1
|
Lin H, Geng S, Yang L, Yang L, Qi M, Dong B, Xu L, Wang Y, Lv W. The effect of metabolic factors on the association between hyperuricemia and chronic kidney disease: a retrospective cohort mediation analysis. Int Urol Nephrol 2024; 56:2351-2361. [PMID: 38381286 DOI: 10.1007/s11255-024-03958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Hyperuricemia, hyperglycemia, hypertension, hyperlipidemia, and hyperhomocysteinemia are all established risk factors for chronic kidney disease (CKD), and their interplay could exacerbate CKD progression. This study aims to evaluate the potential mediation effects of hyperglycemia, hypertension, hyperlipidemia, and hyperhomocysteinemia on the association between hyperuricemia (HUA) and chronic kidney disease (CKD). METHODS We collected electronic medical record data from 2055 participants who underwent physical examinations at the Affiliated Hospital of Qingdao University. The data were utilized to investigate the mediating effect of various factors including systolic blood pressure (SBP), diastolic blood pressure (DBP), homocysteine (HCY), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), blood glucose (Glu), and hemoglobin A1c (HbA1c) on the relationship between HUA and CKD. RESULTS Upon adjusting for confounding variables, mediation analysis indicated that only HCY acted as a mediator in the HUA-CKD relationship (p value < 0.05), exhibiting a statistically significant mediation effect of 7.04%. However, after adjustment for multiple testing, none of these variables were statistically significant. CONCLUSIONS Considering the observed associations between hyperuricemia, hyperglycemia, hypertension, hyperlipidemia, and CKD, none of the factors of interest remained statistically significant after adjusting for multiple testing as potential mediators of hyperuricemia on CKD.
Collapse
Affiliation(s)
- Hua Lin
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Jiangsu Road No.16, Qingdao, 266003, Shandong, China
| | - Shuo Geng
- Department of Clinical Psychology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Libo Yang
- Department of Endocrinology and Metabolism, The Affiliated Taian City Central Hospital of Qingdao University, Longtan Road No.29, Taian, 271000, Shandong, China
| | - Lili Yang
- Outpatient Clinic of the Affiliated Hospital of Qingdao University, Jiangsu Road No.16, Qingdao, 266003, Shandong, China
| | - Mengmeng Qi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Jiangsu Road No.16, Qingdao, 266003, Shandong, China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Jiangsu Road No.16, Qingdao, 266003, Shandong, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Jiangsu Road No.16, Qingdao, 266003, Shandong, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Jiangsu Road No.16, Qingdao, 266003, Shandong, China
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Jiangsu Road No.16, Qingdao, 266003, Shandong, China.
| |
Collapse
|
2
|
Sun Q, Yang P, Gu QW, Gu WS, Wang W, Wang J, Mao XM. Increased glycemic variability results in abnormal differentiation of T cell subpopulation in type 2 diabetes patients. J Diabetes Complications 2024; 38:108738. [PMID: 38643556 DOI: 10.1016/j.jdiacomp.2024.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/23/2024]
Abstract
AIMS We aimed to investigate the association between glycemic variability (GV) and the abnormal differentiation of T-cell subpopulations in patients with type 2 diabetes mellitus (T2DM). METHODS In total, 108 hospitalized patients with T2DM were enrolled and divided into two subgroups (normal glycemic excursion (NGE) and high glycemic excursion (HGE)) according to their mean amplitude of glycemic excursion (MAGE) level. The MAGE was evaluated via continuous glucose monitoring for 72 h consecutively. Flow cytometry was used to determine the proportions of T cell subpopulations. RESULTS The T helper (Th) 1 cell/Th2 cell ratio was significantly higher, and the proportion of regulatory T cells (Tregs) was significantly lower in the NGE group than in the HGE group (all P < 0.05). After fully adjusting for confounders, the MAGE was positively associated with the Th1 cell/Th2 cell ratio (β = 0.370; P = 0.009) and negatively associated with the proportion of Tregs (β = -0.554; P = 0.001). CONCLUSION The MAGE was an independent risk factor for abnormally high Th1 cell/Th2 cell ratio and proportion of Tregs. Abnormal differentiation of T cell subpopulations induced by GV may impair β-cell function, aggravate insulin resistance, and contribute to the development of diabetic complications.
Collapse
Affiliation(s)
- Qi Sun
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ping Yang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Qing-Wei Gu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Wen-Sa Gu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Wei Wang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jie Wang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiao-Ming Mao
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
3
|
Kaur G, Rani R, Raina J, Singh I. Recent Advancements and Future Prospects in NBD-Based Fluorescent Chemosensors: Design Strategy, Sensing Mechanism, and Biological Applications. Crit Rev Anal Chem 2024:1-41. [PMID: 38593050 DOI: 10.1080/10408347.2024.2337869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent years, the field of Supramolecular Chemistry has witnessed tremendous progress owing to the development of versatile optical sensors for the detection of harmful biological analytes. Nitrobenzoxadiazole (NBD) is one such scaffold that has been exploited as fluorescent probes for selective recognition of harmful analytes and their optical imaging in various cell lines including HeLa, PC3, A549, SMMC-7721, MDA-MB-231, HepG2, MFC-7, etc. The NBD-derived molecular probes are majorly synthesized from the chloro derivative of NBD via nucleophilic aromatic substitution. This general NBD moiety ligation method to nucleophiles has been leveraged to develop various derivatives for sensing analytes. NBD-derived probes are extensively used as optical sensors because of remarkable properties like excellent stability, large Stoke's shift, high efficiency and stability, visible excitation, easy use, low cost, and high quantum yield. This article reviewed NBD-based probes for the years 2017-2023 according to the sensing of analyte(s), including cations, anions, thiols, and small molecules like hydrogen sulfide. The sensing mechanism, designing of the probe, plausible binding mechanism, and biological application of chemosensors are summarized. The real-time application of optical sensors has been discussed by various methods, such as paper strips, molecular logic gates, smartphone detection, development of test kits, etc. This article will update the researchers with the in vivo and in vitro biological applicability of NBD-based molecular probes and challenges the research fraternity to design, propose, and develop better chemosensors in the future possessing commercial utility.
Collapse
Affiliation(s)
- Gurdeep Kaur
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Richa Rani
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Jeevika Raina
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
4
|
Li S, Han Q, Liu C, Wang Y, Liu F, Pan S, Zuo L, Gao D, Chen K, Feng Q, Liu Z, Liu D. Role of ferroptosis in chronic kidney disease. Cell Commun Signal 2024; 22:113. [PMID: 38347570 PMCID: PMC10860320 DOI: 10.1186/s12964-023-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 02/15/2024] Open
Abstract
Chronic kidney disease (CKD) has historically been a significant global health concern, profoundly impacting both life and well-being. In the process of CKD, with the gradual loss of renal function, the incidence of various life-threatening complications, such as cardiovascular diseases, cerebrovascular accident, infection and stroke, is also increasing rapidly. Unfortunately, existing treatments exhibit limited ability to halt the progression of kidney injury in CKD, emphasizing the urgent need to delve into the precise molecular mechanisms governing the occurrence and development of CKD while identifying novel therapeutic targets. Renal fibrosis, a typical pathological feature of CKD, plays a pivotal role in disrupting normal renal structures and the loss of renal function. Ferroptosis is a recently discovered iron-dependent form of cell death characterized by lipid peroxide accumulation. Ferroptosis has emerged as a potential key player in various diseases and the initiation of organ fibrosis. Substantial evidence suggests that ferroptosis may significantly contribute to the intricate interplay between CKD and its progression. This review comprehensively outlines the intricate relationship between CKD and ferroptosis in terms of iron metabolism and lipid peroxidation, and discusses the current landscape of pharmacological research on ferroptosis, shedding light on promising avenues for intervention. It further illustrates recent breakthroughs in ferroptosis-related regulatory mechanisms implicated in the progression of CKD, thereby providing new insights for CKD treatment. Video Abstract.
Collapse
Affiliation(s)
- Shiyang Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Chang Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Dan Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Kai Chen
- Kaifeng Renmin Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
5
|
Echefu G, Stowe I, Burka S, Basu-Ray I, Kumbala D. Pathophysiological concepts and screening of cardiovascular disease in dialysis patients. FRONTIERS IN NEPHROLOGY 2023; 3:1198560. [PMID: 37840653 PMCID: PMC10570458 DOI: 10.3389/fneph.2023.1198560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/10/2023] [Indexed: 10/17/2023]
Abstract
Dialysis patients experience 10-20 times higher cardiovascular mortality than the general population. The high burden of both conventional and nontraditional risk factors attributable to loss of renal function can explain higher rates of cardiovascular disease (CVD) morbidity and death among dialysis patients. As renal function declines, uremic toxins accumulate in the blood and disrupt cell function, causing cardiovascular damage. Hemodialysis patients have many cardiovascular complications, including sudden cardiac death. Peritoneal dialysis puts dialysis patients with end-stage renal disease at increased risk of CVD complications and emergency hospitalization. The current standard of care in this population is based on observational data, which has a high potential for bias due to the paucity of dedicated randomized clinical trials. Furthermore, guidelines lack specific guidelines for these patients, often inferring them from non-dialysis patient trials. A crucial step in the prevention and treatment of CVD would be to gain better knowledge of the influence of these predisposing risk factors. This review highlights the current evidence regarding the influence of advanced chronic disease on the cardiovascular system in patients undergoing renal dialysis.
Collapse
Affiliation(s)
- Gift Echefu
- Division of Cardiovascular Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ifeoluwa Stowe
- Department of Internal Medicine, Baton Rouge General Medical Center, Baton Rouge, LA, United States
| | - Semenawit Burka
- Department of Internal Medicine, University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Indranill Basu-Ray
- Department of Cardiology, Memphis Veterans Affairs (VA) Medical Center, Memphis, TN, United States
| | - Damodar Kumbala
- Nephrology Division, Renal Associates of Baton Rouge, Baton Rouge, LA, United States
| |
Collapse
|
6
|
Du X, Ma X, Tan Y, Shao F, Li C, Zhao Y, Miao Y, Han L, Dang G, Song Y, Yang D, Deng Z, Wang Y, Jiang C, Kong W, Feng J, Wang X. B cell-derived anti-beta 2 glycoprotein I antibody mediates hyperhomocysteinemia-aggravated hypertensive glomerular lesions by triggering ferroptosis. Signal Transduct Target Ther 2023; 8:103. [PMID: 36907919 PMCID: PMC10008839 DOI: 10.1038/s41392-023-01313-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 03/14/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is a risk factor for chronic kidney diseases (CKDs) that affects about 85% CKD patients. HHcy stimulates B cells to secrete pathological antibodies, although it is unknown whether this pathway mediates kidney injury. In HHcy-treated 2-kidney, 1-clip (2K1C) hypertensive murine model, HHcy-activated B cells secreted anti-beta 2 glycoprotein I (β2GPI) antibodies that deposited in glomerular endothelial cells (GECs), exacerbating glomerulosclerosis and reducing renal function. Mechanistically, HHcy 2K1C mice increased phosphatidylethanolamine (PE) (18:0/20:4, 18:0/22:6, 16:0/20:4) in kidney tissue, as determined by lipidomics. GECs oxidative lipidomics validated the increase of oxidized phospholipids upon Hcy-activated B cells culture medium (Hcy-B CM) treatment, including PE (18:0/20:4 + 3[O], PE (18:0a/22:4 + 1[O], PE (18:0/22:4 + 2[O] and PE (18:0/22:4 + 3[O]). PE synthases ethanolamine kinase 2 (etnk2) and ethanolamine-phosphate cytidylyltransferase 2 (pcyt2) were increased in the kidney GECs of HHcy 2K1C mice and facilitated polyunsaturated PE synthesis to act as lipid peroxidation substrates. In HHcy 2K1C mice and Hcy-B CM-treated GECs, the oxidative environment induced by iron accumulation and the insufficient clearance of lipid peroxides caused by transferrin receptor (TFR) elevation and down-regulation of SLC7A11/glutathione peroxidase 4 (GPX4) contributed to GECs ferroptosis of the kidneys. In vivo, pharmacological depletion of B cells or inhibition of ferroptosis mitigated the HHcy-aggravated hypertensive renal injury. Consequently, our findings uncovered a novel mechanism by which B cell-derived pathogenic anti-β2GPI IgG generated by HHcy exacerbated hypertensive kidney damage by inducing GECs ferroptosis. Targeting B cells or ferroptosis may be viable therapeutic strategies for ameliorating lipid peroxidative renal injury in HHcy patients with hypertensive nephropathy.
Collapse
Affiliation(s)
- Xing Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Xiaolong Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Ying Tan
- Department of Nephrology, Peking University First Hospital, 100034, Beijing, P. R. China
| | - Fangyu Shao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yang Zhao
- Department of Laboratory Medicine, Peking University Third Hospital, 100083, Beijing, P. R. China
| | - Yutong Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Lulu Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Guohui Dang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Yuwei Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Dongmin Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Zhenling Deng
- Department of Nephrology, Peking University Third Hospital, 100083, Beijing, P. R. China
| | - Yue Wang
- Department of Nephrology, Peking University Third Hospital, 100083, Beijing, P. R. China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China.
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China.
| |
Collapse
|
7
|
Hou YC, Liu YM, Liao MT, Zheng CM, Lu CL, Liu WC, Hung KC, Lin SM, Lu KC. Indoxyl sulfate mediates low handgrip strength and is predictive of high hospitalization rates in patients with end-stage renal disease. Front Med (Lausanne) 2023; 10:1023383. [PMID: 36817773 PMCID: PMC9932816 DOI: 10.3389/fmed.2023.1023383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aims Sarcopenia has a higher occurrence rate in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) than in the general population. Low handgrip strength-and not sarcopenia per se-is associated with clinical outcomes in patients with CKD, including cardiovascular mortality and hospitalization. The factors contributing to low handgrip strength are still unknown. Accordingly, this study aimed to determine whether uremic toxins influence low handgrip strength in patients with CKD. Materials and methods This cohort study lasted from August 2018 to January 2020. The participants were divided into three groups: the control group [estimated glomerular filtration rate (eGFR) ≥ 60 ml/min], an advanced CKD group (eGFR = 15-60 ml/min), and an ESRD group (under maintenance renal replacement therapy). All participants underwent handgrip strength measurement, dual-energy X-ray absorptiometry, and blood sampling for myokines (irisin, myostatin, and interleukin 6) and indoxyl sulfate. Sarcopenia was defined according to the Asian Working Group for Sarcopenia consensus as low appendicular skeletal muscle index (appendicular skeletal muscle/height2 of < 7.0 kg/m2 in men and < 5.4 kg/m2 in women) and low handgrip strength (< 28 kg in men and < 18 kg in women). Results Among the study participants (control: n = 16; CKD: n = 17; and ESRD: n = 42), the ESRD group had the highest prevalence of low handgrip strength (41.6 vs. 25% and 5.85% in the control and CKD groups, respectively; p < 0.05). The sarcopenia rate was similar among the groups (12.5, 17.6, and 19.5% for the control, CKD, and ESRD groups, respectively; p = 0.864). Low handgrip strength was associated with high hospitalization rates within the total study population during the 600-day follow-up period (p = 0.02). The predictions for cardiovascular mortality and hospitalization were similar among patients with and without sarcopenia (p = 0.190 and p = 0.094). The serum concentrations of indoxyl sulfate were higher in the ESRD group (227.29 ± 92.65 μM vs. 41.97 ± 43.96 μM and 6.54 ± 3.45 μM for the CKD and control groups, respectively; p < 0.05). Myokine concentrations were similar among groups. Indoxyl sulfate was associated with low handgrip strength in univariate and multivariate logistic regression models [univariate odds ratio (OR): 3.485, 95% confidence interval (CI): 1.372-8.852, p = 0.001; multivariate OR: 8.525, 95% CI: 1.807-40.207, p = 0.007]. Conclusion Handgrip strength was lower in the patients with ESRD, and low handgrip strength was predictive of hospitalization in the total study population. Indoxyl sulfate contributed to low handgrip strength and counteracted the benefits of myokines in patients with CKD.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Division of Nephrology, Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yueh-Min Liu
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan
| | - Min-Ter Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Hsinchu, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chien-Lin Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Chih Liu
- Division of Nephrology, Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei City, Taiwan
| | - Kuo-Chin Hung
- Division of Nephrology, Department of Medicine, Min-Sheng General Hospital, Taoyuan City, Taiwan
| | - Shyh-Min Lin
- Division of Radiology, Department of Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
8
|
Wang W, Peng Z, Ji M, Chen J, Wang P. Highly selective fluorescent probe based on AIE for identifying cysteine/homocysteine. Bioorg Chem 2022; 126:105902. [DOI: 10.1016/j.bioorg.2022.105902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022]
|
9
|
Chen K, Li Y, Shang J, Li H. A multi-responsive coumarin–benzothiazole fluorescent probe for selective detection of biological thiols and hydrazine. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractBiothiols play important roles in various physiological and biological processes, which closely related to many diseases. Hydrazine is widely used in the chemical industry, but it is harmful to humans and animals. Therefore, it is very important to develop a fluorescent probe that can simultaneously detect biological thiols and hydrazine. In this work, a new fluorescent probe (2E,4Z)-2-(benzo[d]thiazol-2-yl)-5-chloro-5-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)penta-2,4-dienenitrile (BCD) was synthesized by integrating coumarin and benzothiazole acetonitrile. Featured with four binding sites and different bonding mechanism between probe with biothiols and hydrazine, this probe exhibited fluorescent turn-on for distinguishing Cys, Hcy, GSH and hydrazine with 760-, 8-, 6- and 637-fold fluorescent intensity increase at 502, 479, 476 and 458 nm, respectively, through different excitation wavelengths. Research on the effect of pH on the fluorescent performance of BCD shows that the probe exhibits superior stability in a weakly alkaline to weakly acidic environment, which will facilitate the detection of biological thiols or hydrazine hydrate by BCD. Selectivity studies have shown that the probe has high specificity to biological thiols and hydrazine, which is of great significance to the application of BCD.
Collapse
|
10
|
Badri S, Vahdat S, Seirafian S, Pourfarzam M, Gholipur-Shahraki T, Ataei S. Homocysteine-Lowering Interventions in Chronic Kidney Disease. J Res Pharm Pract 2021; 10:114-124. [PMID: 35198504 PMCID: PMC8809459 DOI: 10.4103/jrpp.jrpp_75_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/25/2021] [Indexed: 12/20/2022] Open
Abstract
The incidence of cardiovascular events and mortality is higher in patients with chronic kidney disease (CKD) compared to the general population. Homocysteine (Hcy) appears to be an independent risk factor for cardiovascular diseases in general populations and patients with CKD. Further, hyperhomocysteinemia can cause endothelial damage and increase the activity and production of coagulation factors, and its prevalence among patients with end-stage renal disease is approximately 85%-100%. Most treatments, which lower Hcy levels and have been considered in previous studies, include folic acid, B vitamins, omega-3 fatty acids, and N-acetylcysteine. However, the effect of therapies that can decrease Hcy levels and thus cardiovascular events in these patients is still unclear. The results are conflicting and require further investigation. To guide treatment decisions and improve patient outcomes, multiple databases were searched, including Web of Science, PubMed, and Medline to summarize the available evidence (i.e., clinical trial and meta-analyses) on Hcy-lowering interventions and cardiovascular events.
Collapse
Affiliation(s)
- Shirinsadat Badri
- Department of Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Kidney Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Vahdat
- Isfahan Kidney Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Seirafian
- Isfahan Kidney Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahereh Gholipur-Shahraki
- Department of Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Ataei
- Department of Clinical Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Wu X, Lin J, Xue N, Teng J, Wang Y, Li Y, Xu X, Shen Z, Ding X, Fang Y. Relationship Between Gene Polymorphism of Methylenetetrahydrofolate Reductase C677T and Left Ventricular Hypertrophy in Chinese Patients with Chronic Kidney Disease. Lab Med 2021; 52:519-527. [PMID: 33693817 DOI: 10.1093/labmed/lmab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the relationship between the gene polymorphism of methylenetetrahydrofolate reductase (MTHFR) C677T and left ventricular hypertrophy (LVH) in patients with chronic kidney disease (CKD). METHODS A total of 763 Chinese patients with CKD undergoing genetic testing were included in the study. The association between the gene polymorphism of MTHFR C677T and echocardiographic parameters was analyzed through univariate and multivariate analyses. RESULTS We found a remarkably positive association between MTHFR C677T gene polymorphism and LVH indexes, including interventricular septal thickness (F = 3.8; P = .022), left ventricular posterior wall thickness (F = 3.0; P = .052), left ventricular mass (F = 3.9; P = .022), and left ventricular mass index (F = 2.6; P = .075). After adjusting for the potential confounders linking the polymorphism,we found that the positive association between the polymorphism and LVH indexes still existed in patients with CKD in some multiple linear regression models (P <.05). CONCLUSION MTHFR C677T gene polymorphism may be a genetic susceptibility marker for the development of LVH in patients with CKD.
Collapse
Affiliation(s)
- Xie Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Lin
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xunhui Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Rational design of a bifunctional fluorescent probe for distinguishing Hcy/Cys from GSH with ideal properties. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
The Nationwide incidence of retinal artery occlusion following dialysis due to end-stage renal disease in Korea: 2004 through 2013. Retina 2021; 41:2140-2147. [PMID: 34029028 DOI: 10.1097/iae.0000000000003151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To examine the incidence and risk of retinal artery occlusion (RAO) in patients who have undergone dialysis in Korea. METHODS A nationwide, population-based study using South Korean national health insurance data from 2004 to 2013 was used for analysis. All patients who began dialysis between 2004 and 2013 and the same number of controls were selected via propensity score matching. The incidence of RAO in the dialysis and control cohorts was calculated for 2004-2013 using washout data from 2003. The multivariable Cox proportional hazards model was used to evaluate the risk of developing RAO in dialysis patients. Cumulative RAO incidence curves were generated using the Kaplan-Meier method. Whether dialysis modalities influenced the incidence of RAO was also evaluated. RESULTS 76,782 end-stage renal disease (ESRD) patients on dialysis were included in the dialysis cohort and 76,782 individuals were included in the control cohort. During the study period, 293 patients in the dialysis cohort and 99 patients in the control cohort developed RAO. The person-years (PY) incidence of RAO was significantly higher in the dialysis cohort than in the control cohort (dialysis=1.1/1000 PY; control=0.3/1000 PY; p<0.001). The incidence of RAO was not significantly different between the two methods of dialysis (hemodialysis vs. peritoneal dialysis)(p=0.25;log-rank test). CONCLUSION The current study provided epidemiological evidence that undergoing dialysis for ESRD was associated with an increased risk of developing RAO. The incidence of RAO rapidly increased as the duration of dialysis increased. These results strengthen the significant role of the renal function in retinal vascular disease.
Collapse
|
14
|
Wang XB, Li HJ, Liu C, Hu YX, Li MC, Wu YC. Simple Turn-On Fluorescent Sensor for Discriminating Cys/Hcy and GSH from Different Fluorescent Signals. Anal Chem 2021; 93:2244-2253. [DOI: 10.1021/acs.analchem.0c04100] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiao-Bo Wang
- School of Marine Science and Technology, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Hui-Jing Li
- School of Marine Science and Technology, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yun-Xiang Hu
- School of Marine Science and Technology, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Meng-Chen Li
- School of Marine Science and Technology, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Yan-Chao Wu
- School of Marine Science and Technology, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
- Weihai Chuanghui Environmental Protection Technology Company Ltd., Weihai 264200, China
| |
Collapse
|
15
|
Ma N, Xu N, Yin D, Liu W, Wu M, Cheng X. Relationship between plasma total homocysteine and the severity of renal function in Chinese patients with type 2 diabetes mellitus aged ≥75 years. Medicine (Baltimore) 2020; 99:e20737. [PMID: 32629650 PMCID: PMC7337561 DOI: 10.1097/md.0000000000020737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We aimed to investigate the relationship between total homocysteine (tHcy) levels in the plasma and renal function severity in patients with type 2 diabetes mellitus (T2DM) aged ≥75 years.We included 221 patients with T2DM aged ≥60 years (59 aged ≥75 years).tHcy levels among the 4 groups of patients aged ≥60 years significantly differed, but not in those aged ≥75 years. tHcy levels in patients aged ≥60 years were negatively correlated with the estimated glomerular filtration rate. The area under the receiver operating characteristic curve of tHcy for predicting diabetic kidney disease (DKD) was 0.636. Fasting c-peptide and creatinine were independently associated with tHcy levels in patients aged ≥60 years, whereas insulin and creatinine were independently associated with tHcy levels in those aged ≥75 years.tHcy concentrations were elevated in T2DM and can potentially serve as a risk factor for DKD, but it is not an ideal biomarker.
Collapse
Affiliation(s)
- Ning Ma
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Soochow University
- Department of Endocrinology and Metabolism, Lianyungang No 1 People's Hospital, Jiangsu, China
| | - Ning Xu
- Department of Endocrinology and Metabolism, Lianyungang No 1 People's Hospital, Jiangsu, China
| | - Dong Yin
- Department of Endocrinology and Metabolism, Lianyungang No 1 People's Hospital, Jiangsu, China
| | - Weiwei Liu
- Department of Endocrinology and Metabolism, Lianyungang No 1 People's Hospital, Jiangsu, China
| | - Mengping Wu
- Department of Endocrinology and Metabolism, Lianyungang No 1 People's Hospital, Jiangsu, China
| | - Xingbo Cheng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Soochow University
| |
Collapse
|
16
|
Zhang Y, Wang J, Yue Y, Chao J, Huo F, Yin C. A new strategy for the fluorescence discrimination of Cys/Hcy and GSH/H 2S simultaneously colorimetric detection for H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117537. [PMID: 31690486 DOI: 10.1016/j.saa.2019.117537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
The development of fluorescent probes enabling distinguishable detection Cys, Hcy, GSH and H2S is still a considerable challenge owing to their similar functional group with comparable reactivity. In this work, a novel fluorescent probe FHC-O-NBD has been synthesized, and a practicable strategy for the fluorescence discrimination of Cys/Hcy and GSH/H2S, especially the colorimetric detection for H2S have been presented. FHC-O-NBD reacted with Cys/Hcy to produce two fluorescent emissions at 486 nm and 550 nm, while for GSH/H2S, only one fluorescent signal at 486 nm appeared. And, only upon addition of H2S, the color of the system changed from colorless to pink. So it can serve as a colorimetric probe for H2S by "naked eye". Furthermore, FHC-O-NBD can selectively distinguish Cys/Hcy and GSH/H2S in living cells, meaning it has great potential in biological applications.
Collapse
Affiliation(s)
- Yongbin Zhang
- Key Laboratory of Functional Molecules of Shanxi Province, Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Jianfen Wang
- Key Laboratory of Functional Molecules of Shanxi Province, Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China; School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
| | - Fangjun Huo
- Key Laboratory of Functional Molecules of Shanxi Province, Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caixia Yin
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
17
|
Li M, Kang N, Zhang C, Liang W, Zhang G, Jia J, Yao Q, Shuang S, Dong C. A turn-on fluorescence probe for cysteine/homocysteine based on the nucleophilic-induced rearrangement of benzothiazole thioether. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117262. [PMID: 31212195 DOI: 10.1016/j.saa.2019.117262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
A fluorescent probe, 4-(benzothiazole-2-ylthio)-7-nitro-2,1,3-benzoxadiazole (TBT-NBD) was developed for cysteine (Cys) and homocysteine (Hcy). The reaction mechanism was based on the Cys/Hcy-induced nucleophilic substitution of benzothiazole thioether then Smiles rearrangement reaction to form corresponding amino-nitrobenzoxadiazole, which emitted yellow-green fluorescence and guaranteed the high selectivity for Cys/Hcy over glutathione (GSH). TBT-NBD could detect Cys/Hcy within 5 min in the presence of high concentration of GSH and other amino acids. Moreover, TBT-NBD had been exploited to identify intracellular Cys/Hcy in living cells in light of its low toxicity.
Collapse
Affiliation(s)
- Miao Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Na Kang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Wenting Liang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinping Jia
- Science Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Qingjia Yao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
18
|
Capelli I, Cianciolo G, Gasperoni L, Zappulo F, Tondolo F, Cappuccilli M, La Manna G. Folic Acid and Vitamin B12 Administration in CKD, Why Not? Nutrients 2019; 11:nu11020383. [PMID: 30781775 PMCID: PMC6413093 DOI: 10.3390/nu11020383] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
Patients affected by chronic kidney disease (CKD) or end-stage renal disease (ESRD) experience a huge cardiovascular risk and cardiovascular events represent the leading causes of death. Since traditional risk factors cannot fully explain such increased cardiovascular risk, interest in non-traditional risk factors, such as hyperhomocysteinemia and folic acid and vitamin B12 metabolism impairment, is growing. Although elevated homocysteine blood levels are often seen in patients with CKD and ESRD, whether hyperhomocysteinemia represents a reliable cardiovascular and mortality risk marker or a therapeutic target in this population is still unclear. In addition, folic acid and vitamin B12 could not only be mere cofactors in the homocysteine metabolism; they may have a direct action in determining tissue damage and cardiovascular risk. The purpose of this review was to highlight homocysteine, folic acid and vitamin B12 metabolism impairment in CKD and ESRD and to summarize available evidences on hyperhomocysteinemia, folic acid and vitamin B12 as cardiovascular risk markers, therapeutic target and risk factors for CKD progression.
Collapse
Affiliation(s)
- Irene Capelli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy.
| | - Giuseppe Cianciolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy.
| | - Lorenzo Gasperoni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy.
| | - Fulvia Zappulo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy.
| | - Francesco Tondolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy.
| | - Maria Cappuccilli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy.
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy.
| |
Collapse
|
19
|
Li L, Hasegawa H, Inaba N, Yoshioka W, Chang D, Liu J, Ichida K. Diet-induced hyperhomocysteinemia impairs vasodilation in 5/6-nephrectomized rats. Amino Acids 2018; 50:1485-1494. [PMID: 30062489 DOI: 10.1007/s00726-018-2626-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Abstract
Plasma homocysteine is elevated in patients with impaired renal function, and markedly so at end-stage renal disease. As chronic kidney disease and hyperhomocysteinemia are also independent risk factors for cardiovascular disease, the latter is hypothesized to accelerate vascular abnormalities following renal failure. This study aimed to investigate the combined effect of impaired renal function and hyperhomocysteinemia on vascular function. We show that in 5/6-nephrectomized rats, a model of chronic kidney disease, a methionine-rich diet for 8 weeks induces moderate hyperhomocysteinemia, exacerbates hypertension, and attenuates the vascular response to acetylcholine, sodium nitroprusside, 8-bromo-cGMP, and isoprenaline. However, plasma nitrate/nitrite and total NOS activity in the thoracic aorta were not affected. Collectively, the data imply that hyperhomocysteinemia and end-stage renal disease synergistically impair endothelium-dependent and endothelium-independent vasodilatation by blocking the cGMP/protein kinase G and/or cAMP/protein kinase A pathways. 5/6-Nephrectomized rat with hyperhomocysteinemia induced by a methionine-rich diet would be a useful model for elucidating the pathogenesis of vascular impairment in patients with end-stage renal disease.
Collapse
Affiliation(s)
- Lei Li
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hiroshi Hasegawa
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Niro Inaba
- Center for Fundamental Laboratory Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Wataru Yoshioka
- Department of Public Health and Environmental Medicine, School of Medicine, The Jikei University, Tokyo, Japan
| | - Dennis Chang
- National Institute of Complementary Medicine, School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - JianXun Liu
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
20
|
Leon M, Sawmiller D, Shytle RD, Tan J. Therapeutic Cocktail Approach for Treatment of Hyperhomocysteinemia in Alzheimer's Disease. CELL MEDICINE 2018; 10:2155179017722280. [PMID: 32634177 PMCID: PMC6172991 DOI: 10.1177/2155179017722280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the United States, Alzheimer's disease (AD) is the most common cause of dementia, accompanied by substantial economic and emotional costs. During 2015, more than 15 million family members who provided care to AD patients had an estimated total cost of 221 billion dollars. Recent studies have shown that elevated total plasma levels of homocysteine (tHcy), a condition known as hyperhomocysteinemia (HHcy), is a risk factor for AD. HHcy is associated with cognitive decline, brain atrophy, and dementia; enhances the vulnerability of neurons to oxidative injury; and damages the blood-brain barrier. Many therapeutic supplements containing vitamin B12 and folate have been studied to help decrease tHcy to a certain degree. However, a therapeutic cocktail approach with 5-methyltetrahydrofolate, methyl B12, betaine, and N-acetylcysteine (NAC) have not been studied. This novel approach may help target multiple pathways simultaneously to decrease tHcy and its toxicity substantially.
Collapse
Affiliation(s)
- Michael Leon
- Department of Psychiatry and Behavioral Neurosciences, Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Darrell Sawmiller
- Department of Psychiatry and Behavioral Neurosciences, Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - R Douglas Shytle
- Department of Neurosurgery and Brain Repair, Center for Excellence in Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jun Tan
- Department of Psychiatry and Behavioral Neurosciences, Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
21
|
Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW, Murthy SN. The metabolism and significance of homocysteine in nutrition and health. Nutr Metab (Lond) 2017; 14:78. [PMID: 29299040 PMCID: PMC5741875 DOI: 10.1186/s12986-017-0233-z] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022] Open
Abstract
An association between arteriosclerosis and homocysteine (Hcy) was first demonstrated in 1969. Hcy is a sulfur containing amino acid derived from the essential amino acid methionine (Met). Hyperhomocysteinemia (HHcy) was subsequently shown in several age-related pathologies such as osteoporosis, Alzheimer's disease, Parkinson's disease, stroke, and cardiovascular disease (CVD). Also, Hcy is associated with (but not limited to) cancer, aortic aneurysm, hypothyroidism and end renal stage disease to mention some. The circulating levels of Hcy can be increased by defects in enzymes of the metabolism of Met, deficiencies of vitamins B6, B12 and folate or by feeding Met enriched diets. Additionally, some of the pharmaceuticals currently in clinical practice such as lipid lowering, and anti-Parkinsonian drugs are known to elevate Hcy levels. Studies on supplementation with folate, vitamins B6 and B12 have shown reduction in Hcy levels but concomitant reduction in certain associated pathologies have not been definitive. The enormous importance of Hcy in health and disease is illustrated by its prevalence in the medical literature (e.g. > 22,000 publications). Although there are compelling data in favor of Hcy as a modifiable risk factor, the debate regarding the significance of Hcy mediated health effects is still ongoing. Despite associations between increased levels of Hcy with several pathologies being well documented, whether it is a causative factor, or an effect remains inconclusive. The present review though not exhaustive, is focused on several important aspects of Hcy metabolism and their relevance to health.
Collapse
Affiliation(s)
- Avinash Kumar
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA 70813 USA
| | - Henry A. Palfrey
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA 70813 USA
| | - Rashmi Pathak
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA 70813 USA
| | - Philip J. Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA USA
| | - Thomas W. Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA USA
| | - Subramanyam N. Murthy
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA 70813 USA
| |
Collapse
|
22
|
Cianciolo G, De Pascalis A, Di Lullo L, Ronco C, Zannini C, La Manna G. Folic Acid and Homocysteine in Chronic Kidney Disease and Cardiovascular Disease Progression: Which Comes First? Cardiorenal Med 2017; 7:255-266. [PMID: 29118764 DOI: 10.1159/000471813] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Hyperhomocysteinemia (Hhcy) occurs in about 85% of chronic kidney disease (CKD) patients because of impaired renal metabolism and reduced renal excretion. Folic acid (FA), the synthetic form of vitamin B9, is critical in the conversion of homocysteine (Hcy) to methionine. If there is not enough intake of FA, there is not enough conversion, and Hcy levels are raised. Summary Hhcy is regarded as an independent predictor of cardiovascular morbidity and mortality in end-stage renal disease. Hhcy exerts its pathogenic action on the main processes involved in the progression of vascular damage. Research has shown Hhcy suggests enhanced risks for inflammation and endothelial injury which lead to cardiovascular disease (CVD), stroke, and CKD. FA has also been shown to improve endothelial function without lowering Hcy, suggesting an alternative explanation for the effect of FA on endothelial function. Recently, the role of FA and Hhcy in CVD and in CKD progression was renewed in some randomized trials. Key Messages In the general population and in CKD patients, it remains a topic of discussion whether any beneficial effects of FA therapy are to be referred to its direct effect or to a reduction of Hhcy. While waiting for the results of confirmatory trials, it is reasonable to consider FA with or without methylcobalamin supplementation as appropriate adjunctive therapy in patients with CKD.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Nephrology, Dialysis, and Transplantation Unit, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), St. Orsola Hospital, University of Bologna, Bologna, Italy
| | | | - Luca Di Lullo
- Nephrology and Dialysis Unit, Parodi-Delfino Hospital, Colleferro, Italy
| | - Claudio Ronco
- International Renal Research Institute (IRRIV), S. Bortolo Hospital, Vicenza, Italy
| | - Chiara Zannini
- Nephrology, Dialysis, and Transplantation Unit, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis, and Transplantation Unit, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), St. Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Conley SM, Abais-Battad JM, Yuan X, Zhang Q, Boini KM, Li PL. Contribution of guanine nucleotide exchange factor Vav2 to NLRP3 inflammasome activation in mouse podocytes during hyperhomocysteinemia. Free Radic Biol Med 2017; 106:236-244. [PMID: 28193546 PMCID: PMC5423457 DOI: 10.1016/j.freeradbiomed.2017.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 01/08/2023]
Abstract
NADPH oxidase (NOX)-derived reactive oxygen species (ROS) have been demonstrated to mediate the activation of NOD-like receptor protein 3 (NLRP3) inflammasomes in podocytes in response to elevated levels of homocysteine (Hcys). However, it remains unknown how NLRP3 inflammasome activation is triggered by NOX. The present study tested whether the guanine nucleotide exchange factor Vav2 mediates Rac1-mediated NOX activation in response to elevated Hcys leading to NLRP3 inflammasome activation in podocytes and consequent glomerular injury. In a mouse model of hyperhomocysteinemia (hHcys), we found that mice with hHcys (on the FF diet) or oncoVav2 (a constitutively active form of Vav2) transfection in the kidney exhibited increased colocalization of NLRP3 with apoptosis-associated speck-like protein (ASC) or caspase-1 and elevated IL-1β levels in glomeruli, indicating the formation and activation of the NLRP3 inflammasome. This glomerular NLRP3 inflammasome activation was accompanied by podocyte dysfunction and glomerular injury, even sclerosis. Local transfection of Vav2 shRNA plasmids significantly attenuated hHcys-induced NLRP3 inflammasome activation, podocyte injury, and glomerular sclerosis. In cultured podocytes, Hcys treatment and oncoVav2 transfection were also found to increase NLRP3 inflammasome formation and activation, which were all inhibited by Vav2 shRNA. Furthermore, Vav2 shRNA prevented Hcys-induced podocyte damage as shown by restoring Hcys-impaired VEGF secretion and podocin production. This inhibitory action of Vav2 shRNA on Hcys-induced podocyte injury was associated with reduction of Rac1 activity and ROS production. These results suggest that elevated Hcys levels activate Vav2 and thereby increase NOX activity leading to ROS production, which triggers NLRP3 inflammasome activation, podocyte dysfunction and glomerular injury.
Collapse
Affiliation(s)
- Sabena M Conley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Justine M Abais-Battad
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Xinxu Yuan
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Qinghua Zhang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Krishna M Boini
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
24
|
Li G, Chen Z, Bhat OM, Zhang Q, Abais-Battad JM, Conley SM, Ritter JK, Li PL. NLRP3 inflammasome as a novel target for docosahexaenoic acid metabolites to abrogate glomerular injury. J Lipid Res 2017; 58:1080-1090. [PMID: 28404641 DOI: 10.1194/jlr.m072587] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/31/2017] [Indexed: 01/09/2023] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been implicated in podocyte injury and glomerular sclerosis during hyperhomocysteinemia (hHcys). However, it remains unclear whether the NLRP3 inflammasome can be a therapeutic target for treatment of hHcys-induced kidney injury. Given that DHA metabolites-resolvins have potent anti-inflammatory effects, the present study tested whether the prototype, resolvin D1 (RvD1), and 17S-hydroxy DHA (17S-HDHA), an intermediate product, abrogate hHcys-induced podocyte injury by targeting the NLRP3 inflammasome. In vitro, confocal microscopy demonstrated that 17S-HDHA (100 nM) and RvD1 (60 nM) prevented Hcys-induced formation of NLRP3 inflammasomes, as shown by reduced colocalization of NLRP3 with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) or caspase-1. Both DHA metabolites inhibited Hcys-induced caspase-1 activation and interleukin-1β production. However, DHA had no significant effect on these Hcys-induced changes in podocytes. In vivo, DHA lipoxygenase metabolites substantially inhibited podocyte NLRP3 inflammasome formation and activation and consequent glomerular sclerosis in mice with hHcys. Mechanistically, RvD1 and 17S-HDHA were shown to suppress Hcys-induced formation of lipid raft redox signaling platforms and subsequent O2·- production in podocytes. It is concluded that inhibition of NLRP3 inflammasome activation is one of the important mechanisms mediating the beneficial action of RvD1 and 17S-HDHA on Hcys-induced podocyte injury and glomerular sclerosis.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Zhida Chen
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Qinghua Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Justine M Abais-Battad
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Sabena M Conley
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
25
|
Guadalupe N, Molina Alv M, Tulio Reyn M, Cecilia Al C, del Carmen E, Maria Rodr J, Lizeth Gon J, Consuelo H A, Mendieta Z H. Serum Homocysteine Levels and its Methylenetetrahydrofolate Gene (MTHFR) C677t Polymorphism in Patients with Hemodialysis. JOURNAL OF MEDICAL SCIENCES 2017. [DOI: 10.3923/jms.2017.89.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
26
|
Heilmann RM, Grützner N, Iazbik MC, Lopes R, Bridges CS, Suchodolski JS, Couto CG, Steiner JM. Hyperhomocysteinemia in Greyhounds and its Association with Hypofolatemia and Other Clinicopathologic Variables. J Vet Intern Med 2016; 31:109-116. [PMID: 27864850 PMCID: PMC5259649 DOI: 10.1111/jvim.14597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/22/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022] Open
Abstract
Background Folate and cobalamin are essential cofactors for homocysteine (HCY) metabolism. Hyperhomocysteinemia, a multifactorial condition, may reflect B vitamin deficiency and is associated with increased risk of cardiovascular disease, thrombosis, and neurodegenerative and chronic gastrointestinal diseases in humans. Hyperhomocysteinemia has been reported in Greyhounds with suspected chronic enteropathy. Objectives To evaluate the frequencies of and the association between hypofolatemia and hyperhomocysteinemia in Greyhounds. Animals Data and serum samples from 559 Greyhounds. Methods Nested case‐control study. The frequency of hypofolatemia in Greyhounds was determined by a laboratory database search. The relationship between hyperhomocysteinemia (measured by gas chromatography‐mass spectrometry) and hypocobalaminemia and hypofolatemia was evaluated, and its frequency compared between healthy Greyhounds and Greyhounds with thrombosis or chronic diarrhea. Results Hypofolatemia was identified in 172 of 423 (41%) Greyhounds and was more common in hypo‐ than in normocobalaminemic dogs (49% vs. 35%; P = .0064). Hyperhomocysteinemia was detected in 53 of 78 (68%) of Greyhounds, being more common in hypo‐ than in normofolatemic dogs (88% vs. 59%; P = .0175). All healthy Greyhounds, 21 of 30 (70%) of dogs with chronic diarrhea and 6 of 8 (75%) of those with thrombosis, were hyperhomocysteinemic. Serum HCY concentrations were inversely correlated with serum folate concentration (ρ = −0.28; P = .0386) and were positively associated with serum albumin concentration (ρ = 0.66; P = .0022). Conclusions and Clinical Relevance Hyperhomocysteinemia occurs frequently in the Greyhound population. Its association with hypofolatemia suggests decreased intracellular availability of B vitamins, but the functional implications warrant further investigation. Hyperhomocysteinemia in Greyhounds potentially may serve as a spontaneous canine model to further investigate hyperhomocysteinemia in humans.
Collapse
Affiliation(s)
- R M Heilmann
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4474.,Small Animal Clinic, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, 04103, Germany
| | - N Grützner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4474.,Farm Animal Clinic, Clinic for Swine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty Bern, Bern, 3012, Switzerland
| | - M C Iazbik
- Veterinary Medical Center, The Ohio State University, Columbus, OH, 43210
| | - R Lopes
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4474.,Center for Bioinformatics and Genomic Systems Engineering, Texas A&M AgriLife Research, College Station, TX, 77845
| | - C S Bridges
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4474
| | - J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4474
| | - C G Couto
- Veterinary Medical Center, The Ohio State University, Columbus, OH, 43210.,Couto Veterinary Consultants, Hilliard, OH, 43026
| | - J M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4474
| |
Collapse
|
27
|
Li G, Xia M, Abais JM, Boini K, Li PL, Ritter JK. Protective Action of Anandamide and Its COX-2 Metabolite against l-Homocysteine-Induced NLRP3 Inflammasome Activation and Injury in Podocytes. J Pharmacol Exp Ther 2016; 358:61-70. [PMID: 27189966 PMCID: PMC4931881 DOI: 10.1124/jpet.116.233239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022] Open
Abstract
Recent studies have demonstrated that l-homocysteine (Hcys)-induced podocyte injury leading to glomerular damage or sclerosis is attributable to the activation of the nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome. Given the demonstrated anti-inflammatory effects of endocannabinoids, the present study was designed to test whether anandamide (AEA) or its metabolites diminish NLRP3 inflammasome activation and prevent podocyte injury and associated glomerular damage during hyperhomocysteinemia (hHcys). AEA (100 μM) inhibited Hcys-induced NLRP3 inflammasome activation in cultured podocytes, as indicated by elevated caspase-1 activity and interleukin-1β levels, and attenuated podocyte dysfunction, as shown by reduced vascular endothelial growth factor production. These effects of AEA were inhibited by the cyclooxygenase-2 (COX-2) inhibitor celecoxib (CEL). In mice in vivo, AEA treatment attenuated glomerular NLRP3 inflammasome activation induced by hHcys accompanying a folate-free diet, on the basis of inhibition of hHcys-induced colocalization of NLRP3 molecules and increased interleukin-1β levels in glomeruli. Correspondingly, AEA prevented hHcys-induced proteinuria, albuminuria, and glomerular damage observed microscopically. Hcys- and AEA-induced effects were absent in NLRP3-knockout mice. These beneficial effects of AEA against hHcys-induced NLRP3 inflammasome activation and glomerular injury were not observed in mice cotreated with CEL. We further demonstrated that prostaglandin E2-ethanolamide (PGE2-EA), a COX-2 product of AEA, at 10 μM had a similar inhibitory effect to that of 100 μM AEA on Hcys-induced NLRP3 inflammasome formation and activation in cultured podocytes. From these results, we conclude that AEA has anti-inflammatory properties, protecting podocytes from Hcys-induced injury by inhibition of NLRP3 inflammasome activation through its COX-2 metabolite, PGE2-EA.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Min Xia
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Krishna Boini
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
28
|
Chang YS, Weng SF, Chang C, Wang JJ, Tseng SH, Wang JY, Jan RL. Risk of Retinal Vein Occlusion Following End-Stage Renal Disease. Medicine (Baltimore) 2016; 95:e3474. [PMID: 27100450 PMCID: PMC4845854 DOI: 10.1097/md.0000000000003474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of the study was to investigate the risk of retinal vein occlusion (RVO) following end-stage renal disease (ESRD). The study was designed as a retrospective, nationwide, matched cohort study. The subjects were ESRD patients identified by the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), code 585. The study cohort included 92,774 ESRD patients registered between January 2000 and December 2009 at the Taiwan National Health Insurance Research Database. An age- and sex-matched control group comprised 92,774 patients (case:control = 1:1) selected from the Taiwan Longitudinal Health Insurance Database 2000. Information for each patient was collected from the index date until December 2011. The incidence and risk of RVO were compared between the ESRD and control groups. The adjusted hazard ratio (HR) for RVO after adjustment for potential confounders was obtained by Cox proportional hazard regression analysis. Kaplan-Meier analysis was used to calculate the RVO cumulative incidence rate. The main outcome measure was the incidence of RVO following ESRD. In total, 904 ESRD patients (0.97%) and 410 controls (0.44%) had RVO (P < 0.0001) during the follow-up period, leading to a significantly elevated risk of RVO in the ESRD patients compared with controls (incidence rate ratio = 3.05, 95% confidence interval = 2.72-3.43). After adjustment for potential confounders including diabetes mellitus, hypertension, hyperlipidemia, congestive heart failure, and coronary artery disease, ESRD patients were 3.05 times more likely to develop RVO in the full cohort (adjusted hazard ratio = 3.05, 95% confidence interval = 2.64-3.51). In addition, hypertension patients showed high incidence rate of RVO in the ESRD group compared with controls (incidence rate ratio = 1.71, 95% confidence interval = 1.44-2.03) and maintained significant risk of RVO after adjustment for other confounders in the cohort (adjusted hazard ratio = 1.39, 95% confidence interval = 1.20-1.60). ESRD increases the risk of RVO. For ESRD patients, we recommend education regarding RVO in addition to blood pressure control to prevent subsequent RVO.
Collapse
Affiliation(s)
- Yuh-Shin Chang
- From the Department of Ophthalmology (Y-SC, S-HT), Chi Mei Medical Center, Tainan, Taiwan; Graduate Institute of Medical Science (Y-SC), College of Health Science, Chang Jung Christian University, Tainan, Taiwan; Department of Healthcare Administration and Medical Informatics (S-FW), Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Education (CC), University of Taipei, Taipei, Taiwan; Department of Anesthesiology (J-JW), Chi Mei Medical Center, Tainan, Taiwan; Department of Ophthalmology (S-HT), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Clinical Medicine (J-YW, R-LJ), National Cheng Kung University, Tainan, Taiwan; and Department of Pediatrics (R-LJ), Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Chang YS, Weng SF, Chang C, Wang JJ, Su SB, Huang CC, Wang JY, Jan RL. Risk of Nonarteritic Anterior Ischemic Optic Neuropathy Following End-Stage Renal Disease. Medicine (Baltimore) 2016; 95:e3174. [PMID: 27015205 PMCID: PMC4998400 DOI: 10.1097/md.0000000000003174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To investigate the risk of nonarteritic anterior ischemic optic neuropathy (NAION) following end-stage renal disease (ESRD).A retrospective, nationwide, matched cohort study.ESRD patients identified by the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code 585.The study cohort included 93,804 ESRD patients registered with the Taiwan National Health Insurance Research Database between January 2000 and December 2009. An age- and sex-matched control group comprised 93,804 patients (case:control = 1:1) selected from the Taiwan Longitudinal Health Insurance Database 2000. Information for each patient was collected from the index date until December 2011. The incidence and risk of NAION were compared between the ESRD and control groups. The adjusted hazard ratio (HR) for NAION after adjustment for potential confounders was obtained by a Cox proportional hazard regression analysis. A Kaplan-Meier analysis was used to calculate the cumulative incidence rate of NAION.The incidence of NAION following ESRD.In total, 133 ESRD patients (0.14%) and 51 controls (0.05%) had NAION (P < 0.001) during the follow-up period, leading to a significantly elevated risk of NAION in the ESRD patients compared with the controls (incidence rate ratio = 3.14, 95% confidence interval [CI] = 2.11-4.67). After adjustment for potential confounders including diabetes mellitus, hypertension, hypotension, hyperlipidemia, and 2-way interaction terms between any 2 factors, ESRD patients were 3.12 times more likely to develop NAION than non-ESRD patients in the full cohort (adjusted HR = 3.12, 95% CI = 2.10-4.64). Additionally, patients with hypertension and hyperlipidemia showed higher incidence rates of NAION in the ESRD group compared with the controls: 2.31 (95% CI = 1.40-3.82) for hypertension and 2.72 (95% CI = 1.14-6.50) for hyperlipidemia.ESRD increased the risk of NAION, which is an interdisciplinary emergency. Close collaboration between nephrologists and ophthalmologists is important in NAION management following ESRD to prevent fellow eye involvement.
Collapse
Affiliation(s)
- Yuh-Shin Chang
- From the Department of Ophthalmology (YSC), Department of Medical Research (JJW), Department of Anesthesiology (JJW), Department of Occupational Medicine, Chi Mei Medical Center (SBS), Graduate Institute of Medical Science, College of Health Science, Chang Jung Christian University (YSC), Department of Child Care and Education, Southern Taiwan University of Science and Technology (CCH), Graduate Institute of Clinical Medicine, National Cheng Kung University (JYW, RLJ), Department of Pediatrics, Chi Mei Medical Center, Liouying, Tainan (RLJ), Department of Leisure, Recreation, and Tourism Management, Tainan (SBS, CCH), Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung (SFW), and Department of Education, University of Taipei, Taipei, Taiwan (CC)
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Harmankaya O, Akalin N, Akay H, Okuturlar Y, Erturk K, Kaptanogullari H, Kocoglu H. Comparison of risk factors for cardiovascular disease in hemodialysis and peritoneal dialysis patients. Clinics (Sao Paulo) 2015; 70:601-5. [PMID: 26375560 PMCID: PMC4557587 DOI: 10.6061/clinics/2015(09)01] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE In this study, we aimed to compare the cardiovascular risk factors that might be associated with inflammation, atherosclerosis and metabolic syndrome between hemodialysis and peritoneal dialysis patients. METHODS Fifty hemodialysis and 50 peritoneal dialysis patients who had been receiving dialysis therapy for at least one year were included in the study. Venous blood samples were taken after 12 hours of fasting, and serum glucose, triglyceride, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol, C-reactive protein, fibrinogen and homocysteine levels were measured. The presence of atherosclerotic plaques in the carotid artery was evaluated by carotid Doppler ultrasound. These data were analyzed by Student's t test, the chi-square test and the Mann-Whitney U test, as appropriate. RESULTS No difference was found between the hemodialysis (n=50) and peritoneal dialysis (n=50) patient groups regarding mean age, gender distribution, body mass index or dialysis duration (p=0.269, 0.683, 0.426, and 0.052, respectively). LDL-cholesterol, fibrinogen and homocysteine levels were significantly higher in peritoneal dialysis patients (p=0.006, 0.001, and 0.002, respectively). In patients with diabetes mellitus (n=17) who were undergoing renal replacement therapy, LDL-cholesterol and fibrinogen levels were significantly higher than in patients without diabetes mellitus who were undergoing renal replacement therapy (p=0.001 and 0.004, respectively). CONCLUSION In our study, cardiovascular risk factors (especially LDL-cholesterol) were more frequent in peritoneal dialysis patients than in hemodialysis patients.
Collapse
Affiliation(s)
- Ozlem Harmankaya
- Division of Nephrology, Bakırköy Dr. Sadi Konuk Teaching Hospital, Istanbul, TR
| | - Nilgul Akalin
- Division of Nephrology, Bakırköy Dr. Sadi Konuk Teaching Hospital, Istanbul, TR
| | - Hatice Akay
- Division of Nephrology, Bakırköy Dr. Sadi Konuk Teaching Hospital, Istanbul, TR
| | - Yildiz Okuturlar
- Division of Nephrology, Bakırköy Dr. Sadi Konuk Teaching Hospital, Istanbul, TR
| | - Kayhan Erturk
- Division of Nephrology, Bakırköy Dr. Sadi Konuk Teaching Hospital, Istanbul, TR
| | | | - Hakan Kocoglu
- Division of Nephrology, Bakırköy Dr. Sadi Konuk Teaching Hospital, Istanbul, TR
| |
Collapse
|
31
|
Sathe KP, Yeo WS, Liu ID, Ekambaram S, Azar M, Yap HK, Ng KH. Recurrent white thrombi formation in hemodialysis tubing: a case report. BMC Nephrol 2015; 16:3. [PMID: 25589245 PMCID: PMC4361204 DOI: 10.1186/1471-2369-16-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background While the appearance of red clots in the dialyzer is a common phenomenon in every hemodialysis unit, the occurrence of white thrombi in the tubing is relatively rare. Case presentation We describe an adolescent male with recurrent white thrombi formation in the hemodialysis tubing. This patient had chronic renal failure from focal segmental glomerulosclerosis, but was no longer nephrotic at the time of the thrombi formation. He had a history of recurrent thrombosis of his vascular access. However, no pro-thrombotic risk factors could be identified. White particulate matter, measuring 1 to 3mm in size, and adherent to the arterial and venous blood tubing lines was found during the rinse back of a hemodialysis session. This was associated with a 60% decrease in his platelet count. Light microscopic examination of the deposits revealed the presence of platelet aggregates. He subsequently developed thrombosis of his arteriovenous graft six hours later. The white thrombi recurred at the next dialysis session, as well as six months later. These episodes occurred regardless of the type of dialysis machine or tubing, and appeared to resolve with an increase in heparin dose. Conclusion Recurrent white thrombi formation can occur in the hemodialysis tubing of a patient with no identifiable pro-thrombotic factors. The white thrombi may be a harbinger of arteriovenous graft thrombosis and may be prevented by an increase in heparin dose.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kar-Hui Ng
- Shaw-NKF-NUH Children's Kidney Centre, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Level 12 NUHS Tower Block, 1E Kent Ridge Road, Singapore 119228, Singapore.
| |
Collapse
|
32
|
Akahoshi N, Kamata S, Kubota M, Hishiki T, Nagahata Y, Matsuura T, Yamazaki C, Yoshida Y, Yamada H, Ishizaki Y, Suematsu M, Kasahara T, Ishii I. Neutral aminoaciduria in cystathionine β-synthase-deficient mice, an animal model of homocystinuria. Am J Physiol Renal Physiol 2014; 306:F1462-76. [DOI: 10.1152/ajprenal.00623.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney is one of the major loci for the expression of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH). While CBS-deficient ( Cbs−/−) mice display homocysteinemia/methioninemia and severe growth retardation, and rarely survive beyond the first 4 wk, CTH-deficient ( Cth−/−) mice show homocysteinemia/cystathioninemia but develop with no apparent abnormality. This study examined renal amino acid reabsorption in those mice. Although both 2-wk-old Cbs−/− and Cth−/− mice had normal renal architecture, their serum/urinary amino acid profiles largely differed from wild-type mice. The most striking feature was marked accumulation of Met and cystathionine in serum/urine/kidney samples of Cbs−/− and Cth−/− mice, respectively. Levels of some neutral amino acids (Val, Leu, Ile, and Tyr) that were not elevated in Cbs−/− serum were highly elevated in Cbs−/− urine, and urinary excretion of other neutral amino acids (except Met) was much higher than expected from their serum levels, demonstrating neutral aminoaciduria in Cbs−/− (not Cth−/−) mice. Because the bulk of neutral amino acids is absorbed via a B0AT1 transporter and Met has the highest substrate affinity for B0AT1 than other neutral amino acids, hypermethioninemia may cause hyperexcretion of neutral amino acids.
Collapse
Affiliation(s)
- Noriyuki Akahoshi
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan; and
| | - Shotaro Kamata
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Masashi Kubota
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Takako Hishiki
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Yoshiko Nagahata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Tomomi Matsuura
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Chiho Yamazaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yuka Yoshida
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hidenori Yamada
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Makoto Suematsu
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Tadashi Kasahara
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Isao Ishii
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
33
|
Influence of dialysis techniques and alternate vitamin supplementation on homocysteine levels in patients with known MTHFR genotypes. Clin Exp Nephrol 2014; 19:140-5. [DOI: 10.1007/s10157-014-0961-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
|
34
|
Abais JM, Xia M, Li G, Gehr TWB, Boini KM, Li PL. Contribution of endogenously produced reactive oxygen species to the activation of podocyte NLRP3 inflammasomes in hyperhomocysteinemia. Free Radic Biol Med 2014; 67:211-20. [PMID: 24140862 PMCID: PMC3945111 DOI: 10.1016/j.freeradbiomed.2013.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022]
Abstract
Hyperhomocysteinemia (hHcys) is an important pathogenic factor contributing to the progression of end-stage renal disease. Recent studies have demonstrated the implication of nicotinamide adenine dinucleotide phosphate oxidase-mediated NLRP3 inflammasome activation in the development of podocyte injury and glomerular sclerosis during hHcys. However, it remains unknown which reactive oxygen species (ROS) are responsible for this activation of NLRP3 inflammasomes and how such action of ROS is controlled. This study tested the contribution of common endogenous ROS including superoxide (O2(-)), hydrogen peroxide (H2O2), peroxynitrite (ONOO(-)), and hydroxyl radical (OH) to the activation of NLRP3 inflammasomes in mouse podocytes and glomeruli. In vitro, confocal microscopy and size-exclusion chromatography demonstrated that dismutation of O2(-) by 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol) and decomposition of H2O2 by catalase prevented Hcys-induced aggregation of NLRP3 inflammasome proteins and inhibited Hcys-induced caspase-1 activation and IL-1β production in mouse podocytes. However, scavenging of ONOO(-) or OH had no significant effect on either Hcys-induced NLRP3 inflammasome formation or activation. In vivo, scavenging of O2(-) by Tempol and removal of H2O2 by catalase substantially inhibited NLRP3 inflammasome formation and activation in glomeruli of hHcys mice as shown by reduced colocalization of NLRP3 with ASC or caspase-1 and inhibition of caspase-1 activation and IL-1β production. Furthermore, Tempol and catalase significantly attenuated hHcys-induced glomerular injury. In conclusion, endogenously produced O2(-) and H2O2 primarily contribute to NLRP3 inflammasome formation and activation in mouse glomeruli resulting in glomerular injury or consequent sclerosis during hHcys.
Collapse
Affiliation(s)
- Justine M Abais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Min Xia
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Todd W B Gehr
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Krishna M Boini
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
35
|
Gaikwad NW. Mass spectrometry evidence for formation of estrogen-homocysteine conjugates: estrogens can regulate homocysteine levels. Free Radic Biol Med 2013; 65:1447-1454. [PMID: 23928335 DOI: 10.1016/j.freeradbiomed.2013.07.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/09/2013] [Accepted: 07/26/2013] [Indexed: 12/17/2022]
Abstract
Homocysteine (HCys), a sulfur-containing amino acid, is formed during the metabolism of methionine. An imbalance between the rate of production and the use of HCys during methionine metabolism can result in an increase in the plasma and urinary levels of HCys. HCys has been shown to be toxic to vascular endothelial cells through several pathways. Many earlier clinical studies have revealed an association between plasma HCys and cardiovascular and other diseases. In contrast, estrogens are suggested to lower the risk of cardiovascular disease. Several studies indicate that estrogen metabolites could be responsible for cardiovascular protection. It has been demonstrated that electrophilic estrogen quinones, E1(E2)-2,3-Q and E1(E2)-3,4-Q, can alkylate DNA as well as form conjugates with glutathione. I hypothesize that estrogen quinones generated in situ by oxidative enzymes, metal ions, or molecular oxygen can interact with HCys to form conjugates. This in turn could lower the levels of toxic HCys as well as quenching the reactive estrogen quinones, resulting in cardiovascular protective effects. To test the feasibility of a protective estrogen-HCys pathway, estrogen quinones were treated with HCys. Tandem mass spectrometry analysis of the assay mixture shows the formation of estrogen-HCys conjugates. Furthermore, incubation of catechol estrogens with myeloperoxidase (MPO) in the presence of HCys resulted in the formation of respective estrogen-HCys conjugates. The identities of estrogen-HCys conjugates in MPO assay extracts were confirmed by comparing them to pure synthesized estrogen-HCys standards. I propose that through conjugation estrogens could chemically regulate HCys levels; moreover these conjugates could be used as potential biomarkers in determining health.
Collapse
Affiliation(s)
- Nilesh W Gaikwad
- Department of Nutrition and Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
36
|
Plasma homocysteine levels in HIV-infected men with and without lipodystrophy. Nutrition 2013; 29:1326-30. [PMID: 24045000 DOI: 10.1016/j.nut.2013.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Lipodystrophy syndrome is an unexpected clinical manifestation in patients infected with HIV and might be a clinical marker of increased risk for cardiovascular diseases (CVDs). Because hyperhomocysteinemia has been associated with CVD, the goal of the present study was to investigate homocysteine (Hcy) levels and their association with the factors of lipodystrophy syndrome in men with HIV. METHODS Hcy metabolism-related molecules were determined in 13 men infected with HIV with lipodystrophy (HIV+LIP), 10 men with HIV without lipodystrophy (HIV), and 10 healthy controls (C). RESULTS Significant (P < 0.05) increased Hcy plasma levels were found in HIV (20.5%) and in HIV+LIP (35.2%) compared with the control group. Plasma levels of vitamin B12 (HIV, 26.5%; HIV+LIP, 28.8%) and folate (HIV, 39.1% and HIV+LIP, 49.4%) were significantly (P < 0.05) lower in the two groups of HIV patients compared with control. HIV+LIP men presented raised plasma total sulfur-containing amino acids (20.1%) and lower total plasma thiol (11.3%) than controls. The same was not observed in the HIV group. Spearman's correlation test revealed significant (P < 0.05) association between plasma Hcy and duration of highly active antiretroviral therapy (HAART) and plasma insulin, as well as plasma adiponectin levels. CONCLUSION Our results demonstrated that HIV+LIP men were more susceptible to disturbances in Hcy metabolism compared with men infected with HIV without lipodystrophy characteristics. Duration of HAART treatment, elevated plasma insulin, and low levels of adiponectin seem to be relevant for the appearance of these Hcy metabolic disorders.
Collapse
|