1
|
Pérez-Mato M, López-Arias E, Bugallo-Casal A, Correa-Paz C, Arias S, Rodríguez-Yáñez M, Santamaría-Cadavid M, Campos F. New Perspectives in Neuroprotection for Ischemic Stroke. Neuroscience 2024; 550:30-42. [PMID: 38387732 DOI: 10.1016/j.neuroscience.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The constant failure of new neuroprotective therapies for ischemic stroke has partially halted the search for new therapies in recent years, mainly because of the high investment risk required to develop a new treatment for a complex pathology, such as stroke, with a narrow intervention window and associated comorbidities. However, owing to recent progress in understanding the stroke pathophysiology, improvement in patient care in stroke units, development of new imaging techniques, search for new biomarkers for early diagnosis, and increasingly widespread use of mechanical recanalization therapies, new opportunities have opened for the study of neuroprotection. This review summarizes the main protective agents currently in use, some of which are already in the clinical evaluation phase. It also includes an analysis of how recanalization therapies, new imaging techniques, and biomarkers have improved their efficacy.
Collapse
Affiliation(s)
- María Pérez-Mato
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Esteban López-Arias
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Ana Bugallo-Casal
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Arias
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - María Santamaría-Cadavid
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Liang Y, Fan T, Bai M, Cui N, Li W, Wang J, Guan Y. Chikusetsu Saponin IVa liposomes modified with a retro-enantio peptide penetrating the blood-brain barrier to suppress pyroptosis in acute ischemic stroke rats. J Nanobiotechnology 2024; 22:393. [PMID: 38965602 PMCID: PMC11223377 DOI: 10.1186/s12951-024-02641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND The therapeutic strategies for acute ischemic stroke were faced with substantial constraints, emphasizing the necessity to safeguard neuronal cells during cerebral ischemia to reduce neurological impairments and enhance recovery outcomes. Despite its potential as a neuroprotective agent in stroke treatment, Chikusetsu saponin IVa encounters numerous challenges in clinical application. RESULT Brain-targeted liposomes modified with THRre peptides showed substantial uptake by bEnd. 3 and PC-12 cells and demonstrated the ability to cross an in vitro blood-brain barrier model, subsequently accumulating in PC-12 cells. In vivo, they could significantly accumulate in rat brain. Treatment with C-IVa-LPs-THRre notably reduced the expression of proteins in the P2RX7/NLRP3/Caspase-1 pathway and inflammatory factors. This was evidenced by decreased cerebral infarct size and improved neurological function in MCAO rats. CONCLUSION The findings indicate that C-IVa-LPs-THRre could serve as a promising strategy for targeting cerebral ischemia. This approach enhances drug concentration in the brain, mitigates pyroptosis, and improves the neuroinflammatory response associated with stroke.
Collapse
Affiliation(s)
- Yitong Liang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Min Bai
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Na Cui
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Wangting Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China.
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Fraser JF, Pahwa S, Maniskas M, Michas C, Martinez M, Pennypacker KR, Dornbos D. Now that the door is open: an update on ischemic stroke pharmacotherapeutics for the neurointerventionalist. J Neurointerv Surg 2024; 16:425-428. [PMID: 37258227 DOI: 10.1136/jnis-2022-019293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
The last 10 years have seen a major shift in management of large vessel ischemic stroke with changes towards ever-expanding use of reperfusion therapies (intravenous thrombolysis and mechanical thrombectomy). These strategies 'open the door' to acute therapeutics for ischemic tissue, and we should investigate novel therapeutic approaches to enhance survival of recently reperfused brain. Key insights into new approaches have been provided through translational research models and preclinical paradigms, and through detailed research on ischemic mechanisms. Additional recent clinical trials offer exciting salvos into this new strategy of pairing reperfusion with neuroprotective therapy. This pairing strategy can be employed using drugs that have shown neuroprotective efficacy; neurointerventionalists can administer these during or immediately after reperfusion therapy. This represents a crucial moment when we emphasize reperfusion, and have the technological capability along with the clinical trial experience to lead the way in multiprong approaches to stroke treatment.
Collapse
Affiliation(s)
- Justin F Fraser
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Shivani Pahwa
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Michael Maniskas
- Department of Neurology, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Christopher Michas
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Mesha Martinez
- Department of Neurointerventional Radiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
- University of Kentucky, Lexington, Kentucky, USA
| | - David Dornbos
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Matur AV, Candelario-Jalil E, Paul S, Karamyan VT, Lee JD, Pennypacker K, Fraser JF. Translating Animal Models of Ischemic Stroke to the Human Condition. Transl Stroke Res 2023; 14:842-853. [PMID: 36125734 DOI: 10.1007/s12975-022-01082-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Ischemic stroke is a leading cause of death and disability. However, very few neuroprotective agents have shown promise for treatment of ischemic stroke in clinical trials, despite showing efficacy in many successful preclinical studies. This may be attributed, at least in part, to the incongruency between experimental animal stroke models used in preclinical studies and the manifestation of ischemic stroke in humans. Most often the human population selected for clinical trials are more diverse than the experimental model used in a preclinical study. For successful translation, it is critical to develop clinical trial designs that match the experimental animal model used in the preclinical study. This review aims to provide a comprehensive summary of commonly used animal models with clear correlates between rodent models used to study ischemic stroke and the clinical stroke pathologies with which they most closely align. By improving the correlation between preclinical studies and clinical trials, new neuroprotective agents and stroke therapies may be more accurately and efficiently identified.
Collapse
Affiliation(s)
- Abhijith V Matur
- Department of Radiology, University of Kentucky, Lexington, KY, USA.
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Surojit Paul
- Department of Neurology and Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Vardan T Karamyan
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Jessica D Lee
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Keith Pennypacker
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Department of Neurological Surgery, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Peeters-Scholte C, Meilin S, Berckovich Y, Westers P. 2-iminobiotin, a selective inhibitor of nitric oxide synthase, improves memory and learning in a rat model after four vessel occlusion, mimicking cardiac arrest. PLoS One 2023; 18:e0291915. [PMID: 37747911 PMCID: PMC10519591 DOI: 10.1371/journal.pone.0291915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 09/07/2023] [Indexed: 09/27/2023] Open
Abstract
Survivors of out-of-hospital cardiac arrest (OHCA) experience between 30% and 50% cognitive deficits several years post-discharge. Especially spatial memory is affected due to ischemia-induced neuronal damage in the hippocampus. Aim of this study was to investigate the potential neuroprotective effect of 2-iminobiotin (2-IB), a biotin analogue, on memory and learning in a four-vessel occlusion model of global ischemia using the Water Maze test. Sprague-Dawley rats were randomly assigned to either sham operation (n = 6), vehicle treatment (n = 20), 1.1 (n = 15), 3.3 (n = 14), 10 (n = 14), or 30 mg/kg/dose 2-IB treatment (n = 15). Treatment was subcutaneously (s.c.) administered immediately upon reperfusion, at 12h, and at 24h after reperfusion. Memory function on day 32 was significantly preserved in all doses of 2-IB rats compared to vehicle, as was the learning curve in the 1.1, 3.3 and 30 mg/kg dose group. Adult rats treated s.c. with 3 gifts of 2-IB every 12 h in a dose range of 1.1-30 mg/kg/dose directly upon reperfusion showed significant improved memory and learning after four vessel occlusion compared to vehicle-treated rats. Since 2-IB has already shown to be safe in a phase 1 clinical trial in adult human volunteers, it is a suitable candidate for translation to a human phase 2 study after OHCA.
Collapse
Affiliation(s)
| | - Sigal Meilin
- Neurology Service, MD Biosciences Ltd, Nes-Ziona, Israel
| | | | - Paul Westers
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Herrera VLM, Gromisch CM, Decano JL, Pasion KA, Tan GLA, Hua N, Takahashi CE, Greer DM, Ruiz-Opazo N. Anti-DEspR antibody treatment improves survival and reduces neurologic deficits in a hypertensive, spontaneous intracerebral hemorrhage (hsICH) rat model. Sci Rep 2023; 13:2703. [PMID: 36792616 PMCID: PMC9932093 DOI: 10.1038/s41598-023-28149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
Progressive secondary brain injury-induced by dysregulated neuroinflammation in spontaneous intracerebral hemorrhage (sICH)-underlies high sICH-mortality and remains without FDA-approved pharmacotherapy. Clinical insight that hematoma-directed interventions do not improve mortality prioritizes resolving acute secondary brain injury in sICH. As neutrophils are implicated in sICH secondary brain injury, we tested whether inhibition of a rogue neutrophil-subset expressing the dual endothelin-1/signal peptide receptor (DEspR) and associated with secondary tissue injury, DEspR+ CD11b+ immunotype, will attenuate mortality in a hypertensive-sICH (hsICH) rat model. We confirmed sICH-related deaths in hsICH-rats by T2*-weighted 9.4 T MRI and DEspR+ neutrophils in hsICH-rat brain perihematomal areas by immunostaining. At acute sICH, anti-DEspR muIgG1-antibody, mu10a3, treatment increased median survival in hsICH rats vs controls (p < 0.0001). In pre-stroke sICH, weekly 10a3-treatment did not predispose to infection and delayed sICH-onset vs controls (p < 0.0001). As potential sICH-therapeutic, we tested humanized anti-DEspR IgG4S228P-mAb, hu6g8. In vitro, hu6g8 reversed delayed-apoptosis in DEspR+ CD11b+ neutrophils. In vivo, hu6g8 increased median survival and reduced neurologic symptoms in male/female hsICH-rats vs controls (p < 0.0001). Altogether, preclinical efficacy of inhibition of DEspR+ CD11b+ neutrophils in acute sICH-without infection complications, supports the potential of anti-DEspR therapy in sICH. Data provide basis for clinical study of DEspR+ CD11b+ neutrophil-subset in sICH patients.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, USA.
| | | | - Julius L Decano
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, USA
| | - Khristine Amber Pasion
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, USA
| | - Glaiza L A Tan
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, USA
| | - Ning Hua
- Department of Radiology, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, USA
| | - Courtney E Takahashi
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, USA
| | - David M Greer
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, USA
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, USA.
| |
Collapse
|
7
|
Zhang H, Wang L, Yang Y, Cai C, Wang X, Deng L, He B, Zhou W, Cui Y. DL-3-n-butylphthalide (NBP) alleviates poststroke cognitive impairment (PSCI) by suppressing neuroinflammation and oxidative stress. Front Pharmacol 2023; 13:987293. [PMID: 36712684 PMCID: PMC9878832 DOI: 10.3389/fphar.2022.987293] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Currently, the recovery of cognitive function has become an essential part of stroke rehabilitation. DL-3-n-butylphthalide (NBP) is a neuroprotective reagent and has been used in stroke treatment. Clinical studies have confirmed that NBP can achieve better cognitive outcomes in ischemic stroke patients than in healthy controls. In this study, we aimed to investigate the influences of NBP on cognitive function in an ischemic reperfusion (I/R) rat model. Our results showed that NBP profoundly decreased neurological scores, reduced cerebral infarct areas and enhanced cerebral blood flow (CBF). NBP potently alleviated poststroke cognitive impairment (PSCI) including depression-like behavior and learning, memory and social cognition impairments, in I/R rats. NBP distinctly suppressed the activation of microglia and astrocytes and improved neuron viability in the ischemic brain. NBP inhibited the expression of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), by targeting the nuclear factor kappa B/inducible nitric oxide synthase (NF-κB/iNOS) pathway and decreased cerebral oxidative stress factors, including reactive oxygen species (ROS) and malondialdehyde (MDA), by targeting the kelch like ECH associated protein 1/nuclear factor-erythroid 2 p45-related factor 2 (Keap1/Nrf2) pathway in the ischemic brain. The current study revealed that NBP treatment improved neurological function and ameliorated cognitive impairment in I/R rats, possibly by synergistically suppressing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hui Zhang
- Neuroscience and Behavioral Research Center, Academician Workstation, Changsha Medical University, Changsha, China
| | - Laifa Wang
- Neuroscience and Behavioral Research Center, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yongping Yang
- Neuroscience and Behavioral Research Center, Academician Workstation, Changsha Medical University, Changsha, China
| | - Chuanhai Cai
- Neuroscience and Behavioral Research Center, Academician Workstation, Changsha Medical University, Changsha, China
| | - Xueqin Wang
- Neuroscience and Behavioral Research Center, Academician Workstation, Changsha Medical University, Changsha, China
| | - Ling Deng
- Neuroscience and Behavioral Research Center, Academician Workstation, Changsha Medical University, Changsha, China
| | - Binsheng He
- Neuroscience and Behavioral Research Center, Academician Workstation, Changsha Medical University, Changsha, China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Wenhu Zhou
- Neuroscience and Behavioral Research Center, Academician Workstation, Changsha Medical University, Changsha, China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China,*Correspondence: Wenhu Zhou, ; Yanhui Cui,
| | - Yanhui Cui
- Neuroscience and Behavioral Research Center, Academician Workstation, Changsha Medical University, Changsha, China,*Correspondence: Wenhu Zhou, ; Yanhui Cui,
| |
Collapse
|
8
|
Kurkin DV, Bakulin DA, Morkovin EI, Myagkova IA, Kuznetsova EV, Tarasov AS, Shmidt MV, Robertus AI, Kovalenko AL, Lycheva NA. [Study of the effect of Unifuzol on cognitive impairment and damage to the hippocampus and cerebral cortex during course administration to rats with bilateral stenosis of the common carotid arteries, causing chronic circulatory failure]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:94-103. [PMID: 36946404 DOI: 10.17116/jnevro202312303194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVE To study the effect of Unifuzol (L-arginine sodium succinate) on cognitive impairment, cerebral blood flow, and damage to the tissues of the hippocampus and cerebral cortex during a 10-day course of administration to rats with chronic cerebral ischemia (CCI) caused by bilateral stenosis of the common carotid arteries (CCA). MATERIAL AND METHODS The study was conducted on male rats with CCI caused by bilateral stenosis of the CCA by 60%. 40 days after surgery, rats received Unifusol (21, 42 and 84 ml/kg), nicergoline (10 mg/kg), citicoline (500 mg/kg) or placebo (0.9% NaCl) for 10 days. Next, cognitive impairments were assessed in the Morris Water Maze and the New Object Recognition (NOR) test, as well as the level of motor and exploratory activity in the Open Field test. The level of cerebral blood flow was determined immediately after the CCA stenosis and at the end of the experiment. Animals were euthanized in a CO2 incubator, after which the brain was removed and subjected to morphometric analysis. RESULTS In animals that were modeled with CCA stenosis, pronounced behavioral and cognitive impairments occurred as a result of a decrease in blood flow in the vessels of the brain and subsequent changes in the tissues of the hippocampus and the cerebral cortex. Intravenous course administration of Unifuzol at doses of 42 and 84 ml/kg to animals with CCI was comparable in efficiency to nicergoline and citicoline, which was expressed in greater preservation of the cognitive abilities of animals in the Morris Water Maze and NOR tests. In the Open Field test, animals injected with Unifusol at doses of 42 and 84 ml/kg performed more acts of motor and exploratory activity than animals from the placebo group, and had a higher level of cerebral blood flow (compared to animals that were injected with citicoline). Based on the results of a morphological study, it was found that the most significant neuroprotective effect was provided by nicergoline and Unifuzol (at doses of 42 and 84 ml/kg). CONCLUSION Unifuzol at a course of administration at doses of 42 and 84 ml/kg, comparable to the reference drugs nicergoline and citicoline, reduces the severity of psychoneurological deficit in animals with CCI, comparable to them improves the microcirculation of brain tissues, preventing damage to brain tissues.
Collapse
Affiliation(s)
- D V Kurkin
- Volgograd State Medical University, Volgograd, Russia
| | - D A Bakulin
- Volgograd State Medical University, Volgograd, Russia
| | - E I Morkovin
- Volgograd State Medical University, Volgograd, Russia
| | - I A Myagkova
- Volgograd State Medical University, Volgograd, Russia
| | | | - A S Tarasov
- Volgograd State Medical University, Volgograd, Russia
| | - M V Shmidt
- Volgograd State Medical University, Volgograd, Russia
| | - A I Robertus
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - A L Kovalenko
- Golikov Scientific Advisory Center of Toxicology, St. Petersburg, Russia
| | | |
Collapse
|
9
|
Chen C, Zhou Y, Ning X, Li S, Xue D, Wei C, Zhu Z, Sheng L, Lu B, Li Y, Ye X, Fu Y, Bai C, Cai W, Ding Y, Lin S, Yan G, Huang Y, Yin W. Directly targeting ASC by lonidamine alleviates inflammasome-driven diseases. J Neuroinflammation 2022; 19:315. [PMID: 36577999 PMCID: PMC9798610 DOI: 10.1186/s12974-022-02682-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dysregulated activation of the inflammasome is involved in various human diseases including acute cerebral ischemia, multiple sclerosis and sepsis. Though many inflammasome inhibitors targeting NOD-like receptor protein 3 (NLRP3) have been designed and developed, none of the inhibitors are clinically available. Growing evidence suggests that targeting apoptosis-associated speck-like protein containing a CARD (ASC), the oligomerization of which is the key event for the assembly of inflammasome, may be another promising therapeutic strategy. Lonidamine (LND), a small-molecule inhibitor of glycolysis used as an antineoplastic drug, has been evidenced to have anti-inflammation effects. However, its anti-inflammatory mechanism is still largely unknown. METHODS Middle cerebral artery occlusion (MCAO), experimental autoimmune encephalomyelitis (EAE) and LPS-induced sepsis mice models were constructed to investigate the therapeutic and anti-inflammasome effects of LND. The inhibition of inflammasome activation and ASC oligomerization by LND was evaluated using western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) in murine bone marrow-derived macrophages (BMDMs). Direct binding of LND with ASC was assessed using molecular mock docking, surface plasmon resonance (SPR), and drug affinity responsive target stability (DARTS). RESULTS Here, we find that LND strongly attenuates the inflammatory injury in experimental models of inflammasome-associated diseases including autoimmune disease-multiple sclerosis (MS), ischemic stroke and sepsis. Moreover, LND blocks diverse types of inflammasome activation independent of its known targets including hexokinase 2 (HK2). We further reveal that LND directly binds to the inflammasome ligand ASC and inhibits its oligomerization. CONCLUSIONS Taken together, our results identify LND as a broad-spectrum inflammasome inhibitor by directly targeting ASC, providing a novel candidate drug for the treatment of inflammasome-driven diseases in clinic.
Collapse
Affiliation(s)
- Chen Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuWei Zhou
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XinPeng Ning
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - ShengLong Li
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - DongDong Xue
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - CaiLv Wei
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Zhu Zhu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - LongXiang Sheng
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - BingZheng Lu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuan Li
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XiaoYuan Ye
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - YunZhao Fu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Chuan Bai
- grid.12981.330000 0001 2360 039XInstitute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Cai
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuXuan Ding
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - SuiZhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663 China
| | - GuangMei Yan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YiJun Huang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Yin
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
10
|
Fisher ES, Chen Y, Sifuentes MM, Stubblefield JJ, Lozano D, Holstein DM, Ren J, Davenport M, DeRosa N, Chen TP, Nickel G, Liston TE, Lechleiter JD. Adenosine A1R/A3R agonist AST-004 reduces brain infarction in mouse and rat models of acute ischemic stroke. FRONTIERS IN STROKE 2022; 1:1010928. [PMID: 38348128 PMCID: PMC10861240 DOI: 10.3389/fstro.2022.1010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Acute ischemic stroke (AIS) is the second leading cause of death globally. No Food and Drug Administration (FDA) approved therapies exist that target cerebroprotection following stroke. Our group recently reported significant cerebroprotection with the adenosine A1/A3 receptor agonist, AST-004, in a transient stroke model in non-human primates (NHP) and in a preclinical mouse model of traumatic brain injury (TBI). However, the specific receptor pathway activated was only inferred based on in vitro binding studies. The current study investigated the underlying mechanism of AST-004 cerebroprotection in two independent models of AIS: permanent photothrombotic stroke in mice and transient middle cerebral artery occlusion (MCAO) in rats. AST-004 treatments across a range of doses were cerebroprotective and efficacy could be blocked by A3R antagonism, indicating a mechanism of action that does not require A1R agonism. The high affinity A3R agonist MRS5698 was also cerebroprotective following stroke, but not the A3R agonist Cl-IB-MECA under our experimental conditions. AST-004 efficacy was blocked by the astrocyte specific mitochondrial toxin fluoroacetate, confirming an underlying mechanism of cerebroprotection that was dependent on astrocyte mitochondrial metabolism. An increase in A3R mRNA levels following stroke suggested an intrinsic cerebroprotective response that was mediated by A3R signaling. Together, these studies confirm that certain A3R agonists, such as AST-004, may be exciting new therapeutic avenues to develop for AIS.
Collapse
Affiliation(s)
- Elizabeth S. Fisher
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Yanan Chen
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Mikaela M. Sifuentes
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Jeremy J. Stubblefield
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Damian Lozano
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Deborah M. Holstein
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - JingMei Ren
- NeuroVasc Preclinical Services, Inc., Lexington, MA, United States
| | | | - Nicholas DeRosa
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Tsung-pei Chen
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Gerard Nickel
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | | | - James D. Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| |
Collapse
|
11
|
Kaplan-Arabaci O, Acari A, Ciftci P, Gozuacik D. Glutamate Scavenging as a Neuroreparative Strategy in Ischemic Stroke. Front Pharmacol 2022; 13:866738. [PMID: 35401202 PMCID: PMC8984161 DOI: 10.3389/fphar.2022.866738] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
Stroke is the second highest reason of death in the world and the leading cause of disability. The ischemic stroke makes up the majority of stroke cases that occur due to the blockage of blood vessels. Therapeutic applications for ischemic stroke include thrombolytic treatments that are in limited usage and only applicable to less than 10% of the total stroke patients, but there are promising new approaches. The main cause of ischemic neuronal death is glutamate excitotoxicity. There have been multiple studies focusing on neuroprotection via reduction of glutamate both in ischemic stroke and other neurodegenerative diseases that ultimately failed due to the obstacles in delivery. At that point, systemic glutamate grabbing, or scavenging is an ingenious way of decreasing glutamate levels upon ischemic stroke. The main advantage of this new therapeutic method is the scavengers working in the circulating blood so that there is no interference with the natural brain neurophysiology. In this review, we explain the molecular mechanisms of ischemic stroke, provide brief information about existing drugs and approaches, and present novel systemic glutamate scavenging methods. This review hopefully will elucidate the potential usage of the introduced therapeutic approaches in stroke patients.
Collapse
Affiliation(s)
- Oykum Kaplan-Arabaci
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Pinar Ciftci
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey.,School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
12
|
Feng JH, Hu XL, Lv XY, Hong Y, Zhang YH, Long H, Wang R, Wang JJ, Xiong F, Wang H. 4-Trifluoromethyl-(E)-cinnamoyl]-L-4-F-phenylalanine acid exerts its effects on the prevention, post-therapeutic and prolongation of the thrombolytic window in ischemia-reperfusion rats through multiple mechanisms of action. Pharmacol Res 2022; 178:106182. [PMID: 35304259 DOI: 10.1016/j.phrs.2022.106182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/19/2022] [Accepted: 03/11/2022] [Indexed: 01/14/2023]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. The severe sequelae caused by ischemic thrombolysis and the narrow time window are now the main clinical challenges. Our previous study has reported 4-Trifluoromethyl-(E)-cinnamoyl]-L-4-F-phenylalanine Acid (AE-18) was a promising candidate for Parkinson's Disease. In this study, the preventive and therapeutic effects of AE-18 on focal cerebral ischemia-reperfusion injury and the mechanisms are explored. In oxygen glucose deprivation/reoxygenation (OGD/R)-induced well-differentiated PC12 cells model, AE-18 (10 or 20 μM) can significantly reduce nerve damage when administered before or after molding. In middle cerebral artery occlusion-reperfusion (MCAO/R) rat model, pre-modelling, or post-modelling administration of AE-18 (5 or 10 mg/kg) was effective in reducing neurological damage, decreasing infarct volume and improving motor disturbances. In addition, AE-18 (5 mg/kg) given by intravenous injection immediately after occlusion significantly reduce the infarct volume caused by reperfusion for different durations, indicating that AE-18 could extend the time window of thrombolytic therapy. Further studies demonstrate that AE-18 exerts the effects in the prevention, treatment, and prolongation of the time window of cerebral ischemic injury mainly through inhibiting excitotoxicity and improving BBB permeability, VEGF and BDNF. These results suggest that AE-18 is a good candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jia-Hao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Long Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xian-Yu Lv
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yu Hong
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuan-Hao Zhang
- Department of Biological sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, People's Republic of China
| | - Huan Long
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jing-Jin Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China.
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
13
|
Maniskas ME, Roberts JM, Gorman A, Bix GJ, Fraser JF. Intra-arterial combination therapy for experimental acute ischemic stroke. Clin Transl Sci 2021; 15:279-286. [PMID: 34463026 PMCID: PMC8742650 DOI: 10.1111/cts.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022] Open
Abstract
Acute ischemic stroke continues to devastate millions of individuals worldwide. Current treatments work to restore blood flow but not rescue affected tissue. Our goal was to develop a combination of neuroprotective agents administered intra-arterially following recanalization to target ischemic tissue. Using C57Bl/6J male mice, we performed tandem transient ipsilateral middle cerebral/common carotid artery occlusion, followed by immediate intra-arterial pharmacotherapy administration through a standardized protocol. Two pharmacotherapy agents, verapamil and lubeluzole, were selected based on their potential to modulate different aspects of the ischemic cascade; verapamil, a calcium channel blocker, works in an acute fashion blocking L-type calcium channels, whereas lubeluzole, an N-methyl-D-aspartate modulator, works in a delayed fashion blocking intracellular glutamate trafficking. We hypothesized that combination therapy would provide complimentary and potentially synergistic benefit treating brain tissue undergoing various stages of injury. Physiological measurements for heart rate and pulse distention (blood pressure) demonstrated no detrimental effects between groups, suggesting that the combination drug administration is safe. Tissue analysis demonstrated a significant difference between combination and control (saline) groups in infarct volume, neuronal health, and astrogliosis. Although a significant difference in functional outcome was not observed, we did note that the combination treatment group had a greater percent change from baseline in forced motor movement as compared with controls. This study demonstrates the safety and feasibility of intra-arterial combination therapy following successful recanalization and warrants further study.
Collapse
Affiliation(s)
- Michael E Maniskas
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, USA.,Department of Neurology, University of Kentucky, Lexington, Kentucky, USA.,Department of Radiology, University of Kentucky, Lexington, Kentucky, USA.,Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA.,Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, Kentucky, USA
| | - Jill M Roberts
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, USA.,Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Amanda Gorman
- Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory J Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Justin F Fraser
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, USA.,Department of Neurology, University of Kentucky, Lexington, Kentucky, USA.,Department of Radiology, University of Kentucky, Lexington, Kentucky, USA.,Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
14
|
Lee JM, Fernandez Cadenas I, Lindgren A. Using Human Genetics to Understand Mechanisms in Ischemic Stroke Outcome: From Early Brain Injury to Long-Term Recovery. Stroke 2021; 52:3013-3024. [PMID: 34399587 PMCID: PMC8938679 DOI: 10.1161/strokeaha.121.032622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a critical need to elucidate molecular mechanisms underlying brain injury, repair, and recovery following ischemic stroke-a global health problem with major social and economic impact. Despite 5 decades of intensive research, there are no widely accepted neuroprotective drugs that mitigate ischemic brain injury, or neuroreparative drugs, or personalized approaches that guide therapies to enhance recovery. We here explore novel reverse translational approaches that will complement traditional forward translational methods in identifying mechanisms relevant to human stroke outcome. Although genome-wide association studies have yielded over 30 genetic loci that influence ischemic stroke risk, only a few genome-wide association studies have been performed for stroke outcome. We discuss important considerations for genetic studies of ischemic stroke outcome-including carefully designed phenotypes that capture injury/recovery mechanisms, anchored in time to stroke onset. We also address recent genome-wide association studies that provide insight into mechanisms underlying brain injury and repair. There are several ongoing initiatives exploring genomic associations with novel phenotypes related to stroke outcome. To improve the understanding of the genetic architecture of ischemic stroke outcome, larger studies using standardized phenotypes, preferably embedded in standard-of-care measures, are needed. Novel techniques beyond genome-wide association studies-including exploiting informatics, multi-omics, and novel analytics-promise to uncover genetic and molecular pathways from which drug targets and other new interventions may be identified.
Collapse
Affiliation(s)
- Jin-Moo Lee
- The Hope Center for Neurological Disorders and the Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Israel Fernandez Cadenas
- Stroke pharmacogenomics and genetics group. Sant Pau Biomedical Research Institute, Barcelona, Spain
| | - Arne Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
15
|
Four Decades of Ischemic Penumbra and Its Implication for Ischemic Stroke. Transl Stroke Res 2021; 12:937-945. [PMID: 34224106 DOI: 10.1007/s12975-021-00916-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
The ischemic penumbra defined four decades ago has been the main battleground of ischemic stroke. The evolving ischemic penumbra concept has been providing insight for the development of vascular and cellular approaches as well as diagnostic tools for the treatment of ischemic stroke. rt-PA thrombolytic therapy to prevent the transition of ischemic penumbra to core has been approved for acute ischemic stroke within 3 h and was later recommended to extend to 4.5 h after symptom onset. Mechanical thrombectomy was introduced for the treatment of acute ischemic stroke with a therapeutic window of up to 24 h after stroke onset. Multiple modalities brain imaging techniques have been developed that provide guidance to define ischemic penumbra for reperfusion therapy in clinical practice. Cellular and molecular dissection of ischemic penumbra has been providing targets for the development of neuroprotective therapy for ischemic stroke. However, the dynamic nature of ischemic penumbra implicates that infarct core eventually expands into penumbra over time without reperfusion, dictating relative short therapeutic windows and limiting the impact of current reperfusion intervention. Entering the 5th decade since the introduction, ischemic penumbra remains the main focus of ischemic stroke research and clinical practice. In this review, we summarized the evolving ischemic penumbra concept and its implication in the development of vascular and cellular interventions as well as diagnostic tools for acute ischemic stroke. In addition, we discussed future perspectives on expansion of the campaign beyond ischemic penumbra to develop treatment for ischemic stroke.
Collapse
|
16
|
Davis AG, Donovan J, Bremer M, Van Toorn R, Schoeman J, Dadabhoy A, Lai RP, Cresswell FV, Boulware DR, Wilkinson RJ, Thuong NTT, Thwaites GE, Bahr NC. Host Directed Therapies for Tuberculous Meningitis. Wellcome Open Res 2021; 5:292. [PMID: 35118196 PMCID: PMC8792876 DOI: 10.12688/wellcomeopenres.16474.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
A dysregulated host immune response significantly contributes to morbidity and mortality in tuberculous meningitis (TBM). Effective host directed therapies (HDTs) are critical to improve survival and clinical outcomes. Currently only one HDT, dexamethasone, is proven to improve mortality. However, there is no evidence dexamethasone reduces morbidity, how it reduces mortality is uncertain, and it has no proven benefit in HIV co-infected individuals. Further research on these aspects of its use, as well as alternative HDTs such as aspirin, thalidomide and other immunomodulatory drugs is needed. Based on new knowledge from pathogenesis studies, repurposed therapeutics which act upon small molecule drug targets may also have a role in TBM. Here we review existing literature investigating HDTs in TBM, and propose new rationale for the use of novel and repurposed drugs. We also discuss host variable responses and evidence to support a personalised approach to HDTs in TBM.
Collapse
Affiliation(s)
- Angharad G. Davis
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,
| | - Joseph Donovan
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marise Bremer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Ronald Van Toorn
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Johan Schoeman
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Ariba Dadabhoy
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | - Rachel P.J. Lai
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Fiona V Cresswell
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Wilkinson
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | | |
Collapse
|
17
|
Davis AG, Donovan J, Bremer M, Van Toorn R, Schoeman J, Dadabhoy A, Lai RP, Cresswell FV, Boulware DR, Wilkinson RJ, Thuong NTT, Thwaites GE, Bahr NC. Host Directed Therapies for Tuberculous Meningitis. Wellcome Open Res 2021; 5:292. [PMID: 35118196 PMCID: PMC8792876 DOI: 10.12688/wellcomeopenres.16474.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
A dysregulated host immune response significantly contributes to morbidity and mortality in tuberculous meningitis (TBM). Effective host directed therapies (HDTs) are critical to improve survival and clinical outcomes. Currently only one HDT, dexamethasone, is proven to improve mortality. However, there is no evidence dexamethasone reduces morbidity, how it reduces mortality is uncertain, and it has no proven benefit in HIV co-infected individuals. Further research on these aspects of its use, as well as alternative HDTs such as aspirin, thalidomide and other immunomodulatory drugs is needed. Based on new knowledge from pathogenesis studies, repurposed therapeutics which act upon small molecule drug targets may also have a role in TBM. Here we review existing literature investigating HDTs in TBM, and propose new rationale for the use of novel and repurposed drugs. We also discuss host variable responses and evidence to support a personalised approach to HDTs in TBM.
Collapse
Affiliation(s)
- Angharad G. Davis
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,
| | - Joseph Donovan
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marise Bremer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Ronald Van Toorn
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Johan Schoeman
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Ariba Dadabhoy
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | - Rachel P.J. Lai
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Fiona V Cresswell
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Wilkinson
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | | |
Collapse
|
18
|
Bahr-Hosseini M, Bikson M, Iacoboni M, Liebeskind DS, Hinman JD, Carmichael ST, Saver JL. PRIMED 2 Preclinical Evidence Scoring Tool to Assess Readiness for Translation of Neuroprotection Therapies. Transl Stroke Res 2021; 13:222-227. [PMID: 34196953 PMCID: PMC8918446 DOI: 10.1007/s12975-021-00922-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/26/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023]
Abstract
Many neuroprotective and other therapies for treatment of acute ischemic stroke have failed in translation to human studies, indicating a need for more rigorous, multidimensional quality assessment of the totality of preclinical evidence supporting a therapy prior to conducting human trials. A consensus panel of stroke preclinical model and human clinical trial experts assessed candidate items for the translational readiness scale, compiled from prior instruments (STAIR, ARRIVE, CAMARADES, RoB 2) based on importance, reliability, and feasibility. Once constructed, the tool was applied by two independent raters to four current candidate acute stroke therapies, including two pharmacologic agents [nerinetide and trans-sodium crocetinate] and two device interventions [cathodal transcranial direct current stimulation and fastigial nucleus stimulation]. The Preclinical evidence of Readiness In stroke Models Evaluating Drugs and Devices (PRIMED2) assessment tool rates the totality of evidence available from all reported preclinical animal stroke model studies in 11 domains related to diversity of tested animals, time windows, feasibility of agent route of delivery, and robustness of effect magnitude. Within each content domain, clearly operationalized rules assign strength of evidence ratings of 0–2. When applied to the four assessed candidate agents, inter-rater reliability was high (kappa = 0.88), and each agent showed a unique profile of evidentiary strengths and weaknesses. The PRIMED2 assessment tool provides a multidimensional assessment of the cumulative preclinical evidence for a candidate acute stroke therapy on factors judged important for successful basic-to-clinical translation. Further evaluation and refinement of this tool is desirable to improve successful translation of therapies for acute stroke.
Collapse
Affiliation(s)
- Mersedeh Bahr-Hosseini
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York (CCNY), New York, NY, USA
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David S Liebeskind
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Jason D Hinman
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - S Thomas Carmichael
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| |
Collapse
|
19
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
20
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
21
|
Alam JJ, Krakovsky M, Germann U, Levy A. Continuous administration of a p38α inhibitor during the subacute phase after transient ischemia-induced stroke in the rat promotes dose-dependent functional recovery accompanied by increase in brain BDNF protein level. PLoS One 2020; 15:e0233073. [PMID: 33275615 PMCID: PMC7717516 DOI: 10.1371/journal.pone.0233073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
There is unmet need for effective stroke therapies. Numerous neuroprotection attempts for acute cerebral ischemia have failed and as a result there is growing interest in developing therapies to promote functional recovery through increasing synaptic plasticity. For this research study, we hypothesized that in addition to its previously reported role in mediating cell death during the acute phase, the alpha isoform of p38 mitogen-activated protein kinase, p38α, may also contribute to interleukin-1β-mediated impairment of functional recovery during the subacute phase after acute ischemic stroke. Accordingly, an oral, brain-penetrant, small molecule p38α inhibitor, neflamapimod, was evaluated as a subacute phase stroke treatment to promote functional recovery. Neflamapimod administration to rats after transient middle cerebral artery occlusion at two dose levels was initiated outside of the previously characterized therapeutic window for neuroprotection of less than 24 hours for p38α inhibitors. Six-week administration of neflamapimod, starting at 48 hours after reperfusion, significantly improved behavioral outcomes assessed by the modified neurological severity score at Week 4 and at Week 6 post stroke in a dose-dependent manner. Neflamapimod demonstrated beneficial effects on additional measures of sensory and motor function. It also resulted in a dose-related increase in brain-derived neurotrophic factor (BDNF) protein levels, a previously reported potential marker of synaptic plasticity that was measured in brain homogenates at sacrifice. Taken together with literature evidence on the role of p38α-dependent suppression by interleukin-1β of BDNF-mediated synaptic plasticity and BDNF production, our findings support a mechanistic model in which inhibition of p38α promotes functional recovery after ischemic stroke by blocking the deleterious effects of interleukin-1β on synaptic plasticity. The dose-related in vivo efficacy of neflamapimod offers the possibility of having a therapy for stroke that could be initiated outside the short time window for neuroprotection and for improving recovery after a completed stroke.
Collapse
Affiliation(s)
- John J. Alam
- EIP Pharma, Inc., Boston, Massachusetts, United States of America
- * E-mail:
| | | | - Ursula Germann
- EIP Pharma, Inc., Boston, Massachusetts, United States of America
| | | |
Collapse
|
22
|
Edwards DN, Salmeron K, Lukins DE, Trout AL, Fraser JF, Bix GJ. Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. J Cereb Blood Flow Metab 2020; 40:1695-1708. [PMID: 31575337 PMCID: PMC7370357 DOI: 10.1177/0271678x19880161] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stroke remains a leading cause of death and disability with limited therapeutic options. Endothelial cell β1 integrin receptors play a direct role in blood-brain barrier (BBB) dysfunction through regulation of tight junction proteins and infiltrating leukocytes, potentially mediated by β1 integrins. Following tandem transient common carotid artery/middle cerebral artery occlusion on wild-type mice, we administered the integrin a5b1 inhibitor, ATN-161, intraperitoneal (IP) injection at 1 mg/kg acutely after reperfusion, on post-stroke day (PSD)1 and PSD2. Systemic changes (heart rate, pulse distension, and body temperature) were determined. Additionally, infarct volume and edema were determined by 2,3-triphenyltetrazolium chloride and magnetic resonance imaging, while neurological changes were evaluated using an 11-point Neuroscore. Brain immunohistochemistry was performed for claudin-5, α5β1, IgG, and CD45 + cells, and quantitative polymerase chain reaction (qPCR) was performed for matrix metalloproteinase-9 (MMP-9), interleukin (IL)-1β, collagen IV, and CXCL12. ATN-161 significantly reduced integrin α5β1 expression in the surrounding peri-infarct region with no systemic changes. Infarct volume, edema, and functional deficit were significantly reduced in ATN-161-treated mice. Furthermore, ATN-161 treatment reduced IgG extravasation into the parenchyma through conserved claudin-5, collagen IV, CXCL12 while reducing MMP-9 transcription. Additionally, IL-1β and CD45 + cells were reduced in the ipsilateral cortex following ATN-161 administration. Collectively, ATN-161 may be a promising novel stroke therapy by reducing post-stroke inflammation and BBB permeability.
Collapse
Affiliation(s)
| | - Kathleen Salmeron
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Physiology, University of Kentucky, Lexington, USA
| | | | - Amanda L Trout
- Department of Neurology, University of Kentucky, Lexington, USA
| | - Justin F Fraser
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Radiology, University of Kentucky, Lexington, USA.,Department of Neurology, University of Kentucky, Lexington, USA.,Department of Neurosurgery, University of Kentucky, Lexington, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, USA
| | - Gregory J Bix
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Neurology, University of Kentucky, Lexington, USA.,Department of Neurosurgery, University of Kentucky, Lexington, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| |
Collapse
|
23
|
Putilina MV. [A personalized selection of choline precursors in evidence - based medicine]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:144-151. [PMID: 32678562 DOI: 10.17116/jnevro2020120061144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The analysis of mechanisms of the neuroprotective effect of choline precursors reveals the primary effects of citicoline on the processes of repair of neuronal membranes, a decrease in the degeneration of free fatty acids, and choline alfoscerate, an increase in the production of the neurotransmitter acetylcholine. Although citicoline has a lesser effect on choline secretion than choline alfoscerate, the combination of choline and cytidine in its composition is a universal tool to reduce symptoms of cerebral ischemia, to stabilize cognitive status, superior to the standard benefits of choline. Various mechanisms of the action of citicoline enable to recommend it as a drug effective both in the acute phase of the disease and in the delayed period, giving it the status of a universal nootropic compound.
Collapse
Affiliation(s)
- M V Putilina
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
24
|
Thomaz DT, Andreguetti RR, Binder LB, Scheffer DDL, Corrêa AW, Silva FRMB, Tasca CI. Guanosine Neuroprotective Action in Hippocampal Slices Subjected to Oxygen and Glucose Deprivation Restores ATP Levels, Lactate Release and Glutamate Uptake Impairment: Involvement of Nitric Oxide. Neurochem Res 2020; 45:2217-2229. [PMID: 32666283 DOI: 10.1007/s11064-020-03083-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Stroke is a major cause of disability and death worldwide. Oxygen and glucose deprivation (OGD) in brain tissue preparations can reproduce several pathological features induced by stroke providing a valuable ex vivo protocol for studying the mechanism of action of neuroprotective agents. Guanosine, an endogenous guanine nucleoside, promotes neuroprotection in vivo and in vitro models of neurotoxicity. We previously showed that guanosine protective effect was mimicked by inhibition of nitric oxide synthases (NOS) activity. This study was designed to investigate the involvement of nitric oxide (NO) in the mechanisms related to the protective role of guanosine in rat hippocampal slices subjected to OGD followed by reoxygenation (OGD/R). Guanosine (100 μM) and the pan-NOS inhibitor, L-NAME (1 mM) afforded protection to hippocampal slices subjected to OGD/R. The presence of NO donors, DETA-NO (800 μM) or SNP (5 μM) increased reactive species production, and abolished the protective effect of guanosine or L-NAME against OGD/R. Guanosine or L-NAME treatment prevented the impaired ATP production, lactate release, and glutamate uptake following OGD/R. The presence of a NO donor also abolished the beneficial effects of guanosine or L-NAME on bioenergetics and glutamate uptake. These results showed, for the first time, that guanosine may regulate cellular bioenergetics in hippocampal slices subjected to OGD/R injury by a mechanism that involves the modulation of NO levels.
Collapse
Affiliation(s)
- Daniel Tonial Thomaz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rafaela Rafognatto Andreguetti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Luisa Bandeira Binder
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora da Luz Scheffer
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Alisson Willms Corrêa
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Carla Inês Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil. .,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil. .,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
25
|
Abstract
Thrombolysis and mechanical thrombectomy have revolutionized the care of patients with acute ischemic stroke. The number of patients who can benefit from these treatments continues to increase as new studies demonstrate that not just time since stroke onset but also collateral circulation influences outcome. Technologies such as telestroke, mobile stroke units, and artificial intelligence are playing an increasing role in identifying and treating stroke. Stroke-systems-of-care models continue to streamline the delivery of definitive revascularization in the age of mechanical thrombectomy.
Collapse
Affiliation(s)
- Nicholas Liaw
- Department of Vascular Neurology, University of California, Los Angeles, 635 Charles E Young Drive South, Suite 225, Los Angeles, California, 90095-7334, USA
| | - David Liebeskind
- Department of Vascular Neurology, University of California, Los Angeles, 635 Charles E Young Drive South, Suite 225, Los Angeles, California, 90095-7334, USA
| |
Collapse
|
26
|
Lai TKY, Zhai D, Su P, Jiang A, Boychuk J, Liu F. The receptor-receptor interaction between mGluR1 receptor and NMDA receptor: a potential therapeutic target for protection against ischemic stroke. FASEB J 2019; 33:14423-14439. [DOI: 10.1096/fj.201900417r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Terence K. Y. Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Dongxu Zhai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Anlong Jiang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jay Boychuk
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Amantea D, Petrelli F, Greco R, Tassorelli C, Corasaniti MT, Tonin P, Bagetta G. Azithromycin Affords Neuroprotection in Rat Undergone Transient Focal Cerebral Ischemia. Front Neurosci 2019; 13:1256. [PMID: 31849581 PMCID: PMC6902046 DOI: 10.3389/fnins.2019.01256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 01/04/2023] Open
Abstract
Repurposing existing drugs represents a promising approach for successful development of acute stroke therapies. In this context, the macrolide antibiotic azithromycin has been shown to exert neuroprotection in mice due to its immunomodulatory properties. Here, we have demonstrated that acute administration of a single dose of azithromycin upon reperfusion produces a dose-dependent (ED50 = 1.40 mg/kg; 95% CI = 0.48-4.03) reduction of ischemic brain damage measured 22 h after transient (2 h) middle cerebral artery occlusion (MCAo) in adult male rats. Neuroprotection by azithromycin (150 mg/kg, i.p., upon reperfusion) was associated with a significant elevation of signal transducer and activator of transcription 3 (STAT3) phosphorylation in astrocytes and neurons of the peri-ischemic motor cortex as detected after 2 and 22 h of reperfusion. By contrast, in the core region of the striatum, drug administration resulted in a dramatic elevation of STAT3 phosphorylation only after 22 h of reperfusion, being the signal mainly ascribed to infiltrating leukocytes displaying an M2 phenotype. These early molecular events were associated with a long-lasting neuroprotection, since a single dose of azithromycin reduced brain infarct damage and neurological deficit measured up to 7 days of reperfusion. These data, together with the evidence that azithromycin was effective in a clinically relevant time-window (i.e., when administered after 4.5 h of MCAo), provide robust preclinical evidence to support the importance of developing azithromycin as an effective acute therapy for ischemic stroke.
Collapse
Affiliation(s)
- Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesco Petrelli
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosaria Greco
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
28
|
The potential of drug repurposing combined with reperfusion therapy in cerebral ischemic stroke: A supplementary strategy to endovascular thrombectomy. Life Sci 2019; 236:116889. [PMID: 31610199 DOI: 10.1016/j.lfs.2019.116889] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022]
Abstract
Stroke is the major cause of adult disability and the second or third leading cause of death in developed countries. The treatment options for stroke (thrombolysis or thrombectomy) are restricted to a small subset of patients with acute ischemic stroke because of the limited time for an efficacious response and the strict criteria applied to minimize the risk of cerebral hemorrhage. Attempts to develop new treatments, such as neuroprotectants, for acute ischemic stroke have been costly and time-consuming and to date have yielded disappointing results. The repurposing approved drugs known to be relatively safe, such as statins and minocycline, may provide a less costly and more rapid alternative to new drug discovery in this clinical condition. Because adequate perfusion is thought to be vital for a neuroprotectant to be effective, endovascular thrombectomy (EVT) with advanced imaging modalities offers the possibility of documenting reperfusion in occluded large cerebral vessels. An examination of established medications that possess neuroprotective characters using in a large-vessel occlusive disorder with EVT may speed the identification of new and more broadly efficacious medications for the treatment of ischemic stroke. These approaches are highlighted in this review along with a critical assessment of drug repurposing combined with reperfusion therapy as a supplementary means for halting or mitigating stroke-induced brain damage.
Collapse
|
29
|
Firouzjaei MA, Haghani M, Shid Moosavi SM. Renal ischemia/reperfusion induced learning and memory deficit in the rat: Insights into underlying molecular and cellular mechanisms. Brain Res 2019; 1719:263-273. [PMID: 31102592 DOI: 10.1016/j.brainres.2019.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/12/2019] [Accepted: 05/14/2019] [Indexed: 11/20/2022]
Abstract
Distance organ dysfunction is the major cause of death in the patients with acute kidney injury (AKI). However, the neurobiological basis of AKI-induced brain disorders and their mediators are poorly understood. This study was aimed to find out the links between AKI and brain injury and also the underlying cellular and electrophysiological mechanisms of memory deficit following induction of AKI via different experimental models of renal ischemia with or without uremia and uremia without renal ischemia. Fifty four male Sprague-Dawley rats were divided into 4 groups that underwent 1-h bilateral or 2-h unilateral renal ischemia followed by 1-day reperfusion (BIR and UIR, respectively), and 1-day following bilateral nephrectomy (BNX) or sham-operation. There were 2 subgroups in each group, which blood-brain barrier (BBB) integrity was evaluated in one subgroup. The other subgroup was used for recordings electrophysiological activities of the hippocampus; and after blood sampling and sacrificing animal, the cerebral hemispheres were removed and preserved for performing stereological study and Western-blotting of caspase-3 in the left and right hippocampus, respectively. Plasma urea and creatinine and CA1 neuronal loss were largely increased by BNX and BIR, but slightly by UIR. Apoptosis was stimulated in the hippocampus intensively by BIR but moderately by UIR and BNX. However, BIR and UIR were associated with profoundly disturbed BBB, increased CA1 neuronal excitability, impaired LTP induction and memory deficit. Therefore, AKI most likely through inflammatory mediators leads to hippocampal apoptosis and electrophysiological impairments, BBB disruption and memory loss, whereas uremia may contribute to necrotic neuronal death.
Collapse
Affiliation(s)
- Maryam Arab Firouzjaei
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Mostafa Shid Moosavi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Yang MY, Yu QL, Huang YS, Yang G. Neuroprotective effects of andrographolide derivative CX-10 in transient focal ischemia in rat: Involvement of Nrf2/AE and TLR/NF-κB signaling. Pharmacol Res 2019; 144:227-234. [PMID: 31028905 DOI: 10.1016/j.phrs.2019.04.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide. To date there is no ideal effective treatment. 3, 14, 19-triacetyl andrographolide (CX-10) is a new molecule entity derived from andrographolide. The aim of the present study was to evaluate the neuroprotection of CX-10 against experimental cerebral ischemia. The anti-inflammation of CX-10 was screened using LPS-induced inflammation in vitro and in vivo. Rats were subjected to 1.5 h of middle cerebral occlusion (MCAO) and then reperfusion for 72 h. The infarct size was evaluated by TTC staining, and the behavioral disturbance was evaluated, and inflammatory cytokines and anti-oxidant enzymes in brain tissues were examined. Western blot was used to analyze the expression of proteins. The results showed that CX-10 exerted potent anti-inflammatory and anti-oxidation activities, which significantly inhibited LPS-induced TNF-α and NO release, lowered TNF-α and IL-1β levels in the brain, meanwhile increased activities of SOD, CAT and GSH-P × . The effect of CX-10 was equivalent to that of dexamethasone, and was obviously superior to that of andrographolide. CX-10 exhibited a neuroprotective effects, manifested as reducing infarct size, improving neurological function and reducing motor impairments. Furthermore, western blot analysis revealed that treatment with CX-10 down-regulated the expression of TLR4, NF-κB, TNF-α and iNOS, induced Nrf2 and HO-1 expression. Overall, CX-10 has a favorable neuroprotection in ischemic brain injury. The mechanism may involve inhibition of TLR4/NF-κB signaling pathway and upregulation of Nrf2/ARE signaling pathway. All these indicated that CX-10 is likely to be a promising agent for ischemic stroke.
Collapse
Affiliation(s)
- Ming-Yan Yang
- Shandong Target Drug Research Co. Ltd., Yantai 264005, Shandong Province, China.
| | - Qing-Long Yu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Yao-Shi Huang
- Shandong Target Drug Research Co. Ltd., Yantai 264005, Shandong Province, China
| | - Guo Yang
- Shandong Target Drug Research Co. Ltd., Yantai 264005, Shandong Province, China
| |
Collapse
|
31
|
Sergeev DV, Domashenko MA, Piradov MA. [Pharmacological neuroprotection in stroke in clinical practice: new perspectives]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 117:86-91. [PMID: 28617387 DOI: 10.17116/jnevro20171174186-91] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite recent advances in acute stroke care, clinical armamentarium against stroke remains limited. Furthermore, highly effective approaches to stroke treatment, such as systemic reperfusion and mechanical thrombectomy, cannot be performed in the majority of patients. Neuroprotective strategies, i.e. prevention of irreversible cell damage due to the ischemia, may improve stroke outcomes. However, only few pharmacological agents demonstrated clinical efficacy. Citicoline is an endogenous mononucleotide with neuroprotective effect and established clinical safety and tolerability, which effectiveness in acute stroke was studied in several large, well-controlled trials. Recent meta-analysis confirmed benefit of citicoline treatment in terms of increase of chance for better recovery of functional independence compared to placebo. Maximal effect of citicoline is seen when it is administered as soon as possible after stroke onset in patients who are not eligible for reperfusion therapy.
Collapse
Affiliation(s)
- D V Sergeev
- Research Center of Neurology, Moscow, Russia
| | | | - M A Piradov
- Research Center of Neurology, Moscow, Russia
| |
Collapse
|
32
|
Welzel L, Twele F, Schidlitzki A, Töllner K, Klein P, Löscher W. Network pharmacology for antiepileptogenesis: Tolerability and neuroprotective effects of novel multitargeted combination treatments in nonepileptic vs. post-status epilepticus mice. Epilepsy Res 2019; 151:48-66. [PMID: 30831337 DOI: 10.1016/j.eplepsyres.2019.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/23/2019] [Indexed: 01/08/2023]
Abstract
Network-based approaches in drug discovery comprise both development of novel drugs interacting with multiple targets and repositioning of drugs with known targets to form novel drug combinations that interact with cellular or molecular networks whose function is disturbed in a disease. Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed multitargeted, network-based approaches to prevent epileptogenesis by combinations of clinically available drugs chosen to impact diverse epileptogenic processes. In order to test this strategy preclinically, we developed a multiphase sequential study design for evaluating such drug combinations in rodents, derived from human clinical drug development phases. Because pharmacokinetics of such drugs are known, only the tolerability of novel drug combinations needs to be evaluated in Phase I in öhealthy" controls. In Phase IIa, tolerability is assessed following an epileptogenic brain insult, followed by antiepileptogenic efficacy testing in Phase IIb. Here, we report Phase I and Phase IIa evaluation of 7 new drug combinations in mice, using 10 drugs (levetiracetam, topiramate, gabapentin, deferoxamine, fingolimod, ceftriaxone, α-tocopherol, melatonin, celecoxib, atorvastatin) with diverse mechanisms thought to be important in epileptogenesis. Six of the 7 drug combinations were well tolerated in mice during prolonged treatment at the selected doses in both controls and during the latent phase following status epilepticus induced by intrahippocampal kainate. However, none of the combinations prevented hippocampal damage in response to kainate, most likely because treatment started only 16-18 h after kainate. This suggests that antiepileptogenic or disease-modifying treatment may need to start earlier after the brain insult. The present data provide a rich collection of tolerable, network-based combinatorial therapies as a basis for antiepileptogenic or disease-modifying efficacy testing.
Collapse
Affiliation(s)
- Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD 20817, USA
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
33
|
Lv B, Cheng X, Sharp FR, Ander BP, Liu DZ. MicroRNA-122 Mimic Improves Stroke Outcomes and Indirectly Inhibits NOS2 After Middle Cerebral Artery Occlusion in Rats. Front Neurosci 2018; 12:767. [PMID: 30405345 PMCID: PMC6207613 DOI: 10.3389/fnins.2018.00767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/03/2018] [Indexed: 01/19/2023] Open
Abstract
Aim: Our previous study demonstrated miR-122 mimic decreased NOS2 expression in blood leucocytes and improved stroke outcomes when given immediately after middle cerebral artery occlusion (MCAO) in rats. Since NOS2 is associated with neuro-inflammation in stroke and decreasing NOS2 expression alone in leucocytes is insufficient to improve stroke outcomes, we hypothesized that miR-122 mimic may also decrease NOS2 expression in brain microvascular endothelial cells (BMVECs) even at extended time windows. Methods: We administered PEG-liposome wrapped miR-122 mimic (2.4 mg/kg, i.v.) 0 or 6 h after MCAO, and assessed stroke volume and NOS2 expression in BMVECs 24 h following MCAO in rats. Luciferase reporter assays were used to determine if miR-122 binds to 3′ untranslated regions (3′UTR) of NOS2. Results: The data showed that miR-122 mimic decreased infarct volumes and decreased MCAO-induced NOS2 over-expression in BMVECs. However, miR-122 did not bind to 3′UTR of NOS2 in the luciferase assays. Conclusion: The data show the 6-h period of therapeutic efficacy of miR-122 mimic which could relate to indirect knockdown of NOS2 in both BMVECs and leucocytes.
Collapse
Affiliation(s)
- Bo Lv
- Department of Neurology, University of California, Davis, Davis, CA, United States.,Department of Critical Care Medicine and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiyuan Cheng
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Frank R Sharp
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Bradley P Ander
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Da Zhi Liu
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
34
|
Gaidhani N, Uteshev VV. Treatment duration affects cytoprotective efficacy of positive allosteric modulation of α7 nAChRs after focal ischemia in rats. Pharmacol Res 2018; 136:121-132. [PMID: 30205140 PMCID: PMC6218269 DOI: 10.1016/j.phrs.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 12/30/2022]
Abstract
To minimize irreversible brain injury after acute ischemic stroke (AIS), the time to treatment (i.e., treatment delay) should be minimized. However, thus far, all cytoprotective clinical trials have failed. Analysis of literature identified short treatment durations (≤72 h) as a common motif among completed cytoprotective clinical trials. Here, we argue that short cytoprotective regimens even if given early after AIS may only slow down the evolution of ischemic brain injury and fail to deliver sustained long-term solutions leading to relapses that may be misinterpreted for conceptual failure of cytoprotection. In this randomized blinded study, we used young adult male rats subjected to transient 90 min suture middle cerebral artery occlusion (MCAO) and treated with acute vs. sub-chronic regimens of PNU120596, a prototypical positive allosteric modulator of α7 nicotinic acetylcholine receptors with anti-inflammatory cytoprotective properties to test the hypothesis that insufficient treatment durations may reduce therapeutic benefits of otherwise efficacious cytoprotectants after AIS. A single acute treatment 90 min after MCAO significantly reduced brain injury and neurological deficits 24 h later, but these effects vanished 72 h after MCAO. These relapses were avoided by utilizing sub-chronic treatments. Thus, extending treatment duration augments therapeutic efficacy of PNU120596 after MCAO. Furthermore, sub-chronic treatments could offset the negative effects of prolonged treatment delays in cases where the acute treatment window after MCAO was left unexploited. We conclude that a combination of short treatment delays and prolonged treatment durations may be required to maximize therapeutic effects of PNU120596, reduce relapses and ensure sustained therapeutic efficacy after AIS. Similar concepts may hold for other cytoprotectants including those that failed in clinical trials.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States.
| |
Collapse
|
35
|
Huang L, Wang S, Ma F, Zhang Y, Peng Y, Xing C, Feng Y, Wang X, Peng Y. From stroke to neurodegenerative diseases: The multi-target neuroprotective effects of 3-n-butylphthalide and its derivatives. Pharmacol Res 2018; 135:201-211. [DOI: 10.1016/j.phrs.2018.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
|
36
|
Chen H, Cao J, Zhu Z, Zhang G, Shan L, Yu P, Wang Y, Sun Y, Zhang Z. A Novel Tetramethylpyrazine Derivative Protects Against Glutamate-Induced Cytotoxicity Through PGC1α/Nrf2 and PI3K/Akt Signaling Pathways. Front Neurosci 2018; 12:567. [PMID: 30158850 PMCID: PMC6104130 DOI: 10.3389/fnins.2018.00567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/27/2018] [Indexed: 01/02/2023] Open
Abstract
Glutamate-induced excitotoxicity is one of the main causes of neuronal cell death in stroke. Compound 22a has been previously reported as a promising neuroprotective compound derived from tetramethylpyrazine, which is a widely used active ingredient of traditional Chinese medicine Chuanxiong (Ligusticum wallichii Franchat). Compound 22a can protect neurons from oxidative stress-induced PC12 cell death and alleviates the infarct areas and brain edema in a rat permanent middle cerebral artery occlusion model. In the current work, we further investigated the neuroprotective effects and underlying mechanisms of compound 22a against glutamate-induced excitotoxicity in primary culture of rat cerebellar granule neurons (CGNs). We found that pretreatment with compound 22a prevented glutamate-induced neuronal damage by maintaining mitochondrial membrane potential and attenuating cellular apoptosis. Compound 22a could also enhance peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) transcriptional activity and induce nuclear accumulation of Nrf2 in PC12 cells. Accordingly, pretreatment with compound 22a reversed the glutamate-induced down-regulation of expression of the proteins PGC1α, transcriptional factor NF-E2-related factor 2 (Nrf2), and hemooxygenase 1 (HO-1). In addition, compound 22a increased the phosphorylation of phosphoinositide 3-kinase (p-PI3K), phosphorylated protein kinase B (p-Akt), and glycogen synthase kinase 3β (p-GSK3β). Meanwhile, the small interfering RNA-mediated silencing of PGC1α expression and selective inhibitors targeting PI3K/Akt (LY294002 and Akt-iv) could significantly attenuate the neuroprotective effect of compound 22a. Taken together, compound 22a protected against glutamate-induced CGN injury possibly in part through regulation of PGC1α/Nrf2 and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Haiyun Chen
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.,Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Jie Cao
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zeyu Zhu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Luchen Shan
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Pei Yu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
37
|
Inhibition of PTEN protects PC12 cells against oxygen-glucose deprivation induced cell death through mitoprotection. Brain Res 2018; 1692:100-109. [DOI: 10.1016/j.brainres.2018.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/24/2018] [Accepted: 05/18/2018] [Indexed: 01/06/2023]
|
38
|
Fraser JF, Collier LA, Gorman AA, Martha SR, Salmeron KE, Trout AL, Edwards DN, Davis SM, Lukins DE, Alhajeri A, Grupke S, Roberts JM, Bix GJ, Pennypacker KR. The Blood And Clot Thrombectomy Registry And Collaboration (BACTRAC) protocol: novel method for evaluating human stroke. J Neurointerv Surg 2018; 11:265-270. [PMID: 30064997 DOI: 10.1136/neurintsurg-2018-014118] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Ischemic stroke research faces difficulties in translating pathology between animal models and human patients to develop treatments. Mechanical thrombectomy, for the first time, offers a momentary window into the changes occurring in ischemia. We developed a tissue banking protocol to capture intracranial thrombi and the blood immediately proximal and distal to it. OBJECTIVE To develop and share a reproducible protocol to bank these specimens for future analysis. METHODS We established a protocol approved by the institutional review board for tissue processing during thrombectomy (www.clinicaltrials.gov NCT03153683). The protocol was a joint clinical/basic science effort among multiple laboratories and the NeuroInterventional Radiology service line. We constructed a workspace in the angiography suite, and developed a step-by-step process for specimen retrieval and processing. RESULTS Our protocol successfully yielded samples for analysis in all but one case. In our preliminary dataset, the process produced adequate amounts of tissue from distal blood, proximal blood, and thrombi for gene expression and proteomics analyses. We describe the tissue banking protocol, and highlight training protocols and mechanics of on-call research staffing. In addition, preliminary integrity analyses demonstrated high-quality yields for RNA and protein. CONCLUSIONS We have developed a novel tissue banking protocol using mechanical thrombectomy to capture thrombus along with arterial blood proximal and distal to it. The protocol provides high-quality specimens, facilitating analysis of the initial molecular response to ischemic stroke in the human condition for the first time. This approach will permit reverse translation to animal models for treatment development.
Collapse
Affiliation(s)
- Justin F Fraser
- Departments of Neuroscience, University of Kentucky, Lexington, Kentucky, USA.,Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa A Collier
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Amy A Gorman
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Sarah R Martha
- Departments of Neuroscience, University of Kentucky, Lexington, Kentucky, USA.,College of Nursing, University of Kentucky, Lexington, Kentucky, USA
| | - Kathleen E Salmeron
- Departments of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Amanda L Trout
- Departments of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Danielle N Edwards
- Departments of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Stephanie M Davis
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Douglas E Lukins
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Abdulnasser Alhajeri
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA.,Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, USA
| | - Stephen Grupke
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA.,Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, USA
| | - Jill M Roberts
- Departments of Neuroscience, University of Kentucky, Lexington, Kentucky, USA.,Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory J Bix
- Departments of Neuroscience, University of Kentucky, Lexington, Kentucky, USA.,Department of Neurology, University of Kentucky, Lexington, Kentucky, USA.,Department of Neurological Surgery, University of Kentucky, Lexington, KY
| | - Keith R Pennypacker
- Departments of Neuroscience, University of Kentucky, Lexington, Kentucky, USA.,Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
39
|
Kofke WA, Ren Y, Augoustides JG, Li H, Nathanson K, Siman R, Meng QC, Bu W, Yandrawatthana S, Kositratna G, Kim C, Bavaria JE. Reframing the Biological Basis of Neuroprotection Using Functional Genomics: Differentially Weighted, Time-Dependent Multifactor Pathogenesis of Human Ischemic Brain Damage. Front Neurol 2018; 9:497. [PMID: 29997569 PMCID: PMC6028620 DOI: 10.3389/fneur.2018.00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Neuroprotection studies are generally unable to demonstrate efficacy in humans. Our specific hypothesis is that multiple pathophysiologic pathways, of variable importance, contribute to ischemic brain damage. As a corollary to this, we discuss the broad hypothesis that a multifaceted approach will improve the probability of efficacious neuroprotection. But to properly test this hypothesis the nature and importance of the multiple contributing pathways needs elucidation. Our aim is to demonstrate, using functional genomics, in human cardiac surgery procedures associated with cerebral ischemia, that the pathogenesis of perioperative human ischemic brain damage involves the function of multiple variably weighted proteins involving several pathways. We then use these data and literature to develop a proposal for rational design of human neuroprotection protocols. Methods: Ninety-four patients undergoing deep hypothermic circulatory arrest (DHCA) and/or aortic valve replacement surgery had brain damage biomarkers, S100β and neurofilament H (NFH), assessed at baseline, 1 and 24 h post-cardiopulmonary bypass (CPB) with analysis for association with 92 single nucleotide polymorphisms (SNPs) (selected by co-author WAK) related to important proteins involved in pathogenesis of cerebral ischemia. Results: At the nominal significance level of 0.05, changes in S100β and in NFH at 1 and 24 h post-CPB were associated with multiple SNPs involving several prospectively determined pathophysiologic pathways, but were not individually significant after multiple comparison adjustments. Variable weights for the several evaluated SNPs are apparent on regression analysis and, notably, are dissimilar related to the two biomarkers and over time post CPB. Based on our step-wise regression model, at 1 h post-CPB, SOD2, SUMO4, and GP6 are related to relative change of NFH while TNF, CAPN10, NPPB, and SERPINE1 are related to the relative change of S100B. At 24 h post-CPB, ADRA2A, SELE, and BAX are related to the relative change of NFH while SLC4A7, HSPA1B, and FGA are related to S100B. Conclusions: In support of the proposed hypothesis, association SNP data suggest function of specific disparate proteins, as reflected by genetic variation, may be more important than others with variation at different post-insult times after human brain ischemia. Such information may support rational design of post-insult time-sensitive multifaceted neuroprotective therapies.
Collapse
Affiliation(s)
- William A Kofke
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Yue Ren
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States
| | - John G Augoustides
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics Abramson Cancer Center Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Robert Siman
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Qing Cheng Meng
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Sukanya Yandrawatthana
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Guy Kositratna
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Cecilia Kim
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joseph E Bavaria
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
40
|
Fraser JF. Standardisation of research strategies in acute ischaemic stroke. Lancet Neurol 2018; 15:784-785. [PMID: 27302347 DOI: 10.1016/s1474-4422(16)30080-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Justin F Fraser
- Departments of Neurological Surgery, Neurology, Radiology, and Anatomy and Neurobiology, University of Kentucky, 800 Rose Street, Room MS108A, Lexington, KY 40536, USA; Center for Advanced Translational Stroke Science, University of Kentucky, 800 Rose Street, Room MS108A, Lexington, KY 40536, USA.
| |
Collapse
|
41
|
Xijiao Dihuang Decoction Alleviates Ischemic Brain Injury in MCAO Rats by Regulating Inflammation, Neurogenesis, and Angiogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5945128. [PMID: 30046341 PMCID: PMC6036833 DOI: 10.1155/2018/5945128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
Abstract
Ischemic stroke is an increasingly important public health problem, and no effective treatments are approved. Xijiao Dihuang Decoction (XDD), a famous herbal formula for treating hemorrhagic fever syndromes, has been shown to exert powerful neuroprotective property. The aim of this study was to identify the chemical constituents in XDD, observe the neuroprotective effect of XDD against acute ischemic stroke, and explore the specific mechanisms by which these effects were mediated. With UHPLC-Q/TOF-MS, 47 components in XDD were detected and 25 of them were identified. In rats subjected to MCAO, XDD ameliorated neurological deficit, histopathology changes, and infarction volume. In addition, levels of TNF-ɑ, IL-6, and IL-1β in XDD-treated group were significantly lower compared to the model group. Mechanistic studies showed that XDD inhibited MCAO-induced NF-κB activation, presenting as downregulating the expression of phospho-NF-κB p65 and preventing IκBɑ degradation. Besides, BDNF, GDNF, VEGF, bFGF, and CD34 levels were significantly increased by XDD, suggesting that the protective effects of XDD may also be associated with the promotion of neurogenesis and angiogenesis. In conclusion, these findings provided a novel regulatory pathway of the neuroprotective effect of XDD that helped rehabilitate patients with stroke.
Collapse
|
42
|
Bix GJ, Fraser JF, Mack WJ, Carmichael ST, Perez-Pinzon M, Offner H, Sansing L, Bosetti F, Ayata C, Pennypacker KR. Uncovering the Rosetta Stone: Report from the First Annual Conference on Key Elements in Translating Stroke Therapeutics from Pre-Clinical to Clinical. Transl Stroke Res 2018; 9:258-266. [PMID: 29633156 PMCID: PMC5982459 DOI: 10.1007/s12975-018-0628-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 01/12/2023]
Abstract
The first annual Stroke Translational Research Advancement Workshop (STRAW), entitled “Uncovering the Rosetta Stone: Key Elements in Translating Stroke Therapeutics from Pre-Clinical to Clinical” was held at the University of Kentucky on October 4–5, 2017. This workshop was organized by the Center for Advanced Translational Stroke Science. The workshop consisted of 2 days of activities. These included three presentations establishing the areas of research in stroke therapeutics, discussing the routes for translation from bench to bedside, and identifying successes and failures in the field. On day 2, grant funding opportunities and goals for the National Institute for Neurological Diseases and Stroke were presented. In addition, the meeting also included break-out sessions designed to connect researchers in areas of stroke, and to foster potential collaborations. Finally, the meeting concluded with an open discussion among attendees led by a panel of experts.
Collapse
Affiliation(s)
- Gregory J Bix
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Neurology, University of Kentucky, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.,Department of Neurology, University of Kentucky, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA.,Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - William J Mack
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, California, Los Angeles, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Miguel Perez-Pinzon
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Halina Offner
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA.,Department of Anesthesiology, Oregon Health & Science University, Portland, Oregon, USA.,Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Lauren Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Francesca Bosetti
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cenk Ayata
- Department of Neurology, Harvard Medical School, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Keith R Pennypacker
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA. .,Department of Neurology, University of Kentucky, Lexington, KY, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
43
|
Liu L, Liu X, Wang R, Yan F, Luo Y, Chandra A, Ding Y, Ji X. Mild focal hypothermia regulates the dynamic polarization of microglia after ischemic stroke in mice. Neurol Res 2018; 40:508-515. [PMID: 29619889 DOI: 10.1080/01616412.2018.1454090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Objectives The protective effects of hypothermia on acute stroke have been demonstrated in many studies. However, its underlying mechanisms have not been thoroughly elucidated. Following an ischemic stroke event, microglia undertakes an early 'healthy' M2 phenotype and gradually transform into a 'sick' M1 phenotype over time. This transformation of polarity of microglia has influence on the degree of damage following a stroke. This study investigated the effects of mild focal hypothermia on microglia polarization following ischemic stroke. Methods Transient cerebral ischemic models were created by intraluminal filament occlusion of right middle cerebral artery (MCAO) in mice for one hour. By placing an ice box under their skull, hypothermia of mice brain was initiated immediately following MCAO for 2 h. Temporal muscle temperature was recorded and maintained between 32 and 34 °C. Brain tissue loss was assessed by hematoxylin and eosin (H&E) staining 28 days after MCAO. Quantitative real-time polymerase chain reaction (qPCR) and immunostaining were used to assess phenotype of microglia in different ischemic perfusion time. Results Hypothermia reduced brain tissue loss 28 days after ischemic stroke. Hypothermia also reduced the number of CD16-positive M1 microglia and increased the numbers of CD206-positive M2 microglia following ischemic stroke. Moreover, hypothermia also led to the reduction of the M1 markers at the level of transcription, while it increased the expression of mRNA for M2 markers. Conclusions Hypothermia is protective following ischemic stroke and can reduce brain tissue loss. Moreover, hypothermia shifts the polarization of microglia from the M1 to the M2 phenotype in the ischemic mice brain. This observed biological phenomenon may partially explain the protective effects seen due to hypothermia in acute ischemic stroke.
Collapse
Affiliation(s)
- Liqiang Liu
- a Cerebrovascular Disease Research Institute, Xuanwu Hospital , Capital Medical University , Beijing , China.,b Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , China.,c China-America Joint Institute of Neuroscience, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Xiangrong Liu
- a Cerebrovascular Disease Research Institute, Xuanwu Hospital , Capital Medical University , Beijing , China.,c China-America Joint Institute of Neuroscience, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Rongliang Wang
- a Cerebrovascular Disease Research Institute, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Feng Yan
- a Cerebrovascular Disease Research Institute, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Yumin Luo
- a Cerebrovascular Disease Research Institute, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Ankush Chandra
- d Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,e Department of Neurological Surgery , University of California San Francisco , San Francisco , CA , USA
| | - Yuchuan Ding
- c China-America Joint Institute of Neuroscience, Xuanwu Hospital , Capital Medical University , Beijing , China.,d Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Xunming Ji
- a Cerebrovascular Disease Research Institute, Xuanwu Hospital , Capital Medical University , Beijing , China.,b Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , China.,c China-America Joint Institute of Neuroscience, Xuanwu Hospital , Capital Medical University , Beijing , China.,f Department of Neurosurgery , Xuanwu Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
44
|
Yu G, Liang Y, Zheng S, Zhang H. Inhibition of Myeloperoxidase by N-Acetyl Lysyltyrosylcysteine Amide Reduces Oxidative Stress–Mediated Inflammation, Neuronal Damage, and Neural Stem Cell Injury in a Murine Model of Stroke. J Pharmacol Exp Ther 2017; 364:311-322. [DOI: 10.1124/jpet.117.245688] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
|
45
|
Bornstein NM, Guekht A, Vester J, Heiss WD, Gusev E, Hömberg V, Rahlfs VW, Bajenaru O, Popescu BO, Muresanu D. Safety and efficacy of Cerebrolysin in early post-stroke recovery: a meta-analysis of nine randomized clinical trials. Neurol Sci 2017; 39:629-640. [PMID: 29248999 PMCID: PMC5884916 DOI: 10.1007/s10072-017-3214-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
This meta-analysis combines the results of nine ischemic stroke trials, assessing efficacy of Cerebrolysin on global neurological improvement during early post-stroke period. Cerebrolysin is a parenterally administered neuropeptide preparation approved for treatment of stroke. All included studies had a prospective, randomized, double-blind, placebo-controlled design. The patients were treated with 30–50 ml Cerebrolysin once daily for 10–21 days, with treatment initiation within 72 h after onset of ischemic stroke. For five studies, original analysis data were available for meta-analysis (individual patient data analysis); for four studies, aggregate data were used. The combination by meta-analytic procedures was pre-planned and the methods of synthesis were pre-defined under blinded conditions. Search deadline for the present meta-analysis was December 31, 2016. The nonparametric Mann-Whitney (MW) effect size for National Institutes of Health Stroke Scale (NIHSS) on day 30 (or 21), combining the results of nine randomized, controlled trials by means of the robust Wei-Lachin pooling procedure (maximin-efficient robust test), indicated superiority of Cerebrolysin as compared with placebo (MW 0.60, P < 0.0001, N = 1879). The combined number needed to treat for clinically relevant changes in early NIHSS was 7.7 (95% CI 5.2 to 15.0). The additional full-scale ordinal analysis of modified Rankin Scale at day 90 in moderate to severe patients resulted in MW 0.61 with statistical significance in favor of Cerebrolysin (95% CI 0.52 to 0.69, P = 0.0118, N = 314). Safety aspects were comparable to placebo. Our meta-analysis confirms previous evidence that Cerebrolysin has a beneficial effect on early global neurological deficits in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Natan M Bornstein
- Shaare Zedek Medical Center, Jerusalem, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alla Guekht
- Russian National Research Medical University and Moscow Research and Clinical Center for Neuropsychiatry, Ul. Donskaya 43, Moscow, 115419, Russia
| | - Johannes Vester
- Department of Biometry and Clinical Research, IDV Data Analysis and Study Planning, Konrad-Zuse-Bogen 17, 82152, Krailling, Germany
| | - Wolf-Dieter Heiss
- Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - Eugene Gusev
- Russian National Research Medical University, Moscow, Russia
| | - Volker Hömberg
- Department of Neurology, SRH Gesundheitszentrum Bad Wimpfen GmbH, Bad Wimpfen, Germany
| | - Volker W Rahlfs
- Department of Biometry and Clinical Research, IDV Data Analysis and Study Planning, Konrad-Zuse-Bogen 17, 82152, Krailling, Germany
| | - Ovidiu Bajenaru
- Department of Neurology, "Carol Davila" University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474, Bucharest, Romania
| | - Bogdan O Popescu
- Department of Neurology, "Carol Davila" University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474, Bucharest, Romania.,Laboratory of Molecular Biology, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Dafin Muresanu
- Department of Clinical Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Victor Babes Street No. 8, 400012, Cluj-Napoca, Romania. .,"RoNeuro" Institute for Neurological Research and Diagnostic, 37 Mircea Eliade Street, 400364, Cluj-Napoca, Romania.
| |
Collapse
|
46
|
Liu ZY, Hu S, Zhong QW, Tian CN, Ma HM, Yu JJ. N-Methyl-D-Aspartate Receptor-Driven Calcium Influx Potentiates the Adverse Effects of Myocardial Ischemia-Reperfusion Injury Ex Vivo. J Cardiovasc Pharmacol 2017; 70:329-338. [PMID: 28777252 PMCID: PMC5673305 DOI: 10.1097/fjc.0000000000000527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 05/18/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Despite the adverse effects of N-methyl-D-aspartate receptor (NMDAR) activity in cardiomyocytes, no study has yet examined the effects of NMDAR activity under ex vivo ischemic-reperfusion (I/R) conditions. Therefore, our aim was to comprehensively evaluate the effects of NMDAR activity through an ex vivo myocardial I/R rat model. METHODS Isolated rat hearts were randomly segregated into 6 groups (n = 20 in each group): (1) an untreated control group; (2) a NMDA-treated control group; (3) an untreated I/R group; (4) an I/R+NMDA group treated with NMDA; (5) an I/R+NMDA+MK-801 group treated with NMDA and the NMDAR inhibitor MK-801; and (6) an I/R+NMDA+[Ca]-free group treated with NMDA and [Ca]-free buffer. The 4 I/R groups underwent 30 minutes of ischemia followed by 50 minutes of reperfusion. Left ventricular pressure signals were analyzed to assess cardiac performance. Myocardial intracellular calcium levels ([Ca]i) were assessed in isolated ventricular cardiomyocytes. Creatine kinase, creatine kinase isoenzyme MB, lactate dehydrogenase, cardiac troponin I, and cardiac troponin T were assayed from coronary effluents. TTC and TUNEL staining were used to measure generalized myocardial necrosis and apoptosis levels, respectively. Western blotting was applied to assess the phosphorylation of PKC-δ, PKC-ε, Akt, and extracellular signal-regulated kinase. RESULTS Enhanced NMDAR activity under control conditions had no significant effects on the foregoing variables. In contrast, enhanced NMDAR activity under I/R conditions produced significant increases in [Ca]i levels (∼1.2% increase), significant losses in left ventricular function (∼5.4% decrease), significant multi-fold increases in creatine kinase, creatine kinase isoenzyme MB, lactate dehydrogenase, cardiac troponin I, and cardiac troponin T, significant increases in generalized myocardial necrosis (∼36% increase) and apoptosis (∼150% increase), and significant multi-fold increases in PKC-δ, PKC-ε, Akt, and extracellular signal-regulated kinase phosphorylation (all P < 0.05). These adverse effects were rescued by the NMDAR inhibitor MK-801 or [Ca]-free buffer (all P < 0.05). CONCLUSIONS NMDAR-driven calcium influx potentiates the adverse effects of myocardial I/R injury ex vivo.
Collapse
Affiliation(s)
- Zi-You Liu
- Department of Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jianxi, China
| | | | | | | | | | | |
Collapse
|
47
|
Ardelt AA, Carpenter RS, Iwuchukwu I, Zhang A, Lin W, Kosciuczuk E, Hinkson C, Rebeiz T, Reitz S, King PH. Transgenic expression of HuR increases vasogenic edema and impedes functional recovery in rodent ischemic stroke. Neurosci Lett 2017; 661:126-131. [PMID: 28982595 DOI: 10.1016/j.neulet.2017.09.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke produces significant morbidity and mortality, and acute interventions are limited by short therapeutic windows. Novel approaches to neuroprotection and neurorepair are necessary. HuR is an RNA-binding protein (RBP) which modulates RNA stability and translational efficiency of genes linked to ischemic stroke injury. METHODS Using a transgenic (Tg) mouse model, we examined the impact of ectopic HuR expression in astrocytes on acute injury evolution after transient middle cerebral artery occlusion (tMCAO). RESULTS HuR transgene expression was detected in astrocytes in perilesional regions and contralaterally. HuR Tg mice did not improve neurologically 72h after injury, whereas littermate controls did. In Tg mice, increased cerebral vascular permeability and edema were observed. Infarct volume was not affected by the presence of the transgene. CONCLUSIONS Ectopic expression of HuR in astrocytes worsens outcome after transient ischemic stroke in mice in part by increasing vasogenic cerebral edema. These findings suggest that HuR could be a therapeutic target in cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Agnieszka A Ardelt
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, MC2030, Chicago, IL 60637, United States.
| | - Randall S Carpenter
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, MC2030, Chicago, IL 60637, United States.
| | - Ifeanyi Iwuchukwu
- Department of Neurocritical Care, Ochsner Medical Center, 1514 Jefferson Hwy., New Orleans, LA 70121, United States.
| | - An Zhang
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, MC2030, Chicago, IL 60637, United States.
| | - William Lin
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, MC2030, Chicago, IL 60637, United States.
| | - Ewa Kosciuczuk
- Division of Hematology-Oncology, Northwestern University, 675 North St. Clair, Chicago, IL 60611, United States.
| | - Cyrus Hinkson
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, MC2030, Chicago, IL 60637, United States.
| | - Tania Rebeiz
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, MC2030, Chicago, IL 60637, United States.
| | - Sydney Reitz
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, MC2030, Chicago, IL 60637, United States.
| | - Peter H King
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, United States.
| |
Collapse
|
48
|
Hernández CC, Burgos CF, Gajardo AH, Silva-Grecchi T, Gavilan J, Toledo JR, Fuentealba J. Neuroprotective effects of erythropoietin on neurodegenerative and ischemic brain diseases: the role of erythropoietin receptor. Neural Regen Res 2017; 12:1381-1389. [PMID: 29089974 PMCID: PMC5649449 DOI: 10.4103/1673-5374.215240] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2017] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (Epo) is a fundamental hormone in the regulation of hematopoiesis, and other secondary roles mediated by the binding of the hormone to its specific receptor (EpoR), which leads to an activation of key signaling pathways that induce an increase in cell differentiation, apoptosis control and neuroprotection. It has been suggested that their function depends on final conformation of glycosylations, related with affinity to the receptor and its half-life. The presence of EpoR has been reported in different tissues including central nervous system, where it has been demonstrated to exert a neuroprotective function against oxidative stress conditions, such as ischemic injury and neurodegenerative diseases. There is also evidence of an increase in EpoR expression in brain cell lysates of Alzheimer's patients with respect to healthy patients. These results are related with extensive in vitro experimental data of neuroprotection obtained from cell lines, primary cell cultures and hippocampal slices. Additionally, this data is correlated with in vivo experiments (water maze test) in mouse models of Alzheimer's disease where Epo treatment improved cognitive function. These studies support the idea that receptor activation induces a neuroprotective effect in neurodegenerative disorders including dementias, and especially Alzheimer's disease. Taken together, available evidence suggests that Epo appears to be a central element for EpoR activation and neuroprotective properties in the central nervous system. In this review, we will describe the mechanisms associated with neuroprotection and its relation with the activation of EpoR in order with identify new targets to develop pharmacological strategies.
Collapse
Affiliation(s)
- Carolina Castillo Hernández
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, University of Concepción, Concepción, Chile
- Laboratory of Biotechnology and Biopharmaceutical, Department of Pathophysiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Carlos Felipe Burgos
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Angela Hidalgo Gajardo
- Laboratory of Biotechnology and Biopharmaceutical, Department of Pathophysiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Tiare Silva-Grecchi
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Javiera Gavilan
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jorge Roberto Toledo
- Laboratory of Biotechnology and Biopharmaceutical, Department of Pathophysiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| |
Collapse
|
49
|
Deng M, Xiao H, Zhang H, Peng H, Yuan H, Xu Y, Zhang G, Hu Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles Ameliorates Hippocampal Synaptic Impairment after Transient Global Ischemia. Front Cell Neurosci 2017; 11:205. [PMID: 28769765 PMCID: PMC5511812 DOI: 10.3389/fncel.2017.00205] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/30/2017] [Indexed: 01/24/2023] Open
Abstract
Recent studies have found that administration of stem cells or extracellular vehicles (EVs) derived from stem cells exert neuroprotective effects after transient global ischemia. However, the underlying mechanisms of this effect remain unclear, especially at the level of synaptic functions. In this study, we compared the suppressive effects on cyclooxygenase-2 (COX-2) upregulation by EVs derived from bone marrow mesenchymal stem cells (BMSC-EV), adipose tissue MSC (AdMSC-EV) and serum (serum-EV). Then we examined whether BMSC-EVs could restore functional integrity of synaptic transmission and plasticity. Mice were randomly assigned to four groups: sham, sham with EV treatment, ischemia and ischemia with EV treatment. EVs were administered by intracerebroventricular injection (ICVI). We examined the consequence of transient global ischemia on pre- and post-synaptic functions of the hippocampal CA3-CA1 synapses at basal level, and long-term potentiation (LTP), an activity-dependent form of synaptic plasticity. Then we tested the therapeutic effects of EVs on these synaptic deficits. Meanwhile, Morris water maze (MWM) test was performed to examine the efficacy of EVs in rescuing ischemia-induced impairments in spatial learning and memory. EV treatment significantly restored impaired basal synaptic transmission and synaptic plasticity, and improved spatial learning and memory compared with the control group. In addition, EVs significantly inhibited ischemia-induced pathogenic expression of COX-2 in the hippocampus. EVs exert ameliorating effects on synaptic functions against transient global cerebral ischemia, which may be partly attributed to suppression of COX-2 pathogenic expression.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Huan Yuan
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Yunxiao Xu
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
50
|
Neuroprotection of Catalpol for Experimental Acute Focal Ischemic Stroke: Preclinical Evidence and Possible Mechanisms of Antioxidation, Anti-Inflammation, and Antiapoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5058609. [PMID: 28785376 PMCID: PMC5530418 DOI: 10.1155/2017/5058609] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/04/2017] [Accepted: 05/14/2017] [Indexed: 11/18/2022]
Abstract
Neuroprotection is defined as using a therapy that affects the brain tissue in the still-viable ischemic penumbra to salvage or delay the infarction. Catalpol, the main active principle of the root of Radix Rehmanniae, was reported to have pleiotropic neuroprotective effects in neurodegenerative diseases including ischemic stroke. Here, we evaluated the neuroprotective effects of catalpol in experimental acute ischemic stroke. Studies on catalpol in animal models of acute ischemic stroke were identified from 6 databases. Twenty-five studies involving 805 animals were included. Twelve comparisons showed significant effects of catalpol on decreasing infarct size according to 2,3,5-triphenyltetrazolium chloride staining compared with the control (P < 0.05). One study reported significant effect of catalpol on reducing infarct size according to magnetic resonance imaging scan compared with the control (P < 0.05). Meta-analysis of these studies indicated that catalpol significantly improved the neurological function score according to Zea Longa score, Bederson score, balance beam-walking test, adhesive removal test, bar-grasping score, and corner test compared with the control (P < 0.05). In conclusion, catalpol exerted neuroprotective effects for experimental acute focal ischemic stroke, largely through reducing oxidative reactions, inhibiting apoptosis, and repressing inflammatory reactions and autophagy. However, these apparently positive findings should be interpreted with caution because of the methodological flaws.
Collapse
|