1
|
Batool Bukhari SA, Aziz A, Nasir H, Ullah S, Akhtar T, Iram S, Sitara E, Mushtaq S, Moiz SA. Manganese tetraphenylporphyrin and carbon nanocoil interface-based electrochemical sensing of tyrosine. RSC Adv 2024; 14:24105-24114. [PMID: 39131187 PMCID: PMC11313211 DOI: 10.1039/d4ra02048k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Tyrosine is one of the essential metabolites present in the human body for nutritional maintenance and normal physiological functioning. Its concentration in the body is crucial in predicting various hereditary, emotional, and physiological disorders. Therefore, quantitative monitoring of tyrosine in clinical samples is indispensable. We state the use of carbon nanocoils/manganese tetraphenylporphyrin convened glassy carbon electrode (CNC/MnTPP/GC) for the streamlined electrochemical sensing of tyrosine. Cutting-edge analytical techniques were employed to perform a comprehensive physicochemical analysis of the synthesized materials. To investigate the electrochemical properties, various techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy, and chronocoulometry were employed. CNC/MnTPP/GC displayed an optimal response at pH 5 and exhibited remarkable linearity within the concentration range of 0.05 to 100 μM for tyrosine. Using DPV, it demonstrated a low limit of detection (21 nM ± 1.17) and a sensitivity of 0.12 μA μM-1 cm-2. CNC/MnTPP/GC displayed excellent performance in terms of repeatability, reproducibility, and stability for up to 30 days, making it suitable for real-time analysis, particularly in the analysis of tyrosine in blood serum. Notably, CNC/MnTPP/GC showcased a superior detection limit compared to previously reported methods.
Collapse
Affiliation(s)
- Syeda Aqsa Batool Bukhari
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
| | - Abeera Aziz
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
| | - Habib Nasir
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
| | - Sharif Ullah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
| | - Tehmina Akhtar
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
| | - Sadia Iram
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
- Department of Chemistry, Rawalpindi Women University Rawalpindi Pakistan
| | - Effat Sitara
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
- Department of Chemistry, Karakoram International University Gilgit Pakistan
| | - Shehla Mushtaq
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
- Department of Chemistry, University of Management and Technology Sialkot Pakistan
| | - Syed Abdul Moiz
- Department of Electrical Engineering, Umm Al-Qura University Saudi Arabia
| |
Collapse
|
2
|
Fan X, Rong H, Wang Y, Li M, Song W, Su A, Yu T. The correlation between serum total bile acid and alanine aminotransferase of pregnant women and the disorders of neonatal hyperbilirubinemia-related amino acid metabolism. BMC Pregnancy Childbirth 2024; 24:26. [PMID: 38172739 PMCID: PMC10763467 DOI: 10.1186/s12884-023-06226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND To explore the association between liver metabolism-related indicators in maternal serum and neonatal hyperbilirubinemia (NHB), and further investigate the predictive value of these indicators in NHB-related amino acid metabolism disorders. METHODS 51 NHB and 182 No-NHB newborns and their mothers who treated in the Fourth Hospital of Shijiazhuang from 2018 to 2022 were participated in the study. The differences in clinical data were compared by the Mann-Whitney U test and Chi-square test. Multivariate logistic regression was used to analyze the relationship between maternal serum indicators and the occurrence of NHB. The correlation analysis and risk factor assessment of maternal serum indicators with NHB-related amino acid metabolic disorders were performed using Spearman correlation analysis and multivariate logistic regression. RESULTS Compared to the non NHB group, the NHB group had higher maternal serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), ALT/AST, and total bile acid (TBA), while lower levels of serum albumin (ALB), total cholesterol (TC) and high-density lipoprotein (HDL). The levels of alanine (ALA), valine (VAL), ornithine (ORN), and proline (PRO) in the newborns were reduced in NHB group, while arginine (ARG) showed a tendency to be elevated. Multiple logistic regression analysis showed that maternal ALT, AST, ALT/AST, and TBA levels were all at higher risk with the development of NHB, whereas ALB, TC, and HDL levels were negatively associated with NHB development. Increasing maternal TBA level was associated with lower ALA (r=-0.167, p = 0.011), VAL (r=-0.214, p = 0.001), ORN (r=-0.196, p = 0.003), and PRO in the newborns (r=-0.131, p = 0.045). Maternal ALT level was negatively associated with ALA (r=-0.135, p = 0.039), VAL (r=-0.177, p = 0.007), ORN (r=-0.257, p < 0.001), while ALT/AST was positively correlated with ARG (r = 0.133, p = 0.013). After adjustment for confounding factors, maternal serum TBA and ALT were the independent risk factor for neonatal ORN metabolic disorders [(adjusted odds ratio (AOR) = 0.379, 95%CI = 0.188-0.762, p = 0.006), (AOR = 0.441, 95%CI = 0.211-0.922, p = 0.030)]. Maternal ALT level was an independent risk factor for neonatal VAL metabolic disorders (AOR = 0.454, 95%CI = 0.218-0.949, p = 0.036). CONCLUSIONS The levels of high TBA, ALT, AST, and low HDL, TC of maternal were associated with the risk of NHB. Maternal TBA and ALT levels were independent risk factors for NHB-related amino acid disturbances which have value as predictive makers.
Collapse
Affiliation(s)
- Xizhenzi Fan
- Research center for clinical medical sciences, Hebei key laboratory of maternal and fetal medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Huijuan Rong
- Department of Nursing, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Yingying Wang
- Department of Functional Region of Diagnosis, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Mingwei Li
- Research center for clinical medical sciences, Hebei key laboratory of maternal and fetal medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Wenhui Song
- Research center for clinical medical sciences, Hebei key laboratory of maternal and fetal medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Achou Su
- Research center for clinical medical sciences, Hebei key laboratory of maternal and fetal medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Tianxiao Yu
- Research center for clinical medical sciences, Hebei key laboratory of maternal and fetal medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China.
| |
Collapse
|
3
|
Rabti H, Amrane M, Lalaouna A, Flilissa A, Benguerba Y. Optimization and validation of a bioanalytical HPLC-UV technique for simultaneous determination of underivatized phenylalanine and tyrosine in the blood for phenylketonuria diagnosis and monitoring. Biomed Chromatogr 2024; 38:e5758. [PMID: 37795814 DOI: 10.1002/bmc.5758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
This study aimed to develop a fast, accurate, and precise high-performance liquid chromatography with UV detection method for simultaneous analysis of underivatized phenylalanine (Phe) and tyrosine (Tyr) in biological samples. Separation of the analytes was accomplished using a Discovery HS F5-3 column, which offered better retention and peak symmetry for the tested analytes. Chromatographic conditions were optimized using central composite experimental design, and three factors were investigated: the concentration of ammonium acetate (A), the acetonitrile proportion in the mobile phase (B) and the column oven temperature (C). The approach was verified using β-expectation tolerance intervals for total error measurement that did not exceed 15%. Optimal settings were A = 50 mm, B = 24% and C = 28°C. The method applicability was determined using human plasma from 75 volunteers. The limits of detection and quantification of the technique were satisfactory at 9 and 29 μm for Phe and 4 and 13 μm for Tyr. The mean analytical bias in spiking levels was acceptable, ranging from -1.649 to +1.659% for both substances, with RSD <5% in all instances. The suggested approach was successfully used to analyze Phe and Tyr in human blood samples and calculate the Phe/Tyr ratio.
Collapse
Affiliation(s)
- Hadjira Rabti
- Laboratory of Cardiovascular Diseases with Genetic and Nutritional Origin (LMCGN), Ferhat Abbas-Setif 1 University, Setif, Algeria
- Department of Pharmaceutical Engineering, Faculty of Process Engineering, Salah Boubnider-Constantine 3 University, Constantine, Algeria
| | - Mounira Amrane
- Laboratory of Cardiovascular Diseases with Genetic and Nutritional Origin (LMCGN), Ferhat Abbas-Setif 1 University, Setif, Algeria
- Mokhtari Abdelghani Cancer Center, Elbez, Setif, Algeria
| | - Abdeldjalil Lalaouna
- Analytical Chemistry Laboratory, Pharmacy Department, Faculty of Medicine, Salah Boubnider-Constantine 3 University, Constantine, Algeria
| | - Abdenacer Flilissa
- Laboratory of Cardiovascular Diseases with Genetic and Nutritional Origin (LMCGN), Ferhat Abbas-Setif 1 University, Setif, Algeria
| | - Yacine Benguerba
- Biopharmacy and Pharmatechnie Laboratory (LBPT), Ferhat ABBAS University- Setif 1, Setif, Algeria
| |
Collapse
|
4
|
Serbest Z, Gorduk O, Sahin Y. One-Step Electrochemical Fabrication of Lithium-Intercalated Pencil Graphite Electrode (PGE) for the Differential Pulse Voltammetric (DPV) Determination of l-Tyrosine. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Zeynep Serbest
- Faculty of Arts and Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Ozge Gorduk
- Faculty of Arts and Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Yucel Sahin
- Faculty of Arts and Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
5
|
Liu K, Li J, Long T, Wang Y, Yin T, Long J, Shen Y, Cheng L. Changes in serum amino acid levels in non-small cell lung cancer: a case-control study in Chinese population. PeerJ 2022; 10:e13272. [PMID: 35469201 PMCID: PMC9034703 DOI: 10.7717/peerj.13272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Background Previous studies have shown the alteration of amino acid (AA) profile in patients with non-small cell lung cancer (NSCLC). However, there is little data regarding AA profile in NSCLC in Chinese population. The aim of this study was to evaluate AA profile in Chinese NSCLC patients, explore its utility in sample classification and further discuss its related metabolic pathways. Methods The concentrations of 22 AAs in serum samples from 200 patients with NSCLC and 202 healthy controls were determined by liquid chromatography-tandem mass spectrometer (LC-MS/MS). AA levels in different tumor stages and histological types were also discussed. The performance of AA panel in classifying the cases and controls was evaluated in the training data set and validation data set based on the receiver operating characteristic (ROC) curve, and the important metabolic pathways were identified. Results The concentrations of tryptophan (Trp), phenylalanine (Phe), isoleucine (Ile), glycine (Gly), serine (Ser), aspartic acid (Asp), asparagine (Asn), cystein (Cys), glutamic acid (Glu), ornithine (Orn) and citrulline (Cit) were significantly altered in NSCLC patients compared with controls (all P-FDR < 0.05). Among these, four AAs including Asp, Cys, Glu and Orn were substantially up-regulated in NSCLC patients (FC ≥ 1.2). AA levels were significantly altered in patients with late-stage NSCLC, but not in those with early-stage when comparing with healthy controls. In terms of histological type, these AAs were altered in both adenocarcinoma and squamous cell carcinoma. For discrimination of NSCLC from controls, the area under the ROC curve (AUC) was 0.80 (95% CI [0.74-0.85]) in the training data set and 0.79 (95%CI [0.71-0.87]) in the validation data set. The AUCs for early-stage and late-stage NSCLC were 0.75 (95% CI [0.68-0.81]) and 0.86 (95% CI [0.82-0.91]), respectively. Moreover, the model showed a better performance in the classification of squamous cell carcinoma (AUC = 0.90, 95% CI [0.85-0.95]) than adenocarcinoma (AUC = 0.77, 95% CI [0.71-0.82]) from controls. Three important metabolic pathways were involved in the alteration of AA profile, including Gly, Ser and Thr metabolism; Ala, Asp and Glu metabolism; and Arg biosynthesis. Conclusions The levels of several AAs in serum were altered in Chinese NSCLC patients. These altered AAs may be utilized to classify the cases from the controls. Gly, Ser and Thr metabolism; Ala, Asp and Glu metabolism and Arg biosynthesis pathways may play roles in metabolism of the NSCLC patient.
Collapse
Affiliation(s)
- Ke Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongxin Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Sarı T, Dede S, Yusufoğlu B, Karakuş E. Determination of L-Phenylalanine in Human Plasma Samples with New Fluorometric Method. Appl Biochem Biotechnol 2022; 194:1259-1270. [PMID: 34661869 DOI: 10.1007/s12010-021-03694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
The measurement of phenylalanine in biological fluids for the diagnosis of phenylketonuria (PKU) in newborns and the monitoring/therapeutic drug monitoring of individuals with PKU are especially important. Owing to the importance of PKU monitoring in clinical medicine, a new fluorometric method was developed for the determination of L-phenylalanine in serum samples. This method is based on the relationship between phenylalanine ammonia-lyase (PAL) and o-phthalaldehyde (OPA). PAL catalyzes the conversion of phenylalanine to ammonia and trans-cinnamic acid. The formed ammonia reacts with OPA in the presence of sodium sulfite, giving a fluorescent product. The presence of sulfide in an alkaline environment prevents OPA from reacting with other amino acids while allowing it to react only with ammonia. Method characterization and optimization studies, such as the effects of pH, temperature, and interferents, were carried out. The amount of L-phenylalanine in a human serum sample was successfully determined by using the fluorescence emission intensity of the fluorescent product formed as a result of the reaction between OPA and ammonia. The linear range of the method is between 10 μM and 10 mM. The obtained result showed good agreement with the results of the biochemistry analysis laboratory. Recoveries of 95.41% and 73.39% were obtained for phenylalanine and ammonia, respectively. This PAL-OPA-based fluorometric method for phenylalanine is practical, easy to operate, low cost, highly sensitive, and selective and can also be used for the simultaneous determination of ammonia in human serum samples.
Collapse
Affiliation(s)
- Tolga Sarı
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Davutpaşa Street, Esenler, 34290, Istanbul, Turkey
| | - Süreyya Dede
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Davutpaşa Street, Esenler, 34290, Istanbul, Turkey
| | - Büşra Yusufoğlu
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Davutpaşa Street, Esenler, 34290, Istanbul, Turkey
| | - Emine Karakuş
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Davutpaşa Street, Esenler, 34290, Istanbul, Turkey.
| |
Collapse
|
7
|
Dinu A, Apetrei C. Quantification of Tyrosine in Pharmaceuticals with the New Biosensor Based on Laccase-Modified Polypyrrole Polymeric Thin Film. Polymers (Basel) 2022; 14:441. [PMID: 35160431 PMCID: PMC8839761 DOI: 10.3390/polym14030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
Stress, a state of body tension, sometimes caused by increased levels of tyrosine (Tyr) in the body, can lead to serious illnesses such as depression, irritability, anxiety, damage to the thyroid gland, and insomnia. The body can be provided with an adequate concentration of tyrosine by taking pharmaceutical products or by dietary intake. Therefore, this study presents the development of a new enzyme sensor for the quantification of Tyr in pharmaceuticals. A screen-printed carbon electrode (SPCE) was modified with the conductive polymer (CP) polypyrrole (PPy) doped with hexacyanoferrate (II) anion (FeCN), the polymer having been selected for its excellent properties, namely, permeability, conductivity, and stability. The enzyme laccase (Lacc) was subsequently immobilized in the polymer matrix and cross-linked with glutaraldehyde, as this enzyme is a thermostable catalyst, greatly improving the performance of the biosensor. The electrochemical method of analysis of the new device, Lacc/PPy/FeCN/SPCE, was cyclic voltammetry (CV), and chronoamperometry (CA) contributed to the study of changes in the biosensor with doped PPy. CV measurements confirmed that the Lacc/PPy/FeCN/SPCE biosensor is a sensitive and efficient platform for Tyr detection. Thus, this enzyme sensor showed a very low limit of detection (LOD) of 2.29 × 10-8 M, a limit of quantification (LOQ) of 7.63 × 10-8 M, and a very high sensitivity compared to both devices reported in the literature and the PPy/FeCN/SPCE sensor. Quantitative determination in pharmaceuticals was performed in L-Tyr solution of different concentrations ranging from 0.09 to 7 × 10-6 M. Validation of the device was performed by infrared spectrometry (FT-IR) on three pharmaceuticals from different manufacturers and with different Tyr concentrations.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, 47 Domnească Street, RO-800008 Galati, Romania;
| |
Collapse
|
8
|
Torul H, Çalık Kayiş E, Boyaci IH, Tamer U. An ECL sensor combined with a paper electrode for the determination of phenylalanine. Analyst 2022; 147:4866-4875. [DOI: 10.1039/d2an01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An electrochemiluminescence (ECL) sensor combined with a paper electrode was developed for the detection of phenylalanine (l-Phe) in blood samples.
Collapse
Affiliation(s)
- Hilal Torul
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, 06330 Ankara, Turkey
| | - Elif Çalık Kayiş
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, 06330 Ankara, Turkey
| | - I. Hakki Boyaci
- Department of Food Engineering, Hacettepe University, Beytepe, 06512 Ankara, Turkey
| | - Ugur Tamer
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, 06330 Ankara, Turkey
| |
Collapse
|
9
|
Optimization of Pre-Inoculum, Fermentation Process Parameters and Precursor Supplementation Conditions to Enhance Apigenin Production by a Recombinant Streptomyces albus Strain. FERMENTATION 2021. [DOI: 10.3390/fermentation7030161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptomyces albus J1074-pAPI (Streptomyces albus-pAPI) is a recombinant strain constructed to biotechnologically produce apigenin, a flavonoid with interesting bioactive features that up to now has been manufactured by extraction from plants with long and not environmentally friendly procedures. So far, in literature, only a maximum apigenin concentration of 80.0 µg·L−1 has been obtained in shake flasks. In this paper, three integrated fermentation strategies were exploited to enhance the apigenin production by Streptomyces albus J1074-pAPI, combining specific approaches for pre-inoculum conditions, optimization of fermentation process parameters and supplementation of precursors. Using a pre-inoculum of mycelium, the apigenin concentration increased of 1.8-fold in shake flask physiological studies. In 2L batch fermentation, the aeration and stirring conditions were optimized and integrated with the new inoculum approach and the apigenin production reached 184.8 ± 4.0 µg·L−1, with a productivity of 2.6 ± 0.1 μg·L−1·h−1. The supplementation of 1.5 mM L-tyrosine in batch fermentations allowed to obtain an apigenin production of 343.3 ± 3.0 µg·L−1 in only 48 h, with an increased productivity of 7.1 ± 0.1 μg·L−1·h−1. This work demonstrates that the optimization of fermentation process conditions is a crucial requirement to increase the apigenin concentration and productivity by up to 4.3- and 10.7-fold.
Collapse
|
10
|
Fazial FF, Tan LL. Phenylalanine-responsive fluorescent biosensor based on graphene oxide-chitosan nanocomposites catalytic film for non-destructive fish freshness grading. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Coene KLM, Timmer C, Goorden SMI, ten Hoedt AE, Kluijtmans LAJ, Janssen MCH, Rennings AJM, Prinsen HCMT, Wamelink MMC, Ruijter GJG, Körver‐Keularts IMLW, Heiner‐Fokkema MR, van Spronsen FJ, Hollak CE, Vaz FM, Bosch AM, Huigen MCDG. Monitoring phenylalanine concentrations in the follow-up of phenylketonuria patients: An inventory of pre-analytical and analytical variation. JIMD Rep 2021; 58:70-79. [PMID: 33728249 PMCID: PMC7932865 DOI: 10.1002/jmd2.12186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Reliable measurement of phenylalanine (Phe) is a prerequisite for adequate follow-up of phenylketonuria (PKU) patients. However, previous studies have raised concerns on the intercomparability of plasma and dried blood spot (DBS) Phe results. In this study, we made an inventory of differences in (pre-)analytical methodology used for Phe determination across Dutch laboratories, and compared DBS and plasma results. METHODS Through an online questionnaire, we assessed (pre-)analytical Phe measurement procedures of seven Dutch metabolic laboratories. To investigate the difference between plasma and DBS Phe, participating laboratories received simultaneously collected plasma-DBS sets from 23 PKU patients. In parallel, 40 sample sets of DBS spotted from either venous blood or capillary fingerprick were analyzed. RESULTS Our data show that there is no consistency on standard operating procedures for Phe measurement. The association of DBS to plasma Phe concentration exhibits substantial inter-laboratory variation, ranging from a mean difference of -15.5% to +30.6% between plasma and DBS Phe concentrations. In addition, we found a mean difference of +5.8% in Phe concentration between capillary DBS and DBS prepared from venous blood. CONCLUSIONS The results of our study point to substantial (pre-)analytical variation in Phe measurements, implicating that bloodspot Phe results should be interpreted with caution, especially when no correction factor is applied. To minimize variation, we advocate pre-analytical standardization and analytical harmonization of Phe measurements, including consensus on application of a correction factor to adjust DBS Phe to plasma concentrations.
Collapse
Affiliation(s)
- Karlien L. M. Coene
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CentreNijmegenThe Netherlands
| | - Corrie Timmer
- Department Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Susan M. I. Goorden
- Laboratory Genetic Metabolic Diseases, Department of Clinical ChemistryAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Amber E. ten Hoedt
- Department of Paediatrics, Division of Metabolic DisordersAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Leo A. J. Kluijtmans
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CentreNijmegenThe Netherlands
| | - Mirian C. H. Janssen
- Department of Internal MedicineRadboud University Medical CentreNijmegenThe Netherlands
| | | | | | - Mirjam M. C. Wamelink
- Metabolic Laboratory, Department of Clinical ChemistryAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - George J. G. Ruijter
- Center for Lysosomal and Metabolic Diseases, Department of Clinical GeneticsErasmus MCRotterdamThe Netherlands
| | - Irene M. L. W. Körver‐Keularts
- Laboratory of Biochemical Genetics, Department of Clinical GeneticsMaastricht University Medical CentreMaastrichtThe Netherlands
| | - M. Rebecca Heiner‐Fokkema
- Laboratory of Metabolic DiseasesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Francjan J. van Spronsen
- Division of Metabolic DiseasesBeatrix Children's Hospital, University Medical Centre GroningenGroningenThe Netherlands
| | - Carla E. Hollak
- Department Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical ChemistryAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Annet M. Bosch
- Department of Paediatrics, Division of Metabolic DisordersAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Marleen C. D. G. Huigen
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CentreNijmegenThe Netherlands
| |
Collapse
|
12
|
Wang B, Feng C, Dang J, Zhu Y, Yang X, Zhang T, Zhang R, Li J, Tang J, Shen C, Shen L, Dong J, Zhang X. Preparation of Fibroblast Suppressive Poly(ethylene glycol)- b-poly(l-phenylalanine)/Poly(ethylene glycol) Hydrogel and Its Application in Intrauterine Fibrosis Prevention. ACS Biomater Sci Eng 2020; 7:311-321. [PMID: 33455202 DOI: 10.1021/acsbiomaterials.0c01390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrauterine adhesions (IUA) often occur as a result of trauma to the basal layer after curettage, postpartum hemorrhage, or surgical miscarriage. Endometrial fibrosis is the primary pathological feature of IUA. The characteristic features of IUA include excessive deposition and reorganization of the extracellular matrix, replacing the normal endometrium. To prevent uterine fibrosis after injury, we prepared and evaluated a type of fibroblast suppressive hydrogel. Poly(ethylene glycol)-b-poly(l-phenylalanine) (PEBP) copolymers were successfully synthesized by ring opening polymerization of l-Phenylalanine N-carboxyanhydride, initiated by methoxy-poly(ethylene glycol)-amine. Injectable PEBP/PEG hydrogels were subsequently formed through π-π accumulations between PEBP macromolecules and hydrogen bonds among PEBP, PEG, and H2O molecules. PEBP/PEG hydrogel could suppress the proliferation of fibroblasts due to the action of l-Phe, released sustainably from PEBP/PEG gels. Lastly, the in vivo preventive effect of PEBP/PEG hydrogel on fibrosis was evaluated in a rat uterine curettage model. It was found that PEBP/PEG hydrogel suppressed uterine fibrosis caused by curettage and promoted embryo implantation in injured uterine by regulating the expression and interactions of transforming growth factor beta 1 (TGF-β1) and Muc-4. PEBP/PEG hydrogels have the potential for application in uterine adhesion prevention owing to their fibrosis preventive and pregnancy promotiing effects on uterine tissue after injury.
Collapse
Affiliation(s)
- Bing Wang
- Medical Imaging Key Laboratory of Sichuan Province & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Chengmin Feng
- Otorhinolaryngology, Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiafeng Dang
- Gynecology and Obstetrics, Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Yanghui Zhu
- School of Pharmacy, North Sichuan Medical College, 637000 Nanchong, P. R. China
| | - Xiaomei Yang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Ting Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Ruqin Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Jiawen Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Jing Tang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Chengyi Shen
- Medical Imaging Key Laboratory of Sichuan Province & Institute of Morphological Research, North Sichuan Medical College, Nanchong, P. R. China
| | - Lunhua Shen
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jun Dong
- Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province & Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
13
|
Gouda AS, Nazim WS. Development of a simple method for the analysis of phenylalanine in dried blood spot using tandem mass spectrometry. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00100-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Phenylketonuria (PKU), inborn error of metabolism, results from phenylalanine hydroxylase deficiency. PKU leads to neurological manifestations, intellectual disability, and mental disorders. Treatment depends on phenylalanine-restricted diet.
Diagnosis and follow-up of PKU depends on blood phenylalanine level. The development of bacterial inhibition assay was the first routine screening test for PKU. ELISA and amino acids analyzers methods were then developed.
Tandem mass spectrometry was introduced for newborn screening from dried blood spot in the late 1990s. Since then, several methods were developed, starting from using HPLC column followed by direct injection in mass spectrometer by analyte derivatization and use of external and internal standards. Kits are available for neonatal screening without derivatization using internal standards for quantitation.
Due to high PKU incidence in Egypt, it is important to continuously ameliorate the methods for neonatal diagnosis and follow-up.
Results
External standards as dried blood spots were prepared according to the previously described procedures. These standards were evaluated for phenylalanine concentration using ELISA kit. Analysis of samples was done with a single-step elution from dried blood spot followed by 1-min mass spectrometry analysis. Validation was done according to US FDA and other related guidelines. Fifty samples were analyzed by ELISA and another 126 samples were analyzed by mass spectrometer kit. All these samples were analyzed by the developed method and no statistically significant difference was observed.
Conclusion
New simple method is developed for phenylalanine quantitation in dried blood spot using tandem mass spectrometry. This method is cost and time effective.
Collapse
|
14
|
Voltammetric Determination of Phenylalanine Using Chemically Modified Screen-Printed Based Sensors. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper describes the sensitive properties of screen-printed carbon electrodes (SPCE) modified by using three different electroactive chemical compounds: Meldola’s Blue, Cobalt Phthalocyanine and Prussian Blue, respectively. It was demonstrated that the Prussian Blue (PB) modified SPCE presented electrochemical signals with the highest performances in terms of electrochemical process kinetics and sensitivity in all the solutions analyzed. PB-SPCE was demonstrated to detect Phe through the influence it exerts on the redox processes of PB. The PB-SPCE calibration have shown a linearity range of 0.33–14.5 µM, a detection limit (LOD) of 1.23 × 10−8 M and the standard deviation relative to 3%. The PB-SPCE sensor was used to determine Phe by means of calibration and standard addition techniques on pure samples, on simple pharmaceutical samples or on multicomponent pharmaceutical samples. Direct determination of the concentration of 4 × 10−6–5 × 10−5 M Phe in KCl solution showed that the analytical recovery falls in the range of 99.75–100.28%, and relative standard deviations in the range of 2.28–3.02%. The sensors were successfully applied to determine the Phe in pharmaceuticals. The validation of the method was performed by using the FTIR, and by comparing the results obtained by PB-SPCE in the analysis of three pharmaceutical products of different concentrations with those indicated by the producer.
Collapse
|
15
|
Hua J, Mu Z, Hua P, Wang M, Qin K. Ratiometric fluorescence nanoprobe for monitoring of intracellular temperature and tyrosine based on a dual emissive carbon dots/gold nanohybrid. Talanta 2020; 219:121279. [PMID: 32887169 DOI: 10.1016/j.talanta.2020.121279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
A novel dual-emission nitrogen doped carbon dots/gold nanohybrid (NCDs-Au) was designed for specific and sensitive ratiometric detection of intracellular temperature and tyrosine. In this probe, a reductive NCDs was successfully prepared with the use of natural biomass Dendrobium officinale as precursor. The new prepared NCDs acted as both reducers and stabilizers to synthesize a novel NCDs-Au nanohybrid by a facile one-step procedure along with a quantum yield of 14.3%. The prepared nanoprobe showed characteristic fluorescence emissions of NCDs and Au NCs with single-wavelength excitation. Notably, the nanoprobe shows an interesting wavelength-dependent dual response to temperature (448 nm) and tyrosine (660 nm), enabling the two targets to be detected proportionally. As an effective temperature sensor, the nanoprobe exhibited good temperature-dependent fluorescence with a sensational linear response from 5 to 75 °C. In addition, the sensor has a linear response toward tyrosine in the range of 0.5-175 μM with a detection limit of 0.19 μM. Moreover, the fluorescent nanoprobe was successfully applied to ratiometricly monitor the variation of temperature or tyrosine level in cells because of the low cytotoxicity, chemical stability and excellent fluorescence properties. These results suggested that the nanoprobe here has provided the possibility for rapidly biosensing with the acceptable selectivity and sensitivity.
Collapse
Affiliation(s)
- Jianhao Hua
- Faculty of Life Science and Technology,Kunming University of Science and Technology,Kunming,Yunnan Province, 650500,China
| | - Zhao Mu
- Faculty of Life Science and Technology,Kunming University of Science and Technology,Kunming,Yunnan Province, 650500,China
| | - Peng Hua
- Third People's Hospital of Yunnan Province,Kunming,Yunnan Province, 650011,China
| | - Meng Wang
- Faculty of Life Science and Technology,Kunming University of Science and Technology,Kunming,Yunnan Province, 650500,China; Hubei Gedian Humanwell Pharmaceutical Co.,Ltd,Wuhan,Hubei Province, 430206,China
| | - Kunhao Qin
- Faculty of Life Science and Technology,Kunming University of Science and Technology,Kunming,Yunnan Province, 650500,China; Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming,Yunnan Province, 650500,China.
| |
Collapse
|
16
|
Zhou J, Sheth S, Zhou H, Song Q. Highly selective detection of l-Phenylalanine by molecularly imprinted polymers coated Au nanoparticles via surface-enhanced Raman scattering. Talanta 2020; 211:120745. [DOI: 10.1016/j.talanta.2020.120745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 01/27/2023]
|
17
|
A Review on Electrochemical Sensors and Biosensors Used in Phenylalanine Electroanalysis. SENSORS 2020; 20:s20092496. [PMID: 32354070 PMCID: PMC7249663 DOI: 10.3390/s20092496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Phenylalanine is an amino acid found in breast milk and in many foods, being an essential nutrient. This amino acid is very important for the human body because it is transformed into tyrosine and, subsequently, into catecholamine neurotransmitters. However, there are individuals who were born with a genetic disorder called phenylketonuria. The accumulation of phenylalanine and of some metabolites in the body is dangerous and may cause convulsions, brain damage and mental retardation. Determining the concentration of phenylalanine in different biologic fluids is very important because it can provide information about the health status of the individuals envisaged. Since such determinations may be made by using electrochemical sensors and biosensors, numerous researchers have developed such sensors for phenylalanine detection and different sensitive materials were used in order to improve the selectivity, sensitivity and detection limit. The present review aims at presenting the design and performance of some electrochemical bio (sensors) traditionally used for phenylalanine detection as reported in a series of relevant scientific papers published in the last decade.
Collapse
|
18
|
Au nanoparticles @metal organic framework/polythionine loaded with molecularly imprinted polymer sensor: Preparation, characterization, and electrochemical detection of tyrosine. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114052] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Cioates Negut C, Stefanov C, Frederick van Staden J(K. Graphite Based Microsensors Developed for the Electrochemical Determination of L‐Tyrosine from Pharmaceutical Samples. ELECTROANAL 2020. [DOI: 10.1002/elan.201900733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Catalina Cioates Negut
- Laboratory of Electrochemistry and PATLAB Bucharest Bucharest 060021 Romania
- National Institute of Research for Electrochemistry and Condensed Matter Timisoara Romania
| | - Cristina Stefanov
- Laboratory of Electrochemistry and PATLAB Bucharest Bucharest 060021 Romania
- National Institute of Research for Electrochemistry and Condensed Matter Timisoara Romania
| | - Jacobus (Koos) Frederick van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest Bucharest 060021 Romania
- National Institute of Research for Electrochemistry and Condensed Matter Timisoara Romania
| |
Collapse
|
20
|
Moat SJ, Schulenburg-Brand D, Lemonde H, Bonham JR, Weykamp CW, Mei JV, Shortland GS, Carling RS. Performance of laboratory tests used to measure blood phenylalanine for the monitoring of patients with phenylketonuria. J Inherit Metab Dis 2020; 43:179-188. [PMID: 31433494 PMCID: PMC7957320 DOI: 10.1002/jimd.12163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 01/16/2023]
Abstract
Analysis of blood phenylalanine is central to the monitoring of patients with phenylketonuria (PKU) and age-related phenylalanine target treatment-ranges (0-12 years; 120-360 μmol/L, and >12 years; 120-600 μmol/L) are recommended in order to prevent adverse neurological outcomes. These target treatment-ranges are based upon plasma phenylalanine concentrations. However, patients are routinely monitored using dried bloodspot (DBS) specimens due to the convenience of collection. Significant differences exist between phenylalanine concentrations in plasma and DBS, with phenylalanine concentrations in DBS specimens analyzed by flow-injection analysis tandem mass spectrometry reported to be 18% to 28% lower than paired plasma concentrations analyzed using ion-exchange chromatography. DBS specimens with phenylalanine concentrations of 360 and 600 μmol/L, at the critical upper-target treatment-range thresholds would be plasma equivalents of 461 and 768 μmol/L, respectively, when a reported difference of 28% is taken into account. Furthermore, analytical test imprecision and bias in conjunction with pre-analytical factors such as volume and quality of blood applied to filter paper collection devices to produce DBS specimens affect the final test results. Reporting of inaccurate patient results when comparing DBS results to target treatment-ranges based on plasma concentrations, together with inter-laboratory imprecision could have a significant impact on patient management resulting in inappropriate dietary change and potentially adverse patient outcomes. This review is intended to provide perspective on the issues related to the measurement of phenylalanine in blood specimens and to provide direction for the future needs of PKU patients to ensure reliable monitoring of metabolic control using the target treatment-ranges.
Collapse
Affiliation(s)
- Stuart J. Moat
- Department of Medical Biochemistry, Immunology & Toxicology, University Hospital Wales, Cardiff, UK
- School of Medicine, Cardiff University, University Hospital Wales, Cardiff, UK
| | - Danja Schulenburg-Brand
- Department of Medical Biochemistry, Immunology & Toxicology, University Hospital Wales, Cardiff, UK
| | - Hugh Lemonde
- Paediatric Metabolic Medicine, Evelina Children’s Hospital, Guys & St Thomas’ NHSFT, London, UK
| | - James R. Bonham
- Department of Clinical Chemistry, Sheffield Children’s (NHS) FT, Sheffield, UK
| | - Cas W. Weykamp
- MCA Laboratory, Queen Beatrix Hospital, Winterswijk, The Netherlands
| | - Joanne V. Mei
- Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Rachel S. Carling
- Biochemical Sciences, Viapath, Guys & St Thomas’ NHSFT, London, UK
- GKT School of Medical Education, King’s College, London, UK
| |
Collapse
|
21
|
Phenylalanine Photoinduced Fluorescence and Characterization of the Photoproducts by LC-MS. J Fluoresc 2019; 29:1445-1455. [DOI: 10.1007/s10895-019-02449-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
|
22
|
Guo JG, Guo XM, Wang XR, Tian JZ, Bi HS. Metabolic profile analysis of free amino acids in experimental autoimmune uveoretinitis rat plasma. Int J Ophthalmol 2019; 12:16-24. [PMID: 30662835 DOI: 10.18240/ijo.2019.01.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
AIM To determine the differences of amino acid (AA) levels in experimental autoimmune uveoretinitis (EAU). METHODS AA analysis of the plasma samples in EAU rats induced by interphotoreceptor retinoid-binding protein emulsion were performed with high performance liquid chromatography (HPLC) and phenylisothiocyanate (PITC) pre-column derivation methods were performed. Using partial least squares discriminant analysis (PLS-DA), the potential biomarkers were identified in EAU rat plasma, and the metabolic pathways related to EAU were further analyzed. RESULTS The method results showed that linear (r≥0.9957), intra-day reproducible [relative standard deviation (RSD)=0.04%-1.33%], inter-day reproducible (RSD=0.06%-2.07%), repeatability (RSD=0.03%-0.89%), stability (RSD=0.05%-2.48%) and recovery (RSD=1.98%-4.39%), with detection limits of 0.853-11.4 ng/mL. The metabolic profile in EAU rats was different from that in the control groups five AAs concentrations were increased and nine AAs were reduced. Moreover, five metabolic pathways were related to the development of EAU. CONCLUSION The developed method is a simple, rapid and convenient for determination of AAs in EAU rat plasma, and these findings will provide a comprehensive insight on the metabolic profiling of the pathological changes in EAU.
Collapse
Affiliation(s)
- Jun-Guo Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, Shandong Province, China.,Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China
| | - Xin-Miao Guo
- School of Management, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Xing-Rong Wang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, Shandong Province, China.,Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China.,Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China
| | - Jing-Zhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Hong-Sheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, Shandong Province, China.,Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China.,Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China
| |
Collapse
|
23
|
The Characteristics of Intrinsic Fluorescence of Type I Collagen Influenced by Collagenase I. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The triple helix structure of collagen can be degraded by collagenase. In this study, we explored how the intrinsic fluorescence of type I collagen was influenced by collagenase I. We found that tyrosine was the main factor that could successfully excite the collagen fluorescence. Initially, self-assembly behavior of collagen resulted in a large amount of tyrosine wrapped with collagen, which decreased the fluorescence intensity of type I collagen. After collagenase cleavage, some wrapped-tyrosine could be exposed and thereby the intrinsic fluorescence intensity of collagen increased. By observation and analysis, the influence of collagenase to intrinsic fluorescence of collagen was investigated and elaborated. Furthermore, collagenase cleavage to the special triple helix structure of collagen would result in a slight improvement of collagen thermostability, which was explained by the increasing amount of terminal peptides. These results are helpful and effective for reaction mechanism research related to collagen, which can be observed by fluorescent technology. Meantime, the reaction behaviors of both collagenase and collagenolytic proteases can also be analyzed by fluorescent technology. In conclusion, this research provides a foundation for the further investigation of collagen reactions in different areas, such as medicine, nutrition, food and agriculture.
Collapse
|
24
|
Nassef HM, Hagar M, Othman AM. Effect of GO nanosheets on spectrophotometric determination of tyrosine in urine and serum using nitrosonaphthol. Anal Biochem 2018; 558:12-18. [PMID: 30076789 DOI: 10.1016/j.ab.2018.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/02/2023]
Abstract
Here, we aimed to use graphene oxide to improve the selectivity and sensitivity of Tyr determination via the reaction with 1-nitroso-2-naphthol as a selective reagent of Tyr. The reaction between Tyr and 1-nitroso-2-naphthol in absence and presence of GO was studied spectrophotometrically. Different parameters such as concentrations, temperature, incubation time were optimized. The obtained data showed that the maximum absorbance was achieved by using 2 mL of 0.03% 1-nitroso-2-naphthol at temperature 60 °C for 10 min. On the basis of calibration curve of various concentrations of Tyr in the presence of 20 μg mL-1 GO, the limit of detection was 6.4 × 10-6 M (1.15 μg mL-1), where in absence of GO was 1.1 × 10-5 M (19.9 μg mL-1). The selectivity of Tyr in presence of other amino acids and phenols was studied with and without GO. The data obtained revealed that the selectivity of Tyr in presence of GO with respect to some amino acids and phenols was improved. The proposed method has been applied for the determination of Tyr in urine and serum samples. Therefore, GO is a powerful catalytic surface for the sensitive and selective determination of Try in biological fluids.
Collapse
Affiliation(s)
- Hossam M Nassef
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu 46423, Saudi Arabia; Chemistry Department, Faculty of Science, Damietta University, Damietta 34517, Egypt.
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu 46423, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria 23132, Egypt.
| | - Abdelhameed M Othman
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu 46423, Saudi Arabia; Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt.
| |
Collapse
|
25
|
Pang C, Han S, Li Y, Zhang J. Graphene quantum dot‐enhanced chemiluminescence through energy and electron transfer for the sensitive detection of tyrosine. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunhua Pang
- Department of ChemistryModern College of Humanities and Sciences of Shanxi Normal University Linfen Shanxi P. R. China
- School of Life ScienceShanxi Normal University Linfen Shanxi P. R. China
- Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and TechnologyShanxi Normal University Linfen Shanxi P. R. China
| | - Suqin Han
- Department of ChemistryModern College of Humanities and Sciences of Shanxi Normal University Linfen Shanxi P. R. China
- School of Chemistry and Material ScienceShanxi Normal University Linfen Shanxi P. R. China
| | - Yue Li
- School of Chemistry and Material ScienceShanxi Normal University Linfen Shanxi P. R. China
| | - Junmei Zhang
- School of Chemistry and Material ScienceShanxi Normal University Linfen Shanxi P. R. China
| |
Collapse
|
26
|
Wang B, Wen A, Feng C, Niu L, Xiao X, Luo L, Shen C, Zhu J, Lei J, Zhang X. The in vivo anti-fibrotic function of calcium sensitive receptor (CaSR) modulating poly(p-dioxanone-co-l-phenylalanine) prodrug. Acta Biomater 2018; 73:180-189. [PMID: 29660510 DOI: 10.1016/j.actbio.2018.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/18/2018] [Accepted: 04/09/2018] [Indexed: 12/25/2022]
Abstract
In present study, the apoptosis induction and proliferation suppression effects of l-phenylalanine (l-Phe) on fibroblasts were confirmed. The action sites of l-Phe on fibroblasts suppression were deduced to be calcium sensitive receptor (CaSR) which could cause the release of endoplasmic reticulum (ER) Ca2+ stores; disruption of intracellular Ca2+ homeostasis triggers cell apoptosis via the ER or mitochondrial pathways. The down-regulation of CaSR were observed after the application of l-Phe, and the results those l-Phe triggered the increasing of intracellular Ca2+ concentration and calcineurin expression, and then the apoptosis and increasing G1 fraction of fibroblasts have verified our deduction. Hence, l-Phe could be seen as a kind of anti-fibrotic drugs for the crucial participation of fibroblast in the occurrence of fibrosis. And then, poly(p-dioxanone-co-l-phenylalanine) (PDPA) which could prolong the in-vivo anti-fibrotic effect of l-Phe for the sustained release of l-Phe during its degradation could be treated as anti-fibrotic polymer prodrugs. Based on the above, the in vivo anti-fibrotic function of PDPA was evaluated in rabbit ear scarring, rat peritoneum lipopolysaccharide, and rat sidewall defect/cecum abrasion models. PDPA reduced skin scarring and suppressed peritoneal fibrosis and post operation adhesion as well as secretion of transforming growth factor-β1 in injured tissue. These results indicate that PDPA is an effective agent for preventing fibrosis following tissue injury. STATEMENT OF SIGNIFICANCE We have previously demonstrated that poly(p-dioxanone-co-l-phenylalanine) (PDPA) could induce apoptosis to fibroblast and deduced that the inhibitory effect comes from l-phenylalanine. In present study, the inhibition mechanism of l-phenylalanine on fibroblast proliferation was demonstrated. The calcium sensitive receptor (CaSR) was found to be the action site. The CaSR was downregulated after the application of l-phenylalanine, and then the ER Ca2+ stores were released. The released Ca2+ can simultaneously activate Ca2+/calcineurin and then trigger apoptosis and G1 arrest of fibroblast. Hence, l-phenylalanine could be seen as anti-fibrosis drug and PDPA which conjugate l-phenylalanine by hydrolytic covalent bonds could be seen as l-phenylalanine polymer prodrug. Based above, the in vivo anti-fibrotic function of PDPA were verified in three different animal models.
Collapse
Affiliation(s)
- Bing Wang
- Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China.
| | - Aiping Wen
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chengmin Feng
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Lijing Niu
- Department of Pathology, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Xin Xiao
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Le Luo
- Sichuan Key Laboratory of Medical Imaging & Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chengyi Shen
- Sichuan Key Laboratory of Medical Imaging & Institute of Morphological Research, North Sichuan Medical College, Nanchong, China.
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jun Lei
- Department of Pharmacology, North Sichuan Medical College, Nanchong, China
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging & Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
27
|
van Wegberg AMJ, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Giżewska M, Huijbregts SC, Kearney S, Leuzzi V, Maillot F, Muntau AC, van Rijn M, Trefz F, Walter JH, van Spronsen FJ. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis 2017; 12:162. [PMID: 29025426 PMCID: PMC5639803 DOI: 10.1186/s13023-017-0685-2] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine metabolism caused by deficiency in the enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine. If left untreated, PKU results in increased phenylalanine concentrations in blood and brain, which cause severe intellectual disability, epilepsy and behavioural problems. PKU management differs widely across Europe and therefore these guidelines have been developed aiming to optimize and standardize PKU care. Professionals from 10 different European countries developed the guidelines according to the AGREE (Appraisal of Guidelines for Research and Evaluation) method. Literature search, critical appraisal and evidence grading were conducted according to the SIGN (Scottish Intercollegiate Guidelines Network) method. The Delphi-method was used when there was no or little evidence available. External consultants reviewed the guidelines. Using these methods 70 statements were formulated based on the highest quality evidence available. The level of evidence of most recommendations is C or D. Although study designs and patient numbers are sub-optimal, many statements are convincing, important and relevant. In addition, knowledge gaps are identified which require further research in order to direct better care for the future.
Collapse
Affiliation(s)
- A. M. J. van Wegberg
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - A. MacDonald
- Dietetic Department, Birmingham Children’s Hospital, Birmingham, UK
| | - K. Ahring
- Department of PKU, Kennedy Centre, Glostrup, Denmark
| | - A. Bélanger-Quintana
- Metabolic Diseases Unit, Department of Paediatrics, Hospital Ramon y Cajal Madrid, Madrid, Spain
| | - N. Blau
- University Children’s Hospital, Dietmar-Hoppe Metabolic Centre, Heidelberg, Germany
- University Children’s Hospital Zürich, Zürich, Switzerland
| | - A. M. Bosch
- Department of Paediatrics, Division of Metabolic Disorders, Academic Medical Centre, University Hospital of Amsterdam, Amsterdam, The Netherlands
| | - A. Burlina
- Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - J. Campistol
- Neuropaediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - F. Feillet
- Department of Paediatrics, Hôpital d’Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - M. Giżewska
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - S. C. Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
| | - S. Kearney
- Clinical Psychology Department, Birmingham Children’s Hospital, Birmingham, UK
| | - V. Leuzzi
- Department of Paediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - F. Maillot
- CHRU de Tours, Université François Rabelais, INSERM U1069, Tours, France
| | - A. C. Muntau
- University Children’s Hospital, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - M. van Rijn
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - F. Trefz
- Department of Paediatrics, University of Heidelberg, Heidelberg, Germany
| | - J. H. Walter
- Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - F. J. van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
28
|
van Spronsen FJ, van Wegberg AM, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Giżewska M, Huijbregts SC, Kearney S, Leuzzi V, Maillot F, Muntau AC, Trefz FK, van Rijn M, Walter JH, MacDonald A. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol 2017; 5:743-756. [PMID: 28082082 DOI: 10.1016/s2213-8587(16)30320-5] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/11/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
We developed European guidelines to optimise phenylketonuria (PKU) care. To develop the guidelines, we did a literature search, critical appraisal, and evidence grading according to the Scottish Intercollegiate Guidelines Network method. We used the Delphi method when little or no evidence was available. From the 70 recommendations formulated, in this Review we describe ten that we deem as having the highest priority. Diet is the cornerstone of treatment, although some patients can benefit from tetrahydrobiopterin (BH4). Untreated blood phenylalanine concentrations determine management of people with PKU. No intervention is required if the blood phenylalanine concentration is less than 360 μmol/L. Treatment is recommended up to the age of 12 years if the phenylalanine blood concentration is between 360 μmol/L and 600 μmol/L, and lifelong treatment is recommended if the concentration is more than 600 μmol/L. For women trying to conceive and during pregnancy (maternal PKU), untreated phenylalanine blood concentrations of more than 360 μmol/L need to be reduced. Treatment target concentrations are as follows: 120-360 μmol/L for individuals aged 0-12 years and for maternal PKU, and 120-600 μmol/L for non-pregnant individuals older than 12 years. Minimum requirements for the management and follow-up of patients with PKU are scheduled according to age, adherence to treatment, and clinical status. Nutritional, clinical, and biochemical follow-up is necessary for all patients, regardless of therapy.
Collapse
Affiliation(s)
- Francjan J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Annemiek Mj van Wegberg
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kirsten Ahring
- Department of PKU, Kennedy Centre, Copenhagen University Hospital, Glostrup, Denmark
| | | | - Nenad Blau
- University Children's Hospital, Dietmar-Hoppe Metabolic Centre, Heidelberg, Germany; University Children's Hospital Zurich, Zurich, Switzerland
| | - Annet M Bosch
- Department of Paediatrics, Division of Metabolic Disorders, Academic Medical Centre, University Hospital of Amsterdam, Amsterdam, Netherlands
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - Jaime Campistol
- Neuropaediatrics Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Francois Feillet
- Department of Pediatrics, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - Maria Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - Stephan C Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, Netherlands
| | - Shauna Kearney
- Clinical Psychology Department, Birmingham Children's Hospital, Birmingham, UK
| | - Vincenzo Leuzzi
- Department of Pediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Francois Maillot
- Internal Medicine Service, CHRU de Tours, François Rabelais University, Tours, France
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fritz K Trefz
- University Children's Hospital, Dietmar-Hoppe Metabolic Centre, Heidelberg, Germany
| | - Margreet van Rijn
- Department of Dietetics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - John H Walter
- Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Anita MacDonald
- Dietetic Department, Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
29
|
Muntau AC, Burlina A, Eyskens F, Freisinger P, De Laet C, Leuzzi V, Rutsch F, Sivri HS, Vijay S, Bal MO, Gramer G, Pazdírková R, Cleary M, Lotz-Havla AS, Munafo A, Mould DR, Moreau-Stucker F, Rogoff D. Efficacy, safety and population pharmacokinetics of sapropterin in PKU patients <4 years: results from the SPARK open-label, multicentre, randomized phase IIIb trial. Orphanet J Rare Dis 2017; 12:47. [PMID: 28274234 PMCID: PMC5343543 DOI: 10.1186/s13023-017-0600-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sapropterin dihydrochloride, a synthetic formulation of BH4, the cofactor for phenylalanine hydroxylase (PAH, EC 1.14.16.1), was initially approved in Europe only for patients ≥4 years with BH4-responsive phenylketonuria. The aim of the SPARK (Safety Paediatric efficAcy phaRmacokinetic with Kuvan®) trial was to assess the efficacy (improvement in daily phenylalanine tolerance, neuromotor development and growth parameters), safety and pharmacokinetics of sapropterin dihydrochloride in children <4 years. RESULTS In total, 109 male or female children <4 years with confirmed BH4-responsive phenylketonuria or mild hyperphenylalaninemia and good adherence to dietary treatment were screened. 56 patients were randomly assigned (1:1) to 10 mg/kg/day oral sapropterin plus a phenylalanine-restricted diet or to only a phenylalanine-restricted diet for 26 weeks (27 to the sapropterin and diet group and 29 to the diet-only group; intention-to-treat population). Of these, 52 patients with ≥1 pharmacokinetic sample were included in the pharmacokinetic analysis, and 54 patients were included in the safety analysis. At week 26 in the sapropterin plus diet group, mean phenylalanine tolerance was 30.5 (95% confidence interval 18.7-42.3) mg/kg/day higher than in the diet-only group (p < 0.001). The safety profile of sapropterin, measured monthly, was acceptable and consistent with that seen in studies of older children. Using non-linear mixed effect modelling, a one-compartment model with flip-flop pharmacokinetic behaviour, in which the effect of weight was substantial, best described the pharmacokinetic profile. Patients in both groups had normal neuromotor development and stable growth parameters. CONCLUSIONS The addition of sapropterin to a phenylalanine-restricted diet was well tolerated and led to a significant improvement in phenylalanine tolerance in children <4 years with BH4-responsive phenylketonuria or mild hyperphenylalaninemia. The pharmacokinetic model favours once per day dosing with adjustment for weight. Based on the SPARK trial results, sapropterin has received EU approval to treat patients <4 years with BH4-responsive phenylketonuria. TRIAL REGISTRATION ClinicalTrials.gov, NCT01376908 . Registered June 17, 2011.
Collapse
Affiliation(s)
- Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| | | | | | | | - Corinne De Laet
- Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | | | - Frank Rutsch
- Muenster University Children's Hospital, Muenster, Germany
| | - H Serap Sivri
- Hacettepe University School of Medicine, Ankara, Turkey
| | | | | | - Gwendolyn Gramer
- Centre for Paediatric and Adolescent Medicine, Division for Neuropaediatrics and Metabolic Medicine, University of Heidelberg, Heidelberg, Germany
| | | | | | | | - Alain Munafo
- Merck Institute for Pharmacometrics, Lausanne, Switzerland
| | | | | | | |
Collapse
|
30
|
van Dam E, Daly A, Venema-Liefaard G, van Rijn M, Derks TGJ, McKiernan PJ, Rebecca Heiner-Fokkema M, MacDonald A, van Spronsen FJ. What Is the Best Blood Sampling Time for Metabolic Control of Phenylalanine and Tyrosine Concentrations in Tyrosinemia Type 1 Patients? JIMD Rep 2017; 36:49-57. [PMID: 28120161 DOI: 10.1007/8904_2016_37] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/26/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Treatment of hereditary tyrosinemia type 1 with nitisinone and phenylalanine and tyrosine restricted diet has largely improved outcome, but the best blood sampling time for assessment of metabolic control is not known. AIM To study diurnal and day-to-day variation of phenylalanine and tyrosine concentrations in tyrosinemia type 1 patients. METHODS Eighteen tyrosinemia type 1 patients aged >1 year (median age 7.9 years; range 1.6-20.7) were studied. Capillary blood samples were collected 4 times a day (T1: pre-breakfast, T2: pre-midday meal, T3: before evening meal, and T4: bedtime) for 3 days. Linear mixed-effect models were used to investigate diurnal and day-to-day variation of both phenylalanine and tyrosine. RESULTS The coefficients of variation of phenylalanine and tyrosine concentrations were the lowest on T1 (13.8% and 14.1%, respectively). Tyrosine concentrations did not significantly differ between the different time points, but phenylalanine concentrations were significantly lower at T2 and T3 compared to T1 (50.1 μmol/L, 29.8 μmol/L, and 37.3 μmol/L, respectively). CONCLUSION Our results indicated that for prevention of too low phenylalanine and too high tyrosine concentrations, measurement of phenylalanine and tyrosine pre-midday meal would be best, since phenylalanine concentrations are the lowest on that time point. Our results also indicated that whilst blood tyrosine concentrations were stable over 24 h, phenylalanine fluctuated. Day-to-day variation was most stable after an overnight fast for both phenylalanine and tyrosine. Therefore, in tyrosinemia type 1 patients the most reliable time point for measuring phenylalanine and tyrosine concentrations to enable interpretation of metabolic control is pre-breakfast.
Collapse
Affiliation(s)
- Esther van Dam
- Department of Dietetics, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands.
| | - Anne Daly
- Birmingham Children's Hospital, Birmingham, UK
| | - Gineke Venema-Liefaard
- Department of Dietetics, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Margreet van Rijn
- Department of Dietetics, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Terry G J Derks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | | | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Francjan J van Spronsen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| |
Collapse
|
31
|
Liu J, Yan A, Yang Y, Wan YQ. Determination of 4-Hydroxyphenyllactic Acid in Human Urine by Magnetic Solid-Phase Extraction and High-Performance Anion-Exchange Chromatography with Fluorescence Detection. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1175468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Junjun Liu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Aiping Yan
- Center of Analysis and Testing, Nanchang University, Nanchang, Jiangxi, China
| | - Yongli Yang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Qun Wan
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
- Center of Analysis and Testing, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
32
|
Li J, Hu X, Guan P, Zhang X, Qian L, Zhang N, Du C, Song R. Preparation ofl-phenylalanine-imprinted solid-phase extraction sorbent by Pickering emulsion polymerization and the selective enrichment ofl-phenylalanine from human urine. J Sep Sci 2016; 39:1863-72. [DOI: 10.1002/jssc.201600055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Ji Li
- Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Department of Chemistry, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an P. R. China
| | - Xiaoling Hu
- Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Department of Chemistry, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an P. R. China
| | - Ping Guan
- Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Department of Chemistry, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an P. R. China
| | - Xiaoyan Zhang
- Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Department of Chemistry, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an P. R. China
| | - Liwei Qian
- Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Department of Chemistry, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an P. R. China
| | - Nan Zhang
- Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Department of Chemistry, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an P. R. China
| | - Chunbao Du
- Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Department of Chemistry, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an P. R. China
| | - Renyuan Song
- Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Department of Chemistry, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an P. R. China
| |
Collapse
|
33
|
Direct tandem mass spectrometric analysis of amino acids in plasma using fluorous derivatization and monolithic solid-phase purification. J Pharm Biomed Anal 2015. [DOI: 10.1016/j.jpba.2015.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Benuzzi MLS, Pereira SV, Raba J, Messina GA. Screening for cystic fibrosis via a magnetic and microfluidic immunoassay format with electrochemical detection using a copper nanoparticle-modified gold electrode. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1660-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Xiong X, Sheng X, Liu D, Zeng T, Peng Y, Wang Y. A GC/MS-based metabolomic approach for reliable diagnosis of phenylketonuria. Anal Bioanal Chem 2015; 407:8825-33. [PMID: 26410738 DOI: 10.1007/s00216-015-9041-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 01/10/2023]
Abstract
Although the phenylalanine/tyrosine ratio in blood has been the gold standard for diagnosis of phenylketonuria (PKU), the disadvantages of invasive sample collection and false positive error limited the application of this discriminator in the diagnosis of PKU to some extent. The aim of this study was to develop a new standard with high sensitivity and specificity in a less invasive manner for diagnosing PKU. In this study, an improved oximation-silylation method together with GC/MS was utilized to obtain the urinary metabolomic information in 47 PKU patients compared with 47 non-PKU controls. Compared with conventional oximation-silylation methods, the present approach possesses the advantages of shorter reaction time and higher reaction efficiency at a considerably lower temperature, which is beneficial to the derivatization of some thermally unstable compounds, such as phenylpyruvic acid. Ninety-seven peaks in the chromatograms were identified as endogenous metabolites by the National Institute of Standards and Technology (NIST) mass spectra library, including amino acids, organic acids, carbohydrates, amides, and fatty acids. After normalization of data using creatinine as internal standard, 19 differentially expressed compounds with p values of <0.05 were selected by independent-sample t test for the separation of the PKU group and the control group. A principal component analysis (PCA) model constructed by these differentially expressed compounds showed that the PKU group can be discriminated from the control group. Receiver-operating characteristic (ROC) analysis with area under the curve (AUC), specificity, and sensitivity of each PKU marker obtained from these differentially expressed compounds was used to evaluate the possibility of using these markers for diagnosing PKU. The largest value of AUC (0.987) with high specificity (0.936) and sensitivity (1.000) was obtained by the ROC curve of phenylacetic acid at its cutoff value (17.244 mmol/mol creatinine), which showed that phenylacetic acid may be used as a reliable discriminator for the diagnosis of PKU. The low false positive rate (1-specificity, 0.064) can be eliminated or at least greatly reduced by simultaneously referring to other markers, especially phenylpyruvic acid, a unique marker in PKU. Additionally, this standard was obtained with high sensitivity and specificity in a less invasive manner for diagnosing PKU compared with the Phe/Tyr ratio. Therefore, we conclude that urinary metabolomic information based on the improved oximation-silylation method together with GC/MS may be reliable for the diagnosis and differential diagnosis of PKU.
Collapse
Affiliation(s)
- Xiyue Xiong
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China
| | - Xiaoqi Sheng
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China
| | - Dan Liu
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China
| | - Ting Zeng
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China
| | - Ying Peng
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China
| | - Yichao Wang
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China.
| |
Collapse
|
36
|
Noh HB, Revin SB, Shim YB. Voltammetric analysis of anti-arthritis drug, ascorbic acid, tyrosine, and uric acid using a graphene decorated-functionalized conductive polymer electrode. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Feng L, He YQ, Xu GH, Hu H, Guo L, Wan YQ. Determination of Tyrosine and Its Metabolites in Human Serum with Application to Cancer Diagnosis. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.871549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Neurauter G, Scholl-Bürgi S, Haara A, Geisler S, Mayersbach P, Schennach H, Fuchs D. Simultaneous measurement of phenylalanine and tyrosine by high performance liquid chromatography (HPLC) with fluorescence detection. Clin Biochem 2013; 46:1848-51. [PMID: 24183885 DOI: 10.1016/j.clinbiochem.2013.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/11/2013] [Accepted: 10/19/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVES An HPLC method was developed to quantify serum concentrations of phenylalanine and tyrosine simultaneously using fluorescence detection without derivatization. METHODS Serum protein is precipitated with trichloroacetic acid, 0.015mM dihydrogen-phosphate solution is used for separation on reversed-phase C18 material, and acetonitrile is avoided. Both amino acids are monitored utilizing their natural fluorescence at 210nm excitation and 302nm emission wavelengths. RESULTS One analytical run is completed within 7min. Lower detection limit for Phe and Tyr is 0.3μM. Comparison of the new method with a classical HPLC method for total amino acids and using UV-absorption detection reveals a highly significant relationship for Phe and Tyr. CONCLUSION The new HPLC method allows rapid and very sensitive measurement of phenylalanine and tyrosine concentrations.
Collapse
Affiliation(s)
- Gabriele Neurauter
- Division of Biological Chemistry, Biocenter, Medical University, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|