1
|
Lu R, Dermody N, Duncan J, Woolgar A. Aperiodic and oscillatory systems underpinning human domain-general cognition. Commun Biol 2024; 7:1643. [PMID: 39695307 DOI: 10.1038/s42003-024-07397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
Domain-general cognitive systems are essential for adaptive human behaviour, supporting various cognitive tasks through flexible neural mechanisms. While fMRI studies link frontoparietal network activation to increasing demands across various tasks, the electrophysiological mechanisms underlying this domain-general response to demand remain unclear. Here, we used MEG/EEG, and separated the aperiodic and oscillatory components of the signals to examine their roles in domain-general cognition across three cognitive tasks using multivariate analysis. We found that both aperiodic (broadband power, slope, and intercept) and oscillatory (theta, alpha, and beta power) components coded task demand and content across all subtasks. Aperiodic broadband power in particular strongly coded task demand, in a manner that generalised across all subtasks. Source estimation suggested that increasing cognitive demand decreased aperiodic broadband power across the brain, with the strongest modulations overlapping with the frontoparietal network. In contrast, oscillatory activity showed more localised patterns of modulation, primarily in frontal or occipital regions. These results provide insights into the electrophysiological underpinnings of human domain-general cognition, highlighting the critical role of aperiodic broadband power.
Collapse
Affiliation(s)
- Runhao Lu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Nadene Dermody
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Alexandra Woolgar
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Madl T. Exploring neural markers of dereification in meditation based on EEG and personalized models of electrophysiological brain states. Sci Rep 2024; 14:24264. [PMID: 39414816 PMCID: PMC11484965 DOI: 10.1038/s41598-024-73789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
With mounting evidence for the benefits of meditation, there has been a growing interest in measuring and quantifying meditative states. This study introduces the Inner Dereification Index (IDI), a class of personalized models designed to quantify the distance from non-meditative states such as mind wandering based on a single individual's neural activity. In addition to demonstrating high classification accuracy (median AUC: 0.996) at distinguishing meditation from thinking states moment by moment, IDI can accurately stratify meditator cohorts by experience, and correctly identify the practices most effective at training the dereification aspect of meditation (decentering from immersion with thoughts and perceptions and recognizing them as mental constructs). These results suggest that IDI models may be a useful real-time proxy for dereification and meditation progress, requiring only 1 min of mind wandering data (and no meditation data) during model training. Thus, they show promise for applications such as real-time meditation feedback, progress tracking, personalization of practices, and potential therapeutic applications of neurofeedback-assisted generation of positive states of consciousness.
Collapse
Affiliation(s)
- Tamas Madl
- Austrian Research Institute for Artificial Intelligence (OFAI), Wien, Austria.
| |
Collapse
|
3
|
Yu S, Tian L, Wang G, Nie S. Which ERP components are effective in measuring cognitive load in multimedia learning? A meta-analysis based on relevant studies. Front Psychol 2024; 15:1401005. [PMID: 39377057 PMCID: PMC11457699 DOI: 10.3389/fpsyg.2024.1401005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
The open and generative nature of multimedia learning environments tends to cause cognitive overload in learners, and cognitive load is difficult for researchers to observe objectively because of its implicit and complex nature. Event-related potentials (ERP), a method of studying potential changes associated with specific events or stimuli by recording the electroencephalogram (EEG), has become an important method of measuring cognitive load in cognitive psychology. Although many studies have relied on ERP output measurements to compare different levels of cognitive load in multimedia learning, the results of the effect of cognitive load on ERP have been inconsistent. In this study, we used a meta-analysis of evidence-based research to quantitatively analyze 17 experimental studies to quantitatively evaluate which ERP component (amplitude) is most sensitive to cognitive load. Forty five effect sizes from 26 studies involving 360 participants were calculated. (1) The results of the studies analyzed in subgroups indicated high level effect sizes for P300 and P200 (2) Analyses of moderating variables for signal acquisition did not find that different methods of signal acquisition had a significant effect on the measurement of cognitive load (3) Analyses of moderating variables for task design found that a task system with feedback was more convenient for the measurement of cognitive load, and that designing for 3 levels of cognitive load was more convenient for the measurement of cognitive load than for 2 levels of cognitive load. (4) Analyses of continuous moderating variables for subject characteristics did not find significant effects of age, gender, or sample size on the results.
Collapse
Affiliation(s)
- Shuyu Yu
- School of Educational Technology, Northwest Normal University, Lanzhou, China
| | - Lianghao Tian
- School of Educational Technology, Faculty of Education, Henan Normal University, Xinxiang, China
| | - Guohua Wang
- School of Educational Technology, Faculty of Education, Henan Normal University, Xinxiang, China
| | - Shengxin Nie
- School of Educational Technology, Faculty of Education, Henan Normal University, Xinxiang, China
| |
Collapse
|
4
|
Mitiureva D, Sysoeva O, Proshina E, Portnova G, Khayrullina G, Martynova O. Comparative analysis of resting-state EEG functional connectivity in depression and obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2024; 342:111828. [PMID: 38833944 DOI: 10.1016/j.pscychresns.2024.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Major depressive disorder (MDD) and obsessive-compulsive disorder (OCD) are psychiatric disorders that often co-occur. We aimed to investigate whether their high comorbidity could be traced not only by clinical manifestations, but also at the level of functional brain activity. In this paper, we examined the differences in functional connectivity (FC) at the whole-brain level and within the default mode network (DMN). Resting-state EEG was obtained from 43 controls, 26 OCD patients, and 34 MDD patients. FC was analyzed between 68 cortical sources, and between-group differences in the 4-30 Hz range were assessed via the Network Based Statistic method. The strength of DMN intra-connectivity was compared between groups in the theta, alpha and beta frequency bands. A cluster of 67 connections distinguished the OCD, MDD and control groups. The majority of the connections, 8 of which correlated with depressive symptom severity, were found to be weaker in the clinical groups. Only 3 connections differed between the clinical groups, and one of them correlated with OCD severity. The DMN strength was reduced in the clinical groups in the alpha and beta bands. It can be concluded that the high comorbidity of OCD and MDD can be traced at the level of FC.
Collapse
Affiliation(s)
- Dina Mitiureva
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia; Centre for Cognition & Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Olga Sysoeva
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia; Sirius Center for Cognitive Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ekaterina Proshina
- Centre for Cognition & Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia.
| | - Galina Portnova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Guzal Khayrullina
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia; Centre for Cognition & Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Olga Martynova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia; Department of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
5
|
Iammarino E, Marcantoni I, Sbrollini A, Mortada MHDJ, Morettini M, Burattini L. Scalp Electroencephalogram-Derived Involvement Indexes during a Working Memory Task Performed by Patients with Epilepsy. SENSORS (BASEL, SWITZERLAND) 2024; 24:4679. [PMID: 39066076 PMCID: PMC11280559 DOI: 10.3390/s24144679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Electroencephalography (EEG) wearable devices are particularly suitable for monitoring a subject's engagement while performing daily cognitive tasks. EEG information provided by wearable devices varies with the location of the electrodes, the suitable location of which can be obtained using standard multi-channel EEG recorders. Cognitive engagement can be assessed during working memory (WM) tasks, testing the mental ability to process information over a short period of time. WM could be impaired in patients with epilepsy. This study aims to evaluate the cognitive engagement of nine patients with epilepsy, coming from a public dataset by Boran et al., during a verbal WM task and to identify the most suitable location of the electrodes for this purpose. Cognitive engagement was evaluated by computing 37 engagement indexes based on the ratio of two or more EEG rhythms assessed by their spectral power. Results show that involvement index trends follow changes in cognitive engagement elicited by the WM task, and, overall, most changes appear most pronounced in the frontal regions, as observed in healthy subjects. Therefore, involvement indexes can reflect cognitive status changes, and frontal regions seem to be the ones to focus on when designing a wearable mental involvement monitoring EEG system, both in physiological and epileptic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Laura Burattini
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.I.); (I.M.); (A.S.); (M.J.M.); (M.M.)
| |
Collapse
|
6
|
Zhang H, Hu Y, Li Y, Li D, Liu H, Li X, Song Y, Zhao C. Neurovascular coupling in the attention during visual working memory processes. iScience 2024; 27:109368. [PMID: 38510112 PMCID: PMC10951642 DOI: 10.1016/j.isci.2024.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/19/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Focusing attention in visual working memory (vWM) depends on the ability to filter distractors and expand the scope of targets. Although many properties of attention processes in vWM have been well documented, it remains unclear how the mechanisms of neurovascular coupling (NVC) function during attention processes in vWM. Here, we show simultaneous multimodal data that reveal the similar temporal and spatial features of attention processes during vWM. These similarities lead to common NVC outcomes across individuals. When filtering out distractors, the electroencephalography (EEG)-informed NVC displayed broader engagement across the frontoparietal network. A negative correlation may exist between behavioral metrics and EEG-informed NVC strength related to attention control. On a dynamic basis, NVC features exhibited higher discriminatory power in predicting behavior than other features alone. These results underscore how multimodal approaches can advance our understanding of the role of attention in vWM, and how NVC fluctuations are associated with actual behavior.
Collapse
Affiliation(s)
- Hao Zhang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Yiqing Hu
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yang Li
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Department of Applied Psychology, School of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Hanli Liu
- Department of Bioengineering, the University of Texas at Arlington, Arlington, TX, USA
| | - Xiaoli Li
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chenguang Zhao
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
7
|
Ou S, Cao Y, Xie T, Jiang T, Li J, Luo W, Ma N. Effect of homeostatic pressure and circadian arousal on the storage and executive components of working memory: Evidence from EEG power spectrum. Biol Psychol 2023; 184:108721. [PMID: 37952693 DOI: 10.1016/j.biopsycho.2023.108721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Diurnal fluctuations in working memory (WM) performance, characterized by task-specific peaks and troughs, are likely attributed to the differential regulation of WM subcomponents by interactions between circadian and homeostatic processes. The current study aimed to investigate the independent effects of circadian and homeostatic processes on the storage and executive subcomponents of WM. We assessed the change in frontal-midline theta (FMT) power supporting WM executive component and posterior alpha/beta power supporting WM storage during N-back tasks in the morning, midafternoon with and without a nap from 31 healthy adults. The results suggested that when the accumulated sleep homeostasis was alleviated in the midafternoon by a daytime nap, higher ACC, less number of omissions, and a stronger increase in FMT power from the no nap to nap conditions. Compared to the morning, a stronger decrease in posterior alpha power, and posterior beta power (only in the 3-back task), was observed in the no-nap condition because of circadian arousal regulation. These findings suggest that the circadian process primarily influences the storage aspect of WM supported by posterior alpha and beta activity, while sleep homeostasis has a greater impact on the execution aspect supported by FMT activity.
Collapse
Affiliation(s)
- Simei Ou
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Yixuan Cao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Tian Xie
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Tianxiang Jiang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Jiahui Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Wei Luo
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
8
|
Kosachenko AI, Kasanov D, Kotyusov AI, Pavlov YG. EEG and pupillometric signatures of working memory overload. Psychophysiology 2023; 60:e14275. [PMID: 36808118 DOI: 10.1111/psyp.14275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/22/2023]
Abstract
Understanding the physiological correlates of cognitive overload has implications for gauging the limits of human cognition, developing novel methods to define cognitive overload, and mitigating the negative outcomes associated with overload. Most previous psychophysiological studies manipulated verbal working memory load in a narrow range (an average load of 5 items). It is unclear, however, how the nervous system responds to a working memory load exceeding typical capacity limits. The objective of the current study was to characterize the central and autonomic nervous system changes associated with memory overload, by means of combined recording of electroencephalogram (EEG) and pupillometry. Eighty-six participants were presented with a digit span task involving the serial auditory presentation of items. Each trial consisted of sequences of either 5, 9, or 13 digits, each separated by 2 s. Both theta activity and pupil size, after the initial rise, expressed a pattern of a short plateau and a decrease with reaching the state of memory overload, indicating that pupil size and theta possibly have similar neural mechanisms. Based on the described above triphasic pattern of pupil size temporal dynamics, we concluded that cognitive overload causes physiological systems to reset, and release effort. Although memory capacity limits were exceeded and effort was released (as indicated by pupil dilation), alpha continued to decrease with increasing memory load. These results suggest that associating alpha with the focus of attention and distractor suppression is not warranted.
Collapse
Affiliation(s)
- Alexandra I Kosachenko
- Laboratory of Neurotechnology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Dauren Kasanov
- Laboratory of Neurotechnology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Alexander I Kotyusov
- Laboratory of Neurotechnology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Yuri G Pavlov
- Laboratory of Neurotechnology, Ural Federal University, Ekaterinburg, Russian Federation.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Introducing RELAX: An automated pre-processing pipeline for cleaning EEG data - Part 1: Algorithm and application to oscillations. Clin Neurophysiol 2023; 149:178-201. [PMID: 36822997 DOI: 10.1016/j.clinph.2023.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
OBJECTIVE Electroencephalographic (EEG) data are often contaminated with non-neural artifacts which can confound experimental results. Current artifact cleaning approaches often require costly manual input. Our aim was to provide a fully automated EEG cleaning pipeline that addresses all artifact types and improves measurement of EEG outcomes METHODS: We developed RELAX (the Reduction of Electroencephalographic Artifacts). RELAX cleans continuous data using Multi-channel Wiener filtering [MWF] and/or wavelet enhanced independent component analysis [wICA] applied to artifacts identified by ICLabel [wICA_ICLabel]). Several versions of RELAX were compared using three datasets (N = 213, 60 and 23 respectively) against six commonly used pipelines across a range of artifact cleaning metrics, including measures of remaining blink and muscle activity, and the variance explained by experimental manipulations after cleaning. RESULTS RELAX with MWF and wICA_ICLabel showed amongst the best performance at cleaning blink and muscle artifacts while preserving neural signal. RELAX with wICA_ICLabel only may perform better at differentiating alpha oscillations between working memory conditions. CONCLUSIONS RELAX provides automated, objective and high-performing EEG cleaning, is easy to use, and freely available on GitHub. SIGNIFICANCE We recommend RELAX for data cleaning across EEG studies to reduce artifact confounds, improve outcome measurement and improve inter-study consistency.
Collapse
|
10
|
Pandria N, Athanasiou A, Styliadis C, Terzopoulos N, Mitsopoulos K, Paraskevopoulos E, Karagianni M, Pataka A, Kourtidou-Papadeli C, Makedou K, Iliadis S, Lymperaki E, Nimatoudis I, Argyropoulou-Pataka P, Bamidis PD. Does combined training of biofeedback and neurofeedback affect smoking status, behavior, and longitudinal brain plasticity? Front Behav Neurosci 2023; 17:1096122. [PMID: 36778131 PMCID: PMC9911884 DOI: 10.3389/fnbeh.2023.1096122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction: Investigations of biofeedback (BF) and neurofeedback (NF) training for nicotine addiction have been long documented to lead to positive gains in smoking status, behavior and to changes in brain activity. We aimed to: (a) evaluate a multi-visit combined BF/NF intervention as an alternative smoking cessation approach, (b) validate training-induced feedback learning, and (c) document effects on resting-state functional connectivity networks (rsFCN); considering gender and degree of nicotine dependence in a longitudinal design. Methods: We analyzed clinical, behavioral, and electrophysiological data from 17 smokers who completed five BF and 20 NF sessions and three evaluation stages. Possible neuroplastic effects were explored comparing whole-brain rsFCN by phase-lag index (PLI) for different brain rhythms. PLI connections with significant change across time were investigated according to different resting-state networks (RSNs). Results: Improvements in smoking status were observed as exhaled carbon monoxide levels, Total Oxidative Stress, and Fageström scores decreased while Vitamin E levels increased across time. BF/NF promoted gains in anxiety, self-esteem, and several aspects of cognitive performance. BF learning in temperature enhancement was observed within sessions. NF learning in theta/alpha ratio increase was achieved across baselines and within sessions. PLI network connections significantly changed across time mainly between or within visual, default mode and frontoparietal networks in theta and alpha rhythms, while beta band RSNs mostly changed significantly after BF sessions. Discussion: Combined BF/NF training positively affects the clinical and behavioral status of smokers, displays benefit in smoking harm reduction, plays a neuroprotective role, leads to learning effects and to positive reorganization of RSNs across time. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT02991781.
Collapse
Affiliation(s)
- Niki Pandria
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Alkinoos Athanasiou
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Charis Styliadis
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Nikos Terzopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Konstantinos Mitsopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Evangelos Paraskevopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Maria Karagianni
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Athanasia Pataka
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Kali Makedou
- Laboratory of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavros Iliadis
- Laboratory of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evgenia Lymperaki
- Department of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | - Ioannis Nimatoudis
- Third Department of Psychiatry, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Panagiotis D. Bamidis
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece,*Correspondence: Panagiotis D. Bamidis
| |
Collapse
|
11
|
Duleme M, Perrey S, Dray G. Stable decoding of working memory load through frequency bands. Cogn Neurosci 2023; 14:1-14. [PMID: 35083960 DOI: 10.1080/17588928.2022.2026312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Numerous studies have shown that working memory modulates every frequency band's power in the human brain. Yet, the question of how the highly distributed working memory adapts to external demands remains unresolved. Here, we explored frequency band modulations underlying working memory load, taking executive control under account. We hypothesized that synchronizations underlying various cognitive functions may be sequenced in time to avoid interference and that transient modulation of decoding accuracy of task difficulty would vary with increasing difficulty. We recorded whole scalp EEG data from 12 healthy participants, while they performed a visuo-spatial n-back task with three conditions of increasing difficulty, after an initial learning phase. We analyzed evoked spectral perturbations and time-resolved decoding of individual synchronization. Surprisingly, our results provide evidence for persistent decoding above the level-of-chance (83.17% AUC) for combined frequency bands. In fact, the decoding accuracy was higher for the combined than for isolated frequency bands (AUC from 65.93% to 74.30%). However, in line with our hypothesis, frequency band clusters transiently emerged in parieto-occipital regions within two separate time windows for alpha-/beta-band (relative synchronization from approximately 200 to 600 ms) and for the delta-/theta-band (relative desynchronization from approximately 600 to 1000 ms). Overall, these findings highlight concurrent sustained and transient measurable features of working memory load. This could reflect the emergence of stability within and between functional networks of the complex working memory system. In turn, this process allows energy savings to cope with external demands.
Collapse
Affiliation(s)
- Meyi Duleme
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| | - Stephane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| | - Gerard Dray
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| |
Collapse
|
12
|
Coleman SC, Seedat ZA, Whittaker AC, Lenartowicz A, Mullinger KJ. Beyond the Beta Rebound: Post-Task Responses in Oscillatory Activity follow Cessation of Working Memory Processes. Neuroimage 2023; 265:119801. [PMID: 36496181 PMCID: PMC11698023 DOI: 10.1016/j.neuroimage.2022.119801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Post-task responses (PTRs) are transitionary responses occurring for several seconds between the end of a stimulus/task and a period of rest. The most well-studied of these are beta band (13 - 30 Hz) PTRs in motor networks following movement, often called post-movement beta rebounds, which have been shown to differ in patients with schizophrenia and autism. Previous studies have proposed that beta PTRs reflect inhibition of task-positive networks to enable a return to resting brain activity, scaling with cognitive demand and reflecting cortical self-regulation. It is unknown whether PTRs are a phenomenon of the motor system, or whether they are a more general self-modulatory property of cortex that occur following cessation of higher cognitive processes as well as movement. To test this, we recorded magnetoencephalography (MEG) responses in 20 healthy participants to a working-memory task, known to recruit cortical networks associated with higher cognition. Our results revealed PTRs in the theta, alpha and beta bands across many regions of the brain, including the dorsal attention network (DAN) and lateral visual regions. These PTRs increased significantly (p < 0.05) in magnitude with working-memory load, an effect which is independent of oscillatory modulations occurring over the task period as well as those following individual stimuli. Furthermore, we showed that PTRs are functionally related to reaction times in left lateral visual (p < 0.05) and left parietal (p < 0.1) regions, while the oscillatory responses measured during the task period are not. Importantly, motor PTRs following button presses did not modulate with task condition, suggesting that PTRs in different networks are driven by different aspects of cognition. Our findings show that PTRs are not limited to motor networks but are widespread in regions which are recruited during the task. We provide evidence that PTRs have unique properties, scaling with cognitive load and correlating significantly with behaviour. Based on the evidence, we suggest that PTRs inhibit task-positive network activity to enable a transition to rest, however, further investigation is required to uncover their role in neuroscience and pathology.
Collapse
Affiliation(s)
- Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Zelekha A Seedat
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK; Young Epilepsy, St Pier's Lane, Dormansland, Lingfield, RH7 6PW, UK
| | - Anna C Whittaker
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Agatha Lenartowicz
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, UK.
| |
Collapse
|
13
|
Wilkinson M, Keehn RJ, Linke A, You Y, Gao Y, Alemu K, Correas A, Rosen B, Kohli J, Wagner L, Sridhar A, Marinkovic K, Müller RA. fMRI BOLD and MEG theta power reflect complementary aspects of activity during lexicosemantic decision in adolescents with ASD. NEUROIMAGE. REPORTS 2022; 2:100134. [PMID: 36438080 PMCID: PMC9683354 DOI: 10.1016/j.ynirp.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuroimaging studies of autism spectrum disorder (ASD) have been predominantly unimodal. While many fMRI studies have reported atypical activity patterns for diverse tasks, the MEG literature in ASD remains comparatively small. Our group recently reported atypically increased event-related theta power in individuals with ASD during lexicosemantic processing. The current multimodal study examined the relationship between fMRI BOLD signal and anatomically-constrained MEG (aMEG) theta power. Thirty-three adolescents with ASD and 23 typically developing (TD) peers took part in both fMRI and MEG scans, during which they distinguished between standard words (SW), animal words (AW), and pseudowords (PW). Regions-of-interest (ROIs) were derived based on task effects detected in BOLD signal and aMEG theta power. BOLD signal and theta power were extracted for each ROI and word condition. Compared to TD participants, increased theta power in the ASD group was found across several time windows and regions including left fusiform and inferior frontal, as well as right angular and anterior cingulate gyri, whereas BOLD signal was significantly increased in the ASD group only in right anterior cingulate gyrus. No significant correlations were observed between BOLD signal and theta power. Findings suggest that the common interpretation of increases in BOLD signal and theta power as 'activation' require careful differentiation, as these reflect largely distinct aspects of regional brain activity. Some group differences in dynamic neural processing detected with aMEG that are likely relevant for lexical processing may be obscured by the hemodynamic signal source and low temporal resolution of fMRI.
Collapse
Affiliation(s)
- M. Wilkinson
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - R.J. Jao Keehn
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - A.C. Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Y. You
- Spatiotemporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Y. Gao
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - K. Alemu
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - A. Correas
- Spatiotemporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - B.Q. Rosen
- Spatiotemporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - J.S. Kohli
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - L. Wagner
- Spatiotemporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - A. Sridhar
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - K. Marinkovic
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
- Spatiotemporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
- Radiology Department, University of California at San Diego, CA, United States
| | - R.-A. Müller
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
14
|
Plaska CR, Ortega J, Gomes BA, Ellmore TM. Interhemispheric Connectivity Supports Load-Dependent Working Memory Maintenance for Complex Visual Stimuli. Brain Connect 2022; 12:892-904. [PMID: 35473394 PMCID: PMC9807256 DOI: 10.1089/brain.2021.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract Introduction: One manipulation used to study the neural basis of working memory (WM) is to vary the information load at encoding, then measure activity and connectivity during maintenance in the delay period. A hallmark finding is increased delay activity and connectivity between frontoparietal brain regions with increased load. Most WM studies, however, employ simple stimuli during encoding and unfilled intervals during the delay. In this study, we asked how delay period activity and connectivity change during low and high load maintenance of complex stimuli. Methods: Twenty-two participants completed a modified Sternberg WM task with two or five naturalistic scenes as stimuli during scalp electroencephalography (EEG). On each trial, the delay was filled with phase-scrambled scenes to provide a visual perceptual control with similar color and spatial frequency as presented during encoding. Functional connectivity during the delay was assessed by the phase-locking value (PLV). Results: Results showed reduced theta/alpha delay activity amplitude during high compared with low WM load across frontal, central, and parietal sources. A network with higher connectivity during low load consisted of increased PLV between (1) left frontal and right posterior temporal sources in the theta/alpha bands, (2) right anterior temporal and left central sources in the alpha and lower beta bands, and (3) left anterior temporal and posterior temporal sources in the theta, alpha, and lower beta bands. Discussion: The findings suggest a role for interhemispheric connectivity during WM maintenance of complex stimuli with load modulation when limited attentional resources are essential for filtering. Impact statement The patterns of brain connectivity subserving working memory (WM) have largely been investigated to date using simple stimuli, including letters, digits, and shapes and during unfilled WM delay intervals. Fewer studies describe functional connectivity changes during the maintenance of more naturalistic stimuli in the presence of distractors. In the present study, we employed a scene-based WM task during electroencephalography in healthy humans and found that during low-load WM maintenance with distractors increased interhemispheric connectivity in frontotemporal networks. These findings suggest a role for increased interhemispheric connectivity during maintenance of complex stimuli when attentional resources are essential for filtering.
Collapse
Affiliation(s)
- Chelsea Reichert Plaska
- The Behavioral and Cognitive Neuroscience Program, CUNY Graduate Center, New York, New York, USA.,Department of Psychology, The City College of New York, New York, New York, USA
| | - Jefferson Ortega
- The Behavioral and Cognitive Neuroscience Program, CUNY Graduate Center, New York, New York, USA
| | | | - Timothy M. Ellmore
- The Behavioral and Cognitive Neuroscience Program, CUNY Graduate Center, New York, New York, USA.,Department of Psychology, The City College of New York, New York, New York, USA.,Address correspondence to: Timothy M. Ellmore, Department of Psychology, The City College of New York, North Academic Center, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
15
|
Hsu YF, Hämäläinen JA. Load-dependent alpha suppression is related to working memory capacity for numbers. Brain Res 2022; 1791:147994. [DOI: 10.1016/j.brainres.2022.147994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/13/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
16
|
Classification for Memory Activities: Experiments and EEG Analysis Based on Networks Constructed via Phase-Locking Value. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3878771. [PMID: 35799656 PMCID: PMC9256324 DOI: 10.1155/2022/3878771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/12/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022]
Abstract
Electroencephalogram (EEG) plays a crucial role in the study of working memory, which involves the complex coordination of brain regions. In this research, we designed and conducted series of experiments of memory with various memory loads or target forms and collected behavioral data as well as 32-lead EEG simultaneously. Combined with behavioral data analysis, we segmented EEG into slices; then, we calculated phase-locking value (PLV) of Gamma rhythms between every two leads, conducted binarization, constructed brain function network, and extracted three network characteristics of node degree, local clustering coefficient, and betweenness centrality. Finally, we inputted these network characteristics of all leads into support vector machines (SVM) for classification and obtained decent performances; i.e., all classification accuracies are greater than 0.78 on an independent test set. Particularly, PLV application was restricted to the narrow-band signals, and rare successful application to EEG Gamma rhythm, defined as wide as 30-100 Hz, had been reported. In order to address this limitation, we adopted simulation on band-pass filtered noise with the same frequency band as Gamma to help determine the PLV binarizing threshold. It turns out that network characteristics based on binarized PLV have the ability to distinguish the presence or absence of memory, as well as the intensity of the mental workload at the moment of memory. This work sheds a light upon phase-locking investigation between relatively wide-band signals, as well as memory research via EEG.
Collapse
|
17
|
Mindfulness-Enhanced Computerized Cognitive Training for Depression: An Integrative Review and Proposed Model Targeting the Cognitive Control and Default-Mode Networks. Brain Sci 2022; 12:brainsci12050663. [PMID: 35625049 PMCID: PMC9140161 DOI: 10.3390/brainsci12050663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Depression is often associated with co-occurring neurocognitive deficits in executive function (EF), processing speed (PS) and emotion regulation (ER), which impact treatment response. Cognitive training targeting these capacities results in improved cognitive function and mood, demonstrating the relationship between cognition and affect, and shedding light on novel targets for cognitive-focused interventions. Computerized cognitive training (CCT) is one such new intervention, with evidence suggesting it may be effective as an adjunct treatment for depression. Parallel research suggests that mindfulness training improves depression via enhanced ER and augmentation of self-referential processes. CCT and mindfulness training both act on anti-correlated neural networks involved in EF and ER that are often dysregulated in depression—the cognitive control network (CCN) and default-mode network (DMN). After practicing CCT or mindfulness, downregulation of DMN activity and upregulation of CCN activity have been observed, associated with improvements in depression and cognition. As CCT is posited to improve depression via enhanced cognitive function and mindfulness via enhanced ER ability, the combination of both forms of training into mindfulness-enhanced CCT (MCCT) may act to improve depression more rapidly. MCCT is a biologically plausible adjunct intervention and theoretical model with the potential to further elucidate and target the causal mechanisms implicated in depressive symptomatology. As the combination of CCT and mindfulness has not yet been fully explored, this is an intriguing new frontier. The aims of this integrative review article are four-fold: (1) to briefly review the current evidence supporting the efficacy of CCT and mindfulness in improving depression; (2) to discuss the interrelated neural networks involved in depression, CCT and mindfulness; (3) to present a theoretical model demonstrating how MCCT may act to target these neural mechanisms; (4) to propose and discuss future directions for MCCT research for depression.
Collapse
|
18
|
Chikhi S, Matton N, Blanchet S. EEG
power spectral measures of cognitive workload: A meta‐analysis. Psychophysiology 2022; 59:e14009. [DOI: 10.1111/psyp.14009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Samy Chikhi
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab, URP 7536), Institute of Psychology University of Paris Boulogne‐Billancourt France
| | - Nadine Matton
- CLLE‐LTC University of Toulouse, CNRS (UMR5263) Toulouse France
- ENAC Research Lab École Nationale d’Aviation Civile Toulouse France
| | - Sophie Blanchet
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab, URP 7536), Institute of Psychology University of Paris Boulogne‐Billancourt France
| |
Collapse
|
19
|
OUP accepted manuscript. Cereb Cortex 2022; 32:4156-4171. [DOI: 10.1093/cercor/bhab472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/14/2022] Open
|
20
|
Strijbosch W, Vessel EA, Welke D, Mitas O, Gelissen J, Bastiaansen M. On the Neuronal Dynamics of Aesthetic Experience: Evidence from Electroencephalographic Oscillatory Dynamics. J Cogn Neurosci 2021; 34:461-479. [PMID: 35015884 DOI: 10.1162/jocn_a_01812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aesthetic experiences have an influence on many aspects of life. Interest in the neural basis of aesthetic experiences has grown rapidly in the past decade, and fMRI studies have identified several brain systems supporting aesthetic experiences. Work on the rapid neuronal dynamics of aesthetic experience, however, is relatively scarce. This study adds to this field by investigating the experience of being aesthetically moved by means of ERP and time-frequency analysis. Participants' electroencephalography (EEG) was recorded while they viewed a diverse set of artworks and evaluated the extent to which these artworks moved them. Results show that being aesthetically moved is associated with a sustained increase in gamma activity over centroparietal regions. In addition, alpha power over right frontocentral regions was reduced in high- and low-moving images, compared to artworks given intermediate ratings. We interpret the gamma effect as an indication for sustained savoring processes for aesthetically moving artworks compared to aesthetically less-moving artworks. The alpha effect is interpreted as an indication of increased attention for aesthetically salient images. In contrast to previous works, we observed no significant effects in any of the established ERP components, but we did observe effects at latencies longer than 1 sec. We conclude that EEG time-frequency analysis provides useful information on the neuronal dynamics of aesthetic experience.
Collapse
Affiliation(s)
| | - Edward A Vessel
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Dominik Welke
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Ondrej Mitas
- Breda University of Applied Sciences, The Netherlands
| | - John Gelissen
- Breda University of Applied Sciences, The Netherlands.,Tilburg University, The Netherlands
| | - Marcel Bastiaansen
- Breda University of Applied Sciences, The Netherlands.,Tilburg University, The Netherlands
| |
Collapse
|
21
|
Effects of Ketamine and Midazolam on Simultaneous EEG/fMRI Data During Working Memory Processes. Brain Topogr 2021; 34:863-880. [PMID: 34642836 DOI: 10.1007/s10548-021-00876-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/20/2021] [Indexed: 10/20/2022]
Abstract
Reliable measures of cognitive brain activity from functional neuroimaging techniques may provide early indications of efficacy in clinical trials. Functional magnetic resonance imaging and electroencephalography provide complementary spatiotemporal information and simultaneous recording of these two modalities can remove inter-session drug response and environment variability. We sought to assess the effects of ketamine and midazolam on simultaneous electrophysiological and hemodynamic recordings during working memory (WM) processes. Thirty participants were included in a placebo-controlled, three-way crossover design with ketamine and midazolam. Compared to placebo, ketamine administration attenuated theta power increases and alpha power decreases and midazolam attenuated low beta band decreases to increasing WM load. Additionally, ketamine caused larger blood-oxygen-dependent (BOLD) signal increases in the supplementary motor area and angular gyrus, and weaker deactivations of the default mode network (DMN), whereas no difference was found between midazolam and placebo. Ketamine administration caused positive temporal correlations between frontal-midline theta (fm-theta) power and the BOLD signal to disappear and attenuated negative correlations. However, the relationship between fm-theta and the BOLD signal from DMN areas was maintained in some participants during ketamine administration, as increasing theta strength was associated with stronger BOLD signal reductions in these areas. The presence of, and ability to manipulate, both positive and negative associations between the BOLD signal and fm-theta suggest the presence of multiple fm-theta components involved in WM processes, with ketamine administration disrupting one or more of these theta-linked WM strategies.
Collapse
|
22
|
Tseng YH, Tamura K, Okamoto T. Neurofeedback training improves episodic and semantic long-term memory performance. Sci Rep 2021; 11:17274. [PMID: 34446791 PMCID: PMC8390655 DOI: 10.1038/s41598-021-96726-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding and improving memory are vital to enhance human life. Theta rhythm is associated with memory consolidation and coding, but the trainability and effects on long-term memory of theta rhythm are unknown. This study investigated the ability to improve long-term memory using a neurofeedback (NFB) technique reflecting the theta/low-beta power ratio on an electroencephalogram (EEG). Our study consisted of three stages. First, the long-term memory of participants was measured. In the second stage, the participants in the NFB group received 3 days of theta/low-beta NFB training. In the third stage, the long-term memory was measured again. The NFB group had better episodic and semantic long-term memory than the control group and significant differences in brain activity between episodic and semantic memory during the recall tests were revealed. These findings suggest that it is possible to improve episodic and semantic long-term memory abilities through theta/low-beta NFB training.
Collapse
Affiliation(s)
- Yu-Hsuan Tseng
- grid.177174.30000 0001 2242 4849Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka Japan
| | - Kaori Tamura
- grid.418051.90000 0000 8774 3245Faculty of Information Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka Japan
| | - Tsuyoshi Okamoto
- grid.177174.30000 0001 2242 4849Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka Japan ,grid.177174.30000 0001 2242 4849Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka Japan
| |
Collapse
|
23
|
Thompson L, Khuc J, Saccani MS, Zokaei N, Cappelletti M. Gamma oscillations modulate working memory recall precision. Exp Brain Res 2021; 239:2711-2724. [PMID: 34223958 PMCID: PMC8448714 DOI: 10.1007/s00221-021-06051-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Working memory (WM)—the ability to keep information in mind for short periods of time—is linked to attention and inhibitory abilities, i.e., the capacity to ignore task-irrelevant information. These abilities have been associated with brain oscillations, especially parietal gamma and alpha bands, but it is yet unknown whether these oscillations also modulate attention and inhibitory abilities. To test this, we compared parietal gamma-transcranial alternating current stimulation (tACS) to alpha-tACS and to a non-stimulation condition (Sham) in 51 young participants. Stimulation was coupled with a WM task probing memory-based attention and inhibitory abilities by means of probabilistic retrospective cues, including informative (valid), uninformative (invalid) and neutral. Our results show that relative to alpha and sham stimulation, parietal gamma-tACS significantly increased working memory recall precision. Additional post hoc analyses also revealed strong individual variability before and following stimulation; low-baseline performers showed no significant changes in performance following both gamma and alpha-tACS relative to sham. In contrast, in high-baseline performers gamma- (but not alpha) tACS selectively and significantly improved misbinding-feature errors as well as memory precision, particularly in uninformative (invalid) cues which rely more strongly on attentional abilities. We concluded that parietal gamma oscillations, therefore, modulate working memory recall processes, although baseline performance may further influence the effect of stimulation.
Collapse
Affiliation(s)
- Lyall Thompson
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Janine Khuc
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Maria Silvia Saccani
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Nahid Zokaei
- Department of Experimental Psychology, South Parks Road, Oxford, OX1 3UD, UK.,Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
| | - Marinella Cappelletti
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK. .,Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK.
| |
Collapse
|
24
|
Lo M, Lin YX, Li YJ. Cognitive Workload in an Auditory Digit Span Task When Memory Span Is in the Neighborhood of Seven Items. J PSYCHOPHYSIOL 2021. [DOI: 10.1027/0269-8803/a000282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Task performance of digit span has been widely used in the research on human short-term memory. The present study was conducted to show that the dynamic change of underlying mental effort can be further estimated by measuring the strength of theta oscillations at a forehead site on the scalp. Fourteen healthy adults ( Mage = 26.1 years) performed a passive listening (PL) task and an auditory digit span (DS) task, and electroencephalography (EEG) data were recorded simultaneously during the two tasks. Considering that the digit span paradigm has often been conducted in a non-laboratory location, the EEG data were collected with a wireless single-channel headset system. The headset system was validated in this study by replicating the EEG (an enhancement of frontal theta power) as well as event-related potential (N200 and P300) responses to the deviant tone stimuli in the PL task. The outcomes of the DS task showed that the memory span of the participants was at least eight items. Moreover, frontal theta power in response to a list of six to eight digits increased significantly. This pattern of results supports a hypothesis that additional mental effort is required for short-term retention of verbal items when the number of stimulus items exceeds the newly proposed limit of short-term memory capacity. Some strengths and limitations of the current EEG headset system are also discussed.
Collapse
Affiliation(s)
- Ming Lo
- Speech and Hearing Science Research Institute, Children’s Hearing Foundation, Taipei, Taiwan
| | - Yi-Xiu Lin
- Speech and Hearing Science Research Institute, Children’s Hearing Foundation, Taipei, Taiwan
| | - Yi-Jui Li
- Speech and Hearing Science Research Institute, Children’s Hearing Foundation, Taipei, Taiwan
| |
Collapse
|
25
|
Pavlov YG, Kotchoubey B. Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology 2020; 59:e13735. [PMID: 33278030 DOI: 10.1111/psyp.13735] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Brain oscillations likely play a significant role in the storage of information in working memory (WM). Despite the wide popularity of the topic, current attempts to summarize the research in the field are narrative reviews. We address this gap by providing a descriptive systematic review, in which we investigated oscillatory correlates of maintenance of verbal and visual information in WM. The systematic approach enabled us to challenge some common views popularized by previous research. The identified literature (100 EEG/MEG studies) highlighted the importance of theta oscillations in verbal WM: frontal midline theta enhanced with load in most verbal studies, while more equivocal results have been obtained in visual studies. Increasing WM load affected alpha activity in most studies, but the direction of the effect was inconsistent: the ratio of studies that found alpha increase versus decrease with increasing load was 80/20% in the verbal WM domain and close to 60/40% in the visual domain. Alpha asymmetry (left < right) was a common finding in both verbal and visual WM studies. Beta and gamma activity studies yielded the least convincing data: a diversity in the spatial and frequency distribution of beta activity prevented us from making a coherent conclusion; gamma rhythm was virtually neglected in verbal WM studies with no systematic support for sustained gamma changes during the delay in EEG studies in general.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Puszta A, Pertich Á, Giricz Z, Nyujtó D, Bodosi B, Eördegh G, Nagy A. Predicting Stimulus Modality and Working Memory Load During Visual- and Audiovisual-Acquired Equivalence Learning. Front Hum Neurosci 2020; 14:569142. [PMID: 33132883 PMCID: PMC7578848 DOI: 10.3389/fnhum.2020.569142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Scholars have extensively studied the electroencephalography (EEG) correlates of associative working memory (WM) load. However, the effect of stimulus modality on EEG patterns within this process is less understood. To fill this research gap, the present study re-analyzed EEG datasets recorded during visual and audiovisual equivalence learning tasks from earlier studies. The number of associations required to be maintained (WM load) in WM was increased using the staircase method during the acquisition phase of the tasks. The support vector machine algorithm was employed to predict WM load and stimulus modality using the power, phase connectivity, and cross-frequency coupling (CFC) values obtained during time segments with different WM loads in the visual and audiovisual tasks. A high accuracy (>90%) in predicting stimulus modality based on power spectral density and from the theta-beta CFC was observed. However, accuracy in predicting WM load was higher (≥75% accuracy) than that in predicting stimulus modality (which was at chance level) using theta and alpha phase connectivity. Under low WM load conditions, this connectivity was highest between the frontal and parieto-occipital channels. The results validated our findings from earlier studies that dissociated stimulus modality based on power-spectra and CFC during equivalence learning. Furthermore, the results emphasized the importance of alpha and theta frontoparietal connectivity in WM load.
Collapse
Affiliation(s)
- András Puszta
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway.,Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway.,Department of Physiology, University of Szeged, Szeged, Hungary
| | - Ákos Pertich
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Zsófia Giricz
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Diána Nyujtó
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Balázs Bodosi
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Gabriella Eördegh
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Attila Nagy
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| |
Collapse
|
27
|
Martins E Silva DC, Marinho V, Teixeira S, Teles G, Marques J, Escórcio A, Fernandes T, Freitas AC, Nunes M, Ayres M, Ayres C, Marques JB, Cagy M, Gupta DS, Bastos VH. Non-immersive 3D virtual stimulus alter the time production task performance and increase the EEG theta power in dorsolateral prefrontal cortex. Int J Neurosci 2020; 132:563-573. [PMID: 32962509 DOI: 10.1080/00207454.2020.1826945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM The study investigated the cortical activity changes and time production task performance induced by changes in motion speed of a non-immersive 3D virtual stimulus. MATERIAL AND METHODS Twenty-one individuals were participated in the crossover study with the visual-time reproduction task under three-speed conditions: original, slow and fast virtual stimulus. In addition, the electroencephalographic analysis of the theta band power in the dorsolateral prefrontal cortex was done simultaneously with time production task execution. RESULTS The results demonstrated that in the slow speed condition, there is an increase in the error in the time production task after virtual reality (p < 0.05). There is also increased EEG theta power in the right dorsolateral prefrontal cortex in all speed conditions (p < 0.05). CONCLUSIONS We propose that the modulations of speed of virtual stimulus may underlie the accumulation of temporal pulses, which could be responsible for changes in the performance of the production task of the time intervals and a substantial increase in right dorsolateral prefrontal cortex activity related to attention and memory, acting in cognitive domains of supraseconds.
Collapse
Affiliation(s)
| | - Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Gabriela Teles
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - João Marques
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Anderson Escórcio
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Thayaná Fernandes
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Ana Cláudia Freitas
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Monara Nunes
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Marcos Ayres
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Carla Ayres
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Juliana Bittencourt Marques
- Laboratory of Neurophysiology and Neuropsychology of Attention, Veiga de Almeida University, Cabo Frio, Brazil
| | - Maurício Cagy
- Masters and PhD Program in Biomedical Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daya S Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Victor Hugo Bastos
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
28
|
Joint-IVA for identification of discriminating features in EEG: Application to a driving study. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Archer K, Pammer K, Vidyasagar TR. A Temporal Sampling Basis for Visual Processing in Developmental Dyslexia. Front Hum Neurosci 2020; 14:213. [PMID: 32733217 PMCID: PMC7360833 DOI: 10.3389/fnhum.2020.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 11/24/2022] Open
Abstract
Knowledge of oscillatory entrainment and its fundamental role in cognitive and behavioral processing has increasingly been applied to research in the field of reading and developmental dyslexia. Growing evidence indicates that oscillatory entrainment to theta frequency spoken language in the auditory domain, along with cross-frequency theta-gamma coupling, support phonological processing (i.e., cognitive encoding of linguistic knowledge gathered from speech) which is required for reading. This theory is called the temporal sampling framework (TSF) and can extend to developmental dyslexia, such that inadequate temporal sampling of speech-sounds in people with dyslexia results in poor theta oscillatory entrainment in the auditory domain, and thus a phonological processing deficit which hinders reading ability. We suggest that inadequate theta oscillations in the visual domain might account for the many magno-dorsal processing, oculomotor control and visual deficits seen in developmental dyslexia. We propose two possible models of a magno-dorsal visual correlate to the auditory TSF: (1) A direct correlate that involves "bottom-up" magnocellular oscillatory entrainment of the visual domain that occurs when magnocellular populations phase lock to theta frequency fixations during reading and (2) an inverse correlate whereby attending to text triggers "top-down" low gamma signals from higher-order visual processing areas, thereby organizing magnocellular populations to synchronize to a theta frequency to drive the temporal control of oculomotor movements and capturing of letter images at a higher frequency.
Collapse
Affiliation(s)
- Kim Archer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Kristen Pammer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Trichur Raman Vidyasagar
- Visual and Cognitive Neuroscience Laboratory, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
30
|
Arif Y, Spooner RK, Wiesman AI, Embury CM, Proskovec AL, Wilson TW. Modulation of attention networks serving reorientation in healthy aging. Aging (Albany NY) 2020; 12:12582-12597. [PMID: 32584264 PMCID: PMC7377885 DOI: 10.18632/aging.103515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022]
Abstract
Orienting attention to behaviorally relevant stimuli is essential for everyday functioning and mainly involves activity in the dorsal and ventral frontoparietal networks. Many studies have shown declines in the speed and accuracy of attentional reallocation with advancing age, but the underlying neural dynamics remain less understood. We investigated this age-related decline using magnetoencephalography (MEG) and a Posner task in 94 healthy adults (22-72 years old). MEG data were examined in the time-frequency domain, and significant oscillatory responses were imaged using a beamformer. We found that participants responded slower when attention reallocation was needed (i.e., the validity effect) and that this effect was positively correlated with age. We also found age-related validity effects on alpha activity in the left parietal and beta in the left frontal-eye fields from 350-950 ms. Overall, stronger alpha and beta responses were observed in younger participants during attention reallocation trials, but this pattern was reversed in the older participants. Interestingly, this alpha validity effect fully mediated the relationship between age and behavioral performance. In conclusion, older adults were slower in reorienting attention and exhibited age-related alterations in alpha and beta responses within parietal and frontal regions, which may reflect increased task demands depleting their compensatory resources.
Collapse
Affiliation(s)
- Yasra Arif
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christine M Embury
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Psychology, University of Nebraska, Omaha, NE 68198, USA
| | - Amy L Proskovec
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Psychology, University of Nebraska, Omaha, NE 68198, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Psychology, University of Nebraska, Omaha, NE 68198, USA
| |
Collapse
|
31
|
Gredin NV, Broadbent DP, Findon JL, Williams AM, Bishop DT. The impact of task load on the integration of explicit contextual priors and visual information during anticipation. Psychophysiology 2020; 57:e13578. [DOI: 10.1111/psyp.13578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/26/2020] [Accepted: 03/10/2020] [Indexed: 11/28/2022]
Affiliation(s)
- N. Viktor Gredin
- Division of Sport, Health and Exercise Sciences Department of Life Sciences Brunel University London London United Kingdom
| | - David P. Broadbent
- Division of Sport, Health and Exercise Sciences Department of Life Sciences Brunel University London London United Kingdom
- Centre for Cognitive Neuroscience College of Health and Life Sciences Brunel University London London United Kingdom
| | - James L. Findon
- Department of Psychology Institute of Psychology, Psychiatry and Neuroscience Kings College London London United Kingdom
| | - A. Mark Williams
- Department of Health, Kinesiology, and Recreation University of Utah Salt Lake City UT USA
| | - Daniel T. Bishop
- Division of Sport, Health and Exercise Sciences Department of Life Sciences Brunel University London London United Kingdom
- Centre for Cognitive Neuroscience College of Health and Life Sciences Brunel University London London United Kingdom
| |
Collapse
|
32
|
Distinct Oscillatory Dynamics Underlie Different Components of Hierarchical Cognitive Control. J Neurosci 2020; 40:4945-4953. [PMID: 32430297 DOI: 10.1523/jneurosci.0617-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/04/2023] Open
Abstract
Hierarchical cognitive control enables us to execute actions guided by abstract goals. Previous research has suggested that neuronal oscillations at different frequency bands are associated with top-down cognitive control; however, whether distinct neural oscillations have similar or different functions for cognitive control is not well understood. The aim of the current study was to investigate the oscillatory neuronal mechanisms underlying two distinct components of hierarchical cognitive control: the level of abstraction of a rule, and the number of rules that must be maintained (set-size). We collected EEG data in 31 men and women who performed a hierarchical cognitive control task that varied in levels of abstraction and set-size. Results from time-frequency analysis in frontal electrodes showed an increase in theta amplitude for increased set-size, whereas an increase in δ was associated with increased abstraction. Both theta and δ amplitude correlated with behavioral performance in the tasks but in an opposite manner: theta correlated with response time slowing when the number of rules increased, whereas δ correlated with response time when rules became more abstract. Phase-amplitude coupling analysis revealed that δ phase-coupled with β amplitude during conditions with a higher level of abstraction, whereby beta band may potentially represent motor output that was guided by the δ phase. These results suggest that distinct neural oscillatory mechanisms underlie different components of hierarchical cognitive control.SIGNIFICANCE STATEMENT Cognitive control allows us to perform immediate actions while maintaining more abstract, overarching goals in mind and to choose between competing actions. We found distinct oscillatory signatures that correspond to two different components of hierarchical control: the level of abstraction of a rule and the number of rules in competition. An increase in the level of abstraction was associated with δ oscillations, whereas theta oscillations were observed when the number of rules increased. Oscillatory amplitude correlated with behavioral performance in the task. Finally, the expression of β amplitude was coordinated via the phase of δ oscillations, and theta phase-coupled with γ amplitude. These results suggest that distinct neural oscillatory mechanisms underlie different components of hierarchical cognitive control.
Collapse
|
33
|
Chen JCC, Forsyth A, Dubowitz DJ, Muthukumaraswamy SD. On the Quality, Statistical Efficiency, and Safety of Simultaneously Recorded Multiband fMRI/EEG. Brain Topogr 2020; 33:303-316. [PMID: 32144628 DOI: 10.1007/s10548-020-00761-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/24/2020] [Indexed: 01/19/2023]
Abstract
The recent development of multiband functional magnetic resonance imaging (MB-fMRI) allows for the reduction of sampling period by simultaneously exciting multiple slices-the number of which is referred to as the multiband factor. Simultaneously recorded electroencephalography (EEG)/MB-fMRI has yet to be validated for data quality against conventional single band (SB)-fMRI. Pilot scans were conducted on phantoms twice and on a healthy volunteer to ensure no heating effects. In the main study, two thermometer probes were attached to 16 healthy individuals (ages 20-39, 9 females) whilst they completed two sets of 16-min resting-state and two sets of 9-min n-back task scans-each set consisting of one MB4 and one SB pulse sequence. No heating effects were reported and thermometer data showed mean increases of < 1.0 °C. Minimal differences between the two scan types were found in EEG channel variance and spectra. Expected decreases in MB4-fMRI tSNR were observed. In n-back task scans, little to no differences were detected in both EEG source analyses and fMRI local analyses for mixed effects. Resting-state posterior cingulate cortex seed-based analyses of the default mode network along with EEG-informed fMRI analysis of the occipital alpha anticorrelation effect showed improved statistical and spatial sensitivity at lower scan durations. Using EEG/MB4-fMRI for n-back tasks provided no statistical advantages nor disadvantages. However, for studying the resting-state, MB4-fMRI potentially allows for reduced scanning durations for equivalent statistical significance to be obtained or alternatively, larger effect sizes for the same scanning duration. As such, simultaneous EEG/MB4-fMRI is a viable alternative to EEG/SB-fMRI.
Collapse
Affiliation(s)
- Joseph C C Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - David J Dubowitz
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
34
|
Côté-Allard U, Campbell E, Phinyomark A, Laviolette F, Gosselin B, Scheme E. Interpreting Deep Learning Features for Myoelectric Control: A Comparison With Handcrafted Features. Front Bioeng Biotechnol 2020; 8:158. [PMID: 32195238 PMCID: PMC7063031 DOI: 10.3389/fbioe.2020.00158] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/17/2020] [Indexed: 01/10/2023] Open
Abstract
Existing research on myoelectric control systems primarily focuses on extracting discriminative characteristics of the electromyographic (EMG) signal by designing handcrafted features. Recently, however, deep learning techniques have been applied to the challenging task of EMG-based gesture recognition. The adoption of these techniques slowly shifts the focus from feature engineering to feature learning. Nevertheless, the black-box nature of deep learning makes it hard to understand the type of information learned by the network and how it relates to handcrafted features. Additionally, due to the high variability in EMG recordings between participants, deep features tend to generalize poorly across subjects using standard training methods. Consequently, this work introduces a new multi-domain learning algorithm, named ADANN (Adaptive Domain Adversarial Neural Network), which significantly enhances (p = 0.00004) inter-subject classification accuracy by an average of 19.40% compared to standard training. Using ADANN-generated features, this work provides the first topological data analysis of EMG-based gesture recognition for the characterization of the information encoded within a deep network, using handcrafted features as landmarks. This analysis reveals that handcrafted features and the learned features (in the earlier layers) both try to discriminate between all gestures, but do not encode the same information to do so. In the later layers, the learned features are inclined to instead adopt a one-vs.-all strategy for a given class. Furthermore, by using convolutional network visualization techniques, it is revealed that learned features actually tend to ignore the most activated channel during contraction, which is in stark contrast with the prevalence of handcrafted features designed to capture amplitude information. Overall, this work paves the way for hybrid feature sets by providing a clear guideline of complementary information encoded within learned and handcrafted features.
Collapse
Affiliation(s)
- Ulysse Côté-Allard
- Department of Computer and Electrical Engineering, Université Laval, Quebec, QC, Canada
| | - Evan Campbell
- Department of Electrical and Computer Engineering, Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
| | - Angkoon Phinyomark
- Department of Electrical and Computer Engineering, Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
| | - François Laviolette
- Department of Computer Science and Software Engineering, Université Laval, Quebec, QC, Canada
| | - Benoit Gosselin
- Department of Computer and Electrical Engineering, Université Laval, Quebec, QC, Canada
| | - Erik Scheme
- Department of Electrical and Computer Engineering, Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
35
|
Yurgil KA, Velasquez MA, Winston JL, Reichman NB, Colombo PJ. Music Training, Working Memory, and Neural Oscillations: A Review. Front Psychol 2020; 11:266. [PMID: 32153474 PMCID: PMC7047970 DOI: 10.3389/fpsyg.2020.00266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
This review focuses on reports that link music training to working memory and neural oscillations. Music training is increasingly associated with improvement in working memory, which is strongly related to both localized and distributed patterns of neural oscillations. Importantly, there is a small but growing number of reports of relationships between music training, working memory, and neural oscillations in adults. Taken together, these studies make important contributions to our understanding of the neural mechanisms that support effects of music training on behavioral measures of executive functions. In addition, they reveal gaps in our knowledge that hold promise for further investigation. The current review is divided into the main sections that follow: (1) discussion of behavioral measures of working memory, and effects of music training on working memory in adults; (2) relationships between music training and neural oscillations during temporal stages of working memory; (3) relationships between music training and working memory in children; (4) relationships between music training and working memory in older adults; and (5) effects of entrainment of neural oscillations on cognitive processing. We conclude that the study of neural oscillations is proving useful in elucidating the neural mechanisms of relationships between music training and the temporal stages of working memory. Moreover, a lifespan approach to these studies will likely reveal strategies to improve and maintain executive function during development and aging.
Collapse
Affiliation(s)
- Kate A. Yurgil
- Department of Psychological Sciences, Loyola University, New Orleans, LA, United States
| | | | - Jenna L. Winston
- Department of Psychology, Tulane University, New Orleans, LA, United States
| | - Noah B. Reichman
- Brain Institute, Tulane University, New Orleans, LA, United States
| | - Paul J. Colombo
- Department of Psychology, Tulane University, New Orleans, LA, United States
- Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
36
|
Alpha Rhythms Reveal When and Where Item and Associative Memories Are Retrieved. J Neurosci 2020; 40:2510-2518. [PMID: 32034067 PMCID: PMC7083536 DOI: 10.1523/jneurosci.1982-19.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 11/21/2022] Open
Abstract
Memories for past experiences can range from vague recognition to full-blown recall of associated details. Electroencephalography has shown that recall signals unfold a few hundred milliseconds after simple recognition, but has only provided limited insights into the underlying brain networks. Functional magnetic resonance imaging (fMRI) has revealed a “core recollection network” (CRN) centered on posterior parietal and medial temporal lobe regions, but the temporal dynamics of these regions during retrieval remain largely unknown. Here we used Magnetoencephalography in a memory paradigm assessing correct rejection (CR) of lures, item recognition (IR) and associative recall (AR) in human participants of both sexes. We found that power decreases in the alpha frequency band (10–12 Hz) systematically track different mnemonic outcomes in both time and space: Over left posterior sensors, alpha power decreased in a stepwise fashion from 500 ms onward, first from CR to IR and then from IR to AR. When projecting alpha power into source space, the CRN known from fMRI studies emerged, including posterior parietal cortex (PPC) and hippocampus. While PPC showed a monotonic change across conditions, hippocampal effects were specific to recall. These region-specific effects were corroborated by a separate fMRI dataset. Importantly, alpha power time courses revealed a temporal dissociation between item and associative memory in hippocampus and PPC, with earlier AR effects in hippocampus. Our data thus link engagement of the CRN to the temporal dynamics of episodic memory and highlight the role of alpha rhythms in revealing when and where different types of memories are retrieved. SIGNIFICANCE STATEMENT Our ability to remember ranges from the vague feeling of familiarity to vivid recollection of associated details. Scientific understanding of episodic memory thus far relied upon separate lines of research focusing on either temporal (via electroencephalography) or spatial (via functional magnetic resonance imaging) dimensions. However, both techniques have limitations that have hindered understanding of when and where memories are retrieved. Capitalizing on the enhanced temporal and spatial resolution of magnetoencephalography, we show that changes in alpha power reveal both when and where different types of memory are retrieved. Having access to the temporal and spatial characteristics of successful retrieval provided new insights into the cross-regional dynamics in the hippocampus and parietal cortex.
Collapse
|
37
|
Valentin S, Harkotte M, Popov T. Interpreting neural decoding models using grouped model reliance. PLoS Comput Biol 2020; 16:e1007148. [PMID: 31905373 PMCID: PMC6964974 DOI: 10.1371/journal.pcbi.1007148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 01/16/2020] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Machine learning algorithms are becoming increasingly popular for decoding psychological constructs based on neural data. However, as a step towards bridging the gap between theory-driven cognitive neuroscience and data-driven decoding approaches, there is a need for methods that allow to interpret trained decoding models. The present study demonstrates grouped model reliance as a model-agnostic permutation-based approach to this problem. Grouped model reliance indicates the extent to which a trained model relies on conceptually related groups of variables, such as frequency bands or regions of interest in electroencephalographic (EEG) data. As a case study to demonstrate the method, random forest and support vector machine models were trained on within-participant single-trial EEG data from a Sternberg working memory task. Participants were asked to memorize a sequence of digits (0-9), varying randomly in length between one, four and seven digits, where EEG recordings for working memory load estimation were taken from a 3-second retention interval. The present results confirm previous findings insofar as both random forest and support vector machine models relied on alpha-band activity in most subjects. However, as revealed by further analyses, patterns in frequency and topography varied considerably between individuals, pointing to more pronounced inter-individual differences than previously reported.
Collapse
Affiliation(s)
- Simon Valentin
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Maximilian Harkotte
- Department of Psychology, University of Konstanz, Konstanz, Germany
- Department of Psychology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tzvetan Popov
- Department of Psychology, University of Konstanz, Konstanz, Germany
- Central Institute of Mental Health, Medical Faculty/University of Heidelberg, Mannheim, Germany
| |
Collapse
|
38
|
McKendrick R, Harwood A. Cognitive Workload and Workload Transitions Elicit Curvilinear Hemodynamics During Spatial Working Memory. Front Hum Neurosci 2019; 13:405. [PMID: 31824274 PMCID: PMC6880762 DOI: 10.3389/fnhum.2019.00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/30/2019] [Indexed: 11/13/2022] Open
Abstract
Adaptive training and workload management have the potential to drastically change safety and productivity in high-risk fields-including, air-traffic control, missile defense, and nuclear power-plant operations. Quantifying and classifying cognitive load is important for optimal performance. Brain-based metrics have previously been associated with mental workload. Specifically, attenuation of prefrontal activity has been linked to cognitive overload, a cognitive load state associated with degraded task performance. We hypothesized that a similar nonlinearity would be observed for cognitive underload. When underload and overload effects are combined, they should form a cubic function in lateral prefrontal cortex as a function of working memory load. The first of two studies assessed the relationships between spatial working memory load with subjective, behavioral and hemodynamic measures. A cubic function was observed in left dorsolateral prefrontal cortex (LDLPFC; Brodmann's Area 46) relating working memory load to changes in oxygenated hemoglobin (HbO). The second, two-part study tested the effects of workload transitions to different cognitive load states. Part-one replicated the effects observed in study one and identified transition points for individual performers. Part-two assessed the effects of transitioning to different cognitive load states. Cognitive load state transitions caused a deviation between behavioral measures and induced a significant change in the cubic function relating LDLPFC HbO and working memory load. From these observations, we present a hypothesis associating workload transitions with the disruption of cognitive process integration.
Collapse
Affiliation(s)
- Ryan McKendrick
- Northrop Grumman - Mission Systems, Falls Church, VA, United States.,Department of Psychology, George Mason University, Fairfax, VA, United States
| | - Amanda Harwood
- Northrop Grumman - Mission Systems, Falls Church, VA, United States.,Department of Psychology, George Mason University, Fairfax, VA, United States
| |
Collapse
|
39
|
Kodama K, Takamoto K, Nishimaru H, Matsumoto J, Takamura Y, Sakai S, Ono T, Nishijo H. Analgesic Effects of Compression at Trigger Points Are Associated With Reduction of Frontal Polar Cortical Activity as Well as Functional Connectivity Between the Frontal Polar Area and Insula in Patients With Chronic Low Back Pain: A Randomized Trial. Front Syst Neurosci 2019; 13:68. [PMID: 31798422 PMCID: PMC6863771 DOI: 10.3389/fnsys.2019.00068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background Compression of myofascial trigger points (MTrPs) in muscles is reported to reduce chronic musculoskeletal pain. Although the prefrontal cortex (PFC) is implicated in development of chronic pain, the mechanisms of how MTrP compression at low back regions affects PFC activity remain under debate. In this study, we investigated effects of MTrP compression on brain hemodynamics and EEG oscillation in subjects with chronic low back pain. Methods The study was a prospective, randomized, parallel-group trial and an observer and subject-blinded clinical trial. Thirty-two subjects with chronic low back pain were divided into two groups: subjects with compression at MTrPs (n = 16) or those with non-MTrPs (n = 16). Compression at MTrP or non-MTrP for 30 s was applied five times, and hemodynamic activity (near-infrared spectroscopy; NIRS) and EEGs were simultaneously recorded during the experiment. Results The results indicated that compression at MTrPs significantly (1) reduced subjective pain (P < 0.05) and increased the pressure pain threshold (P < 0.05), (2) decreased the NIRS hemodynamic activity in the frontal polar area (pPFC) (P < 0.05), and (3) increased the current source density (CSD) of EEG theta oscillation in the anterior part of the PFC (P < 0.05). CSD of EEG theta oscillation was negatively correlated with NIRS hemodynamic activity in the pPFC (P < 0.05). Furthermore, functional connectivity in theta bands between the medial pPFC and insula cortex was significantly decreased in the MTrP group (P < 0.05). The functional connectivity between those regions was positively correlated with subjective low back pain (P < 0.05). Discussion The results suggest that MTrP compression at the lumbar muscle modulates pPFC activity and functional connectivity between the pPFC and insula, which may relieve chronic musculoskeletal pain. Trial registration This trial was registered at University Hospital Medical Information Network Clinical Trials Registry (UMIN000033913) on 27 August 2018, at https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000038660.
Collapse
Affiliation(s)
- Kanae Kodama
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kouichi Takamoto
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Sports and Health Sciences, Faculty of Human Sciences, University of East Asia, Shimonoseki, Japan
| | - Hiroshi Nishimaru
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yusaku Takamura
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shigekazu Sakai
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Taketoshi Ono
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
40
|
Dravida S, Ono Y, Noah JA, Zhang X, Hirsch J. Co-localization of theta-band activity and hemodynamic responses during face perception: simultaneous electroencephalography and functional near-infrared spectroscopy recordings. NEUROPHOTONICS 2019; 6:045002. [PMID: 31646152 PMCID: PMC6803809 DOI: 10.1117/1.nph.6.4.045002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/12/2019] [Indexed: 05/27/2023]
Abstract
Face-specific neural processes in the human brain have been localized to multiple anatomical structures and associated with diverse and dynamic social functions. The question of how various face-related systems and functions may be bound together remains an active area of investigation. We hypothesize that face processing may be associated with specific frequency band oscillations that serve to integrate distributed face processing systems. Using a multimodal imaging approach, including electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), simultaneous signals were acquired during face and object picture viewing. As expected for face processing, hemodynamic activity in the right occipital face area (OFA) increased during face viewing compared to object viewing, and in a subset of participants, the expected N170 EEG response was observed for faces. Based on recently reported associations between the theta band and visual processing, we hypothesized that increased hemodynamic activity in a face processing area would also be associated with greater theta-band activity originating in the same area. Consistent with our hypothesis, theta-band oscillations were also localized to the right OFA for faces, whereas alpha- and beta-band oscillations were not. Together, these findings suggest that theta-band oscillations originating in the OFA may be part of the distributed face-specific processing mechanism.
Collapse
Affiliation(s)
- Swethasri Dravida
- Yale School of Medicine, Interdepartmental Neuroscience Program, New Haven, Connecticut, United States
| | - Yumie Ono
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut, United States
| | - J. Adam Noah
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut, United States
| | - Xian Zhang
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut, United States
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut, United States
- Yale School of Medicine, Department of Neuroscience, New Haven, Connecticut, United States
- Yale School of Medicine, Department of Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
41
|
Dhindsa K, Acai A, Wagner N, Bosynak D, Kelly S, Bhandari M, Petrisor B, Sonnadara RR. Individualized pattern recognition for detecting mind wandering from EEG during live lectures. PLoS One 2019; 14:e0222276. [PMID: 31513622 PMCID: PMC6742406 DOI: 10.1371/journal.pone.0222276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/26/2019] [Indexed: 01/10/2023] Open
Abstract
Neural correlates of mind wandering The ability to detect mind wandering as it occurs is an important step towards improving our understanding of this phenomenon and studying its effects on learning and performance. Current detection methods typically rely on observable behaviour in laboratory settings, which do not capture the underlying neural processes and may not translate well into real-world settings. We address both of these issues by recording electroencephalography (EEG) simultaneously from 15 participants during live lectures on research in orthopedic surgery. We performed traditional group-level analysis and found neural correlates of mind wandering during live lectures that are similar to those found in some laboratory studies, including a decrease in occipitoparietal alpha power and frontal, temporal, and occipital beta power. However, individual-level analysis of these same data revealed that patterns of brain activity associated with mind wandering were more broadly distributed and highly individualized than revealed in the group-level analysis. Mind wandering detection To apply these findings to mind wandering detection, we used a data-driven method known as common spatial patterns to discover scalp topologies for each individual that reflects their differences in brain activity when mind wandering versus attending to lectures. This approach avoids reliance on known neural correlates primarily established through group-level statistics. Using this method for individual-level machine learning of mind wandering from EEG, we were able to achieve an average detection accuracy of 80–83%. Conclusions Modelling mind wandering at the individual level may reveal important details about its neural correlates that are not reflected when using traditional observational and statistical methods. Using machine learning techniques for this purpose can provide new insight into the varieties of neural activity involved in mind wandering, while also enabling real-time detection of mind wandering in naturalistic settings.
Collapse
Affiliation(s)
- Kiret Dhindsa
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Research and High-Performance Computing Support, McMaster University, Hamilton, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Anita Acai
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Natalie Wagner
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Dan Bosynak
- Research and High-Performance Computing Support, McMaster University, Hamilton, Ontario, Canada
- LIVELab, McMaster University, Hamilton, Ontario, Canada
| | - Stephen Kelly
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Mohit Bhandari
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Brad Petrisor
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Ranil R. Sonnadara
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Research and High-Performance Computing Support, McMaster University, Hamilton, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
- Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, Ontario, Canada
- LIVELab, McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Gica S, Buyukavsar A, Poyraz BC, Gulec H. The clinical correlation and predictive value of electrophysiological variables on clinical response to clozapine in patients with treatment-resistant schizophrenia. Schizophr Res 2019; 211:108-110. [PMID: 31331783 DOI: 10.1016/j.schres.2019.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 05/15/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sakir Gica
- Necmettin Erbakan University, Meram Medical Faculty, Department of Psychiatry, Konya, Turkey.
| | | | - Burc Cagri Poyraz
- Istanbul University Cerrahpasa Faculty of Medicine, Department of Psychiatry Istanbul, Turkey
| | - Huseyin Gulec
- Istanbul Erenkoy Mental Health and Neurological Disease Education and Research Hospital, Psychiatry, Istanbul, Turkey
| |
Collapse
|
43
|
Brzezicka A, Kamiński J, Reed CM, Chung JM, Mamelak AN, Rutishauser U. Working Memory Load-related Theta Power Decreases in Dorsolateral Prefrontal Cortex Predict Individual Differences in Performance. J Cogn Neurosci 2019; 31:1290-1307. [PMID: 31037988 DOI: 10.1162/jocn_a_01417] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Holding information in working memory (WM) is an active and effortful process that is accompanied by sustained load-dependent changes in oscillatory brain activity. These proportional power increases are often reported in EEG studies recording theta over frontal midline sites. Intracranial recordings, however, yield mixed results, depending on the brain area being recorded from. We recorded intracranial EEG with depth electrodes in 13 patients with epilepsy who were performing a Sternberg WM task. Here, we investigated patterns of theta power changes as a function of memory load during maintenance in three areas critical for WM: dorsolateral prefrontal cortex (DLPFC), dorsal ACC (dACC), and hippocampus. Theta frequency power in both hippocampus and dACC increased during maintenance. In contrast, theta frequency power in the DLPFC decreased during maintenance, and this decrease was proportional to memory load. Only the power decreases in DLPFC, but not the power increases in hippocampus and dACC, were predictive of behavior in a given trial. The extent of the load-related theta power decreases in the DLPFC in a given participant predicted a participant's RTs, revealing that DLPFC theta explains individual differences in WM ability between participants. Together, these data reveal a pattern of theta power decreases in the DLPFC that is predictive of behavior and that is opposite of that in other brain areas. This result suggests that theta band power changes serve different cognitive functions in different brain areas and specifically that theta power decreases in DLPFC have an important role in maintenance of information.
Collapse
Affiliation(s)
- Aneta Brzezicka
- Cedars-Sinai Medical Center, Los Angeles, CA.,SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Jan Kamiński
- Cedars-Sinai Medical Center, Los Angeles, CA.,California Institute of Technology
| | | | | | | | - Ueli Rutishauser
- Cedars-Sinai Medical Center, Los Angeles, CA.,California Institute of Technology
| |
Collapse
|
44
|
Campbell J, LaBrec A, Bean C, Nielsen M, So W. Auditory Gating and Extended High-Frequency Thresholds in Normal-Hearing Adults With Minimal Tinnitus. Am J Audiol 2019; 28:209-224. [PMID: 31022362 DOI: 10.1044/2019_aja-ttr17-18-0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose The goal of this study was to assess whether peripheral auditory sensitivity in frequency regions above 8 kHz is related to central inhibitory function, as measured through a sensory gating paradigm, in normal-hearing adults with tinnitus (TINN) and without tinnitus (NTINN). The contribution of gating processes and peripheral sensitivity in extended high frequencies to tinnitus severity was evaluated via a hierarchical multiple regression method. Method Cortical auditory evoked potentials (CAEPs) were recorded in response to pairs of tones in normal-hearing adults without tinnitus, NTINN ( n = 45), and adults with tinnitus, TINN ( n = 21). CAEP peak component amplitude, latency, and gating indices were compared and correlated with extended high-frequency (EHF) pure-tone averages (PTAs) across groups and with tinnitus severity. An exploratory analysis was performed to investigate gating variability within the TINN group. Based on Tinnitus Handicap Inventory (Newman, Jacobson, & Spitzer, 1996) median scores, the TINN group was categorized into low- and high-median subgroups, and gating indices were compared between these subgroups. A hierarchical multiple regression analysis was performed to determine the amount of variance accounted for in the TINN group. Results Decreased gating via the CAEP Pa component and increased gating via the N1 component correlated with increased tinnitus severity, even in individuals who would traditionally be classified as having no tinnitus handicap. In the TINN group, lower EHF PTA thresholds correlated with tinnitus severity and decreased Pa gating. Individuals with a greater severity of tinnitus demonstrated atypical gating function reflected in both Pa and N1 components. Gating function and EHF PTA accounted for significant variance regarding tinnitus severity. Conclusions A trade-off between lower and higher level gating function was observed in adults with normal hearing and tinnitus, indicative of higher order compensatory mechanisms. Better cochlear sensitivity in extended high frequencies was related to decreased lower level gating processes and increased tinnitus THI scores, suggestive of an interaction between decreased gating and heightened auditory awareness. We are currently exploring whether gating processes in this population are compensatory, and the role of gating in auditory awareness.
Collapse
Affiliation(s)
- Julia Campbell
- Department of Communication Sciences and Disorders, The University of Texas at Austin
- Central Sensory Processes Laboratory, The University of Texas at Austin
| | - Alison LaBrec
- Department of Communication Sciences and Disorders, The University of Texas at Austin
- Central Sensory Processes Laboratory, The University of Texas at Austin
| | - Connor Bean
- Department of Communication Sciences and Disorders, The University of Texas at Austin
- Central Sensory Processes Laboratory, The University of Texas at Austin
| | - Mashhood Nielsen
- Department of Communication Sciences and Disorders, The University of Texas at Austin
- Central Sensory Processes Laboratory, The University of Texas at Austin
| | - Won So
- Department of Communication Sciences and Disorders, The University of Texas at Austin
- Central Sensory Processes Laboratory, The University of Texas at Austin
| |
Collapse
|
45
|
Theta oscillations in 4-year-olds are sensitive to task engagement and task demands. Sci Rep 2019; 9:6049. [PMID: 30988372 PMCID: PMC6465288 DOI: 10.1038/s41598-019-42615-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 12/05/2022] Open
Abstract
Top-down control processes are essential for guiding attention and working memory towards task-relevant information. Recently, theta oscillations were suggested as critical for these cognitive processes. Infant studies testing a mixture of bottom-up and top-down processes support adult theta findings. Yet, since infants cannot be instructed, it remains unclear to what extent theta oscillations are involved particularly in top-down control in early childhood. That is especially relevant towards school age when children need top-down control to solve the increasingly complex tasks. In this EEG study, we investigated whether theta-power in 4-year-olds is sensitive to task engagement and to different cognitive task demands. In a within-subjects design, children had three different instructions before watching videos including either no demands (No Task), language-related (Color-naming Task), or action-related (Imitation Task) demands. We analyzed children’s theta-power (3–6 Hz) in two contrasts: (1) Task vs. No Task and (2) Color-naming vs. Imitation Task. The findings revealed more frontomedial theta-power when children were engaged in a task and their frontomedial theta-power increased during their cognitive engagement. Theta-power was stronger over left fronto-temporal sites for language- compared to action-related demands. These findings support recent theoretical work highlighting theta oscillations in top-down control and extend this neurocognitive framework to preschoolers.
Collapse
|
46
|
Best MW, Milanovic M, Shamblaw AL, Muere A, Lambe LJ, Hong IK, Haque MK, Bowie CR. An examination of the moderating effects of neurophysiology on treatment outcomes from cognitive training in schizophrenia-spectrum disorders. Int J Psychophysiol 2019; 154:59-66. [PMID: 30776393 DOI: 10.1016/j.ijpsycho.2019.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Impairments in neurocognition and community functioning are core features of schizophrenia and cognitive training techniques have been developed with the aim of improving these impairments. While cognitive training has produced reliable improvements in neurocognition and functioning, little is known about factors that moderate treatment response. Electroencephalographic (EEG) measures provide a neurophysiological indicator of cognitive functions that may moderate treatment outcomes from cognitive training. METHODS Data from a clinical trial comparing two cognitive training approaches in schizophrenia-spectrum disorders were utilized in the current report. Cluster analysis was conducted to identify participant clusters based on baseline P300, mismatch negativity (MMN), and theta power during an n-back task, and the EEG measures were also examined as continuous predictors of treatment response. RESULTS Three clusters were identified based on the baseline EEG variables; however, there were no significant differences in treatment response across the three clusters. Higher P300 amplitude and theta power during the n-back at baseline were significantly associated with greater improvements in a cognitive composite score post-treatment. None of the EEG measures were significantly associated with treatment outcomes in specific cognitive domains or community functioning. Change in EEG measures from baseline to post-treatment was not significantly associated with durability of cognitive or functional change at 12-week follow-up. CONCLUSIONS Clusters derived from the EEG measures were not significantly associated with either neurocognitive or functional outcomes. P300 and n-back theta power may be associated with learning-related processes, which are important for acquisition and retention of skills during cognitive training programs. Future research should aim to identify at an individual level who is likely to respond to specific forms of cognitive enhancement.
Collapse
Affiliation(s)
- Michael W Best
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Melissa Milanovic
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Amanda L Shamblaw
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Abi Muere
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Laura J Lambe
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Irene K Hong
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Mashal K Haque
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Christopher R Bowie
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| |
Collapse
|
47
|
Steiger TK, Herweg NA, Menz MM, Bunzeck N. Working memory performance in the elderly relates to theta-alpha oscillations and is predicted by parahippocampal and striatal integrity. Sci Rep 2019; 9:706. [PMID: 30679512 PMCID: PMC6345832 DOI: 10.1038/s41598-018-36793-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022] Open
Abstract
The ability to maintain information for a short period of time (i.e. working memory, WM) tends to decrease across the life span with large inter-individual variability; the underlying neuronal bases, however, remain unclear. To address this issue, we used a multimodal imaging approach (voxel-based morphometry, diffusion-tensor imaging, electroencephalography) to test the contribution of brain structures and neural oscillations in an elderly population. Thirty-one healthy elderly participants performed a change-detection task with different load conditions. As expected, accuracy decreased with increasing WM load, reflected by power modulations in the theta-alpha band (5-12 Hz). Importantly, these power changes were directly related to the tract strength between parahippocampus and parietal cortex. Furthermore, between-subject variance in gray matter volume of the parahippocampus and dorsal striatum predicted WM accuracy. Together, our findings provide new evidence that WM performance critically depends on parahippocampal and striatal integrity, while theta-alpha oscillations may provide a mechanism to bind the nodes within the WM network.
Collapse
Affiliation(s)
- Tineke K Steiger
- Institute of Psychology I, University of Luebeck, 23562, Luebeck, Germany. .,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Nora A Herweg
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mareike M Menz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Nico Bunzeck
- Institute of Psychology I, University of Luebeck, 23562, Luebeck, Germany. .,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
48
|
Schneider JM, Maguire MJ. Developmental differences in the neural correlates supporting semantics and syntax during sentence processing. Dev Sci 2019; 22:e12782. [DOI: 10.1111/desc.12782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/23/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022]
|
49
|
The strength of alpha and gamma oscillations predicts behavioral switch costs. Neuroimage 2018; 188:274-281. [PMID: 30543844 DOI: 10.1016/j.neuroimage.2018.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022] Open
Abstract
Cognitive flexibility is often examined using task-switch paradigms, whereby individuals either switch between tasks or repeat the same task on successive trials. The behavioral costs of switching in terms of accuracy and reaction time are well-known, but the oscillatory dynamics underlying such costs are poorly understood. Herein, we examined 25 healthy adults who performed a task-switching paradigm during magnetoencephalography (MEG). All MEG data were transformed into the time-frequency domain and significant oscillatory responses were imaged separately per condition (i.e., switch, repeat) using a beamformer. To determine the impact of task-switching on the neural dynamics, the resulting images were examined using paired-samples t-tests. Whole-brain correlations were also computed using the switch-related difference images (switch - repeat) and the switch-related behavioral data (i.e., switch costs). Our key results indicated stronger decreases in alpha and beta activity, and greater increases in gamma activity in nodes of the cingulo-opercular and fronto-parietal networks during switch relative to repeat trials. In addition, behavioral switch costs were positively correlated with switch-related differences in right frontal and inferior parietal alpha activity, and negatively correlated with switch effects in anterior cingulate and right temporoparietal gamma activity. In other words, participants who had a greater decrease in alpha or increase in gamma in these respective regions had smaller behavioral switch costs, which suggests that these oscillations are critical to supporting cognitive flexibility. In sum, we provide novel data linking switch effects and gamma oscillations, and employed a whole-brain approach to directly link switch-related oscillatory differences with switch-related performance differences.
Collapse
|
50
|
Roberts BM, Libby LA, Inhoff MC, Ranganath C. Brain activity related to working memory for temporal order and object information. Behav Brain Res 2018; 354:55-63. [DOI: 10.1016/j.bbr.2017.05.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/31/2017] [Indexed: 11/28/2022]
|