1
|
Gu Z, Pan L, Tan H, Wang X, Wang J, Zheng X, Weng J, Luo S, Yue T, Ding Y. Gut microbiota, serum metabolites, and lipids related to blood glucose control and type 1 diabetes. J Diabetes 2024; 16:e70021. [PMID: 39463013 PMCID: PMC11513438 DOI: 10.1111/1753-0407.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The composition and function of gut microbiota, lipids, and metabolites in patients with type 1 diabetes (T1D) or its association with glycemic control remains unknown. We aimed to use multi-omics sequencing technology and machine learning (ML) approaches to investigate potential function and relationships among the gut microbiota, lipids, and metabolites in T1D patients at varied glycemic levels. METHODS We conducted a multi-omics analysis of the gut microbiome from fecal samples, metabolites, and lipids obtained from serum samples, collected from a cohort of 72 T1D patients. The patients were divided into two groups based on their hemoglobin A1c (HbA1c) levels. 16S rRNA sequencing, and metabolomics methods were applied to analyze changes in composition and function of gut microbiota, metabolites, and lipids. RESULTS The linear discriminant analysis, Shapley additive explanations (SHAP) algorithm, and ML algorithms revealed the enrichment of Bacteroides_nordii, Bacteroides_cellulosilyticus in the glycemic control (GC) group, while Bacteroides_coprocola and Sutterella_wadsworthensis were enriched in the poor glycemic control (PGC) group. Several metabolic enrichment sets like fatty acid biosynthesis and glycerol phosphate shuttle metabolism were different between two groups. Bacteroides_nordii exhibited a negative association with D-fructose, a component involved in the starch and sucrose metabolism pathway, as well as with monoglycerides (16:0) involved in the glycerolipid metabolism pathway. CONCLUSIONS We identified distinct characteristics of gut microbiota, metabolites, and lipids in T1D patients exhibiting different levels of glycemic control. Through comprehensive analysis, microbiota (Bacteroides_nordii, Bacteroides_coprocola), metabolites (D-fructose), and lipids (Monoglycerides) may serve as potential mediators that communicated the interaction between the gut, circulatory systems, and glucose fluctuations in T1D patients.
Collapse
Affiliation(s)
- Zhaohe Gu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Lanxin Pan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Huiling Tan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Xulin Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Jing Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Tong Yue
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Yu Ding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
2
|
Rojo-López MI, Barranco-Altirriba M, Rossell J, Antentas M, Castelblanco E, Yanes O, Weber RJM, Lloyd GR, Winder C, Dunn WB, Julve J, Granado-Casas M, Mauricio D. The Lipidomic Profile Is Associated with the Dietary Pattern in Subjects with and without Diabetes Mellitus from a Mediterranean Area. Nutrients 2024; 16:1805. [PMID: 38931159 PMCID: PMC11206394 DOI: 10.3390/nu16121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Lipid functions can be influenced by genetics, age, disease states, and lifestyle factors, particularly dietary patterns, which are crucial in diabetes management. Lipidomics is an expanding field involving the comprehensive exploration of lipids from biological samples. In this cross-sectional study, 396 participants from a Mediterranean region, including individuals with type 1 diabetes (T1D), type 2 diabetes (T2D), and non-diabetic individuals, underwent lipidomic profiling and dietary assessment. Participants completed validated food frequency questionnaires, and lipid analysis was conducted using ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC/MS). Multiple linear regression models were used to determine the association between lipid features and dietary patterns. Across all subjects, acylcarnitines (AcCa) and triglycerides (TG) displayed negative associations with the alternate Healthy Eating Index (aHEI), indicating a link between lipidomic profiles and dietary habits. Various lipid species (LS) showed positive and negative associations with dietary carbohydrates, fats, and proteins. Notably, in the interaction analysis between diabetes and the aHEI, we found some lysophosphatidylcholines (LPC) that showed a similar direction with respect to aHEI in non-diabetic individuals and T2D subjects, while an opposite direction was observed in T1D subjects. The study highlights the significant association between lipidomic profiles and dietary habits in people with and without diabetes, particularly emphasizing the role of healthy dietary choices, as reflected by the aHEI, in modulating lipid concentrations. These findings underscore the importance of dietary interventions to improve metabolic health outcomes, especially in the context of diabetes management.
Collapse
Affiliation(s)
- Marina Idalia Rojo-López
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
| | - Maria Barranco-Altirriba
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- B2SLab, Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
- Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Barcelona, Spain
| | - Joana Rossell
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria Antentas
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
| | - Esmeralda Castelblanco
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid Research Division, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Oscar Yanes
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Electronic Engineering, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Ralf J. M. Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gavin R. Lloyd
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Catherine Winder
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Warwick B. Dunn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Josep Julve
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Minerva Granado-Casas
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Nursing and Physiotherapy, University of Lleida, 25198 Lleida, Spain
- Research Group of Health Care (GreCS), IRBLleida, 25198 Lleida, Spain
| | - Dídac Mauricio
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic (UVIC/UCC), 08500 Vic, Spain
| |
Collapse
|
3
|
Godzien J, Jablonowski K, Ruperez FJ, Kretowski A, Ciborowski M, Kalaska B. Metabolic profiling reveals the nutraceutical effect of Gongolaria abies-marina and Rosmarinus officinalis extracts in a type 1 diabetes animal model. Biomed Pharmacother 2024; 175:116731. [PMID: 38761421 DOI: 10.1016/j.biopha.2024.116731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Nutraceuticals have gained increasing interest, prompting the need to investigate plant extracts for their beneficial properties and potential side effects. This study aimed to assess the nutraceutical effects of environmentally clean extracts from Rosmarinus officinalis and Gongolaria abies-marina (formerly Cystoseira abies-marina (Phaeophyceae)) on the metabolic profile of streptozotocin-induced diabetic rats. We conducted untargeted LC-QTOF-MS metabolic profiling on six groups of rats: three diabetic groups receiving either a placebo, R. officinalis, or G. abies-marina extracts, and three corresponding control groups. The metabolic analysis revealed significant alterations in the levels of various glycerophospholipids, sterol lipids, and fatty acyls. Both extracts influenced the metabolic profile, partially mitigating diabetes-induced changes. Notably, G. abies-marina extract had a more pronounced impact on the animals' metabolic profiles compared to R. officinalis. In conclusion, our findings suggest that environmentally clean extracts from R. officinalis and G. abies-marina possess nutraceutical potential, as they were able to modulate the metabolic profile in streptozotocin-induced diabetic rats. G. abies-marina extract exhibited a more substantial effect on metabolic alterations induced by diabetes compared to R. officinalis. These results warrant further exploration of these plant extracts for their potential in managing diabetes-related metabolic disturbances.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Kacper Jablonowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Francisco J Ruperez
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, Madrid, Spain
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Sarkar S, Deiter C, Kyle JE, Guney MA, Sarbaugh D, Yin R, Li X, Cui Y, Ramos-Rodriguez M, Nicora CD, Syed F, Juan-Mateu J, Muralidharan C, Pasquali L, Evans-Molina C, Eizirik DL, Webb-Robertson BJM, Burnum-Johnson K, Orr G, Laskin J, Metz TO, Mirmira RG, Sussel L, Ansong C, Nakayasu ES. Regulation of β-cell death by ADP-ribosylhydrolase ARH3 via lipid signaling in insulitis. Cell Commun Signal 2024; 22:141. [PMID: 38383396 PMCID: PMC10880366 DOI: 10.1186/s12964-023-01437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Lipids are regulators of insulitis and β-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate β-cell death. METHODS We performed lipidomics using three models of insulitis: human islets and EndoC-βH1 β cells treated with the pro-inflammatory cytokines interlukine-1β and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced β-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS Our data provide insights into the change of lipidomics landscape in β cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Cailin Deiter
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michelle A Guney
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Dylan Sarbaugh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Ruichuan Yin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Xiangtang Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Yi Cui
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- NanoString Technologies, Seattle, WA, 98109, USA
| | - Mireia Ramos-Rodriguez
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jonas Juan-Mateu
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Charanya Muralidharan
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Lorenzo Pasquali
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Kristin Burnum-Johnson
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Galya Orr
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
5
|
Yue T, Tan H, Wang C, Liu Z, Yang D, Ding Y, Xu W, Yan J, Zheng X, Weng J, Luo S. High-risk genotypes for type 1 diabetes are associated with the imbalance of gut microbiome and serum metabolites. Front Immunol 2022; 13:1033393. [PMID: 36582242 PMCID: PMC9794034 DOI: 10.3389/fimmu.2022.1033393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The profile of gut microbiota, serum metabolites, and lipids of type 1 diabetes (T1D) patients with different human leukocyte antigen (HLA) genotypes remains unknown. We aimed to explore gut microbiota, serum metabolites, and lipids signatures in individuals with T1D typed by HLA genotypes. Methods We did a cross-sectional study that included 73 T1D adult patients. Patients were categorized into two groups according to the HLA haplotypes they carried: those with any two of three susceptibility haplotypes (DR3, DR4, DR9) and without any of the protective haplotypes (DR8, DR11, DR12, DR15, DR16) were defined as high-risk HLA genotypes group (HR, n=30); those with just one or without susceptibility haplotypes as the non-high-risk HLA genotypes group (NHR, n=43). We characterized the gut microbiome profile with 16S rRNA gene amplicon sequencing and analyzed serum metabolites with liquid chromatography-mass spectrometry. Results Study individuals were 32.5 (8.18) years old, and 60.3% were female. Compared to NHR, the gut microbiota of HR patients were characterized by elevated abundances of Prevotella copri and lowered abundances of Parabacteroides distasonis. Differential serum metabolites (hypoxanthine, inosine, and guanine) which increased in HR were involved in purine metabolism. Different lipids, phosphatidylcholines and phosphatidylethanolamines, decreased in HR group. Notably, Parabacteroides distasonis was negatively associated (p ≤ 0.01) with hypoxanthine involved in purine metabolic pathways. Conclusions The present findings enabled a better understanding of the changes in gut microbiome and serum metabolome in T1D patients with HLA risk genotypes. Alterations of the gut microbiota and serum metabolites may provide some information for distinguishing T1D patients with different HLA risk genotypes.
Collapse
Affiliation(s)
- Tong Yue
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huiling Tan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chaofan Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyu Liu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Daizhi Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xueying Zheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Jianping Weng, ; Sihui Luo,
| | - Sihui Luo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Jianping Weng, ; Sihui Luo,
| |
Collapse
|
6
|
Chai J, Sun Z, Xu J. A Contemporary Insight of Metabolomics Approach for Type 1 Diabetes: Potential for Novel Diagnostic Targets. Diabetes Metab Syndr Obes 2022; 15:1605-1625. [PMID: 35642181 PMCID: PMC9148614 DOI: 10.2147/dmso.s357007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
High-throughput omics has been widely applied in metabolic disease, type 1 diabetes (T1D) was one of the most typical diseases. Effective prevention and early diagnosis are very important because of infancy and persistent characteristics of T1D. The occurrence and development of T1D is a chronic and continuous process, in which the production of autoantibodies (ie serum transformation) occupies the central position. Metabolomics can evaluate the metabolic characteristics of serum before seroconversion, the changes with age and T1D complications. And the addition of natural drug metabolomics is more conducive to the systematic and comprehensive diagnosis and treatment of T1D. This paper reviewed the metabolic changes and main pathogenesis from pre-diagnosis to treatment in T1D. The metabolic spectrum of significant abnormal energy and glucose-related metabolic pathway, down-regulation of lipid metabolism and up-regulation of some antioxidant pathways has appeared before seroconversion, indicating that the body has been in the dual state of disease progression and disease resistance before T1D onset. Some metabolites (such as methionine) are closely related to age, and the types of autoantibodies produced are age-specific. Some metabolites may jointly predict DN with eGFR, and metabolomics can further contribute to the pathogenesis based on the correlation between DN and DR. Many natural drug components have been proved to act on abnormal metabolic pathways of T1D and have a positive impact on some metabolic levels, which is very important for further finding therapeutic targets and developing new drugs with small side effects. Metabolomics can provide auxiliary value for the diagnosis of T1D and provide a new direction to reveal the pathogenesis of T1D and find new therapeutic targets. The development of T1D metabolomics shows that high-throughput research methods are expected to be introduced into clinical practice.
Collapse
Affiliation(s)
- Jiatong Chai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zeyu Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Jiancheng Xu, Department of Laboratory Medicine, The First Bethune Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, People’s Republic of China, Tel +86-431-8878-2595, Fax +86-431-8878-6169, Email
| |
Collapse
|
7
|
Zhang J, Wu W, Huang K, Dong G, Chen X, Xu C, Ni Y, Fu J. Untargeted metabolomics reveals gender- and age- independent metabolic changes of type 1 diabetes in Chinese children. Front Endocrinol (Lausanne) 2022; 13:1037289. [PMID: 36619558 PMCID: PMC9813493 DOI: 10.3389/fendo.2022.1037289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a chronic condition associated with multiple complications that substantially affect both the quality of life and the life-span of children. Untargeted Metabolomics has provided new insights into disease pathogenesis and risk assessment. METHODS In this study, we characterized the serum metabolic profiles of 76 children with T1D and 65 gender- and age- matched healthy controls using gas chromatography coupled with timeof-flight mass spectrometry. In parallel, we comprehensively evaluated the clinical phenome of T1D patients, including routine blood and urine tests, and concentrations of cytokines, hormones, proteins, and trace elements. RESULTS A total of 70 differential metabolites covering 11 metabolic pathways associated with T1D were identified, which were mainly carbohydrates, indoles, unsaturated fatty acids, amino acids, and organic acids. Subgroup analysis revealed that the metabolic changes were consistent among pediatric patients at different ages or gender but were closely associated with the duration of the disease. DISCUSSION Carbohydrate metabolism, unsaturated fatty acid biosynthesis, and gut microbial metabolism were identified as distinct metabolic features of pediatric T1D. These metabolic changes were also associated with T1D, which may provide important insights into the pathogenesis of the complications associated with diabetes.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Paediatrics, Shaoxing Women and Children Hospital, Shaoxing, China
| | - Wei Wu
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ke Huang
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuefeng Chen
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Cuifang Xu
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Yan Ni, ; Junfen Fu,
| | - Junfen Fu
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Yan Ni, ; Junfen Fu,
| |
Collapse
|
8
|
Abstract
Lipids are natural substances found in all living organisms and involved in many biological functions. Imbalances in the lipid metabolism are linked to various diseases such as obesity, diabetes, or cardiovascular disease. Lipids comprise thousands of chemically distinct species making them a challenge to analyze because of their great structural diversity.Thanks to the technological improvements in the fields of chromatography, high-resolution mass spectrometry, and bioinformatics over the last years, it is now possible to perform global lipidomics analyses, allowing the concomitant detection, identification, and relative quantification of hundreds of lipid species. This review shall provide an insight into a general lipidomics workflow and its application in metabolic biomarker research.
Collapse
|
9
|
Fenofibrate promotes PPARα-targeted recovery of the intestinal epithelial barrier at the host-microbe interface in dogs with diabetes mellitus. Sci Rep 2021; 11:13454. [PMID: 34188162 PMCID: PMC8241862 DOI: 10.1038/s41598-021-92966-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Diabetes mellitus (DM) is associated with a dysfunctional intestinal barrier and an increased risk for systemic infection and inflammation in people, though the pathogenic mechanisms leading to this are poorly understood. Using a canine model of DM, we showed that the peroxisomal proliferator-activated receptor-α agonist fenofibrate modulates plasma lipid profiles and markers of intestinal barrier function. A 3-week course of fenofibrate reduced fasting interstitial glucose and inflammatory cytokine IL-8 and TNF-α concentrations, which correlated with reduced triglyceride levels. The lipidomic profile exhibited significantly lower levels of triacylglycerols, phosphatidylethanolamines, diacylglycerols, and ceramides following fenofibrate administration. On histopathological analysis, we observed an aberrant amount of intraepithelial CD3+ T lymphocytes (IEL) in the small intestine of dogs with spontaneous and induced-DM. Fenofibrate reduced IEL density in the duodenum of dogs with DM and enhanced markers of intestinal barrier function in vivo and in vitro. There were minimal changes in the intestinal microbial composition following fenofibrate administration, suggesting that repair of intestinal barriers can be achieved independently of the resident microbiota. Our findings indicate that lipid metabolism is critical to functionality of the intestinal epithelium, which can be rescued by PPARα activation in dogs with DM.
Collapse
|
10
|
Barklis E, Alfadhli A, Kyle JE, Bramer LM, Bloodsworth KJ, Barklis RL, Leier HC, Petty RM, Zelnik ID, Metz TO, Futerman AH, Tafesse FG. Ceramide synthase 2 deletion decreases the infectivity of HIV-1. J Biol Chem 2021; 296:100340. [PMID: 33515546 PMCID: PMC7949126 DOI: 10.1016/j.jbc.2021.100340] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023] Open
Abstract
The lipid composition of HIV-1 virions is enriched in sphingomyelin (SM), but the roles that SM or other sphingolipids (SLs) might play in the HIV-1 replication pathway have not been elucidated. In human cells, SL levels are regulated by ceramide synthase (CerS) enzymes that produce ceramides, which can be converted to SMs, hexosylceramides, and other SLs. In many cell types, CerS2, which catalyzes the synthesis of very long chain ceramides, is the major CerS. We have examined how CerS2 deficiency affects the assembly and infectivity of HIV-1. As expected, we observed that very long chain ceramide, hexosylceramide, and SM were reduced in CerS2 knockout cells. CerS2 deficiency did not affect HIV-1 assembly or the incorporation of the HIV-1 envelope (Env) protein into virus particles, but it reduced the infectivites of viruses produced in the CerS2-deficient cells. The reduced viral infection levels were dependent on HIV-1 Env, since HIV-1 particles that were pseudotyped with the vesicular stomatitis virus glycoprotein did not exhibit reductions in infectivity. Moreover, cell-cell fusion assays demonstrated that the functional defect of HIV-1 Env in CerS2-deficient cells was independent of other viral proteins. Overall, our results indicate that the altered lipid composition of CerS2-deficient cells specifically inhibit the HIV-1 Env receptor binding and/or fusion processes.
Collapse
Affiliation(s)
- Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA.
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Lisa M Bramer
- Computing and Analytics Division, National Security Directorate PNNL, Richland, Washington, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Hans C Leier
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - R Max Petty
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Iris D Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas O Metz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA.
| |
Collapse
|
11
|
Lipidomic profiling of plasma free fatty acids in type-1 diabetes highlights specific changes in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158823. [PMID: 33010452 PMCID: PMC7695620 DOI: 10.1016/j.bbalip.2020.158823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Type-1 diabetes mellitus (T1DM) is associated with metabolic changes leading to alterations in glucose and lipid handling. While T1DM-associated effects on many major plasma lipids have been characterised, such effects on plasma free fatty acids (FFA) have not been fully examined. Using gas chromatography–mass spectrometry, we measured the plasma concentrations of FFA species in individuals with T1DM (n = 44) and age/sex-matched healthy controls (n = 44). Relationships between FFA species and various parameters were evaluated. Plasma concentrations of myristate (14:0), palmitoleate (16:1), palmitate (16:0), linoleate (18:2), oleate (18:1c9), cis-vaccenate (18:1c11), eicosapentaenoate (20:5), arachidonate (20:4) and docosahexanoate (22:6) were reduced in the T1DM group (p < 0.0001 for all, except p = 0.0020 for eicosapentaenoate and p = 0.0068 for arachidonate); α-linolenate (18:3) and dihomo-γ-linolenate (20:3) concentrations were unchanged. The saturated/unsaturated FFA ratio, n-3/n-6 ratio, de novo lipogenesis index (palmitate (main lipogenesis product)/linoleate (only found in diet)) and elongase index (oleate/palmitoleate) were increased in the T1DM group (p = 0.0166, p = 0.0089, p < 0.0001 and p = 0.0008 respectively). The stearoyl-CoA desaturase 1 (SCD1) index 1 (palmitoleate/palmitate) and index 2 (oleate/stearate) were reduced in T1DM (p < 0.0001 for both). The delta-(5)-desaturase (D5D) index (arachidonate/dihomo-γ-linolenate) was unchanged. Age and sex had no effect on plasma FFA concentrations in T1DM, while SCD1 index 1 was positively correlated (p = 0.098) and elongase index negatively correlated with age (p = 0.0363). HbA1c was negatively correlated with all plasma FFA concentrations measured except α-linolenate and dihomo-γ-linolenate. Correlations were observed between plasma FFA concentrations and cholesterol and HDL concentrations, but not LDL concentration or diabetes duration. Collectively, these results aid our understanding of T1DM and its effects on lipid metabolism. Plasma concentrations of major FFA species are lower in T1DM compared to controls. Plasma FFA concentrations negatively correlates with HbA1c in T1DM. The SCD1 index is reduced in T1DM. Lipogenesis, elongase, n3/n6, saturated/unsaturated indices are increased in T1DM. Collectively, the data highlight specific changes in lipid metabolism in T1DM
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The underlying factors triggering a cascade of autoimmune response that leads to the death of pancreatic beta cells and type 1 diabetes are to large extent unknown. Aberrations in the lipid balance have been suggested, either as factors directly contributing to autoimmunity or as a reflection of external factors, such as the diet or chemical exposure, which may increase the risk or even trigger the autoimmunity cascade. RECENT FINDINGS A small number of recent studies have investigated the blood lipidome before and after the onset of type 1 diabetes with a goal of identifying biomarkers of disease progression. Phosphatidylcholine levels in particular have been suggested to be reduced prior to the onset of type 1 diabetes. In this review, we approach this question through a quantitative analysis of the reported lipids. We quantify the extent of consensus between these heterogeneous studies, describe the overall lipidomic pattern that has been reported, and call for more independent replication of the findings that we highlight in this review.
Collapse
Affiliation(s)
- Tommi Suvitaival
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2-4, DK-2820, Gentofte, Denmark.
| |
Collapse
|
13
|
Sen P, Dickens AM, López-Bascón MA, Lindeman T, Kemppainen E, Lamichhane S, Rönkkö T, Ilonen J, Toppari J, Veijola R, Hyöty H, Hyötyläinen T, Knip M, Orešič M. Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia 2020; 63:1017-1031. [PMID: 32043185 PMCID: PMC7145788 DOI: 10.1007/s00125-020-05107-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Previous metabolomics studies suggest that type 1 diabetes is preceded by specific metabolic disturbances. The aim of this study was to investigate whether distinct metabolic patterns occur in peripheral blood mononuclear cells (PBMCs) of children who later develop pancreatic beta cell autoimmunity or overt type 1 diabetes. METHODS In a longitudinal cohort setting, PBMC metabolomic analysis was applied in children who (1) progressed to type 1 diabetes (PT1D, n = 34), (2) seroconverted to ≥1 islet autoantibody without progressing to type 1 diabetes (P1Ab, n = 27) or (3) remained autoantibody negative during follow-up (CTRL, n = 10). RESULTS During the first year of life, levels of most lipids and polar metabolites were lower in the PT1D and P1Ab groups compared with the CTRL group. Pathway over-representation analysis suggested alanine, aspartate, glutamate, glycerophospholipid and sphingolipid metabolism were over-represented in PT1D. Genome-scale metabolic models of PBMCs during type 1 diabetes progression were developed by using publicly available transcriptomics data and constrained with metabolomics data from our study. Metabolic modelling confirmed altered ceramide pathways, known to play an important role in immune regulation, as specifically associated with type 1 diabetes progression. CONCLUSIONS/INTERPRETATION Our data suggest that systemic dysregulation of lipid metabolism, as observed in plasma, may impact the metabolism and function of immune cells during progression to overt type 1 diabetes. DATA AVAILABILITY The GEMs for PBMCs have been submitted to BioModels (www.ebi.ac.uk/biomodels/), under accession number MODEL1905270001. The metabolomics datasets and the clinical metadata generated in this study were submitted to MetaboLights (https://www.ebi.ac.uk/metabolights/), under accession number MTBLS1015.
Collapse
Affiliation(s)
- Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
| | - Alex M Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - María Asunción López-Bascón
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain
- Department of Chemistry, Örebro University, Örebro, Sweden
| | - Tuomas Lindeman
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Esko Kemppainen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tuukka Rönkkö
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Centre, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | | | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Tampere Centre for Child Health Research, Tampere University Hospital, Tampere, Finland.
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
- School of Medical Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
14
|
Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15:635-650. [PMID: 31534209 DOI: 10.1038/s41574-019-0254-y] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus (T1DM) results from the destruction of pancreatic β-cells that is mediated by the immune system. Multiple genetic and environmental factors found in variable combinations in individual patients are involved in the development of T1DM. Genetic risk is defined by the presence of particular allele combinations, which in the major susceptibility locus (the HLA region) affect T cell recognition and tolerance to foreign and autologous molecules. Multiple other loci also regulate and affect features of specific immune responses and modify the vulnerability of β-cells to inflammatory mediators. Compared with the genetic factors, environmental factors that affect the development of T1DM are less well characterized but contact with particular microorganisms is emerging as an important factor. Certain infections might affect immune regulation, and the role of commensal microorganisms, such as the gut microbiota, are important in the education of the developing immune system. Some evidence also suggests that nutritional factors are important. Multiple islet-specific autoantibodies are found in the circulation from a few weeks to up to 20 years before the onset of clinical disease and this prediabetic phase provides a potential opportunity to manipulate the islet-specific immune response to prevent or postpone β-cell loss. The latest developments in understanding the heterogeneity of T1DM and characterization of major disease subtypes might help in the development of preventive treatments.
Collapse
Affiliation(s)
- Jorma Ilonen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland.
| | - Johanna Lempainen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Paediatrics, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
15
|
Vu N, Narvaez-Rivas M, Chen GY, Rewers MJ, Zhang Q. Accurate mass and retention time library of serum lipids for type 1 diabetes research. Anal Bioanal Chem 2019; 411:5937-5949. [PMID: 31280478 DOI: 10.1007/s00216-019-01997-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
Dysregulated lipid species are linked to various disease pathologies and implicated as potential biomarkers for type 1 diabetes (T1D). However, it is challenging to comprehensively profile the blood specimen lipidome with full structural details of every lipid molecule. The commonly used reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS)-based lipidomics approach is powerful for the separation of individual lipid species, but lipids belonging to different classes may still co-elute and result in ion suppression and misidentification of lipids. Using offline mixed-mode and RPLC-based two-dimensional separations coupled with MS/MS, a comprehensive lipidomic profiling was performed on human sera pooled from healthy and T1D subjects. The elution order of lipid molecular species on RPLC showed good correlations to the total number of carbons in fatty acyl chains and total number of double bonds. This observation together with fatty acyl methyl ester analysis was used to enhance the confidence of identified lipid species. The final T1D serum lipid library database contains 753 lipid molecular species with accurate mass and RPLC retention time uniquely annotated for each of the species. This comprehensive human serum lipid library can serve as a database for high-throughput RPLC-MS-based lipidomic analysis of blood samples related to T1D and other childhood diseases. Graphical abstract.
Collapse
Affiliation(s)
- Ngoc Vu
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27412, USA.,Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28082, USA
| | - Monica Narvaez-Rivas
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28082, USA
| | - Guan-Yuan Chen
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28082, USA
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Qibin Zhang
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27412, USA. .,Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28082, USA.
| |
Collapse
|
16
|
Ramezani Ali Akbari F, Badavi M, Dianat M, Mard SA, Ahangarpour A. GALLIC ACID IMPROVES OXIDATIVE STRESS AND INFLAMMATION THROUGH REGULATING MICRORNAS EXPRESSIONS IN THE BLOOD OF DIABETIC RATS. ACTA ENDOCRINOLOGICA-BUCHAREST 2019; 15:187-194. [PMID: 31508175 DOI: 10.4183/aeb.2019.187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context Endothelial dysfunction and diabetic cardiomyopathy are critical complications of diabetes. Gallic acid (GA) plays a significant role in cardiovascular disorders resulted from diabetes. In addition, increased plasma miR-24, miR-126 associated with endothelial dysfunction. Aim The current study was designed to assess the effects of GA on plasma miR-24, miR-126 levels in the diabetic rats. Animals and Methods Adult male Sprague-Dawley rats were divided into three groups (n=8): control (C), diabetic (D) and diabetic group treated with GA (D+G, 25 mg/kg, by gavage) for eight weeks. The blood glucose level, body weight, lipid profile, blood pressure, plasma miR-24 and miR-126 levels, antioxidant and inflammatory biomarkers were measured. Results The plasma levels of miR-24, miR-126, body weight, high-density lipoprotein cholesterol (HDL-c), total anti-oxidant capacity (TAC) and the systolic blood pressure significantly reduced and blood glucose, total cholesterol (TC), triglycerides (TG), very low-density lipoprotein cholesterol (VLDL-c), malondialdehyde (MDA), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and low-density lipoprotein cholesterol (LDL-c) significantly elevated among the diabetic rats compared with the control group. However, GA restored body weight, blood pressure, TC, TG, VLDL-c, TNF-α, miR-126, blood glucose, HDL-c, MDA, TAC, miR-24 and IL-6 among the GA treated rats compared with the diabetic group. Conclusion GA improves inflammation, oxidative stress and hypotension result from diabetes. These protective effects are probably mediated via increasing plasma miR-24 and miR-126 levels.
Collapse
Affiliation(s)
- F Ramezani Ali Akbari
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran
| | - M Badavi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, Atherosclerosis Research Center, Ahvaz, Iran
| | - M Dianat
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran
| | - S A Mard
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran
| | - A Ahangarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, Diabetes Research Center, Ahvaz, Iran
| |
Collapse
|
17
|
Naderi R, Mohaddes G, Mohammadi M, Alihemmati A, Khamaneh A, Ghyasi R, Ghaznavi R. The Effect of Garlic and Voluntary Exercise on Cardiac Angiogenesis in Diabetes: The Role of MiR-126 and MiR-210. Arq Bras Cardiol 2018; 112:154-162. [PMID: 30570073 PMCID: PMC6371831 DOI: 10.5935/abc.20190002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is one of the major risk factors for cardiovascular disease, leading to endothelial dysfunction and angiogenesis impairment . MiR-126 and miR-210 support angiogenic response in endothelial cells. OBJECTIVE The present study sought to explore the effect of garlic and voluntary exercise, alone or together, on miR-126 and miR-210 expressions and cardiac angiogenesis in rats with type 1 diabetes. METHODS Male Wistar rats were divided into five groups (n = 7): Control, Diabetes, Diabetes+Garlic, Diabetes+Exercise, and Diabetes+Garlic+Exercise. Diabetes was induced in the animals by streptozotocin (ip, 50 mg/kg). The rats were then fed raw fresh garlic homogenate (250 mg/kg) or were subjected to voluntary exercise, or to combined garlic and voluntary exercise for 6 weeks. MiR-126 and miR-210 expressions in the myocardium were determined by real time PCR, and the serum lipid profile was measured by enzymatic kits. Angiogenesis was evaluated by immunostaining for PECAM-1/ CD31 in the myocardium. RESULTS Diabetes reduced both cardiac miR-126 expression and angiogenesis (p < 0.05). On the other hand, there was a miR-210 expression increase in the myocardium of diabetic animals (p < 0.001). However, those effects reversed either with garlic or voluntary exercise (p < 0.01). Moreover, treating diabetic rats with garlic and voluntary exercise combined had an additional effect on the expressions of miR-126 and miR-210 (p < 0.001). Furthermore, both voluntary exercise and garlic significantly improved serum lipid profiles (p < 0.001). CONCLUSION The induction of diabetes decreased angiogenesis in the myocardium, whereas our treatment using long-term voluntary exercise and garlic improved myocardial angiogenesis. These changes were possibly owing to the enhancement of myocardial miR-126 and miR-210 expressions.
Collapse
Affiliation(s)
- Roya Naderi
- Nephrology and Kidney Transplant Research Center - Urmia University of Medical Sciences, Urmia - Iran.,Department of Physiology, faculty of Medicine - Urmia University of Medical Sciences, Urmia - Iran
| | - Gisou Mohaddes
- Neuroscience Research Centre of Tabriz University of Medical Sciences, Tabriz - Iran
| | - Mustafa Mohammadi
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz - Iran
| | - Alireza Alihemmati
- Department of Histology and Embryology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz - Iran
| | - Amirmahdi Khamaneh
- School of advanced medical sciences - Tabriz University of Medical Sciences, Tabriz - Iran
| | - Rafighe Ghyasi
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz - Iran
| | - Rana Ghaznavi
- Sports medicine research center, Neuroscience institute - Tehran University of Medical Sciences, Tehran - Iran
| |
Collapse
|
18
|
Dong S, Zhang S, Chen Z, Zhang R, Tian L, Cheng L, Shang F, Sun J. Berberine Could Ameliorate Cardiac Dysfunction via Interfering Myocardial Lipidomic Profiles in the Rat Model of Diabetic Cardiomyopathy. Front Physiol 2018; 9:1042. [PMID: 30131709 PMCID: PMC6090155 DOI: 10.3389/fphys.2018.01042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is considered to be a distinct clinical entity independent of concomitant macro- and microvascular disorders, which is initiated partly by disturbances in energy substrates. This study was to observe the dynamic modulations of berberine in DCM rats and explore the changes of lipidomic profiles of myocardial tissue. Methods: Sprague-Dawley (SD) rats were fed high-sucrose and high-fat diet (HSHFD) for totally 22 weeks and intraperitoneally (i.p.) injected with 30 mg/kg of streptozotocin (STZ) at the fifth week to induce DCM. Seventy-two hours after STZ injection, the rats were orally given with berberine at 10, 30 mg/kg and metformin at 200 mg/kg, respectively. Dynamic changes of cardiac function, heart mass ratios and blood lipids were observed at f 4, 10, 16, and 22, respectively. Furthermore, lipid metabolites in myocardial tissue at week 16 were profiled by the ultra-high-performance liquid chromatography coupled to a quadruple time of flight mass spectrometer (UPLC/Q-TOF/MS) approach. Results: Berberine could protect against cardiac diastolic and systolic dysfunctions, as well as cardiac hypertrophy, and the most effective duration is with 16-week of administration. Meanwhile, 17 potential biomarkers of phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and sphingolipids (SMs) of DCM induced by HSFD/STZ were identified. The perturbations of lipidomic profiles could be partly reversed with berberine intervention, i.e., PC (16:0/20:4), PC (18:2/0:0), PC (18:0/18:2), PC (18:0/22:5), PC (20:4/0:0), PC (20:4/18:0), PC (20:4/18:1), PC (20:4/20:2), PE (18:2/0:0), and SM (d18:0/16:0). Conclusions: These results indicated a close relationship between PCs, PEs and SMs and cardiac damage mechanisms during development of DCM. The therapeutic effects of berberine on DCM are partly caused by interferences with PCs, PEs, and SMs metabolisms.
Collapse
Affiliation(s)
- Shifen Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhirong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Shang
- Department of Pharmacology, Analysis and Testing Center, Beijing University of Chemical Technology, Beijing, China
| | - Jianning Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Dynamics of Plasma Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes - Type 1 Diabetes Prediction and Prevention Study (DIPP). Sci Rep 2018; 8:10635. [PMID: 30006587 PMCID: PMC6045612 DOI: 10.1038/s41598-018-28907-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is one of the most prevalent autoimmune diseases among children in Western countries. Earlier metabolomics studies suggest that T1D is preceded by dysregulation of lipid metabolism. Here we used a lipidomics approach to analyze molecular lipids in a prospective series of 428 plasma samples from 40 children who progressed to T1D (PT1D), 40 children who developed at least a single islet autoantibody but did not progress to T1D during the follow-up (P1Ab) and 40 matched controls (CTR). Sphingomyelins were found to be persistently downregulated in PT1D when compared to the P1Ab and CTR groups. Triacylglycerols and phosphatidylcholines were mainly downregulated in PT1D as compared to P1Ab at the age of 3 months. Our study suggests that distinct lipidomic signatures characterize children who progressed to islet autoimmunity or overt T1D, which may be helpful in the identification of at-risk children before the initiation of autoimmunity.
Collapse
|
20
|
Nicora CD, Burnum-Johnson KE, Nakayasu ES, Casey CP, White RA, Roy Chowdhury T, Kyle JE, Kim YM, Smith RD, Metz TO, Jansson JK, Baker ES. The MPLEx Protocol for Multi-omic Analyses of Soil Samples. J Vis Exp 2018. [PMID: 29912205 DOI: 10.3791/57343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mass spectrometry (MS)-based integrated metaproteomic, metabolomic, and lipidomic (multi-omic) studies are transforming our ability to understand and characterize microbial communities in environmental and biological systems. These measurements are even enabling enhanced analyses of complex soil microbial communities, which are the most complex microbial systems known to date. Multi-omic analyses, however, do have sample preparation challenges, since separate extractions are typically needed for each omic study, thereby greatly amplifying the preparation time and amount of sample required. To address this limitation, a 3-in-1 method for the simultaneous extraction of metabolites, proteins, and lipids (MPLEx) from the same soil sample was created by adapting a solvent-based approach. This MPLEx protocol has proven to be both simple and robust for many sample types, even when utilized for limited quantities of complex soil samples. The MPLEx method also greatly enabled the rapid multi-omic measurements needed to gain a better understanding of the members of each microbial community, while evaluating the changes taking place upon biological and environmental perturbations.
Collapse
Affiliation(s)
- Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory
| | | | | | - Cameron P Casey
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Richard A White
- Biological Sciences Division, Pacific Northwest National Laboratory
| | | | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory;
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory;
| |
Collapse
|
21
|
Sphingolipids Profiling of Plasma in Patients with Diabetes Mellitus Associated with Atherosclerosis by a Novel Normal-Phase UPLC-QToF MS Method. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Rai S, Bhatnagar S. Novel Lipidomic Biomarkers in Hyperlipidemia and Cardiovascular Diseases: An Integrative Biology Analysis. ACTA ACUST UNITED AC 2017; 21:132-142. [DOI: 10.1089/omi.2016.0178] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Dwarka, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Dwarka, India
| |
Collapse
|
23
|
Kochen MA, Chambers MC, Holman JD, Nesvizhskii AI, Weintraub ST, Belisle JT, Islam MN, Griss J, Tabb DL. Greazy: Open-Source Software for Automated Phospholipid Tandem Mass Spectrometry Identification. Anal Chem 2016; 88:5733-41. [PMID: 27186799 DOI: 10.1021/acs.analchem.6b00021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid identification from data produced with high-throughput technologies is essential to the elucidation of the roles played by lipids in cellular function and disease. Software tools for identifying lipids from tandem mass (MS/MS) spectra have been developed, but they are often costly or lack the sophistication of their proteomics counterparts. We have developed Greazy, an open source tool for the automated identification of phospholipids from MS/MS spectra, that utilizes methods similar to those developed for proteomics. From user-supplied parameters, Greazy builds a phospholipid search space and associated theoretical MS/MS spectra. Experimental spectra are scored against search space lipids with similar precursor masses using a peak score based on the hypergeometric distribution and an intensity score utilizing the percentage of total ion intensity residing in matching peaks. The LipidLama component filters the results via mixture modeling and density estimation. We assess Greazy's performance against the NIST 2014 metabolomics library, observing high accuracy in a search of multiple lipid classes. We compare Greazy/LipidLama against the commercial lipid identification software LipidSearch and show that the two platforms differ considerably in the sets of identified spectra while showing good agreement on those spectra identified by both. Lastly, we demonstrate the utility of Greazy/LipidLama with different instruments. We searched data from replicates of alveolar type 2 epithelial cells obtained with an Orbitrap and from human serum replicates generated on a quadrupole-time-of-flight (Q-TOF). These findings substantiate the application of proteomics derived methods to the identification of lipids. The software is available from the ProteoWizard repository: http://tiny.cc/bumbershoot-vc12-bin64 .
Collapse
Affiliation(s)
- Michael A Kochen
- Department of Biomedical Informatics, Vanderbilt University , Nashville, Tennessee 37203, United States
| | - Matthew C Chambers
- Department of Biomedical Informatics, Vanderbilt University , Nashville, Tennessee 37203, United States
| | - Jay D Holman
- Department of Biomedical Informatics, Vanderbilt University , Nashville, Tennessee 37203, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Susan T Weintraub
- Department of Biochemistry, UT Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | - John T Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523, United States
| | - M Nurul Islam
- Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Johannes Griss
- European Bioinformatics Institute (EBI) , Wellcome Trust Genome Campus, Hinxton, Cambridge, U.K. CB10 1SD.,Department of Dermatology, Medical University of Vienna , 1090 Vienna, Austria
| | - David L Tabb
- Department of Biomedical Informatics, Vanderbilt University , Nashville, Tennessee 37203, United States
| |
Collapse
|
24
|
Hinterwirth H, Stegemann C, Mayr M. Lipidomics: quest for molecular lipid biomarkers in cardiovascular disease. ACTA ACUST UNITED AC 2015; 7:941-54. [PMID: 25516624 DOI: 10.1161/circgenetics.114.000550] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipidomics is the comprehensive analysis of molecular lipid species, including their quantitation and metabolic pathways. The huge diversity of native lipids and their modifications make lipidomic analyses challenging. The method of choice for sensitive detection and quantitation of molecular lipid species is mass spectrometry, either by direct infusion (shotgun lipidomics) or coupled with liquid chromatography. Although shotgun lipidomics allows for high-throughput analysis, low-abundant lipid species are not detected. Previous separation of lipid species by liquid chromatography increases ionization efficiency and is better suited for quantifying low abundant and isomeric lipid species. In this review, we will discuss the potential of lipidomics for cardiovascular research. To date, cardiovascular research predominantly focuses on the role of lipid classes rather than molecular entities. An in-depth knowledge about the molecular lipid species that contribute to the pathophysiology of cardiovascular diseases may provide better biomarkers and novel therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Helmut Hinterwirth
- From the King's British Heart Foundation Centre, King's College, London, United Kingdom
| | - Christin Stegemann
- From the King's British Heart Foundation Centre, King's College, London, United Kingdom
| | - Manuel Mayr
- From the King's British Heart Foundation Centre, King's College, London, United Kingdom.
| |
Collapse
|
25
|
Morris C, O'Grada CM, Ryan MF, Gibney MJ, Roche HM, Gibney ER, Brennan L. Modulation of the lipidomic profile due to a lipid challenge and fitness level: a postprandial study. Lipids Health Dis 2015; 14:65. [PMID: 26123789 PMCID: PMC4489019 DOI: 10.1186/s12944-015-0062-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022] Open
Abstract
Background The lipid composition of plasma is known to vary due to both phenotypic factors such as age, gender and BMI as well as with various diseases including cancer and neurological disorders. However, there is little investigation into the variation in the lipidome due to exercise and/ or metabolic challenges. The objectives of this present study were (i) To identify the glycerophospholipid, sphingolipids and ceramide changes in response to an oral lipid tolerance test (OLTT) in healthy adults and (ii) To identify the effect of aerobic fitness level on lipidomic profiles. Methods 214 healthy adults aged 18–60 years were recruited as part of a metabolic challenge study. A sub-group of 40 volunteers were selected for lipidomic analysis based on their aerobic fitness level. Ceramides, glycerophospholipids and sphingomyelins were quantified in baseline fasting plasma samples as well as at 60, 120, 180, 240 and 300 min following a lipid challenge using high-throughput flow injection ESI-MS/MS. Results Mixed model repeated measures analysis identified lipids which were significantly changing over the time course of the lipid challenge. Included in these lipids were lysophosphoethanolamines (LPE), phosphoethanolamines (PE), phosphoglycerides (PG) and ceramides (Cer). Five lipids (LPE a C18:2, LPE a C18:1, PE aa C36:2, PE aa C36:3 and N-C16:1-Cer) had a fold change > 1.5 at 120 min following the challenge and these lipids remained elevated. Furthermore, three of these lipids (LPE a C18:2, PE aa C36:2 and PE aa C36:3) were predictive of fasting and peak plasma TAG concentrations following the OLTT. Further analysis revealed that fitness level has a significant impact on the response to the OLTT: in particular significant differences between fitness groups were observed for phosphatidylcholines (PC), sphingomyelins (SM) and ceramides. Conclusion This study identified specific lipids which were modulated by an acute lipid challenge. Furthermore, it identified a series of lipids which were modulated by fitness level. Future lipidomic studies should take into account environmental factors such as diet and fitness level during biomarker discovery work. Trial registration Data, clinicaltrials.gov, NCT01172951 Electronic supplementary material The online version of this article (doi:10.1186/s12944-015-0062-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ciara Morris
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Colm M O'Grada
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Miriam F Ryan
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael J Gibney
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Roche
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eileen R Gibney
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Brennan
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
26
|
Zheng Y, Qi L. Diet and lifestyle interventions on lipids: combination with genomics and metabolomics. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Sigruener A, Kleber ME, Heimerl S, Liebisch G, Schmitz G, Maerz W. Glycerophospholipid and sphingolipid species and mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS One 2014; 9:e85724. [PMID: 24465667 PMCID: PMC3895004 DOI: 10.1371/journal.pone.0085724] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/02/2013] [Indexed: 01/23/2023] Open
Abstract
Vascular and metabolic diseases cause half of total mortality in Europe. New prognostic markers would provide a valuable tool to improve outcome. First evidence supports the usefulness of plasma lipid species as easily accessible markers for certain diseases. Here we analyzed association of plasma lipid species with mortality in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Plasma lipid species were quantified by electrospray ionization tandem mass spectrometry and Cox proportional hazards regression was applied to assess their association with total and cardiovascular mortality. Overall no differences were detected between total and cardiovascular mortality. Highly polyunsaturated phosphatidylcholine species together with lysophosphatidylcholine species and long chain saturated sphingomyelin and ceramide species seem to be associated with a protective effect. The predominantly circulating phosphatidylcholine-based as well as phosphatidylethanolamine-based ether species and phosphatidylethanolamine species were positively associated with total and cardiovascular mortality. Saturated and monounsaturated phosphatidylcholine species, especially phosphatidylcholine 32∶0 (most probably dipalmitoyl-phosphatidylcholine) and palmitate containing sphingomyelin and ceramide species showed together with 24∶1 containing sphingomyelin and ceramide species strongest positive association with mortality. A quotient of the sums of the six most protective species and the six species with the strongest positive mortality association indicated an almost 3-fold increased risk of mortality, which was higher than the hazard ratio for known risk factors in our cohort. Plasma lipid species levels and especially ratios of certain species may be valuable prognostic marker for cardiovascular and total mortality.
Collapse
Affiliation(s)
- Alexander Sigruener
- Institute for Laboratory Medicine and Transfusion Medicine, Regensburg University Medical Center, Regensburg, Germany
- * E-mail:
| | - Marcus E. Kleber
- Medical Clinic V, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Susanne Heimerl
- Institute for Laboratory Medicine and Transfusion Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Laboratory Medicine and Transfusion Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Gerd Schmitz
- Institute for Laboratory Medicine and Transfusion Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Winfried Maerz
- Medical Clinic V, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Synlab Academy, Synlab Services GmbH, Mannheim, Germany
| |
Collapse
|
28
|
Akmurzina VA, Petryaikina EE, Saveliev SV, Selishcheva AA. Using high-performance liquid chromatography/mass spectrometry for the quantification of plasma phospholipids in children with type 1 diabetes. JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1134/s1061934813140025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Balderas C, Rupérez FJ, Ibañez E, Señorans J, Guerrero-Fernández J, Casado IG, Gracia-Bouthelier R, García A, Barbas C. Plasma and urine metabolic fingerprinting of type 1 diabetic children. Electrophoresis 2013; 34:2882-90. [PMID: 23857511 DOI: 10.1002/elps.201300062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus is one of the most common chronic disorders of childhood. The metabolic control is lost due to the lack of insulin, which is the main treatment for the disease. Nevertheless, long-term complications appear even under good glycemic control. Metabolomics, an emerging strategy, can help in diagnosis, prognosis, and monitoring of metabolic disorders. The objective of the present study was to investigate the alterations in plasma (by LC-MS) and urine (CE-MS) of type 1 diabetic children that were under insulin treatment and good glycemic control. Even without remarkable biochemical differences between the two groups (diabetic and control) except for glucose level and glycosilated hemoglobin, metabolomic tools were able to capture subtle metabolic differences. The main changes in plasma were associated to lipidic metabolism (nonesterified fatty acids, lysophospholipids, and other derivatives of fatty acids), and some markers of the differential activity of the gut microflora were also found (bile acids, p-cresol sulfate). In urine, changes associated to protein and amino acid metabolism were found (amino acids, their metabolites and derivatives), and among them one advanced glycation end product (carboxyethylarginine) and one early glycation end product (fructosamine) were excreted in higher proportion in the diabetic group.
Collapse
Affiliation(s)
- Claudia Balderas
- Center for Metabolomics and Bioanalysis - CEMBIO, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
In-vial dual extraction liquid chromatography coupled to mass spectrometry applied to streptozotocin-treated diabetic rats. Tips and pitfalls of the method. J Chromatogr A 2013; 1304:52-60. [DOI: 10.1016/j.chroma.2013.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/09/2013] [Accepted: 07/06/2013] [Indexed: 01/06/2023]
|
31
|
Cuthbertson DJ, Johnson SR, Piljac-Žegarac J, Kappel J, Schäfer S, Wüst M, Ketchum REB, Croteau RB, Marques JV, Davin LB, Lewis NG, Rolf M, Kutchan TM, Soejarto DD, Lange BM. Accurate mass-time tag library for LC/MS-based metabolite profiling of medicinal plants. PHYTOCHEMISTRY 2013; 91:187-97. [PMID: 23597491 PMCID: PMC3697863 DOI: 10.1016/j.phytochem.2013.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 05/20/2023]
Abstract
We report the development and testing of an accurate mass-time (AMT) tag approach for the LC/MS-based identification of plant natural products (PNPs) in complex extracts. An AMT tag library was developed for approximately 500 PNPs with diverse chemical structures, detected in electrospray and atmospheric pressure chemical ionization modes (both positive and negative polarities). In addition, to enable peak annotations with high confidence, MS/MS spectra were acquired with three different fragmentation energies. The LC/MS and MS/MS data sets were integrated into online spectral search tools and repositories (Spektraris and MassBank), thus allowing users to interrogate their own data sets for the potential presence of PNPs. The utility of the AMT tag library approach is demonstrated by the detection and annotation of active principles in 27 different medicinal plant species with diverse chemical constituents.
Collapse
Affiliation(s)
- Daniel J. Cuthbertson
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Sean R. Johnson
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Jasenka Piljac-Žegarac
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
- Ruđer Bošković Institute, Bijenićka cesta 54, HR-10000 Zagreb, Croatia
| | - Julia Kappel
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
- Institute of Nutrition and Food Sciences, University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Sarah Schäfer
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
- Institute of Nutrition and Food Sciences, University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Matthias Wüst
- Institute of Nutrition and Food Sciences, University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Raymond E. B. Ketchum
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Rodney B. Croteau
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Joaquim V. Marques
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Laurence B. Davin
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Norman G. Lewis
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Megan Rolf
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Toni M. Kutchan
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - D. Doel Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St. (M/C 781), Chicago, IL 60612, USA
- Botany Department, Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - B. Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
- Corresponding author: Tel.: 509-335-3794; fax: 509-335-7643. (B.M. Lange)
| |
Collapse
|
32
|
Murphy SA, Nicolaou A. Lipidomics applications in health, disease and nutrition research. Mol Nutr Food Res 2013; 57:1336-46. [PMID: 23729171 DOI: 10.1002/mnfr.201200863] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 01/14/2023]
Abstract
The structural and functional diversity of lipids accounts for their involvement into a wide range of homeostatic processes and disease states, including lifestyle-related diseases as well as genetic conditions. Challenges presented by this diversity have been addressed to a great extent by the development of lipidomics, a platform that makes possible the detailed profiling and characterisation of lipid species present in any cell, organelle, tissue or body fluid, and allows for a wider appreciation of the biological role of lipid networks. Progress in the field of lipidomics has been greatly facilitated by recent advances in MS and includes a range of analytical platforms supporting applications spanning from qualitative and quantitative assessment of multiple species to lipid imaging. Here we review these MS techniques currently in routine use in lipidomics, alongside with new ones that have started making an impact in the field. Recent applications in health, disease and nutrition-related questions will also be discussed with a view to convey the importance of lipidomics contributions to biosciences and food technology.
Collapse
Affiliation(s)
- Sharon A Murphy
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, UK
| | | |
Collapse
|
33
|
Del Boccio P, Raimondo F, Pieragostino D, Morosi L, Cozzi G, Sacchetta P, Magni F, Pitto M, Urbani A. A hyphenated microLC-Q-TOF-MS platform for exosomal lipidomics investigations: application to RCC urinary exosomes. Electrophoresis 2012; 33:689-96. [PMID: 22451062 DOI: 10.1002/elps.201100375] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Urinary exosomes are released from every renal epithelial cell type facing the urinary space and therefore, they may carry molecular markers of renal dysfunction and structural injury. Here, we present a hyphenated microLC-Q-TOF-MS platform for lipidomics studies applied to investigate the urinary exosome lipid repertoire. Lipids were separated by reversed-phase chromatography using a linear gradient of formic acid 0.2% and tetrahydrofuran, in 40 min of analysis. Features (m/z with associated own retention time) were extracted by MarkerLynx(TM) (Waters) and processed, demonstrating good analytical performance in terms of repeatability and mass accuracy of the microLC Q-TOF MS platform. In particular, a stable retention time (RSD less than 4%) and relative intensity (RSD from 2.9% to 11%) were observed. Moreover, the method takes advantages by the use of a lock spray interface (Waters) that allows readjusting the m/z data after acquisition, obtaining inaccuracy below 6 ppm in measuring the m/z value of the reference compound during chromatographic run. The method was employed in a preliminary application to perform comparative analysis from healthy control subjects and renal cell carcinoma (RCC) patients, in order to possibly highlight differences in lipid composition to be exploited as potential tumor biomarker. Differential lipid composition in RCC urinary exosomes was achieved and tentatively identified by accurate mass, providing a preliminary indication of a relationship between lipid composition of urinary exosomes and RCC disease. Among the total features significantly different in RCC exosomes, the ion at m/z 502.3 was taken as an example for molecular confirmation by MS/MS fragmentation analysis.
Collapse
Affiliation(s)
- Piero Del Boccio
- Department of Biomedical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti-Pescara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gao X, Zhang Q, Meng D, Issac G, Zhao R, Fillmore TL, Chu RK, Zhou J, Tang K, Hu Z, Moore RJ, Smith RD, Katze MG, Metz TO. A reversed-phase capillary ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling. Anal Bioanal Chem 2012; 402:2923-33. [PMID: 22354571 PMCID: PMC3531553 DOI: 10.1007/s00216-012-5773-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 01/08/2023]
Abstract
Lipidomics is a critical part of metabolomics and aims to study all the lipids within a living system. We present here the development and evaluation of a sensitive capillary UPLC-MS method for comprehensive top-down/bottom-up lipid profiling. Three different stationary phases were evaluated in terms of peak capacity, linearity, reproducibility, and limit of quantification (LOQ) using a mixture of lipid standards representative of the lipidome. The relative standard deviations of the retention times and peak abundances of the lipid standards were 0.29% and 7.7%, respectively, when using the optimized method. The linearity was acceptable at >0.99 over 3 orders of magnitude, and the LOQs were sub-fmol. To demonstrate the performance of the method in the analysis of complex samples, we analyzed lipids extracted from a human cell line, rat plasma, and a model human skin tissue, identifying 446, 444, and 370 unique lipids, respectively. Overall, the method provided either higher coverage of the lipidome, greater measurement sensitivity, or both, when compared to other approaches of global, untargeted lipid profiling based on chromatography coupled with MS.
Collapse
Affiliation(s)
- Xiaoli Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Qibin Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Da Meng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Giorgis Issac
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Thomas L. Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Rosey K. Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Jianying Zhou
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Zeping Hu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Michael G. Katze
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
35
|
Del Boccio P, Pieragostino D, Di Ioia M, Petrucci F, Lugaresi A, De Luca G, Gambi D, Onofrj M, Di Ilio C, Sacchetta P, Urbani A. Lipidomic investigations for the characterization of circulating serum lipids in multiple sclerosis. J Proteomics 2011; 74:2826-36. [PMID: 21757039 DOI: 10.1016/j.jprot.2011.06.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/08/2011] [Accepted: 06/24/2011] [Indexed: 11/28/2022]
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune demyelinating disease affecting young adults. The aetiology still remains a mystery and diagnosis is impaired by the lack of defined molecular markers. Autoimmune response remains the main topic under investigation and recent studies suggest additional non-proteic mediators of brain inflammation such as lipids. We carried out an LC-MS based lipidomics approach to highlight serum lipids profiling in MS. Method was optimised and applied in a preliminary clinical cross-sectional investigation of MS patients vs Healthy Controls (HC) and patients with Other Neurological Diseases (OND). Ten significant metabolites were highlighted and tentatively identified by accurate mass and MS/MS experiments. Our most relevant data show altered level of lyso-glycerophosphatidylcholine (lysoPC) and glycerophosphatidylcholine (PC) species. Total lysoPC/PC ratio showed significant decrease in pathological groups (MS, OND) and, in addition, MS subjects had a relevant decrease of this ratio also in respect to OND. These findings suggest that there may be an altered phospholipid metabolism in MS that can be evaluated in serum. Some of these features are distinctive and may be considered specific for MS. Our lipidomics data show, for the first time, evidence in serum of a relationship between LysoPC/PC ratio and MS.
Collapse
Affiliation(s)
- Piero Del Boccio
- Department of Biomedical Sciences, G. d'Annunzio University, Chieti-Pescara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Biomarkers for Diabetes Complications: The Results of Several Clinical StudiesDiabetes is a common metabolic disorder. Its microvascular and macrovascular complications contribute to death, disabilities, and reduction in life expectancy in diabetes. It is a costly disease, and affects not only the patient and family, but also the public health, communities and society. It takes an increasing proportion of the national health care expenditure. The prevention of the development of diabetes and its complications is a major concern. Biomarkers have been investigated for understanding the mechanisms of the development and progression of diabetic complications. In this paper, the biomarkers which are recommended in the clinical practice and laboratory medicine guidelines, and which have been investigated for prediction or diagnosis of diabetes complications, have been reviewed. The results of several clinical studies will be summarized.
Collapse
|