1
|
Hannawi Y. Cerebral Small Vessel Disease: a Review of the Pathophysiological Mechanisms. Transl Stroke Res 2024; 15:1050-1069. [PMID: 37864643 DOI: 10.1007/s12975-023-01195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to the age-dependent pathological processes involving the brain small vessels and leading to vascular cognitive impairment, intracerebral hemorrhage, and acute lacunar ischemic stroke. Despite the significant public health burden of cSVD, disease-specific therapeutics remain unavailable due to the incomplete understanding of the underlying pathophysiological mechanisms. Recent advances in neuroimaging acquisition and processing capabilities as well as findings from cSVD animal models have revealed critical roles of several age-dependent processes in cSVD pathogenesis including arterial stiffness, vascular oxidative stress, low-grade systemic inflammation, gut dysbiosis, and increased salt intake. These factors interact to cause a state of endothelial cell dysfunction impairing cerebral blood flow regulation and breaking the blood brain barrier. Neuroinflammation follows resulting in neuronal injury and cSVD clinical manifestations. Impairment of the cerebral waste clearance through the glymphatic system is another potential process that has been recently highlighted contributing to the cognitive decline. This review details these mechanisms and attempts to explain their complex interactions. In addition, the relevant knowledge gaps in cSVD mechanistic understanding are identified and a systematic approach to future translational and early phase clinical research is proposed in order to reveal new cSVD mechanisms and develop disease-specific therapeutics.
Collapse
Affiliation(s)
- Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, 333 West 10th Ave, Graves Hall 3172C, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Correale J, Solomon AJ, Cohen JA, Banwell BL, Gracia F, Gyang TV, de Bedoya FHD, Harnegie MP, Hemmer B, Jacob A, Kim HJ, Marrie RA, Mateen FJ, Newsome SD, Pandit L, Prayoonwiwat N, Sahraian MA, Sato DK, Saylor D, Shi FD, Siva A, Tan K, Viswanathan S, Wattjes MP, Weinshenker B, Yamout B, Fujihara K. Differential diagnosis of suspected multiple sclerosis: global health considerations. Lancet Neurol 2024; 23:1035-1049. [PMID: 39304243 DOI: 10.1016/s1474-4422(24)00256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 09/22/2024]
Abstract
The differential diagnosis of multiple sclerosis can present specific challenges in patients from Latin America, Africa, the Middle East, eastern Europe, southeast Asia, and the Western Pacific. In these areas, environmental factors, genetic background, and access to medical care can differ substantially from those in North America and western Europe, where multiple sclerosis is most common. Furthermore, multiple sclerosis diagnostic criteria have been developed primarily using data from North America and western Europe. Although some diagnoses mistaken for multiple sclerosis are common regardless of location, a comprehensive approach to the differential diagnosis of multiple sclerosis in Latin America, Africa, the Middle East, eastern Europe, southeast Asia, and the Western Pacific regions requires special consideration of diseases that are prevalent in those locations. A collaborative effort has therefore assessed global differences in multiple sclerosis differential diagnoses and proposed recommendations for evaluating patients with suspected multiple sclerosis in regions beyond North America and western Europe.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Fleni, Buenos Aires, Argentina; Institute of Biological Chemistry and Biophysics, CONICET/University of Buenos Aires, Buenos Aires, Argentina.
| | - Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Jeffrey A Cohen
- Department of Neurology, Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brenda L Banwell
- Division of Child Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fernando Gracia
- Hospital Santo Tomás, Panama City, Panama; Universidad Interamericana de Panamá, School of Medicine, Panama City, Panama
| | - Tirisham V Gyang
- Department of Neurology, The Ohio State University, Columbus, Ohio, USA
| | | | - Mary P Harnegie
- Cleveland Clinic Libraries, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bernhard Hemmer
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich Cluster for Systems Neurology, Munich, Germany
| | - Anu Jacob
- Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | - Ho Jin Kim
- Department of Neurology, National Cancer Center, Goyang, South Korea
| | - Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Farrah J Mateen
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, USA
| | - Scott D Newsome
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lekha Pandit
- Center for Advanced Neurological Research, KS Hedge Medical Academy, Nitte University, Mangalore, India
| | - Naraporn Prayoonwiwat
- Division of Neurology, Department of Medicine and Siriraj Neuroimmunology Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mohammad A Sahraian
- MS Research Center, Neuroscience Institute, Teheran University of Medical Sciences, Iran
| | - Douglas K Sato
- Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Deanna Saylor
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; University Teaching Hospital, Lusaka, Zambia
| | - Fu-Dong Shi
- Tianjin Medical University General Hospital, Tianjin, China; National Clinical Research Center for Neurological Disorders, Beijing Tiantan Hospital, Beijing, China
| | - Aksel Siva
- Istanbul University Cerrahpasa, School of Medicine, Department of Neurology, Clinical Neuroimmunology Unit and MS Clinic, Istanbul, Türkiye
| | - Kevin Tan
- Department of Neurology, National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | | | - Mike P Wattjes
- Department of Neuroradiology, Charité Berlin, Corporate Member of Freie Universität zu Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Brian Weinshenker
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Bassem Yamout
- Neurology Institute, Harley Street Medical Center, Abu Dhabi, United Arab Emirates
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine and Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan.
| |
Collapse
|
3
|
Hazra D. Author Response: Outcome Predictors of an Intracerebral Hemorrhage also Depend on the Causes of the Bleeding. Indian J Crit Care Med 2024; 28:892-893. [PMID: 39360203 PMCID: PMC11443274 DOI: 10.5005/jp-journals-10071-24788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
How to cite this article: Hazra D. Author Response: Outcome Predictors of an Intracerebral Hemorrhage also Depend on the Causes of the Bleeding. Indian J Crit Care Med 2024;28(9):892-893.
Collapse
Affiliation(s)
- Darpanarayan Hazra
- Department of Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| |
Collapse
|
4
|
Song Y, Xu J, Geng W, Yin L, Wang J, Zhao J. Association and causal impact of TERT genetic variants on peripheral blood leukocyte telomere length and cerebral small vessel disease risk in a Chinese Han population: a mendelian randomization analysis. Orphanet J Rare Dis 2024; 19:309. [PMID: 39180127 PMCID: PMC11342532 DOI: 10.1186/s13023-024-03316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Previous observational studies have highlighted potential relationships between the telomerase reverse transcriptase (TERT) gene, short leukocyte telomere length (LTL), and cerebrovascular disease. However, it remains to be established as to whether TERT gene variants are associated with an elevated risk of cerebral small vessel disease (CSVD), and whether there is a causal relationship between LTL and CSVD. METHODS Five TERT single nucleotide polymorphisms (SNPs) were analyzed in 307 CSVD patients and 320 healthy controls in whom LTL values were quantified. Allele models and four genetic models were used to explore the relationship between these SNP genotypes and CSVD risk. A Mendelian randomization analysis of CSVD risk was then performed using LTL-related SNPs and the polygenic risk score (PRS) constructed from these SNPs as genetic instrumental variables to predict the causal relationship between LTL and CSVD risk. RESULTS Model association analyses identified two SNPs that were significantly associated with CSVD risk. LTL was significantly correlated with age (P < 0.001), and the MR analysis revealed an association between short LTL and an elevated risk of CSVD. PRS-based genetic prediction of short LTLs was also significantly related to an elevated CSVD risk. CONCLUSION Multiple genetic models and MR results indicate that TERT gene SNPs may be related to an elevated risk of CSVD, and that shorter LTL may be causally linked to such CSVD risk.
Collapse
Affiliation(s)
- Ying Song
- Department of Neurology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia Autonomous Region, 028000, China
| | - Jialiang Xu
- Department of Cerebrovascular Disease Treatment Center, The People's Hospital of Liaoning Province, Shenyang, Liaoning Province, 110002, China
| | - Wanru Geng
- Department of Neurology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia Autonomous Region, 028000, China
| | - Long Yin
- Department of Neurology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia Autonomous Region, 028000, China
| | - Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China.
| | - JiuHan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
5
|
Kanoh T, Mizoguchi T, Tonoki A, Itoh M. Modeling of age-related neurological disease: utility of zebrafish. Front Aging Neurosci 2024; 16:1399098. [PMID: 38765773 PMCID: PMC11099255 DOI: 10.3389/fnagi.2024.1399098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Many age-related neurological diseases still lack effective treatments, making their understanding a critical and urgent issue in the globally aging society. To overcome this challenge, an animal model that accurately mimics these diseases is essential. To date, many mouse models have been developed to induce age-related neurological diseases through genetic manipulation or drug administration. These models help in understanding disease mechanisms and finding potential therapeutic targets. However, some age-related neurological diseases cannot be fully replicated in human pathology due to the different aspects between humans and mice. Although zebrafish has recently come into focus as a promising model for studying aging, there are few genetic zebrafish models of the age-related neurological disease. This review compares the aging phenotypes of humans, mice, and zebrafish, and provides an overview of age-related neurological diseases that can be mimicked in mouse models and those that cannot. We presented the possibility that reproducing human cerebral small vessel diseases during aging might be difficult in mice, and zebrafish has potential to be another animal model of such diseases due to their similarity of aging phenotype to humans.
Collapse
Affiliation(s)
- Tohgo Kanoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ayako Tonoki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
George P, Roushdy T, Fathy M, Hamid E, Ibrahim YA, El-Belkimy M, Abdulghani MO, Shalash A. The clinical and neuroimaging differences between vascular parkinsonism and Parkinson's disease: a case-control study. BMC Neurol 2024; 24:56. [PMID: 38321372 PMCID: PMC10845551 DOI: 10.1186/s12883-024-03556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) and vascular parkinsonism (VaP) have highly overlapping phenotypes, and different prognosis. This study comprehensively investigated the clinical, brain MRI and transcranial sonography differences between VaP and PD. METHODS Forty-eight patients with PD, 27 patients with VaP, and 29 healthy controls were compared. All patients were assessed using the MDS-UPDRS, Berg Balance Scale (BBS), Ten-Meter Walking Test (10-MWT), Time Up and Go Test, and Non-Motor Symptoms Scale. Beck Depression Inventory, PD questionnaire- 39, international urine incontinence scale, cognitive assessment scales, MRI brain and transcranial colour-coded doppler. The study was registered on clinical-Trial.gov (NCT04308135) on 03/12/2020. RESULTS VaP patients showed significantly older age of onset, shorter disease duration, lower drug doses and levodopa responsiveness, higher On and Off axial scores, On and Off BBS, higher On scores for PIGD, rigidity, bradykinesia and total motor MDS-UPDRS, lower On and Off tremor, lower-half predominance, lower asymmetrical presentation and symmetric index than PD patients. VaP patients had worse non-motor symptoms Scale (NMSS) than controls except for perceptual problems/hallucinations but better symptoms than PD patients except for urinary dysfunction. Quality of life (QoL) was impaired in VaP patients and was correlated with motor function and NMSs. The VaP group had significantly higher white matter lesions and brain atrophy, with lower hyperechogenicity of the substantia nigra and more impaired cerebral vascular resistance and vasoreactivity than the PD group. CONCLUSIONS VaP has a characteristic motor and non-motor profile, with impaired QoL, white matter, and transcranial sonography abnormalities that differentiate it from PD. Further studies are warranted to explore the role of vascular lesions in the pathogenesis of VaP. TRIAL REGISTRATION The registered identifier NCT04308135 on clinical-Trial.gov. Registered on 03/12/2020.
Collapse
Affiliation(s)
- Peter George
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer Roushdy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mai Fathy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Hamid
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Mahmoud El-Belkimy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Ali Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
7
|
Enokizono M, Kurokawa R, Yagishita A, Nakata Y, Koyasu S, Nihira H, Kuwashima S, Aida N, Kono T, Mori H. Clinical and neuroimaging review of monogenic cerebral small vessel disease from the prenatal to adolescent developmental stage. Jpn J Radiol 2024; 42:109-125. [PMID: 37847489 PMCID: PMC10810974 DOI: 10.1007/s11604-023-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to a group of pathological processes with various etiologies affecting the small vessels of the brain. Most cases are sporadic, with age-related and hypertension-related sSVD and cerebral amyloid angiopathy being the most prevalent forms. Monogenic cSVD accounts for up to 5% of causes of stroke. Several causative genes have been identified. Sporadic cSVD has been widely studied whereas monogenic cSVD is still poorly characterized and understood. The majority of cases of both the sporadic and monogenic types, including cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), typically have their onset in adulthood. Types of cSVD with infantile and childhood onset are rare, and their diagnosis is often challenging. The present review discusses the clinical and neuroimaging findings of monogenic cSVD from the prenatal to adolescent period of development. Early diagnosis is crucial to enabling timely interventions and family counseling.
Collapse
Affiliation(s)
- Mikako Enokizono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan.
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Yagishita
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Sho Koyasu
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shigeko Kuwashima
- Department of Radiology, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Tatsuo Kono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Harushi Mori
- Department of Radiology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
8
|
Tian X, Li J. An early diagnosed cerebral small vessel disease in a 12-year-old girl. Heliyon 2024; 10:e24756. [PMID: 38298677 PMCID: PMC10828062 DOI: 10.1016/j.heliyon.2024.e24756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/16/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Cerebral small vessel disease (CSVD) is a leading cause of ischaemic and haemorrhagic stroke and a major contributor to dementia. It occurs mostly in adult patients, rarely in children. COL4A1 is a candidate gene in monogenic CSVD with a wide clinical and neuroimaing spectrum. Here we presented a 12-year-old girl with recurrent dizziness, mild learning difficulties and inability to concentrate, the brain MRI showed diffuse periventricular leukoencephalopathy, lacunes in bilateral centrum semiovale, periventricles and basal ganglia, dilated perivascular spaces in bilateral basal ganglia with brain MRA and MRV were normal, highly mimicked the neuroimaging of CSVD regardless of the young age and no episodes of cerebrovascular events for now. We found no vascular risk factors and excluded other diseases such as primary angitis of central nervous system (PACNS). Then a trio-whole exome sequencing was performed. We found a de novo variant of COL4A1 gene c.2662G>A (p.Gly888Arg). She was finally diagnosed as a MRI-defined covert CSVD case. Though there are no specific treatments, with the very early diagnosis in our patient, excessive physical activity, trauma, anticoagulant therapy should be avoided for possible strokes in her future life. Therefore, genetic screening should be considered in familial cases and also in sporadic cases even in pediatric patients when the brain MRI showed diffuse periventricular leukoencephalopathy, dilated perivascular spaces, as well as microhemorrhage, and deep intracerebral hemorrhages, associated with early onset ischemic strokes or not.
Collapse
Affiliation(s)
- Xiaojuan Tian
- Department of Neurology, Neurological Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jiuwei Li
- Department of Neurology, Neurological Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| |
Collapse
|
9
|
Ostrem BEL, Godfrey D, Caruso PA, Musolino PL. Monogenic Causes of Cerebrovascular Disease in Childhood: A Case Series. Pediatr Neurol 2023; 149:39-43. [PMID: 37776659 DOI: 10.1016/j.pediatrneurol.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Despite an increase in the number of genes associated with pediatric stroke, imaging phenotypes in children have not been well reported. Guidelines are needed to facilitate the identification and treatment of patients with monogenic causes of cerebrovascular disorders. METHODS We performed a retrospective review of imaging and medical records of patients aged zero to 21 years with monogenic causes of vascular malformations, small or large vessel disease, transient ischemic attacks, and/or ischemic or hemorrhagic stroke. We classified patients according to their imaging phenotype and reviewed neurological and systemic features and management strategies. We reviewed the literature to identify genes associated with cerebrovascular disorders presenting in childhood. RESULTS We identified 18 patients with monogenic causes of cerebrovascular disorders and classified each patient as belonging to one or more of three cerebrovascular phenotypes according to predominant imaging characteristics: small vessel disease, large vessel disease, and/or vascular malformations. Preventative treatments included aspirin, N-acetylcysteine, tocilizumab, therapeutic low-molecular-weight heparin, and resection of vascular malformations. CONCLUSIONS Classifying pediatric patients with cerebrovascular disorders by imaging phenotype can aid in determining the next steps in genetic testing and treatment.
Collapse
Affiliation(s)
- Bridget E L Ostrem
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Department of Neurology, University of California, San Francisco, San Francisco, California.
| | - Deena Godfrey
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Paul A Caruso
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts; Lenox Hill Radiology and Medical Imaging Associates, New York, New York
| | - Patricia L Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
10
|
Whitehead B, Karelina K, Weil ZM. Pericyte dysfunction is a key mediator of the risk of cerebral ischemia. J Neurosci Res 2023; 101:1840-1848. [PMID: 37724604 DOI: 10.1002/jnr.25245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Pericytes are critical yet understudied cells that are a central component of the neurovascular unit. They are connected to the cerebrovascular endothelium and help control vascular contractility and maintain the blood-brain barrier. Pericyte dysfunction has the potential to mediate many of the deleterious vascular consequences of ischemic stroke. Current therapeutics are designed to be administered after stroke onset and limit damage, but there are few options to target vascular risk factors pre-ischemia which likely contribute to stroke outcomes. Here, we focus on the role of pericytes in health and disease, and discuss how pericyte dysfunction can increase the risk of ischemic injury. Additionally, we note that despite the importance of pericytes in cerebrovascular disease, there are relatively few current therapeutic options that target pericyte function.
Collapse
Affiliation(s)
- Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Zachary M Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
11
|
Bernar B, Gande N, Stock AK, Staudt A, Pechlaner R, Hochmayr C, Kaltseis K, Winder B, Kiechl SJJ, Broessner G, Geiger R, Kiechl S, Kiechl-Kohlendorfer U, Knoflach M. Early Vascular Ageing in adolescents with migraine with aura: a community-based study. BMC Cardiovasc Disord 2023; 23:384. [PMID: 37528337 PMCID: PMC10394858 DOI: 10.1186/s12872-023-03409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Migraine with aura is associated with an increased risk of cardiovascular disease, yet the pathophysiology is unknown. Suggested underlying mechanisms of aura formation point into the direction of an abnormal vasoreactivity that also extends to the extracranial vasculature. METHODS In the Early Vascular Ageing Tyrol study, a community-based non-randomized controlled trial conducted in 45 schools and companies in Tyrol (Austria) and South-Tyrol (Italy) between May 2015 and September 2018 aiming to increase cardiovascular health in adolescents, headache syndromes were classified according to the International Classification of Headache Disorders in a face-to-face interview. Carotid-femoral pulse-wave-velocity was measured by applanation tonometry and carotid intima-media-thickness by high-resolution ultrasound of the distal common carotid arteries. Differences in pulse-wave-velocity and carotid intima-media-thickness in youngsters with migraine with aura were compared respectively to those without headache and with other headaches by multivariable linear regression analysis. RESULTS Of the 2102 study participants 1589 were aged 14 to 19 (mean 16.8) years and had complete data. 43 (2.7%) reported migraine with aura and 737 (46.4%) other headaches. Mean pulse-wave-velocity was 6.17 m/s (± 0.85) for migraine with aura, 6.06 m/s (± 0.82) for all other headaches and 6.15 (0.95) m/s for participants without headaches. Carotid intima-media-thickness was 411.3 µm (± 43.5) for migraine with aura, 410.9 µm (± 46.0) for all other headaches and 421.6 µm (± 48.4) for participants without headaches. In multivariable linear regression analysis, we found no differences in carotid-femoral pulse-wave-velocity or carotid intima-media-thickness in young subjects with migraine with aura, all other headaches, or no headaches. CONCLUSIONS In line with previous large-scale studies in adults, we could not demonstrate relevant associations of migraine with aura with markers of arterial stiffness or subclinical atherosclerosis making early vascular ageing an unlikely pathophysiological link between migraine with aura and cardiovascular diseases. TRIAL REGISTRATION First registered on ClinicalTrials.gov 29/04/2019 (NCT03929692).
Collapse
Affiliation(s)
- Benoît Bernar
- Department of Pediatrics, Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Nina Gande
- Department of Pediatrics, Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Katharina Stock
- Department of Pediatrics, Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria
- Department of Pediatrics, Pediatrics III, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Staudt
- Department of Pediatrics, Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Christoph Hochmayr
- Department of Pediatrics, Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Kaltseis
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Bernhard Winder
- Department of Pediatrics, Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria
- Academic Teaching Hospital, Landeskrankenhaus Feldkirch, Feldkirch, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Sophia Julia J Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
- Department of Neurology, Hochzirl-Natters Hospital, Zirl, Austria
| | - Gregor Broessner
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Ralf Geiger
- Department of Pediatrics, Pediatrics III, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | | | - Michael Knoflach
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria.
- VASCage, Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria.
| |
Collapse
|
12
|
Wu C, Wang M, Wang X, Li W, Li S, Chen B, Niu S, Tai H, Pan H, Zhang Z. The genetic and phenotypic spectra of adult genetic leukoencephalopathies in a cohort of 309 patients. Brain 2023; 146:2364-2376. [PMID: 36380532 PMCID: PMC10232248 DOI: 10.1093/brain/awac426] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 08/12/2023] Open
Abstract
Genetic leukoencephalopathies (gLEs) are a highly heterogeneous group of rare genetic disorders. The spectrum of gLEs varies among patients of different ages. Distinct from the relatively more abundant studies of gLEs in children, only a few studies that explore the spectrum of adult gLEs have been published, and it should be noted that the majority of these excluded certain gLEs. Thus, to date, no large study has been designed and conducted to characterize the genetic and phenotypic spectra of gLEs in adult patients. We recruited a consecutive series of 309 adult patients clinically suspected of gLEs from Beijing Tiantan Hospital between January 2014 and December 2021. Whole-exome sequencing, mitochondrial DNA sequencing and repeat analysis of NOTCH2NLC, FMR1, DMPK and ZNF9 were performed for patients. We describe the genetic and phenotypic spectra of the set of patients with a genetically confirmed diagnosis and summarize their clinical and radiological characteristics. A total of 201 patients (65%) were genetically diagnosed, while 108 patients (35%) remained undiagnosed. The most frequent diseases were leukoencephalopathies related to NOTCH3 (25%), NOTCH2NLC (19%), ABCD1 (9%), CSF1R (7%) and HTRA1 (5%). Based on a previously proposed pathological classification, the gLEs in our cohort were divided into leukovasculopathies (35%), leuko-axonopathies (31%), myelin disorders (21%), microgliopathies (7%) and astrocytopathies (6%). Patients with NOTCH3 mutations accounted for 70% of the leukovasculopathies, followed by HTRA1 (13%) and COL4A1/2 (9%). The leuko-axonopathies contained the richest variety of associated genes, of which NOTCH2NLC comprised 62%. Among myelin disorders, demyelinating leukoencephalopathies (61%)-mainly adrenoleukodystrophy and Krabbe disease-accounted for the majority, while hypomyelinating leukoencephalopathies (2%) were rare. CSF1R was the only mutated gene detected in microgliopathy patients. Leukoencephalopathy with vanishing white matter disease due to mutations in EIF2B2-5 accounted for half of the astrocytopathies. We characterized the genetic and phenotypic spectra of adult gLEs in a large Chinese cohort. The most frequently mutated genes were NOTCH3, NOTCH2NLC, ABCD1, CSF1R and HTRA1.
Collapse
Affiliation(s)
- Chujun Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Mengwen Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 350005 Fuzhou, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Shaowu Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Hongfei Tai
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Hua Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| |
Collapse
|
13
|
Singh A, Bonnell G, De Prey J, Buchwald N, Eskander K, Kincaid KJ, Wilson CA. Small-vessel disease in the brain. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 27:100277. [PMID: 38511094 PMCID: PMC10945899 DOI: 10.1016/j.ahjo.2023.100277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/22/2024]
Abstract
Cerebral small-vessels are generally located in the brain at branch points from major cerebral blood vessels and perfuse subcortical structures such as the white matter tracts, basal ganglia, thalamus, and pons. Cerebral small-vessel disease (CSVD) can lead to several different clinical manifestations including ischemic lacunar stroke, intracerebral hemorrhage, and vascular dementia. Risk factors for CSVD overlap with conventional vascular risk factors including hypertension, diabetes mellitus, and hypercholesterolemia, as well as genetic causes. As in cardiovascular disease, treatment of CSVD involves both primary and secondary prevention. Aspirin has not been established as a primary prevention strategy for CSVD among the general population; however, long-term antiplatelet therapy with aspirin alone continues to be the mainstay of secondary stroke prevention for non-cardioembolic ischemic stroke and high-risk TIA.
Collapse
Affiliation(s)
- Amita Singh
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Gabriel Bonnell
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Justin De Prey
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Natalie Buchwald
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Kyrillos Eskander
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Keith J. Kincaid
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Christina A. Wilson
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
14
|
Branyan K, Labelle-Dumais C, Wang X, Hayashi G, Lee B, Peltz Z, Gorman S, Li BQ, Mao M, Gould DB. Elevated TGFβ signaling contributes to cerebral small vessel disease in mouse models of Gould syndrome. Matrix Biol 2023; 115:48-70. [PMID: 36435425 PMCID: PMC10393528 DOI: 10.1016/j.matbio.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cerebral small vessel disease (CSVD) is a leading cause of stroke and vascular cognitive impairment and dementia. Studying monogenic CSVD can reveal pathways that are dysregulated in common sporadic forms of the disease and may represent therapeutic targets. Mutations in collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause highly penetrant CSVD as part of a multisystem disorder referred to as Gould syndrome. COL4A1 and COL4A2 form heterotrimers [a1α1α2(IV)] that are fundamental constituents of basement membranes. However, their functions are poorly understood and the mechanism(s) by which COL4A1 and COL4A2 mutations cause CSVD are unknown. We used histological, molecular, genetic, pharmacological, and in vivo imaging approaches to characterize central nervous system (CNS) vascular pathologies in Col4a1 mutant mouse models of monogenic CSVD to provide insight into underlying pathogenic mechanisms. We describe developmental CNS angiogenesis abnormalities characterized by impaired retinal vascular outgrowth and patterning, increased numbers of mural cells with abnormal morphologies, altered contractile protein expression in vascular smooth muscle cells (VSMCs) and age-related loss of arteriolar VSMCs in Col4a1 mutant mice. Importantly, we identified elevated TGFβ signaling as a pathogenic consequence of Col4a1 mutations and show that genetically suppressing TGFβ signaling ameliorated CNS vascular pathologies, including partial rescue of retinal vascular patterning defects, prevention of VSMC loss, and significant reduction of intracerebral hemorrhages in Col4a1 mutant mice aged up to 8 months. This study identifies a novel biological role for collagen α1α1α2(IV) as a regulator of TGFβ signaling and demonstrates that elevated TGFβ signaling contributes to CNS vascular pathologies caused by Col4a1 mutations. Our findings suggest that pharmacologically suppressing TGFβ signaling could reduce the severity of CSVD, and potentially other manifestations associated with Gould syndrome and have important translational implications that could extend to idiopathic forms of CSVD.
Collapse
Affiliation(s)
- Kayla Branyan
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Xiaowei Wang
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Genki Hayashi
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bryson Lee
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Zoe Peltz
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Seán Gorman
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bo Qiao Li
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Mao Mao
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Douglas B Gould
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States; Department of Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, United States.
| |
Collapse
|
15
|
Hausman-Kedem M, Herring R, Torres MD, Santoro JD, Kaseka ML, Vargas C, Amico G, Bertamino M, Nagesh D, Tilley J, Schenk A, Ben-Shachar S, Musolino PL. The Genetic Landscape of Ischemic Stroke in Children - Current Knowledge and Future Perspectives. Semin Pediatr Neurol 2022; 44:100999. [PMID: 36456039 DOI: 10.1016/j.spen.2022.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Stroke in childhood has multiple etiologies, which are mostly distinct from those in adults. Genetic discoveries over the last decade pointed to monogenic disorders as a rare but significant cause of ischemic stroke in children and young adults, including small vessel and arterial ischemic stroke. These discoveries contributed to the understanding that stroke in children may be a sign of an underlying genetic disease. The identification of these diseases requires a detailed medical and family history collection, a careful clinical evaluation for the detection of systemic symptoms and signs, and neuroimaging assessment. Establishing an accurate etiological diagnosis and understanding the genetic risk factors for stroke are essential steps to decipher the underlying mechanisms, optimize the design of tailored prevention strategies, and facilitate the identification of novel therapeutic targets in some cases. Despite the increasing recognition of monogenic causes of stroke, genetic disorders remain understudied and therefore under-recognized in children with stroke. Increased awareness among healthcare providers is essential to facilitate accurate diagnosis in a timely manner. In this review, we provide a summary of the main single-gene disorders which may present as ischemic stroke in childhood and describe their clinical manifestations. We provide a set of practical suggestions for the diagnostic work up of these uncommon causes of stroke, based upon the stroke subtype and imaging characteristics that may suggest a monogenic diagnosis of ischemic stroke in children. Current hurdles in the genetic analyses of children with ischemic stroke as well as future prospectives are discussed.
Collapse
Affiliation(s)
- Moran Hausman-Kedem
- Pediatric Neurology Institute, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Israel; The Sacker Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rachelle Herring
- Neurology Department, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Marcela D Torres
- Hematology Department, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Jonathan D Santoro
- Division of Neurology, Children's Hospital Los Angeles, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA USA
| | | | - Carolina Vargas
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Giulia Amico
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Bertamino
- Physical Medicine and Rehabilitation Unit, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Deepti Nagesh
- Division of Neurology, Children's Hospital Los Angeles, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA USA
| | - Jo Tilley
- Departments of Hematology and Neurology, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Allyson Schenk
- Research Data Science and Analytics Department-Stroke and Thrombosis Program, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Shay Ben-Shachar
- Research Data Science and Analytics Department-Stroke and Thrombosis Program, Cook Children's Medical Center, Fort Worth, TX, USA; Clalit Research Institute, Innovation Division, Clalit Health Services, Ramat Gan, Israel
| | - Patricia L Musolino
- Center for Genomic Medicine, Center for Rare Neurological Disorders, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Leucoencefalopatie ereditarie e leucodistrofie dell’adulto. Neurologia 2022. [DOI: 10.1016/s1634-7072(22)47096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
17
|
Feuer DS, Handberg EM, Mehrad B, Wei J, Bairey Merz CN, Pepine CJ, Keeley EC. Microvascular Dysfunction as a Systemic Disease: A Review of the Evidence. Am J Med 2022; 135:1059-1068. [PMID: 35472396 PMCID: PMC9427712 DOI: 10.1016/j.amjmed.2022.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 12/11/2022]
Abstract
Microvascular dysfunction describes a varied set of conditions that includes vessel destruction, abnormal vasoreactivity, in situ thrombosis, and fibrosis, which ultimately results in tissue damage and progressive organ failure. Microvascular dysfunction has a wide array of clinical presentations, ranging from ischemic heart disease to renal failure, stroke, blindness, pulmonary arterial hypertension, and dementia. An intriguing unifying hypothesis suggests that microvascular dysfunction of specific organs is an expression of a systemic illness that worsens with age and is accelerated by vascular risk factors. Studying relationships across a spectrum of microvascular diseases affecting the brain, retina, kidney, lung, and heart may uncover shared pathologic mechanisms that could inform novel treatment strategies. We review the evidence that supports the notion that microvascular dysfunction represents a global pathologic process. Our focus is on studies reporting concomitant microvascular dysfunction of the heart with that of the brain, kidney, retina, and lung.
Collapse
Affiliation(s)
| | | | - Borna Mehrad
- Department of Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville
| | - Janet Wei
- Barbra Streisand Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, Calif
| | - C Noel Bairey Merz
- Barbra Streisand Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, Calif
| | - Carl J Pepine
- Department of Medicine; Division of Cardiovascular Medicine
| | - Ellen C Keeley
- Department of Medicine; Division of Cardiovascular Medicine.
| |
Collapse
|
18
|
Agrawal S, Schneider JA. Vascular pathology and pathogenesis of cognitive impairment and dementia in older adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100148. [PMID: 36324408 PMCID: PMC9616381 DOI: 10.1016/j.cccb.2022.100148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
It is well recognized that brains of older people often harbor cerebrovascular disease pathology including vessel disease and vascular-related tissue injuries and that this is associated with vascular cognitive impairment and contributes to dementia. Here we review vascular pathologies, cognitive impairment, and dementia. We highlight the importance of mixed co-morbid AD/non-AD neurodegenerative and vascular pathology that has been collected in multiple clinical pathologic studies, especially in community-based studies. We also provide an update of vascular pathologies from the Rush Memory and Aging Project and Religious Orders Study cohorts with special emphasis on the differences across age in persons with and without dementia. Finally, we discuss neuropathological perspectives on the interpretation of clinical-pathological studies and emerging data in community-based studies.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago 60612, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago 60612, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
19
|
Wang Y, Shi C, Li Y, Yu W, Wei S, Fan Y, Mao C, Yang Z, Yu L, Zhao Z, Li S, Gao Y, Xu Y. Genetic Study of Cerebral Small Vessel Disease in Chinese Han Population. Front Neurol 2022; 13:829438. [PMID: 35401403 PMCID: PMC8990910 DOI: 10.3389/fneur.2022.829438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a syndrome of clinical, neuroimaging, and neuropathological manifestations caused by disorders that affect small cerebral vessels. Although the pathogenesis of the disease remains unclear, some studies have demonstrated that genetic variants contribute to the development of CSVD. Our study aimed to explore the genetic characteristics of CSVD in the Chinese Han population. We enrolled 182 sporadic CSVD Chinese Han patients whose magnetic resonance imaging results showed grade 2-3 white matter lesions. Target region sequencing of seven monogenic CSVD-related genes, including NOTCH3, HTRA1, COL4A1, COL4A2, GLA, TREX1, and CTSA, was performed, and we identified pathogenic variants by screening the sequencing results and functional predictive analysis. All variants were predicted to be pathogenic by the SIFT Score, Polymorphism Phenotyping-2 score, Mutation Taster, Splice site score calculation, and MaxEntScan. All variants were validated in 300 healthy controls. In total, eight variants were identified in patients with CSVD, including five novel variants, c.1774C>T (NOTCH3), c.3784C>T (NOTCH3), c. 1207C>T (HTRA1), and c. 1274+1G> A (HTRA1), c.1937G>C (COL4A1) and three reported mutations. None of these variants were present in 300 healthy controls. No pathogenic variants in COL4A2, GLA, TREX1, and CTSA were detected. This study identified five novel variants in CSVD-related genes in Chinese Han patients with sporadic CSVD. Our results expand the genetic profile of CSVD.
Collapse
|
20
|
Cao H, Liu J, Tian W, Ji X, Wang Q, Luan S, Dong X, Dong H. A novel heterozygous HTRA1 mutation in an Asian family with CADASIL-like disease. J Clin Lab Anal 2022; 36:e24174. [PMID: 34951056 PMCID: PMC8841136 DOI: 10.1002/jcla.24174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND HTRA1 gene mutations are related to the pathogenesis of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). However, heterozygous HTRA1 mutations at specific sites can also lead to rare autosomal dominant cerebral artery disease (CADASIL-like disease). To date, 28 heterozygous mutations in the HTRA1 gene have been reported to be related to CADASIL-like diseases. Only one case of this disease was caused by a heterozygous mutation of c.497G>T in exon 2 of the HTRA1 gene. METHODS In this case, we report on an Asian family with CADASIL-like disease caused by a heterozygous mutation of c.497G>T in exon 2 of the HTRA1 gene. The clinical and imaging characteristics of the proband were summarized, and gene mutations were verified by whole-exome sequencing (WES) and direct Sanger sequencing. RESULTS The result of the gene sequencing showed a heterozygous missense mutation at the c.497G>T locus of the HTRA1 gene in the proband of one sick family member, resulting in a change in amino acid (p.arg166leu). CONCLUSION This is the first reported pathogenic mutation at the c.497G>T locus of the HTRA1 gene in an Asian population. It provides an important theoretical basis for the specific gene-based diagnosis and treatment of CADASIL-like diseases.
Collapse
Affiliation(s)
- Hua Cao
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jiahui Liu
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Wen Tian
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xiaofei Ji
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Qi Wang
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Siyu Luan
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xiang Dong
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Huijie Dong
- Department of CardiologySecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
21
|
Grigaitė J, Šiaurytė K, Audronytė E, Preikšaitienė E, Burnytė B, Pranckevičienė E, Ekkert A, Utkus A, Jatužis D. Novel In-Frame Deletion in HTRA1 Gene, Responsible for Stroke at a Young Age and Dementia-A Case Study. Genes (Basel) 2021; 12:1955. [PMID: 34946904 PMCID: PMC8701891 DOI: 10.3390/genes12121955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
Biallelic mutations in the high-temperature requirement A serine peptidase 1 (HTRA1) gene are known to cause an extremely rare cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), which belongs to the group of hereditary cerebral small vessel diseases and is mainly observed in the Japanese population. Even though this pathology is inherited in an autosomal recessive manner, recent studies have described symptomatic carriers with heterozygous HTRA1 mutations who have milder symptoms than patients with biallelic HTRA1 mutations. We present the case of a Lithuanian male patient who had a stroke at the age of 36, experienced several transient ischemic attacks, and developed an early onset, progressing dementia. These clinical symptoms were associated with extensive leukoencephalopathy, lacunar infarcts, and microbleeds based on brain magnetic resonance imaging (MRI). A novel heterozygous in-frame HTRA1 gene deletion (NM_002775.5:c.533_535del; NP_002766.1:p.(Lys178del)) was identified by next generation sequencing. The variant was consistent with the patient's phenotype, which could not be explained by alternative causes, appeared highly deleterious after in silico analysis, and was not reported in the medical literature or population databases to date.
Collapse
Affiliation(s)
- Julija Grigaitė
- Center of Neurology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.G.); (E.A.); (A.E.)
| | - Kamilė Šiaurytė
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.Š.); (E.P.); (B.B.); (E.P.); (A.U.)
| | - Eglė Audronytė
- Center of Neurology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.G.); (E.A.); (A.E.)
| | - Eglė Preikšaitienė
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.Š.); (E.P.); (B.B.); (E.P.); (A.U.)
| | - Birutė Burnytė
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.Š.); (E.P.); (B.B.); (E.P.); (A.U.)
| | - Erinija Pranckevičienė
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.Š.); (E.P.); (B.B.); (E.P.); (A.U.)
- Department of Systems Analysis, Faculty of Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
| | - Aleksandra Ekkert
- Center of Neurology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.G.); (E.A.); (A.E.)
| | - Algirdas Utkus
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.Š.); (E.P.); (B.B.); (E.P.); (A.U.)
| | - Dalius Jatužis
- Center of Neurology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.G.); (E.A.); (A.E.)
| |
Collapse
|
22
|
Li Q, Wang C, Li W, Zhang Z, Wang S, Wupuer A, Hu X, Wumaier K, Zhu Y, Li H, Yu W. A Novel Mutation in COL4A1 Gene in a Chinese Family with Pontine Autosomal Dominant Microangiopathy and Leukoencephalopathy. Transl Stroke Res 2021; 13:238-244. [PMID: 34415564 PMCID: PMC8918453 DOI: 10.1007/s12975-021-00926-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
Pontine autosomal dominant microangiopathy and leukoencephalopathy (PADMAL) is a rare hereditary cerebral small vessel disease. We report a novel collagen type IV alpha 1 (COL4A1) gene mutation in a Chinese family with PADMAL. The index case was followed up for 6 years. Neuroimaging, whole-exome sequencing, skin biopsy, and pedigree analysis were performed. She initially presented with minor head injury at age 38. MRI brain showed chronic lacunar infarcts in the pons, left thalamus, and right centrum semiovale. Extensive workup was unremarkable except for a patent foramen ovale (PFO). Despite anticoagulation, PFO closure, and antiplatelet therapy, the patient had recurrent lacunar infarcts in the pons and deep white matter, as well as subcortical microhemorrhages. Whole-exome sequencing demonstrated a novel c.*34G > T mutation in the 3' untranslated region of COL4A1 gene. Skin biopsy subsequently demonstrated thickening of vascular basement membrane, proliferation of endothelial cells, and stenosis of vascular lumen. Three additional family members had gene testing and 2 of them were found to have the same heterozygous mutation. Of the 18 individuals in the pedigree of 3 generations, 12 had clinical and MRI evidence of PADMAL. The mechanisms of both ischemic and hemorrhagic stroke are likely the overexpression of COLT4A1 in the basement membrane and frugality of the vessel walls. Our findings suggest that the novel c.*34G > T mutation appears to have the same functional consequences as the previously reported COL4A1 gene mutations in patients with PADMAL and multi-infarct dementia of Swedish type.
Collapse
Affiliation(s)
- Qing Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road No. 91, Ürümqi, 830000, China
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Chengfeng Wang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road No. 91, Ürümqi, 830000, China
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Monogenic Disease Diagnosis Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Precision Medicine Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shanshan Wang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road No. 91, Ürümqi, 830000, China
| | - Autongsha Wupuer
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road No. 91, Ürümqi, 830000, China
| | - Xiao Hu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road No. 91, Ürümqi, 830000, China
| | - Kalibinuer Wumaier
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road No. 91, Ürümqi, 830000, China
| | - Yi Zhu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road No. 91, Ürümqi, 830000, China
| | - Hongyan Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road No. 91, Ürümqi, 830000, China.
| | - Wengui Yu
- Department of Neurology, University of California Irvine, Irvine, CA, USA.
- , Orange, CA, USA.
| |
Collapse
|
23
|
Hsu CL, Iwanowski P, Hsu CH, Kozubski W. Genetic diseases mimicking multiple sclerosis. Postgrad Med 2021; 133:728-749. [PMID: 34152933 DOI: 10.1080/00325481.2021.1945898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder manifesting as gradual or progressive loss of neurological functions. Most patients present with relapsing-remitting disease courses. Extensive research over recent decades has expounded our insights into the presentations and diagnostic features of MS. Groups of genetic diseases, CADASIL and leukodystrophies, for example, have been frequently misdiagnosed with MS due to some overlapping clinical and radiological features. The delayed identification of these diseases in late adulthood can lead to severe neurological complications. Herein we discuss genetic diseases that have the potential to mimic multiple sclerosis, with highlights on clinical identification and practicing pearls that may aid physicians in recognizing MS-mimics with genetic background in clinical settings.
Collapse
Affiliation(s)
- Chueh Lin Hsu
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Chueh Hsuan Hsu
- Department of Neurology, China Medical University, Taichung, Taiwan
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
24
|
Bir SC, Khan MW, Javalkar V, Toledo EG, Kelley RE. Emerging Concepts in Vascular Dementia: A Review. J Stroke Cerebrovasc Dis 2021; 30:105864. [PMID: 34062312 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105864] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Vascular dementia (VaD) is the second most common cause of dementia and a major health concern worldwide. A comprehensive review on VaD is warranted for better understanding and guidance for the practitioner. We provide an updated overview of the epidemiology, pathophysiological mechanisms, neuroimaging patterns as well as current diagnostic and therapeutic approaches. MATERIALS AND METHODS A narrative review of current literature in VaD was performed based on publications from the database of PubMed, Scopus and Google Scholar up to January, 2021. RESULTS VaD can be the result of ischemic or hemorrhagic tissue injury in a particular region of the brain which translates into clinically significant cognitive impairment. For example, a cerebral infarct in the speech area of the dominant hemisphere would translate into clinically significant impairment as would involvement of projection pathways such as the arcuate fasciculus. Specific involvement of the angular gyrus of the dominant hemisphere, with resultant Gerstman's syndrome, could have a pronounced effect on functional ability despite being termed a "minor stroke". Small vessel cerebrovascular disease can have a cumulate effect on cognitive function over time. It is unfortunately well recognized that "good" functional recovery in acute ischemic or haemorrhagic stroke, including subarachnoid haemorrhage, does not necessarily translate into good cognitive recovery. The victim may often be left unable to have gainful employment, drive a car safely or handle their affairs independently. CONCLUSIONS This review should serve as a compendium of updated information on VaD and provide guidance in terms of newer diagnostic and potential therapeutic approaches.
Collapse
Affiliation(s)
- Shyamal C Bir
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA
| | - Muhammad W Khan
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA
| | - Vijayakumar Javalkar
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA
| | | | - Roger E Kelley
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA.
| |
Collapse
|
25
|
COMPARATIVE ANALYSIS OF MOTOR AND EMOTIONAL BEHAVIORAL DISORDERS IN CONDITIONS OF EXPERIMENTAL CHRONIC ISCHEMIC AND CHRONIC CONVULSIVE SYNDROMES. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-2-76-183-188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Wallace EJC, Liberman AL. Diagnostic Challenges in Outpatient Stroke: Stroke Chameleons and Atypical Stroke Syndromes. Neuropsychiatr Dis Treat 2021; 17:1469-1480. [PMID: 34017173 PMCID: PMC8129915 DOI: 10.2147/ndt.s275750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Failure to diagnose transient ischemic attack (TIA) or stroke in a timely fashion is associated with significant patient morbidity and mortality. In the outpatient or clinic setting, we suspect that patients with minor, transient, and atypical manifestations of cerebrovascular disease are most prone to missed or delayed diagnosis. We therefore detail common stroke chameleon symptoms as well as atypical stroke presentations, broadly review new developments in the study of diagnostic error in the outpatient setting, suggest practical clinical strategies for diagnostic error reduction, and emphasize the need for rapid consultation of stroke specialists when appropriate. We also address the role of psychiatric disease and vascular risk factors in the diagnostic evaluation and treatment of suspected stroke/TIA patients. We advocate incorporating diagnostic time-outs into clinical practice to assure that the diagnosis of TIA or stroke is considered in all relevant patient encounters after a detailed history and examination are conducted in the outpatient setting.
Collapse
Affiliation(s)
- Emma J C Wallace
- Montefiore Medical Center, Albert Einstein College of Medicine, Department of Neurology, Bronx, NY, USA
| | - Ava L Liberman
- Montefiore Medical Center, Albert Einstein College of Medicine, Department of Neurology, Bronx, NY, USA
| |
Collapse
|
27
|
Lin C, Huang Z, Zhou R, Zhou Y, Shentu Y, Yu K, Zhang Y. Notch3 and its CADASIL mutants differentially regulate cellular phenotypes. Exp Ther Med 2020; 21:117. [PMID: 33335580 PMCID: PMC7739825 DOI: 10.3892/etm.2020.9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Notch3 is a member of the Notch family and its mutations are known to cause a hereditary human disorder called cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, the specific function and signaling cascade initiated by CADASIL mutants remain unknown. To gain further insight into mechanism of action of CADASIL mutants, the present study conducted several experiments on the effects of Notch3 mutants in multiple cell lines. The protein levels of Notch3, fibronectin, collagen, inducible nitric oxide synthase and DNA (cytosine-5)-methyltransferase 1 (DNMT1) were determined by western blotting. The mRNA levels of IL-1β and TNF-α were measured by reverse transcription semi-quantitative PCR and DNMT1 mRNA levels were determined by quantitative PCR. Trypan blue staining was used for proliferation analysis and wound healing assays were performed to determine cell migration capability. The present study reported that R90C and R169C Notch3 mutants, and wild-type Notch3 had different effects on several cell lines. In T/GHA-VSMC cells, following the transfection of the two mutants, collagen and fibronectin expression increased, whereas expression decreased in IMR-90 cells. In BV2 cells, the two mutants resulted in decreased nitric oxide and iNOS production. In HeLa cells, proliferation and migration increased significantly following the transfection of the two mutants, whereas in the MCF-7 and HCC1937 cell lines, cell proliferation and migration decreased. In addition, the two mutants suppressed the expression of DNMT1 in HeLa and IMR-90 cells. Overall, the present study provided novel insights that further explored the underlying mechanisms of CADASIL.
Collapse
Affiliation(s)
- Chunjing Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ziyang Huang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Riyong Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
28
|
Rannikmäe K, Henshall DE, Thrippleton S, Ginj Kong Q, Chong M, Grami N, Kuan I, Wilkinson T, Wilson B, Wilson K, Paré G, Sudlow C. Beyond the Brain. Stroke 2020; 51:3007-3017. [DOI: 10.1161/strokeaha.120.029517] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Purpose:
An important minority of cerebral small vessel disease (cSVD) is monogenic. Many monogenic cSVD genes are recognized to be associated with extracerebral phenotypes. We assessed the frequency of these phenotypes in existing literature.
Methods:
We performed a systematic review following the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), searching Medline/Embase for publications describing individuals with pathogenic variants in
COL4A1/2
,
TREX1
,
HTRA1
,
ADA2
, and
CTSA
genes (PROSPERO 74804). We included any publication reporting on ≥1 individual with a pathogenic variant and their clinically relevant phenotype. We extracted individuals’ characteristics and information about associated extracerebral phenotypes and stroke/transient ischemic attack. We noted any novel extracerebral phenotypes and looked for shared phenotypes between monogenic cSVDs.
Results:
After screening 6048 publications, we included 96
COL4A1
(350 individuals), 32
TREX1
(115 individuals), 43
HTRA1
(38 homozygous/61 heterozygous individuals), 16
COL4A2
(37 individuals), 119
ADA2
(209 individuals), and 3
CTSA
(14 individuals) publications. The majority of individuals originated from Europe/North America, except for
HTRA1
, where most were from Asia. Age varied widely,
ADA2
individuals being youngest and heterozygous
HTRA1/CTSA
individuals oldest. Sex distribution appeared equal. Extracerebral phenotypes were common: 14% to 100% of individuals with a pathogenic variant manifested at least one extracerebral phenotype (14%
COL4A2
, 43%
HTRA1
heterozygotes, 47%
COL4A1
, 57%
TREX1
, 91%
ADA2
, 94%
HTRA1
homozygotes, and 100%
CTSA
individuals). Indeed, for 4 of 7 genes, an extracerebral phenotype was observed more frequently than stroke/transient ischemic attack. Ocular, renal, hepatic, muscle, and hematologic systems were each involved in more than one monogenic cSVD.
Conclusions:
Extracerebral phenotypes are common in monogenic cSVD with extracerebral system involvement shared between genes. However, inherent biases in the existing literature mean that further data from large-scale population-based longitudinal studies collecting health outcomes in a systematic unbiased way is warranted. The emerging knowledge will help to select patients for testing, inform clinical management, and provide further insights into the underlying mechanisms of cSVD.
Collapse
Affiliation(s)
- Kristiina Rannikmäe
- Centre for Medical Informatics, Usher Institute (K.R., D.E.H., T.W., K.W., C.S.), University of Edinburgh, United Kingdom
| | - David E. Henshall
- Centre for Medical Informatics, Usher Institute (K.R., D.E.H., T.W., K.W., C.S.), University of Edinburgh, United Kingdom
| | - Sophie Thrippleton
- Edinburgh Medical School (S.T., Q.G.K., I.K., B.W.), University of Edinburgh, United Kingdom
| | - Qiu Ginj Kong
- Edinburgh Medical School (S.T., Q.G.K., I.K., B.W.), University of Edinburgh, United Kingdom
| | - Mike Chong
- Genetic and Molecular Epidemiology Laboratory, McMaster University, Canada (M.C., N.G., G.P.)
| | - Nickrooz Grami
- Genetic and Molecular Epidemiology Laboratory, McMaster University, Canada (M.C., N.G., G.P.)
| | - Isaac Kuan
- Edinburgh Medical School (S.T., Q.G.K., I.K., B.W.), University of Edinburgh, United Kingdom
| | - Tim Wilkinson
- Centre for Medical Informatics, Usher Institute (K.R., D.E.H., T.W., K.W., C.S.), University of Edinburgh, United Kingdom
| | - Blair Wilson
- Edinburgh Medical School (S.T., Q.G.K., I.K., B.W.), University of Edinburgh, United Kingdom
| | - Kirsty Wilson
- Centre for Medical Informatics, Usher Institute (K.R., D.E.H., T.W., K.W., C.S.), University of Edinburgh, United Kingdom
| | - Guillaume Paré
- Genetic and Molecular Epidemiology Laboratory, McMaster University, Canada (M.C., N.G., G.P.)
| | - Cathie Sudlow
- Centre for Medical Informatics, Usher Institute (K.R., D.E.H., T.W., K.W., C.S.), University of Edinburgh, United Kingdom
| |
Collapse
|
29
|
Guerreiro R, Gibbons E, Tábuas-Pereira M, Kun-Rodrigues C, Santo GC, Bras J. Genetic architecture of common non-Alzheimer's disease dementias. Neurobiol Dis 2020; 142:104946. [PMID: 32439597 PMCID: PMC8207829 DOI: 10.1016/j.nbd.2020.104946] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Frontotemporal dementia (FTD), dementia with Lewy bodies (DLB) and vascular dementia (VaD) are the most common forms of dementia after Alzheimer's disease (AD). The heterogeneity of these disorders and/or the clinical overlap with other diseases hinder the study of their genetic components. Even though Mendelian dementias are rare, the study of these forms of disease can have a significant impact in the lives of patients and families and have successfully brought to the fore many of the genes currently known to be involved in FTD and VaD, starting to give us a glimpse of the molecular mechanisms underlying these phenotypes. More recently, genome-wide association studies have also pointed to disease risk-associated loci. This has been particularly important for DLB where familial forms of disease are very rarely described. In this review we systematically describe the Mendelian and risk genes involved in these non-AD dementias in an effort to contribute to a better understanding of their genetic architecture, find differences and commonalities between different dementia phenotypes, and uncover areas that would benefit from more intense research endeavors.
Collapse
Affiliation(s)
- Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Elizabeth Gibbons
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Celia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Gustavo C Santo
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
30
|
Ghali MGZ, Marchenko V, Yaşargil MG, Ghali GZ. Structure and function of the perivascular fluid compartment and vertebral venous plexus: Illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer's, cerebral small vessel, and neurodegenerative diseases. Neurobiol Dis 2020; 144:105022. [PMID: 32687942 DOI: 10.1016/j.nbd.2020.105022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/13/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Blood dynamically and richly supplies the cerebral tissue via microvessels invested in pia matter perforating the cerebral substance. Arteries penetrating the cerebral substance derive an investment from one or two successive layers of pia mater, luminally apposed to the pial-glial basal lamina of the microvasculature and abluminally apposed to a series of aquaporin IV-studded astrocytic end feet constituting the soi-disant glia limitans. The full investment of successive layers forms the variably continuous walls of the periarteriolar, pericapillary, and perivenular divisions of the perivascular fluid compartment. The pia matter disappears at the distal periarteriolar division of the perivascular fluid compartment. Plasma from arteriolar blood sequentially transudates into the periarteriolar division of the perivascular fluid compartment and subarachnoid cisterns in precession to trickling into the neural interstitium. Fluid from the neural interstitium successively propagates into the venules through the subarachnoid cisterns and perivenular division of the perivascular fluid compartment. Fluid fluent within the perivascular fluid compartment flows gegen the net direction of arteriovenular flow. Microvessel oscillations at the central tendency of the cerebral vasomotion generate corresponding oscillations of within the surrounding perivascular fluid compartment, interposed betwixt the abluminal surface of the vessels and internal surface of the pia mater. The precise microanatomy of this most fascinating among designable spaces has eluded the efforts of various investigators to interrogate its structure, though most authors non-consensusly concur the investing layers effectively and functionally segregate the perivascular and subarachnoid fluid compartments. Enlargement of the perivascular fluid compartment in a variety of neurological disorders, including senile dementia of the Alzheimer's type and cerebral small vessel disease, may alternately or coordinately constitute a correlative marker of disease severity and a possible cause implicated in the mechanistic pathogenesis of these conditions. Venular pressures modulating oscillatory dynamic flow within the perivascular fluid compartment may similarly contribute to the development of a variety among neurological disorders. An intimate understanding of subtle features typifying microanatomy and microphysiology of the investing structures and spaces of the cerebral microvasculature may powerfully inform mechanistic pathophysiology mediating a variety of neurovascular ischemic, neuroinfectious, neuroautoimmune, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Street, San Francisco, CA 94143, United States; Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States.
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States; Department of Neurophysiology, Bogomoletz Institute, Kyiv, Ukraine; Department of Neuroscience, Московский государственный университет имени М. В., Ломоносова GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - M Gazi Yaşargil
- Department of Neurosurgery, University Hospital Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - George Zaki Ghali
- United States Environmental Protection Agency, Arlington, Virginia, USA; Emeritus Professor of Toxicology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
31
|
Andjelkovic AV, Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF. Modeling blood-brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids Barriers CNS 2020; 17:44. [PMID: 32677965 PMCID: PMC7367394 DOI: 10.1186/s12987-020-00202-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The complexity of the blood-brain barrier (BBB) and neurovascular unit (NVU) was and still is a challenge to bridge. A highly selective, restrictive and dynamic barrier, formed at the interface of blood and brain, the BBB is a "gatekeeper" and guardian of brain homeostasis and it also acts as a "sensor" of pathological events in blood and brain. The majority of brain and cerebrovascular pathologies are associated with BBB dysfunction, where changes at the BBB can lead to or support disease development. Thus, an ultimate goal of BBB research is to develop competent and highly translational models to understand mechanisms of BBB/NVU pathology and enable discovery and development of therapeutic strategies to improve vascular health and for the efficient delivery of drugs. This review article focuses on the progress being made to model BBB injury in cerebrovascular diseases in vitro.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| | - Svetlana M Stamatovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Chelsea M Phillips
- Graduate Program in Neuroscience, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriela Martinez-Revollar
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Bersano A, Kraemer M, Burlina A, Mancuso M, Finsterer J, Sacco S, Salvarani C, Caputi L, Chabriat H, Oberstein SL, Federico A, Lasserve ET, Hunt D, Dichgans M, Arnold M, Debette S, Markus HS. Heritable and non-heritable uncommon causes of stroke. J Neurol 2020; 268:2780-2807. [PMID: 32318851 DOI: 10.1007/s00415-020-09836-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
Abstract
Despite intensive investigations, about 30% of stroke cases remains of undetermined origin. After exclusion of common causes of stroke, there is a number of rare heritable and non-heritable conditions, which often remain misdiagnosed, that should be additionally considered in the diagnosis of cryptogenic stroke. The identification of these diseases requires a complex work up including detailed clinical evaluation for the detection of systemic symptoms and signs, an adequate neuroimaging assessment and a careful family history collection. The task becomes more complicated by phenotype heterogeneity since stroke could be the primary or unique manifestation of a syndrome or represent just a manifestation (sometimes minor) of a multisystem disorder. The aim of this review paper is to provide clinicians with an update on clinical and neuroradiological features and a set of practical suggestions for the diagnostic work up and management of these uncommon causes of stroke. The identification of these stroke causes is important to avoid inappropriate and expensive diagnostic tests, to establish appropriate management measures, including presymptomatic testing, genetic counseling, and, if available, therapy. Therefore, physicians should become familiar with these diseases to provide future risk assessment and family counseling.
Collapse
Affiliation(s)
- A Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - M Kraemer
- Department of Neurology Alfried, Krupp-Hospital, Essen, Germany.,Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - A Burlina
- Neurological Unit, St. Bassano Hospital, Bassano del Grappa, Italy
| | - M Mancuso
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - J Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria
| | - S Sacco
- Department of Neurology, Avezzano Hospital, University of L'Aquila, L'Aquila, Italy
| | - C Salvarani
- University of Modena and Reggio Emilia, and Azienda USL-IRCCS, Reggio Emilia, Italy
| | - L Caputi
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - H Chabriat
- Department of Neurology and CERVCO, DHU Neurovasc, INSERM U1141, University of Paris, Paris, France
| | - S Lesnik Oberstein
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Federico
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - E Tournier Lasserve
- Department of Genetics, Lariboisière Hospital and INSERM U1141, Paris-Diderot University, Paris, France
| | - D Hunt
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - M Dichgans
- Institute for Stroke and Dementia Research, Klinikum Der Universität München, Munich, Germany
| | - M Arnold
- Inserm Centre Bordeaux Population Health (U1219), University of Bordeaux, Bordeaux, France
| | - S Debette
- Department of Neurology, INSELSPITAL, University Hospital Bern, Bern, Switzerland
| | - H S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Current status and future prospects of pathophysiology-based neuroprotective drugs for the treatment of vascular dementia. Drug Discov Today 2020; 25:793-799. [PMID: 31981482 DOI: 10.1016/j.drudis.2020.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
Vascular dementia (VaD) is a progressive neurocognitive clinical syndrome that is caused by a decrease in cerebral blood flow and damage to the neurovascular unit. Given increasing life expectancy, VaD is emerging as one of the leading health problems in society. Despite the high global prevalence of cognitive impairment associated with VaD, diagnosis and treatment still remain limited because of the complexity of mechanisms of neuronal loss. Therefore, advances in our understanding of the pathophysiological mechanisms involved is crucial for the development of new therapeutic strategies. In this review, we highlight the pathophysiology, current pharmacology-based primary and secondary prevention strategies and emerging treatment options for VaD.
Collapse
|
34
|
Danchenko IY, Kulesh AA, Drobakha VE, Kanivets IV, Akimova IA, Monak AA. [CADASIL syndrome: differential diagnosis with multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:128-136. [PMID: 31934998 DOI: 10.17116/jnevro201911910128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two cases of clinical and MRI manifestations of genetically verified CADASIL syndrome in female patients under 40 years of age are presented. The primary misinterpretation of clinical data and the neuroimaging results within multiple sclerosis indicates a lack of awareness of radiologists and neurologists about this disease. The article reviewed the current literature on the problems of diagnosis and treatment of CADASIL. The clinical and neuroimaging pattern of the syndrome, the approaches to genetic testing and the basic principles of patient management are considered in detail.
Collapse
Affiliation(s)
- I Yu Danchenko
- Perm Regional Clinical Hospital, Perm Multiple Sclerosis Center, Perm, Russia
| | - A A Kulesh
- Vagner Perm State Medical University, Perm, Russia; Perm State Clinical Hospital #4, Perm, Russia
| | - V E Drobakha
- Vagner Perm State Medical University, Perm, Russia; Perm State Clinical Hospital #4, Perm, Russia
| | | | - I A Akimova
- State Medical Genetic Center, Moscow, Russia
| | - A A Monak
- Vagner Perm State Medical University, Perm, Russia
| |
Collapse
|
35
|
Chang JC. Stroke Classification: Critical Role of Unusually Large von Willebrand Factor Multimers and Tissue Factor on Clinical Phenotypes Based on Novel "Two-Path Unifying Theory" of Hemostasis. Clin Appl Thromb Hemost 2020; 26:1076029620913634. [PMID: 32584600 PMCID: PMC7427029 DOI: 10.1177/1076029620913634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Stroke is a hemostatic disease associated with thrombosis/hemorrhage caused by intracranial vascular injury with spectrum of clinical phenotypes and variable prognostic outcomes. The genesis of different phenotypes of stroke is poorly understood due to our incomplete understanding of hemostasis and thrombosis. These shortcomings have handicapped properly recognizing each specific stroke syndrome and contributed to controversy in selecting therapeutic agents. Treatment recommendation for stroke syndromes has been exclusively derived from the result of laborious and expensive clinical trials. According to newly proposed "two-path unifying theory" of in vivo hemostasis, intracranial vascular injury would yield several unique stroke syndromes triggered by 3 distinctly different thrombogenetic mechanisms depending upon level of intracranial intravascular injury and character of formed blood clots. Five major phenotypes of stroke occur via thrombogenetic paths: (1) transient ischemic attack due to focal endothelial damage limited to endothelial cells (ECs), (2) acute ischemic stroke due to localized ECs and subendothelial tissue (SET) damage extending up to the outer vascular wall, (3) thrombo-hemorrhagic stroke due to localized vascular damage involving ECs and SET and extending beyond SET to extravascular tissue, (4) acute hemorrhagic stroke due to major localized intracranial hemorrhage/hematoma into the brain tissue or space between the coverings of the brain associated with vascular anomaly or obtuse trauma, and (5) encephalopathic stroke due to disseminated endotheliopathy leading to microthrombosis within the brain. New classification of stroke phenotypes would assist in selecting rational therapeutic regimen for each stroke syndrome and designing clinical trials to improve clinical outcome.
Collapse
Affiliation(s)
- Jae C. Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA, USA
| |
Collapse
|
36
|
Giau VV, Bagyinszky E, Youn YC, An SSA, Kim SY. Genetic Factors of Cerebral Small Vessel Disease and Their Potential Clinical Outcome. Int J Mol Sci 2019; 20:ijms20174298. [PMID: 31484286 PMCID: PMC6747336 DOI: 10.3390/ijms20174298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 12/23/2022] Open
Abstract
Cerebral small vessel diseases (SVD) have been causally correlated with ischemic strokes, leading to cognitive decline and vascular dementia. Neuroimaging and molecular genetic tests could improve diagnostic accuracy in patients with potential SVD. Several types of monogenic, hereditary cerebral SVD have been identified: cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cathepsin A-related arteriopathy with strokes and leukoencephalopathy (CARASAL), hereditary diffuse leukoencephalopathy with spheroids (HDLS), COL4A1/2-related disorders, and Fabry disease. These disorders can be distinguished based on their genetics, pathological and imaging findings, clinical manifestation, and diagnosis. Genetic studies of sporadic cerebral SVD have demonstrated a high degree of heritability, particularly among patients with young-onset stroke. Common genetic variants in monogenic disease may contribute to pathological progress in several cerebral SVD subtypes, revealing distinct genetic mechanisms in different subtype of SVD. Hence, genetic molecular analysis should be used as the final gold standard of diagnosis. The purpose of this review was to summarize the recent discoveries made surrounding the genetics of cerebral SVD and their clinical significance, to provide new insights into the pathogenesis of cerebral SVD, and to highlight the possible convergence of disease mechanisms in monogenic and sporadic cerebral SVD.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology & Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea
| | - Eva Bagyinszky
- Department of Bionano Technology & Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul 06973, Korea.
| | - Seong Soo A An
- Department of Bionano Technology & Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Sang Yun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seoul 06973, Korea
| |
Collapse
|
37
|
Hansen MR, Okuda DT. Precision medicine for multiple sclerosis promotes preventative medicine. Ann N Y Acad Sci 2019; 1420:62-71. [PMID: 29878402 DOI: 10.1111/nyas.13846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a chronic, lifelong disease, currently without a cure that is responsible for significant neurological injury in young adults. Precision medicine for MS aims to provide a more exacting and refined approach toward management by providing recommendations based on disease subtype, clinical status, existing radiological data, para-clinical data, and other biological markers. To achieve better outcomes, the three stages of care-diagnosis, treatment, and management-should be optimized. However, as the temporal profile of disease behavior is highly variable in MS, and unlike outcomes from other chronic conditions (i.e., hypertension, diabetes mellitus, etc.), should precision medicine for MS be one that focuses more on disease prevention and lifestyle modifications beyond recommendations for the use of disease-modifying therapies? As scientific advancements continue within the field of neuroimmunology, and until reliable biomarkers that predict disease outcomes are available, success may be better achieved by focusing on modifiable factors to reduce future disability.
Collapse
Affiliation(s)
- Madison R Hansen
- UT Southwestern Medical Center, Department of Neurology and Neurotherapeutics, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, Dallas, Texas
| | - Darin T Okuda
- UT Southwestern Medical Center, Department of Neurology and Neurotherapeutics, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, Dallas, Texas
| |
Collapse
|
38
|
Zhao YY, Duan RN, Ji L, Liu QJ, Yan CZ. Cervical Spinal Involvement in a Chinese Pedigree With Pontine Autosomal Dominant Microangiopathy and Leukoencephalopathy Caused by a 3' Untranslated Region Mutation of COL4A1 Gene. Stroke 2019; 50:2307-2313. [PMID: 31366314 DOI: 10.1161/strokeaha.119.024875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background and Purpose- Pontine autosomal dominant microangiopathy and leukoencephalopathy, a recently defined subtype of cerebral small vessel disease, is associated with mutations in COL4A1 (collagen type IV alpha 1 chain) 3' untranslated region. We here describe a pontine autosomal dominant microangiopathy and leukoencephalopathy pedigree with COL4A1 mutation presenting both pontine and cervical spinal cord involvement. Methods- For the diagnostic purpose, brain and spinal magnetic resonance imaging scanning, skin biopsy, and whole-exome sequencing were performed on the patients in the pedigree. Suspected pathogenic variants were further confirmed by cosegregation analysis using Sanger sequencing in the family members. Results- We identified a mutation located at the binding site of miR-29 (microRNA-29) in 3' untranslated region of COL4A1(c.*32G>A). The pontine autosomal dominant microangiopathy and leukoencephalopathy patients in this pedigree carried this variant, whereas other healthy family members but one did not. Magnetic resonance imaging showed lesions in the pons, white matter, and cervical spinal cord. Skin biopsy revealed thickened basal lamina in vessels. Conclusions- For the first time, we reported cervical spinal involvement in pontine autosomal dominant microangiopathy and leukoencephalopathy and expanded the clinical spectrum of this disease.
Collapse
Affiliation(s)
- Yu-Ying Zhao
- From the Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology (Y.-Y.Z., R.-N.D., C.-Z.Y.), Qilu Hospital, Shandong University, Jinan, China
| | - Ruo-Nan Duan
- From the Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology (Y.-Y.Z., R.-N.D., C.-Z.Y.), Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Basic Medical Sciences, Jinan, China (R.-N.D., Q.-J.L.)
| | - Lin Ji
- Department of Neurology, The Second Affiliated Hospital of Shandong University of TCM, Jinan, China (L.J.)
| | - Qi-Ji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Basic Medical Sciences, Jinan, China (R.-N.D., Q.-J.L.)
| | - Chuan-Zhu Yan
- From the Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology (Y.-Y.Z., R.-N.D., C.-Z.Y.), Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute (C.-Z.Y.), Qilu Hospital, Shandong University, Jinan, China.,Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, China (C.-Z.Y.)
| |
Collapse
|
39
|
Kulesh AA, Drobakha VE, Shestakov VV. Cerebral small vessel disease: classification, clinical manifestations, diagnosis, and features of treatment. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2019. [DOI: 10.14412/2074-2711-2019-3s-4-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The paper considers the relevance of the problem of cerebral small vessel disease (CSVD) that is an important cause of ischemic and hemorrhagic stroke, associated with the development of cognitive impairment and complications of antithrombotic therapy. It presents briefly the current issues of etiology and pathogenesis of the disease. Sporadic non-amyloid microangiopathy, cerebral amyloid angiopathy, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) are discussed in detail from the point of view of their clinical presentation, neuroimaging, and features of therapeutic tactics. An algorithm for diagnosing CSVD in patients admitted to hospital for stroke and a differentiated approach to their treatment are proposed. Consideration of the neuroimaging manifestations of CSVD is noted to be necessary for the safe and more effective treatment of patients with cerebrovascular diseases.
Collapse
Affiliation(s)
- A. A. Kulesh
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| | - V. E. Drobakha
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| | - V. V. Shestakov
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| |
Collapse
|
40
|
Sutherland HG, Albury CL, Griffiths LR. Advances in genetics of migraine. J Headache Pain 2019; 20:72. [PMID: 31226929 PMCID: PMC6734342 DOI: 10.1186/s10194-019-1017-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Background Migraine is a complex neurovascular disorder with a strong genetic component. There are rare monogenic forms of migraine, as well as more common polygenic forms; research into the genes involved in both types has provided insights into the many contributing genetic factors. This review summarises advances that have been made in the knowledge and understanding of the genes and genetic variations implicated in migraine etiology. Findings Migraine is characterised into two main types, migraine without aura (MO) and migraine with aura (MA). Hemiplegic migraine is a rare monogenic MA subtype caused by mutations in three main genes - CACNA1A, ATP1A2 and SCN1A - which encode ion channel and transport proteins. Functional studies in cellular and animal models show that, in general, mutations result in impaired glutamatergic neurotransmission and cortical hyperexcitability, which make the brain more susceptible to cortical spreading depression, a phenomenon thought to coincide with aura symptoms. Variants in other genes encoding ion channels and solute carriers, or with roles in regulating neurotransmitters at neuronal synapses, or in vascular function, can also cause monogenic migraine, hemiplegic migraine and related disorders with overlapping symptoms. Next-generation sequencing will accelerate the finding of new potentially causal variants and genes, with high-throughput bioinformatics analysis methods and functional analysis pipelines important in prioritising, confirming and understanding the mechanisms of disease-causing variants. With respect to common migraine forms, large genome-wide association studies (GWAS) have greatly expanded our knowledge of the genes involved, emphasizing the role of both neuronal and vascular pathways. Dissecting the genetic architecture of migraine leads to greater understanding of what underpins relationships between subtypes and comorbid disorders, and may have utility in diagnosis or tailoring treatments. Further work is required to identify causal polymorphisms and the mechanism of their effect, and studies of gene expression and epigenetic factors will help bridge the genetics with migraine pathophysiology. Conclusions The complexity of migraine disorders is mirrored by their genetic complexity. A comprehensive knowledge of the genetic factors underpinning migraine will lead to improved understanding of molecular mechanisms and pathogenesis, to enable better diagnosis and treatments for migraine sufferers.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Cassie L Albury
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
41
|
Das AS, Regenhardt RW, Vernooij MW, Blacker D, Charidimou A, Viswanathan A. Asymptomatic Cerebral Small Vessel Disease: Insights from Population-Based Studies. J Stroke 2019; 21:121-138. [PMID: 30991799 PMCID: PMC6549070 DOI: 10.5853/jos.2018.03608] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/28/2019] [Indexed: 12/28/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a common group of neurological conditions that confer a significant burden of morbidity and mortality worldwide. In most cases, CSVD is only recognized in its advanced stages once its symptomatic sequelae develop. However, its significance in asymptomatic healthy populations remains poorly defined. In population-based studies of presumed healthy elderly individuals, CSVD neuroimaging markers including white matter hyperintensities, lacunes, cerebral microbleeds, enlarged perivascular spaces, cortical superficial siderosis, and cerebral microinfarcts are frequently detected. While the presence of these imaging markers may reflect unique mechanisms at play, there are likely shared pathways underlying CSVD. Herein, we aim to assess the etiology and significance of these individual biomarkers by focusing in asymptomatic populations at an epidemiological level. By primarily examining population-based studies, we explore the risk factors that are involved in the formation and progression of these biomarkers. Through a critical semi-systematic review, we aim to characterize “asymptomatic” CSVD, review screening modalities, and draw associations from observational studies in clinical populations. Lastly, we highlight areas of research (including therapeutic approaches) in which further investigation is needed to better understand asymptomatic CSVD.
Collapse
Affiliation(s)
- Alvin S Das
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andreas Charidimou
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anand Viswanathan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Schulz UG. Cryptogenic stroke - How to make sense of a non-diagnostic entity. Maturitas 2019; 122:44-50. [PMID: 30797529 DOI: 10.1016/j.maturitas.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 01/26/2023]
Abstract
Secondary preventive strategies in ischaemic stroke depend on the underlying aetiology. However, approximately one-third of ischaemic strokes remain unexplained, or 'cryptogenic'. There is a wide range of possible underlying causes in cryptogenic stroke, and the best approach to secondary prevention of these may differ. To date, though, the widely accepted and uniform secondary preventive strategy in this group consists of modification of vascular risk factors, and of treatment with a combination of antiplatelet therapy and antihypertensive and lipid-lowering medication. Among the potential causes for cryptogenic stroke are occult atrial fibrillation, patent foramen ovale, atrial cardiopathy, aortic arch atheroma and hypercoagulable states. While it is possible to diagnose these conditions, in individual patients there is often uncertainty over whether they have a directly causative role, are markers of disease, or are innocent bystanders. Similarly, even if the cause is found, the best secondary preventive strategies remain uncertain, which questions the benefit of extensive investigations in a clinical setting. More recently, the concept of "embolic stroke of unknown source (ESUS)" has been introduced, in the hope that anticoagulation may offer better secondary prevention than antiplatelet therapy, but trials so far have been negative. At present, there is little justification for introducing extensive new investigative strategies into the management of patients with cryptogenic stroke. Investigations should be targeted at identifying those high-risk conditions which lead to a change in management. Further investigations need to be tailored individually, according to clinical circumstances. This should include identifying patients for participation in clinical trials, as the significance and best management of many of the potential causes for cryptogenic stroke require further research.
Collapse
Affiliation(s)
- Ursula G Schulz
- Centre for the Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.
| |
Collapse
|
43
|
Miyatake S, Schneeberger S, Koyama N, Yokochi K, Ohmura K, Shiina M, Mori H, Koshimizu E, Imagawa E, Uchiyama Y, Mitsuhashi S, Frith MC, Fujita A, Satoh M, Taguri M, Tomono Y, Takahashi K, Doi H, Takeuchi H, Nakashima M, Mizuguchi T, Takata A, Miyake N, Saitsu H, Tanaka F, Ogata K, Hennet T, Matsumoto N. Biallelic COLGALT1 variants are associated with cerebral small vessel disease. Ann Neurol 2018; 84:843-853. [PMID: 30412317 DOI: 10.1002/ana.25367] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Approximately 5% of cerebral small vessel diseases are hereditary, which include COL4A1/COL4A2-related disorders. COL4A1/COL4A2 encode type IV collagen α1/2 chains in the basement membranes of cerebral vessels. COL4A1/COL4A2 mutations impair the secretion of collagen to the extracellular matrix, thereby resulting in vessel fragility. The diagnostic yield for COL4A1/COL4A2 variants is around 20 to 30%, suggesting other mutated genes might be associated with this disease. This study aimed to identify novel genes that cause COL4A1/COL4A2-related disorders. METHODS Whole exome sequencing was performed in 2 families with suspected COL4A1/COL4A2-related disorders. We validated the role of COLGALT1 variants by constructing a 3-dimensional structural model, evaluating collagen β (1-O) galactosyltransferase 1 (ColGalT1) protein expression and ColGalT activity by Western blotting and collagen galactosyltransferase assays, and performing in vitro RNA interference and rescue experiments. RESULTS Exome sequencing demonstrated biallelic variants in COLGALT1 encoding ColGalT1, which was involved in the post-translational modification of type IV collagen in 2 unrelated patients: c.452 T > G (p.Leu151Arg) and c.1096delG (p.Glu366Argfs*15) in Patient 1, and c.460G > C (p.Ala154Pro) and c.1129G > C (p.Gly377Arg) in Patient 2. Three-dimensional model analysis suggested that p.Leu151Arg and p.Ala154Pro destabilized protein folding, which impaired enzymatic activity. ColGalT1 protein expression and ColGalT activity in Patient 1 were undetectable. RNA interference studies demonstrated that reduced ColGalT1 altered COL4A1 secretion, and rescue experiments showed that mutant COLGALT1 insufficiently restored COL4A1 production in cells compared with wild type. INTERPRETATION Biallelic COLGALT1 variants cause cerebral small vessel abnormalities through a common molecular pathogenesis with COL4A1/COL4A2-related disorders. Ann Neurol 2018;84:843-853.
Collapse
Affiliation(s)
- Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | | | - Norihisa Koyama
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Kenji Yokochi
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Japan.,Department of Pediatrics, Seirei Mikatahara General Hospital, Shizuoka, Japan
| | - Kayo Ohmura
- Department of Pediatric Neurology, Morinomiya Hospital, Osaka, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Harushi Mori
- Department of Radiology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eri Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mai Satoh
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masataka Taguri
- Department of Data Science, Yokohama City University School of Data Science, Yokohama, Japan
| | - Yasuko Tomono
- Division of Molecular and Cell Biology, Shigei Medical Research Institute, Okayama, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
44
|
Ilinca A, Samuelsson S, Piccinelli P, Soller M, Kristoffersson U, Lindgren AG. A stroke gene panel for whole-exome sequencing. Eur J Hum Genet 2018; 27:317-324. [PMID: 30356112 DOI: 10.1038/s41431-018-0274-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/19/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
Extensive analyses of known monogenic causes of stroke by whole-exome/genome sequencing are technically possible today. We here aimed to compile a comprehensive panel of genes associated with monogenic causes of stroke for use in clinical and research situations. We systematically searched the publically available database Online Mendelian Inheritance in Man, and validated the entries against original peer-reviewed publications in PubMed. First, we selected known pathogenic or putatively pathogenic stroke genes reported in at least one person with stroke, and classified the stroke phenotype for each gene into eight subgroups: (1) large artery atherosclerotic, (2) large artery non-atherosclerotic (tortuosity, dolichoectasia, aneurysm, non-atherosclerotic dissection, occlusion), (3) cerebral small-vessel diseases, (4) cardioembolic (arrhythmia, heart defect, cardiomyopathy), (5) coagulation dysfunctions (venous thrombosis, arterial thrombosis, bleeding tendency), (6) intracerebral hemorrhage, (7) vascular malformations (cavernoma, arteriovenous malformations), and (8) metabolism disorders. Second, we selected other genes that may plausibly cause stroke through diseases related to stroke, but without any documented stroke patient description. A third section comprised SNPs associated with stroke in genome-wide association studies (GWAS). We identified in total 214 genes: 120 associated with stroke, 62 associated with diseases that may cause stroke, and 32 stroke-related genes from recent GWAS. We describe these 214 genes and the clinical stroke subtype(s) associated with each of them. The resulting gene panel can be used to interpret exome sequencing results regarding monogenic stroke. Based on the panel's clinical phenotype description, the pathogenicity of novel variants in these genes may be evaluated in specific situations.
Collapse
Affiliation(s)
- Andreea Ilinca
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden. .,Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Malmö, Sweden.
| | - Sofie Samuelsson
- Department of Clinical Genetics and Pathology, Laboratory Medicine, Region Skåne and Lund University, Lund, Sweden
| | - Paul Piccinelli
- Department of Clinical Genetics and Pathology, Laboratory Medicine, Region Skåne and Lund University, Lund, Sweden
| | - Maria Soller
- Department of Clinical Genetics and Pathology, Laboratory Medicine, Region Skåne and Lund University, Lund, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Ulf Kristoffersson
- Department of Clinical Genetics and Pathology, Laboratory Medicine, Region Skåne and Lund University, Lund, Sweden
| | - Arne G Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden.,Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
45
|
Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, Joutel A, Nedergaard M, Smith KJ, Zlokovic BV, Wardlaw JM. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res 2018; 114:1462-1473. [PMID: 29726891 PMCID: PMC6455920 DOI: 10.1093/cvr/cvy113] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Small vessel diseases (SVDs) are a group of disorders that result from pathological alteration of the small blood vessels in the brain, including the small arteries, capillaries and veins. Of the 35-36 million people that are estimated to suffer from dementia worldwide, up to 65% have an SVD component. Furthermore, SVD causes 20-25% of strokes, worsens outcome after stroke and is a leading cause of disability, cognitive impairment and poor mobility. Yet the underlying cause(s) of SVD are not fully understood. Magnetic resonance imaging has confirmed enlarged perivascular spaces (PVS) as a hallmark feature of SVD. In healthy tissue, these spaces are proposed to form part of a complex brain fluid drainage system which supports interstitial fluid exchange and may also facilitate clearance of waste products from the brain. The pathophysiological signature of PVS and what this infers about their function and interaction with cerebral microcirculation, plus subsequent downstream effects on lesion development in the brain has not been established. Here we discuss the potential of enlarged PVS to be a unique biomarker for SVD and related brain disorders with a vascular component. We propose that widening of PVS suggests presence of peri-vascular cell debris and other waste products that form part of a vicious cycle involving impaired cerebrovascular reactivity, blood-brain barrier dysfunction, perivascular inflammation and ultimately impaired clearance of waste proteins from the interstitial fluid space, leading to accumulation of toxins, hypoxia, and tissue damage. Here, we outline current knowledge, questions and hypotheses regarding understanding the brain fluid dynamics underpinning dementia and stroke through the common denominator of SVD.
Collapse
Affiliation(s)
- Rosalind Brown
- Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor's Building, Edinburgh, UK
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, USA
| | - Sandra E Black
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Serge Charpak
- INSERM U1128, Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Maiken Nedergaard
- Section for Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, USA
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh, Chancellor's Building, Edinburgh, UK
- Row Fogo Centre for Research into Ageing and the Brain, The University of Edinburgh, Chancellor's Building, Edinburgh, UK
| |
Collapse
|
46
|
Lee YC, Chung CP, Chao NC, Fuh JL, Chang FC, Soong BW, Liao YC. Characterization of Heterozygous HTRA1 Mutations in Taiwanese Patients With Cerebral Small Vessel Disease. Stroke 2018; 49:1593-1601. [PMID: 29895533 DOI: 10.1161/strokeaha.118.021283] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Homozygous and compound heterozygous mutations in the high temperature requirement serine peptidase A1 gene (HTRA1) cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. However, heterozygous HTRA1 mutations were recently identified to be associated with autosomal dominant cerebral small vessel disease (SVD). The present study aims at investigating the clinical features, frequency, and spectrum of HTRA1 mutations in a Taiwanese cohort with SVD. METHODS Mutational analyses of HTRA1 were performed by Sanger sequencing in 222 subjects, selected from a cohort of 337 unrelated patients with SVD after excluding those harboring a NOTCH3 mutation. The influence of these mutations on HTRA1 protease activities was characterized. RESULTS Seven novel heterozygous mutations in HTRA1 were identified, including p.Gly120Asp, p.Ile179Asn, p.Ala182Profs*33, p.Ile256Thr, p.Gly276Ala, p.Gln289Ter, and p.Asn324Thr, and each was identified in 1 single index patient. All mutations significantly compromise the HTRA1 protease activities. For the 7 index cases and another 2 affected siblings carrying a heterozygous HTRA1 mutation, the common clinical presentations include lacunar infarction, intracerebral hemorrhage, cognitive decline, and spondylosis at the fifth to sixth decade of life. Among the 9 patients, 4 have psychiatric symptoms as delusion, depression, and compulsive behavior, 3 have leukoencephalopathy in anterior temporal poles, and 2 patients have alopecia. CONCLUSIONS Heterozygous HTRA1 mutations account for 2.08% (7 of 337) of SVD in Taiwan. The clinical and neuroradiological features of HTRA1-related SVD and sporadic SVD are similar. These findings broaden the mutational spectrum of HTRA1 and highlight the pathogenic role of heterozygous HTRA1 mutations in SVD.
Collapse
Affiliation(s)
- Yi-Chung Lee
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
- Taipei Veterans General Hospital, Taiwan; and Department of Neurology (Y.-C.L., C.-P.C., J.-L.F., B.-W.S., Y.-C.L.)
- Brain Research Center (Y.-C.L., J.-L.F., B.-W.S.), National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chih-Ping Chung
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
- Taipei Veterans General Hospital, Taiwan; and Department of Neurology (Y.-C.L., C.-P.C., J.-L.F., B.-W.S., Y.-C.L.)
| | - Nai-Chen Chao
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
| | - Jong-Ling Fuh
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
- Taipei Veterans General Hospital, Taiwan; and Department of Neurology (Y.-C.L., C.-P.C., J.-L.F., B.-W.S., Y.-C.L.)
- Brain Research Center (Y.-C.L., J.-L.F., B.-W.S.), National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | - Bing-Wing Soong
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
- Taipei Veterans General Hospital, Taiwan; and Department of Neurology (Y.-C.L., C.-P.C., J.-L.F., B.-W.S., Y.-C.L.)
- Brain Research Center (Y.-C.L., J.-L.F., B.-W.S.), National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Chu Liao
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
- Taipei Veterans General Hospital, Taiwan; and Department of Neurology (Y.-C.L., C.-P.C., J.-L.F., B.-W.S., Y.-C.L.)
| |
Collapse
|
47
|
Maserati M, Alexander SA. Genetics and Genomics of Acute Neurologic Disorders. AACN Adv Crit Care 2018; 29:57-75. [PMID: 29496714 DOI: 10.4037/aacnacc2018566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurologic diseases and injuries are complex and multifactorial, making risk prediction, targeted treatment modalities, and outcome prognostication difficult and elusive. Genetics and genomics have affected clinical practice in many aspects in medicine, particularly cancer treatment. Advancements in knowledge of genetic and genomic variability in neurologic disease and injury are growing rapidly. Although these data are not yet ready for use in clinical practice, research continues to progress and elucidate information that eventually will provide answers to complex neurologic questions and serve as a platform to provide individualized care plans aimed at improving outcomes. This article provides a focused review of relevant literature on genetics, genomics, and common complex neurologic disease and injury likely to be seen in the acute care setting.
Collapse
Affiliation(s)
- Megan Maserati
- Megan Maserati is a PhD student at University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander is Associate Professor, University of Pittsburgh, 336 Victoria Building, 3500 Victoria Street, Pittsburgh, PA 15261
| | - Sheila A Alexander
- Megan Maserati is a PhD student at University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander is Associate Professor, University of Pittsburgh, 336 Victoria Building, 3500 Victoria Street, Pittsburgh, PA 15261
| |
Collapse
|
48
|
Zhang WY, Xie F, Lu PL. Two novel heterozygous HTRA1 mutations in two pedigrees with cerebral small vessel disease families. Neurol Sci 2018; 39:497-501. [PMID: 29305662 DOI: 10.1007/s10072-017-3231-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
Heterozygous HTRA1 mutations, recently, have been reported as a cause of autosomal dominant hereditary cerebral small vessel disease (CSVD). We herein describe clinical and neuroimaging findings in two familial CSVD with two different heterozygous HTRA1 mutations. Detailed clinical and neuroimaging examination were conducted in probands and their available family members. A next-generation sequencing-based comprehensive gene panel was used to investigate their causative mutations. A novel heterozygous missense variant c.527T>C (p.V176A) and a novel heterozygous nonsense variant c.589C>T (p.R197X) in HTRA1 gene were detected in probands of family 1 and family 2, respectively. Co-segregation analysis in family 1 showed eight family members were mutation carriers. All alive male patients showed typical clinical and neuroimaging features of CSVD. All alive female mutation carriers were clinical or neuroimaging asymptomatic. Screening of HTRA1 should be considered in patients with familial CSVD. A male predominance may exist in patients with heterozygous HTRA1 mutations and need to be further investigated.
Collapse
Affiliation(s)
- Wen-Ying Zhang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Pei-Lin Lu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
49
|
Rare Dementias. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
Salpietro V, Efthymiou S, Manole A, Maurya B, Wiethoff S, Ashokkumar B, Cutrupi MC, Dipasquale V, Manti S, Botia JA, Ryten M, Vandrovcova J, Bello OD, Bettencourt C, Mankad K, Mukherjee A, Mutsuddi M, Houlden H. A loss-of-function homozygous mutation in DDX59 implicates a conserved DEAD-box RNA helicase in nervous system development and function. Hum Mutat 2017; 39:187-192. [PMID: 29127725 PMCID: PMC5814734 DOI: 10.1002/humu.23368] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
We report on a homozygous frameshift deletion in DDX59 (c.185del: p.Phe62fs*13) in a family presenting with orofaciodigital syndrome phenotype associated with a broad neurological involvement characterized by microcephaly, intellectual disability, epilepsy, and white matter signal abnormalities associated with cortical and subcortical ischemic events. DDX59 encodes a DEAD‐box RNA helicase and its role in brain function and neurological diseases is unclear. We showed a reduction of mutant cDNA and perturbation of SHH signaling from patient‐derived cell lines; furthermore, analysis of human brain gene expression provides evidence that DDX59 is enriched in oligodendrocytes and might act within pathways of leukoencephalopathies‐associated genes. We also characterized the neuronal phenotype of the Drosophila model using mutant mahe, the homolog of human DDX59, and showed that mahe loss‐of‐function mutant embryos exhibit impaired development of peripheral and central nervous system. Taken together, our results support a conserved role of this DEAD‐box RNA helicase in neurological function.
Collapse
Affiliation(s)
- Vincenzo Salpietro
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Andreea Manole
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Bhawana Maurya
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| | - Sarah Wiethoff
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Balasubramaniem Ashokkumar
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK.,Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | | | - Sara Manti
- Department of Paediatrics, University of Messina, Messina, Italy
| | - Juan A Botia
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK.,Department of Information and Communications Engineering, University of Murcia University of Murcia, Murcia, Spain
| | - Mina Ryten
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Jana Vandrovcova
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Oscar D Bello
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - Conceicao Bettencourt
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK.,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| |
Collapse
|