Liu T, Ning Q, Chen T. Antiviral immunity of severe fever with thrombocytopenia syndrome: current understanding and implications for clinical treatment. Front Immunol 2024; 15:1348836. [PMID: 38646523 PMCID: PMC11026560 DOI: 10.3389/fimmu.2024.1348836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Dabie Banda virus (DBV), a tick-borne pathogen, was first identified in China in 2009 and causes profound symptoms including fever, leukopenia, thrombocytopenia and multi-organ dysfunction, which is known as severe fever with thrombocytopenia syndrome (SFTS). In the last decade, global incidence and mortality of SFTS increased significantly, especially in East Asia. Though previous studies provide understandings of clinical and immunological characteristics of SFTS development, comprehensive insight of antiviral immunity response is still lacking. Here, we intensively discuss the antiviral immune response after DBV infection by integrating previous ex- and in-vivo studies, including innate and adaptive immune responses, anti-viral immune responses and long-term immune characters. A comprehensive overview of potential immune targets for clinical trials is provided as well. However, development of novel strategies for improving the prognosis of the disease remains on challenge. The current review may shed light on the establishment of immunological interventions for the critical disease SFTS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Alatrash R, Herrera BB. The Adaptive Immune Response against Bunyavirales. Viruses 2024; 16:483. [PMID: 38543848 PMCID: PMC10974645 DOI: 10.3390/v16030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.
Collapse
Affiliation(s)
- Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Xu DL, Zhang XM, Tian XY, Wang XJ, Zhao L, Gao MY, Li LF, Zhao JQ, Cao WC, Ding SJ. Changes in Cytokine Levels in Patients with Severe Fever with Thrombocytopenia Syndrome Virus. J Inflamm Res 2024; 17:211-222. [PMID: 38229692 PMCID: PMC10790589 DOI: 10.2147/jir.s444398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
Purpose To characterize the cytokine profile of patients with severe fever with thrombocytopenia syndrome (SFTS) in relation to disease severity. Patients and Methods 60 laboratory-confirmed SFTS patients and 12 healthy individuals from multi-centers in Shandong Province of China were included, and all patients were divided into fatal patients (9) and recovered patients (51) due to their final outcomes. Multiplex-microbead immunoassays were conducted to estimate levels of 27 cytokines in the sera of patients and controls. Results The results showed that levels of IL-2, IL-4, IL-6, IL-7, IL-8, IL-15, IL-1RA, G-CSF, GM-CSF, IFN-γ, TNF-α, basic FGF, PDGF-BB, RANTES, IP-10, MIP-1α, MIP-1β, MCP-1, and Eotaxin differed significantly among the SFTS fatal patients, recovered patients, and the healthy controls (all p<0.05). Compared to the healthy controls, the fatal patients and recovered patients had reduced levels of IL-2, IL-4, IL-7, PDGF-BB, RANTES, and Eotaxin, while the levels of PDGF-BB and RANTES were significantly lower in fatal patients compared to recovered patients. The increasing levels of IL-6, IL-8, IL-15, IL-1RA, G-CSF, GM-CSF, IFN-γ, TNF-α, basic FGF, IP-10, MIP-1α, MIP-1β, and MCP-1 were observed in fatal patients (all p<0.05), and the levels of IL-6, IP-10, MIP-1α, and MCP-1 were significantly higher than other two groups. The Spearman correlation analysis indicated a positive correlation between platelet count and PDGF-BB levels (p<0.05), while the white blood cell count had a negative correlation with MIP-1 level (p<0.05). Conclusion The research exhibited that the SFTS virus (SFTSV) caused an atypical manifestation of cytokines. The levels of IL-6, IP-10, MIP-1α, and MCP-1 had been observed a positive association with the severity of the illness.
Collapse
Affiliation(s)
- Da-Li Xu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
| | - Xiao-Mei Zhang
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Xue-Ying Tian
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Xian-Jun Wang
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Lin Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
| | - Meng-Ying Gao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
| | - Lian-Feng Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
| | - Jia-Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
| | - Wu-Chun Cao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Shu-Jun Ding
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
9
|
Kwon JS, Hong SI, Kim JY, Cha HH, Kim T, Park SY, Kim MC, Park SY, Choi SH, Chung JW, Kim SH. Cytokine and Chemokine Profiles in Acute Severe Fever with Thrombocytopenia Syndrome and Scrub Typhus in South Korea. Am J Trop Med Hyg 2023; 109:1311-1318. [PMID: 37903435 PMCID: PMC10793061 DOI: 10.4269/ajtmh.23-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/08/2023] [Indexed: 11/01/2023] Open
Abstract
In East Asia, severe fever with thrombocytopenia syndrome (SFTS) and scrub typhus, which are common endemic tick- and mite-mediated diseases sharing common clinical manifestations, are becoming public health concerns. However, there are limited data on the comparative immunopathogenesis between the two diseases. We compared the cytokine profiles of SFTS and scrub typhus to further elucidate immune responses that occur during the disease courses. We prospectively enrolled 44 patients with confirmed SFTS and 49 patients with scrub typhus from July 2015 to December 2020. In addition, 10 healthy volunteers were enrolled as healthy controls. A cytometric bead array was used to analyze plasma samples for 16 cytokines. A total of 68 plasma samples, including 31 (45.6%) from patients with SFTS and 37 (54.4%) from patients with scrub typhus, were available for cytokine measurement. There were three cytokine expression patterns: increased levels in both SFTS and scrub typhus (interleukin 6 [IL-6], IL-10, interferon gamma induced protein 10 [IP-10], and granulocyte-macrophage colony-stimulating factor [GM-CSF]), highest levels in SFTS (interferon alpha [IFN-α], IFN-γ, granulocyte-CSF [G-CSF], monocyte chemotactic protein 1 [MCP-1], macrophage inflammatory protein 1α [MIP-1α], and IL-8), and distinct levels in scrub typhus (IL-12p40, tumor necrosis factor alpha [TNFα], IL-1β, regulated on activation and normally T-cell expressed and secreted [RANTES], IL-17A, and vascular endothelial growth factor [VEGF]). Although patients with acute SFTS and scrub typhus exhibited partly shared expression patterns of cytokines related to disease severity, the different profiles of cytokines and chemokines might contribute to higher mortality in SFTS than in scrub typhus. Discrete patterns of helper T cell-related cytokines and VEGF might reflect differences in CD4 T-cell responses and vascular damage between these diseases.
Collapse
Affiliation(s)
- Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun In Hong
- Division of Infectious Diseases, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Hee Cha
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Taeeun Kim
- Division of Infectious Diseases, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Se Yoon Park
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Min-Chul Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Seong Yeon Park
- Department of Infectious Diseases, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Seong-Ho Choi
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Jin-Won Chung
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Liu Y, Tong H, He F, Zhai Y, Wu C, Wang J, Jiang C. Effect of intravenous immunoglobulin therapy on the prognosis of patients with severe fever with thrombocytopenia syndrome and neurological complications. Front Immunol 2023; 14:1118039. [PMID: 37033957 PMCID: PMC10073413 DOI: 10.3389/fimmu.2023.1118039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Background Intravenous immunoglobulin (IVIG) has been reported to exert a beneficial effect on severe fever with thrombocytopenia syndrome (SFTS) patients with neurological complications. However, in clinical practice, the standard regime is unclear and there is a lack of evidence from large-scale studies. Methods A single-center retrospective study was conducted to determine the influence of IVIG dosage and duration on SFTS patients with neurological complications. The primary outcome was 28-day mortality, and laboratory parameters before and after IVIG treatment were measured. Survival curves were generated using the Kaplan-Meier method and analyzed with the log-rank test according to the median IVIG dosage and IVIG duration. Besides, multivariate Cox regression analysis was performed to examine the association between the independent factors and 28-day mortality in SFTS patients. Results Overall, 36 patients (58.06%) survived, while 26 (41.9%) patients died. The median age of the included patients was 70 (55-75) years, and 46.8% (29/62) were male. A significantly higher clinical presentation of dizziness and headache was observed in the survival group. The IVIG duration in the survival group was longer than in the death group (P <0.05). Additionally, the IVIG dosage was higher in the survival group than in the death group, but there was not a statistically significant difference between the two groups (P = 0.066). The mediating effect of IVIG duration was verified through the relationship between IVIG dosage and prognosis using the Sobel test. Univariate analysis revealed that IVIG dosage (HR: 0.98; 95% CI: 0.97-1.00; P = 0.007) and IVIG duration (HR: 0.54; 95% CI: 0.41-0.72; P <0.001) were significantly associated with risk of death. The multivariate analysis generated an adjusted HR value of 0.98 (95% CI: 0.96-1.00; P = 0.012) for IVIG dosage and 0.26 (95% CI: 0.09-0.78; P = 0.016) for dizziness and headache. Conclusion Prolonged high-dose IVIG is beneficial to the 28-day prognosis in SFTS patients with neurological complications.
Collapse
Affiliation(s)
- Yun Liu
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hanwen Tong
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fei He
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yu Zhai
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chao Wu
- Department of Infectious Disease, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Wang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chenxiao Jiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
11
|
Youdong X, Xiaofeng D, Xiyuan N, Zhengdong L. Analysis of the risk factors and prognosis for severe fever with thrombocytopenia syndrome associated encephalopathy. J Infect Chemother 2023; 29:464-468. [PMID: 36702204 DOI: 10.1016/j.jiac.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Severe fever with thrombocytopenia syndrome (SFTS) is frequently associated with neurological injury, but there are currently few relevant studies. The goal of this study was to look at the risk factors for SFTA-associated encephalopathy (SFTSAE) and the short- and long-term prognosis of such patients. METHODS We retrospectively studied 145 patients with SFTS who were treated at our hospital between May 2019 and November 2021. Clinical characteristics were collected, and patients were divided into two groups based on whether there was neurological injury during the disease: SFTSAE group and non-SFTSAE group. Univariate analysis was used to compare the differences in clinical data and outcomes between two groups, and multivariate Logistic regression analysis was used to reveal the independent risk factors for SFTSAE, and the predictive efficacy was assessed using the receiver operating characteristic (ROC) curve. Furthermore, survivors of SFTSAE were contacted by phone 6 months after discharge to assess the case fatality rate and quality of life. RESULTS The prevalence of SFTSAE was 22.7% (33/145). Bleeding symptoms, D-dimer level and blood amylase level were all independent risk factors for SFTSAE (P < 0.05). The combined AUC of these three factors was 0.969. Patients with SFTSAE had a 45.4% in-hospital mortality rate, and survivors had a largely normal quality of life after discharge. CONCLUSION Patients with SFTSAE frequently have multiple organ dysfunction, a high mortality rate, and a favorable long-term prognosis for survivors. Clinical manifestations of bleeding symptoms, elevated serum amylase, and elevated D-dimer were all independent risk factors for SFTSAE.
Collapse
Affiliation(s)
- Xu Youdong
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, 237000, China
| | - Du Xiaofeng
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, 237000, China
| | - Niu Xiyuan
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, 237000, China
| | - Liu Zhengdong
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, 237000, China.
| |
Collapse
|
12
|
Li YH, Huang WW, He WQ, He XY, Wang XH, Lin YL, Zhao ZJ, Zheng YT, Pang W. Longitudinal analysis of immunocyte responses and inflammatory cytokine profiles in SFTSV-infected rhesus macaques. Front Immunol 2023; 14:1143796. [PMID: 37033979 PMCID: PMC10073517 DOI: 10.3389/fimmu.2023.1143796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging bunyavirus, causes severe fever with thrombocytopenia syndrome (SFTS), with a high fatality rate of 20%-30%. At present, however, the pathogenesis of SFTSV remains largely unclear and no specific therapeutics or vaccines against its infection are currently available. Therefore, animal models that can faithfully recapitulate human disease are important to help understand and treat SFTSV infection. Here, we infected seven Chinese rhesus macaques (Macaca mulatta) with SFTSV. Virological and immunological changes were monitored over 28 days post-infection. Results showed that mild symptoms appeared in the macaques, including slight fever, thrombocytopenia, leukocytopenia, increased aspartate aminotransferase (AST) and creatine kinase (CK) in the blood. Viral replication was persistently detectable in lymphoid tissues and bone marrow even after viremia disappeared. Immunocyte detection showed that the number of T cells (mainly CD8+ T cells), B cells, natural killer (NK) cells, and monocytes decreased during infection. In detail, effector memory CD8+ T cells declined but showed increased activation, while both the number and activation of effector memory CD4+ T cells increased significantly. Furthermore, activated memory B cells decreased, while CD80+/CD86+ B cells and resting memory B cells (CD27+CD21+) increased significantly. Intermediate monocytes (CD14+CD16+) increased, while myeloid dendritic cells (mDCs) rather than plasmacytoid dendritic cells (pDCs) markedly declined during early infection. Cytokines, including interleukin-6 (IL-6), interferon-inducible protein-10 (IP-10), and macrophage inflammatory protein 1 (MCP-1), were substantially elevated in blood and were correlated with activated CD4+ T cells, B cells, CD16+CD56+ NK cells, CD14+CD16+ monocytes during infection. Thus, this study demonstrates that Chinese rhesus macaques infected with SFTSV resemble mild clinical symptoms of human SFTS and provides detailed virological and immunological parameters in macaques for understanding the pathogenesis of SFTSV infection.
Collapse
Affiliation(s)
- Yi-Hui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen-Wu Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Office of Science and Technology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Qiang He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Yan He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xue-Hui Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Ya-Long Lin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zu-Jiang Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yong-Tang Zheng, ; Wei Pang,
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yong-Tang Zheng, ; Wei Pang,
| |
Collapse
|
13
|
Zong L, Yang F, Liu S, Gao Y, Xia F, Zheng M, Xu Y. CD8 + T cells mediate antiviral response in severe fever with thrombocytopenia syndrome. FASEB J 2023; 37:e22722. [PMID: 36571509 DOI: 10.1096/fj.202201343rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), which is caused by a novel Bunyavirus, has gradually become a threatening infectious disease in rural areas of Asia. Studies have identified a severe cytokine storm and impaired humoral immune response in SFTS. However, the cellular immune response to SFTS virus (SFTSV) infection remains largely unknown. Here we report that SFTS patients had a cytokine storm accompanied by high levels of chemokines. CD8+ T cells in peripheral blood mononuclear cells of SFTS patients exhibited a more activated phenotype and enhanced the antiviral responses. They increased the expression of CD69 and CD25, secreted a higher level of IFN-γ and granzyme, and had a stronger proliferative ability than in healthy controls. In convalescent SFTS patients, the expression of CD69 and CD25 on CD8+ T cells was reduced. In addition, we found the ratio and cellularity of CD14+ CD16+ intermediate monocytes were increased in peripheral blood of SFTS patients. Both the expression of C-X-C motif chemokine ligand 10 (CXCL10) on CD14+ CD16+ intermediate monocytes and the expression of C-X-C motif chemokine receptor 3 (CXCR3) on CD8+ T cells increased dramatically in SFTS patients. Our studies reveal a potential pathway that CD8+ T cells rapidly activate and are mostly recruited by intermediate monocytes through CXCL10 in SFTSV infection. Our results may be of clinical relevance for further treatment and discharge instructions in SFTSV infections.
Collapse
Affiliation(s)
- Lu Zong
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yufeng Gao
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Xia
- Department of Clinical Laboratory, People's Hospital of Hanshan County, Maanshan, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Liu Z, Zhang R, Liu Y, Ma R, Zhang L, Zhao Z, Ge Z, Ren X, Zhang W, Lin L, Chen Z. Eosinophils and basophils in severe fever with thrombocytopenia syndrome patients: Risk factors for predicting the prognosis on admission. PLoS Negl Trop Dis 2022; 16:e0010967. [PMID: 36542604 PMCID: PMC9770358 DOI: 10.1371/journal.pntd.0010967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging tick-borne phlebovirus with a high fatality rate. Previous studies have demonstrated the poor prognostic role of eosinophils (EOS) and basophils (BAS) in predicting multiple viral infections. This study aimed to explore the role of EOS and BAS in predicting prognosis of patients with SFTS. METHODOLOGY A total of 194 patients with SFTS who were admitted to Yantai City Hospital from November 2019 to November 2021 were included. Patients' demographic and clinical data were collected. According to the clinical prognosis, they were divided into survival and non-survival groups. Independent risk factors were determined by univariate and multivariate logistic regression analyses. FINDINGS There were 171 (88.14%) patients in the survived group and 23 (11.86%) patients in the non-survived group. Patients' mean age was 62.39 ± 11.85 years old, and the proportion of males was 52.1%. Older age, neurological manifestations, hemorrhage, chemosis, and increased levels of laboratory variables, such as EOS% and BAS% on admission, were found in the non-survival group compared with the survival group. EOS%, BAS%, aspartate aminotransferase (AST), direct bilirubin (DBIL), and older age on admission were noted as independent risk factors for poor prognosis of SFTS patients. The combination of the EOS% and BAS% had an area under the curve (AUC) of (0.82; 95% CI: 0.725, 0.932, P = 0.000), which showed an excellent performance in predicting prognosis of patients with SFTS compared with neutrophil-to-lymphocyte ratio (NLR), and both exhibited a satisfactory performance in predicting poor prognosis compared with De-Ritis ratio (AST/alanine aminotransferase (ALT) ratio). EOS% and BAS% were positively correlated with various biomarkers of tissue damage and the incidence of neurological complications in SFTS patients. CONCLUSION EOS% and BAS% are effective predictors of poor prognosis of patients with early-stage SFTS. The combination of EOS% and BAS% was found as the most effective approach.
Collapse
Affiliation(s)
- Zishuai Liu
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rongling Zhang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuanni Liu
- Department of Infectious Diseases, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Ruize Ma
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ligang Zhang
- Department of Infectious Diseases, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Zhe Zhao
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziruo Ge
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xingxiang Ren
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ling Lin
- Department of Infectious Diseases, Yantai City Hospital for Infectious Disease, Yantai, China,* E-mail: (LL); (ZC)
| | - Zhihai Chen
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China,* E-mail: (LL); (ZC)
| |
Collapse
|
15
|
Wang T, Xu L, Zhu B, Wang J, Zheng X. Immune escape mechanisms of severe fever with thrombocytopenia syndrome virus. Front Immunol 2022; 13:937684. [PMID: 35967309 PMCID: PMC9366518 DOI: 10.3389/fimmu.2022.937684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), which is caused by SFTS virus (SFTSV), poses a serious threat to global public health, with high fatalities and an increasing prevalence. As effective therapies and prevention strategies are limited, there is an urgent need to elucidate the pathogenesis of SFTS. SFTSV has evolved several mechanisms to escape from host immunity. In this review, we summarize the mechanisms through which SFTSV escapes host immune responses, including the inhibition of innate immunity and evasion of adaptive immunity. Understanding the pathogenesis of SFTS will aid in the development of new strategies for the treatment of this disease.
Collapse
Affiliation(s)
- Tong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Xu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Junzhong Wang, ; Xin Zheng,
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Junzhong Wang, ; Xin Zheng,
| |
Collapse
|
16
|
Yang T, Huang H, Jiang L, Li J. Overview of the immunological mechanism underlying severe fever with thrombocytopenia syndrome (Review). Int J Mol Med 2022; 50:118. [PMID: 35856413 PMCID: PMC9333902 DOI: 10.3892/ijmm.2022.5174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2022] [Indexed: 11/05/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) has been acknowledged as an emerging infectious disease that is caused by the SFTS virus (SFTSV). The main clinical features of SFTS on presentation include fever, thrombocytopenia, leukocytopenia and gastrointestinal symptoms. The mortality rate is estimated to range between 5-30% in East Asia. However, SFTSV infection is increasing on an annual basis globally and is becoming a public health problem. The transmission cycle of SFTSV remains poorly understood, which is compounded by the pathogenesis of SFTS not being fully elucidated. Since the mechanism underlying the host immune response towards SFTSV is also unclear, there are no effective vaccines or specific therapeutic agents against SFTS, with supportive care being the only realistic option. Therefore, it is now crucial to understand all aspects of the host-virus interaction following SFTSV infection, including the antiviral states and viral evasion mechanisms. In the present review, recent research progress into the possible host immune responses against SFTSV was summarized, which may be useful in designing novel therapeutics against SFTS.
Collapse
Affiliation(s)
- Tao Yang
- Department of Infectious Disease, The First Hospital Affiliated with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Huaying Huang
- Department of Infectious Disease, The First Hospital Affiliated with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Longfeng Jiang
- Department of Infectious Disease, The First Hospital Affiliated with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Jun Li
- Department of Infectious Disease, The First Hospital Affiliated with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
17
|
Wang Y, Song Z, Wei X, Yuan H, Xu X, Liang H, Wen H. Clinical laboratory parameters and fatality of Severe fever with thrombocytopenia syndrome patients: A systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010489. [PMID: 35714138 PMCID: PMC9246219 DOI: 10.1371/journal.pntd.0010489] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/30/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022] Open
Abstract
Background
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease with high case fatality rate. Unfortunately, no vaccine or antiviral specifically targeting SFTS virus (SFTSV) are available for the time being. Our objective was to investigate the association between clinical laboratory parameters and fatality of SFTS patients.
Methods
The systematic review was conducted in accordance with The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines. We searched (from inception to 24th February 2022) Web of Science, PubMed, National Knowledge Infrastructure databases and Wan Fang Data for relevant researchers on SFTS. Studies were eligible if they reported on laboratory parameters of SFTS patients and were stratified by clinical outcomes. A modified version of Newcastle-Ottawa scale was used to evaluate the quality of included studies. Standardized mean difference (SMD) was used to evaluate the association between laboratory parameters and outcomes. The between-study heterogeneity was evaluated quantitatively by standard Chi-square and the index of heterogeneity (I2). Heterogeneity was explored by subgroup and sensitivity analyses, and univariable meta-regression. Publication bias was determined using funnel plots and Egger’s test.
Results
We identified 34 relevant studies, with over 3300 participants across three countries. The following factors were strongly (SMD>1 or SMD<-0.5) and significantly (P<0.05) associated mortality: thrombin time (TT) (SMD = 1.53), viral load (SMD = 1.47), activated partial-thromboplastin time (APTT) (SMD = 1.37), aspartate aminotransferase (AST) (SMD = 1.19), lactate dehydrogenase (LDH) (SMD = 1.13), platelet count (PLT) (SMD = -0.47), monocyte percentage (MON%) (SMD = -0.47), lymphocyte percentage (LYM%) (SMD = -0.46) and albumin (ALB) (SMD = -0.43). Alanine aminotransferase, AST, creatin phosphokinase, LDH, PLT, partial-thromboplastin time and viral load contributed to the risk of dying of SFTS patients in each subgroup analyses. Sensitivity analysis demonstrated that the results above were robust.
Conclusions/significance
The abnormal levels of viral load, PLT, coagulation function and liver function, significantly increase the risk of SFTS mortality, suggesting that SFTS patients with above symptoms call for special concern.
Collapse
Affiliation(s)
- Yao Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zexuan Song
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuemin Wei
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haowen Yuan
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoying Xu
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao Liang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
18
|
Wang M, Tan W, Li J, Fang L, Yue M. The Endless Wars: Severe Fever With Thrombocytopenia Syndrome Virus, Host Immune and Genetic Factors. Front Cell Infect Microbiol 2022; 12:808098. [PMID: 35782112 PMCID: PMC9240209 DOI: 10.3389/fcimb.2022.808098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/10/2022] [Indexed: 01/10/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging arboviral infectious disease with a high rate of lethality in susceptible humans and caused by severe fever with thrombocytopenia syndrome bunyavirus (SFTSV). Currently, neither vaccine nor specific antiviral drugs are available. In recent years, given the fact that both the number of SFTS cases and epidemic regions are increasing year by year, SFTS has become a public health problem. SFTSV can be internalized into host cells through the interaction between SFTSV glycoproteins and cell receptors and can activate the host immune system to trigger antiviral immune response. However, SFTSV has evolved multiple strategies to manipulate host factors to create an optimal environment for itself. Not to be discounted, host genetic factors may be operative also in the never-ending winning or losing wars. Therefore, the identifications of SFTSV, host immune and genetic factors, and their interactions are critical for understanding the pathogenic mechanisms of SFTSV infection. This review summarizes the updated pathogenesis of SFTS with regard to virus, host immune response, and host genetic factors to provide some novel perspectives of the prevention, treatment, as well as drug and vaccine developments.
Collapse
Affiliation(s)
- Min Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weilong Tan
- Department of Infection Disease, Huadong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liqun Fang
- State Key Lab Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Liqun Fang, ; Ming Yue,
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Liqun Fang, ; Ming Yue,
| |
Collapse
|
19
|
Kim M, Oh H, Heo ST, Song SW, Lee KH, Kang MJ, Yoo JR. The Evaluation of Surrogate Laboratory Parameters for Predicting the Trend of Viral Loads in Patients with Severe Fever with Thrombocytopenia Syndrome: Cross-Correlation Analysis of Time Series. Infect Chemother 2022; 54:470-482. [PMID: 36196606 PMCID: PMC9533152 DOI: 10.3947/ic.2022.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background There is a correlation between the severe fever with thrombocytopenia syndrome (SFTS) viral load and disease severity; however, measurement of viral load is difficult in general laboratory and it takes time to obtain a viral load value. Here, the laboratory parameters for predicting the dynamic changes in SFTS viral load were identified. In addition, we tried to evaluate a specific time point for the early determination of clinical deterioration using dynamic change of laboratory parameters. Materials and Methods This observational study included SFTS patients in Korea (2013 - 2020). Cross-correlation analysis at lagged values was used to determine the temporal correlation between the SFTS viral loads and time-series variables. Fifty-eight SFTS patients were included in the non-severe group (NSG) and 11 in the severe group (SG). Results In the cross-sectional analyses, 10 parameters -white blood cell, absolute neutrophil cell, lymphocyte, platelet, activated partial thromboplastin time (aPTT), C-reactive protein, aspartate aminotransferase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), and creatine phosphokinase (CPK)- were assessed within 30 days from the onset of symptoms; they exhibited three different correlation patterns: (1) positive, (2) positive with a time lag, and (3) negative. A prediction score system was developed for predicting SFTS fatality based on age and six laboratory variables -platelet, aPTT, AST, ALT, LDH, and CPK- in 5 days after the onset of symptoms; this scoring system had 87.5% sensitivity and 86.0% specificity (95% confidence interval: 0.831 - 1.00, P <0.001). Conclusion Three types of correlation patterns between the dynamic changes in SFTS viral load and laboratory parameters were identified. The dynamic changes in the viral load could be predicted using the dynamic changes in these variables, which can be particularly helpful in clinical settings where viral load tests cannot be performed. Also, the proposed scoring system could provide timely treatment to critical patients by rapidly assessing their clinical course.
Collapse
Affiliation(s)
- Misun Kim
- Department of Internal Medicine, Jeju National University Hospital, Jeju, Korea
| | - Hyunjoo Oh
- Department of Internal Medicine, Jeju National University Hospital, Jeju, Korea
| | - Sang Taek Heo
- Department of Internal Medicine, Jeju National University Hospital, Jeju, Korea
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju, Korea
| | - Sung Wook Song
- Department of Emergency Medicine, Jeju National University College of Medicine, Jeju, Korea
| | - Keun Hwa Lee
- Department of Microbiology, Hanyang University College of Medicine, Seoul, Korea
| | - Myeong Jin Kang
- Department of Nursing, Jeju National University Hospital, Jeju, Korea
| | - Jeong Rae Yoo
- Department of Internal Medicine, Jeju National University Hospital, Jeju, Korea
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju, Korea
| |
Collapse
|
20
|
Kwon JS, Jin S, Kim JY, Ra SH, Kim T, Park SY, Kim MC, Park SY, Kim D, Cha HH, Lee HJ, Kim MJ, Chong YP, Lee SO, Choi SH, Kim YS, Lee KH, Kee SH, Kim SH. Viral and Immunologic Factors Associated with Fatal Outcome of Patients with Severe Fever with Thrombocytopenia Syndrome in Korea. Viruses 2021; 13:v13122351. [PMID: 34960620 PMCID: PMC8703577 DOI: 10.3390/v13122351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Significant progress has been made on the molecular biology of the severe fever with thrombopenia virus (SFTSV); however, many parts of the pathophysiological mechanisms of mortality in SFTS remain unclear. In this study, we investigated virologic and immunologic factors for fatal outcomes of patients with SFTS. We prospectively enrolled SFTS patients admitted from July 2015 to October 2020. Plasma samples were subjected to SFTSV RNA RT-PCR, multiplex microbead immunoassay for 17 cytokines, and IFA assay. A total of 44 SFTS patients were enrolled, including 37 (84.1%) survivors and 7 (15.9%) non-survivors. Non-survivors had a 2.5 times higher plasma SFTSV load than survivors at admission (p < 0.001), and the viral load in non-survivors increased progressively during hospitalization. In addition, non-survivors did not develop adequate anti-SFTSV IgG, whereas survivors exhibited anti-SFTSV IgG during hospitalization. IFN-α, IL-10, IP-10, IFN-γ, IL-6, IL-8, MCP-1, MIP-1α, and G-CSF were significantly elevated in non-survivors compared to survivors and did not revert to normal ranges during hospitalization (p < 0.05). Severe signs of inflammation such as a high plasma concentration of IFN-α, IL-10, IP-10, IFN-γ, IL-6, IL-8, MCP-1, MIP-1α, and G-CSF, poor viral control, and inadequate antibody response during the disease course were associated with mortality in SFTS patients.
Collapse
Affiliation(s)
- Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
| | - Sol Jin
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
| | - Ji-Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
| | - Sang-Hyun Ra
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
| | - Taeeun Kim
- Division of Infectious Diseases, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Se-Yoon Park
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Korea;
| | - Min-Chul Kim
- Division of Infectious Diseases, Chung-Ang University Hospital, Seoul 06973, Korea;
| | - Seong-Yeon Park
- Department of Infectious Diseases, Dongguk University Ilsan Hospital, Goyang 10326, Korea;
| | - Dasarang Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Korea; (D.K.); (S.-H.K.)
| | - Hye-Hee Cha
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
| | - Hyun-Jung Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
| | - Min-Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
| | - Yong-Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
| | - Yang-Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
| | - Keun-Hwa Lee
- Department of Microbiology, College of Medicine, Hanyang University, Seoul 04763, Korea;
| | - Sun-Ho Kee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Korea; (D.K.); (S.-H.K.)
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-S.K.); (S.J.); (J.-Y.K.); (S.-H.R.); (H.-H.C.); (H.-J.L.); (M.-J.K.); (Y.-P.C.); (S.-O.L.); (S.-H.C.); (Y.-S.K.)
- Correspondence: ; Tel.: +82-2-3010-3305
| |
Collapse
|
21
|
Higuita NIA, Franco-Paredes C, Henao-Martínez AF. The expanding spectrum of disease caused by the Lone Star Tick, Amblyomma americanum. LE INFEZIONI IN MEDICINA 2021; 29:378-385. [PMID: 35146342 PMCID: PMC8805489 DOI: 10.53854/liim-2903-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 06/14/2023]
Abstract
Ticks are remarkable vectors of a diverse and growing list of infectious agents of importance to both medical and veterinary disciplines. The tick Amblyomma americanum is one of the most frequently identified ticks in the United States with an expanding spectrum of human disease given its vast geographic range. The recently described Bourbon and Heartland viruses are likely transmitted by the Lone Star tick and are just two of the several novel tick-borne pathogens discovered in recent decades. The review will focus on these two viruses that can cause illness with similar characteristics to other diseases transmitted by the Lone Star tick. Healthcare professionals should consider these viruses in patients presenting with an ailment suggestive of a tick-born rickettsial disease that fails to improve with treatment with doxycycline. Additionally, some individuals may develop life-threatening allergic reactions triggered by the bite of the Lone Star tick.
Collapse
Affiliation(s)
- Nelson Iván Agudelo Higuita
- Department of Medicine, Section of Infectious Diseases, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Carlos Franco-Paredes
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver School of Medicine, Denver, Colorado, USA
| | - Andrés F. Henao-Martínez
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver School of Medicine, Denver, Colorado, USA
| |
Collapse
|
22
|
Xu Y, Shao M, Liu N, Tang J, Gu Q, Dong D. Invasive pulmonary aspergillosis is a frequent complication in patients with severe fever with thrombocytopenia syndrome: A retrospective study. Int J Infect Dis 2021; 105:646-652. [PMID: 33640568 DOI: 10.1016/j.ijid.2021.02.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Invasive pulmonary aspergillosis (IPA) usually occurs in immunocompromised hosts. It has recently been reported that patients with severe fever with thrombocytopenia syndrome (SFTS) can also develop IPA. The aim of this study was to determine the incidence of IPA in SFTS patients and to investigate the relevant clinical, imaging, and laboratory characteristics. METHODS A retrospective review was conducted of all patients with SFTS admitted to Nanjing Drum Tower Hospital, a tertiary hospital in Nanjing City, China, between January 2016 and December 2019. The patients were divided into two groups according to whether they had IPA: the IPA group and the non-IPA group. Data on clinical manifestations, laboratory findings, imaging characteristics, treatments, and outcomes were collected and analysed. RESULTS A total of 91 SFTS patients were included, of whom 29 (31.9%) developed IPA. In-hospital mortality (22.0%) was higher in the IPA group than in the non-IPA group. Univariate logistic regression showed that diabetes, cough, wheezing, amylase level, vasopressor use, encephalopathy, and intensive care unit transfer were risk factors for the development of IPA. Multivariate logistic regression analysis identified wheezing as an independent predictor of IPA in SFTS patients. CONCLUSIONS SFTS combined with IPA is associated with high morbidity and mortality. It is necessary to strengthen screening for fungal infections after admission in SFTS patients. However, whether early antifungal prophylaxis should be administered needs further investigation.
Collapse
Affiliation(s)
- Ying Xu
- Department of Intensive Care Unit, the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mingran Shao
- Department of Radiology, the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ning Liu
- Department of Intensive Care Unit, the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jian Tang
- Department of Intensive Care Unit, the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qin Gu
- Department of Intensive Care Unit, the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Danjiang Dong
- Department of Intensive Care Unit, the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| |
Collapse
|
23
|
Kim M, Heo ST, Seong GM, Lee KH, Yoo JR. Severe fever with thrombocytopenia syndrome (SFTS) associated with invasive pulmonary Aspergillosis in a patient with a low CD4+ T-cell count: A case report. Int J Crit Illn Inj Sci 2020; 10:53-56. [PMID: 33376692 PMCID: PMC7759066 DOI: 10.4103/ijciis.ijciis_96_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/26/2020] [Accepted: 03/24/2020] [Indexed: 01/02/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is associated with a high mortality caused by rapidly progressive multiple organ failure. SFTS virus induces immunosuppression, mediated by interleukin-10 production, reduction of CD3+ and CD4+ T cells, and cytokine storms, and this may lead to various complications in critical SFTS patients. Recently, there have been reports of cases of invasive pulmonary Aspergillosis (IPA) in patients with SFTS in the absence of predisposing factors of IPA. However, there is no known relationship between SFTS and mycosis. Here, we report a SFTS patient with a low CD4+ T-cell count and a high viral load, who developed possible IPA in the absence of common risk factors for mycosis. This case adds to the evidence that IPA may occur as a complication of SFTS.
Collapse
Affiliation(s)
- Miyeon Kim
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Sang Taek Heo
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Gil Myeong Seong
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Keun Hwa Lee
- Department of Microbiology and Immunology, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Jeong Rae Yoo
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea
| |
Collapse
|
24
|
Yamaoka S, Weisend C, Ebihara H. Identifying target cells for a tick-borne virus that causes fatal hemorrhagic fever. J Clin Invest 2020; 130:598-600. [PMID: 31904585 PMCID: PMC6994110 DOI: 10.1172/jci134512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease in China, South Korea, and Japan caused by the tick-borne SFTS virus (SFTSV). Severe and fatal SFTS presents as a hemorrhagic fever characterized by high viral load, uncontrolled inflammatory response, dysregulated adaptive immunity, coagulation abnormalities, hemorrhage, and multiorgan failure with up to 33% case fatality rates (CFRs). Despite its public health significance in Asia, vaccines and specific therapeutics against SFTS are still unavailable. A better understanding of the pathogenesis of SFTS is crucial to improving medical countermeasures against this devastating disease. In this issue of the JCI, Suzuki and colleagues analyzed histopathological samples from 22 individuals who succumbed to SFTS, and identified antibody-producing B cell-lineage plasmablasts and macrophages as principal target cells for SFTSV infection in fatal SFTS. Their results suggest that SFTSV-infected post-germinal center B cells, plasmablasts, and macrophages affect systemic immunopathology and dysregulation, which likely leads to fatal outcomes.
Collapse
|
25
|
Wang L, Wan G, Shen Y, Zhao Z, Lin L, Zhang W, Song R, Tian D, Wen J, Zhao Y, Yu X, Liu L, Feng Y, Liu Y, Qiang C, Duan J, Ma Y, Liu Y, Liu Y, Chen C, Ge Z, Li X, Chen Z, Fan T, Li W. A nomogram to predict mortality in patients with severe fever with thrombocytopenia syndrome at the early stage-A multicenter study in China. PLoS Negl Trop Dis 2019; 13:e0007829. [PMID: 31765414 PMCID: PMC6934327 DOI: 10.1371/journal.pntd.0007829] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/27/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) caused by the SFTS virus is an emerging infectious disease that was first identified in the rural areas of China in 2011. Severe cases often result in death due to multiple organ failure. To date, there are still numerous problems remain unresolved in SFTS, including unclear pathogenesis, lack of specific treatment, and no effective vaccines available. Aim To analyze the clinical information of patients with early-stage SFTS and to establish a nomogram for the mortality risk. Methods Between April 2011 and December 2018, data on consecutive patients who were diagnosed with SFTS were prospectively collected from five medical centers distributed in central and northeastern China. Multivariable Cox analyses were used to identify the factors independently associated with mortality. A nomogram for mortality was established using those factors. Results During the study period, 429 consecutive patients were diagnosed with SFTS at the early stage of the disease (within 7 days of fever), among whom 69 (16.1%) died within 28 days. The multivariable Cox proportional hazard regression analysis showed that low lymphocyte percentage, early-stage encephalopathy, and elevated concentration of serum LDH and BUN were independent risk factors for fatal outcomes. Received-operating characteristic curves for 7-, 14-, and 28-days survival had AUCs of 0.944 (95% CI: 0.920–0.968), 0.924 (95% CI: 0.896–0.953), and 0.924 (95% CI: 0.895–0.952), respectively. Among low-risk patients, 6 patients died (2.2%). Among moderate-risk patients, 25 patients died (24.0%, hazard ratio (HR) = 11.957). Among high-risk patients, the mortality rate was 69.1% (HR = 57.768). Conclusion We established a simple and practical clinical scoring system, through which we can identify critically ill patients and provide intensive medical intervention for patients as soon as possible to reduce mortality. We established a SFTS nomogram scoring system, which is the first nomogram for this disease. According to this nomogram, patients were divided into three levels of mortality risk: low, moderate, and high. This scoring system is helpful to identify critically ill patients, allowing for early intervention and intensive care, which may contribute to reducing the mortality of SFTS.
Collapse
Affiliation(s)
- Lin Wang
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Gang Wan
- Statistics Room, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yi Shen
- Department of Infectious Diseases, Dandong Infectious Disease Hospital, Dandong, China
| | - Zhenghua Zhao
- Department of Infectious Disease, Taian City Central Hospital, Taian, China
| | - Ling Lin
- Department of Infectious Disease, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Wei Zhang
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Tian
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jing Wen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Zhao
- Department of Infectious Diseases, Dandong Infectious Disease Hospital, Dandong, China
| | - Xiaoli Yu
- Department of Infectious Diseases, Dandong Infectious Disease Hospital, Dandong, China
| | - Li Liu
- Department of Infectious Disease, Taian City Central Hospital, Taian, China
| | - Yang Feng
- Department of Infectious Disease, Taian City Central Hospital, Taian, China
| | - Yuanni Liu
- Department of Infectious Disease, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Chunqian Qiang
- Department of Infectious Disease, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Jianping Duan
- Department of Infectious Disease, Qing Dao No. 6 People's Hospital, Qingdao, China
| | - Yanli Ma
- Department of Infectious Disease, Qing Dao No. 6 People's Hospital, Qingdao, China
| | - Ying Liu
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanan Liu
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chong Chen
- Graduate School of Capital Medical University, Beijing, China
| | - Ziruo Ge
- Graduate School of Capital Medical University, Beijing, China
| | - Xingwang Li
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhihai Chen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tianli Fan
- Department of Infectious Disease, Qing Dao No. 6 People's Hospital, Qingdao, China
| | - Wei Li
- Interventional Therapy Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Ning YJ, Mo Q, Feng K, Min YQ, Li M, Hou D, Peng C, Zheng X, Deng F, Hu Z, Wang H. Interferon-γ-Directed Inhibition of a Novel High-Pathogenic Phlebovirus and Viral Antagonism of the Antiviral Signaling by Targeting STAT1. Front Immunol 2019; 10:1182. [PMID: 31191546 PMCID: PMC6546826 DOI: 10.3389/fimmu.2019.01182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening infectious disease caused by a novel phlebovirus, SFTS virus (SFTSV). Currently, there is no vaccine or antiviral available and the viral pathogenesis remains largely unknown. In this study, we demonstrated that SFTSV infection results in substantial production of serum interferon-γ (IFN-γ) in patients and then that IFN-γ in turn exhibits a robust anti-SFTSV activity in cultured cells, indicating the potential role of IFN-γ in anti-SFTSV immune responses. However, the IFN-γ anti-SFTSV efficacy was compromised once viral infection had been established. Consistently, we found that viral nonstructural protein (NSs) expression counteracts IFN-γ signaling. By protein interaction analyses combined with mass spectrometry, we identified the transcription factor of IFN-γ signaling pathway, STAT1, as the cellular target of SFTSV for IFN-γ antagonism. Mechanistically, SFTSV blocks IFN-γ-triggered STAT1 action through (1) NSs-STAT1 interaction-mediated sequestration of STAT1 into viral inclusion bodies and (2) viral infection-induced downregulation of STAT1 protein level. Finally, the efficacy of IFN-γ as an anti-SFTSV drug in vivo was evaluated in a mouse infection model: IFN-γ pretreatment but not posttreatment conferred significant protection to mice against lethal SFTSV infection, confirming IFN-γ's anti-SFTSV effect and viral antagonism against IFN-γ after the infection establishment. These findings present a picture of virus-host arm race and may promote not only the understanding of virus-host interactions and viral pathogenesis but also the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiong Mo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kuan Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qin Min
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mingyue Li
- Department of Infectious Diseases, Union Hospital, Institute of Infection and Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianhai Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng Peng
- Department of Infectious Diseases, Union Hospital, Institute of Infection and Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Institute of Infection and Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|