1
|
Hays MA, Daraie AH, Smith RJ, Sarma SV, Crone NE, Kang JY. Network excitability of stimulation-induced spectral responses helps localize the seizure onset zone. Clin Neurophysiol 2024; 166:43-55. [PMID: 39096821 PMCID: PMC11401764 DOI: 10.1016/j.clinph.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/11/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE While evoked potentials elicited by single pulse electrical stimulation (SPES) may assist seizure onset zone (SOZ) localization during intracranial EEG (iEEG) monitoring, induced high frequency activity has also shown promising utility. We aimed to predict SOZ sites using induced cortico-cortical spectral responses (CCSRs) as an index of excitability within epileptogenic networks. METHODS SPES was conducted in 27 epilepsy patients undergoing iEEG monitoring and CCSRs were quantified by significant early (10-200 ms) increases in power from 10 to 250 Hz. Using response power as CCSR network connection strengths, graph centrality measures (metrics quantifying each site's influence within the network) were used to predict whether sites were within the SOZ. RESULTS Across patients with successful surgical outcomes, greater CCSR centrality predicted SOZ sites and SOZ sites targeted for surgical treatment with median AUCs of 0.85 and 0.91, respectively. We found that the alignment between predicted and targeted SOZ sites predicted surgical outcome with an AUC of 0.79. CONCLUSIONS These findings indicate that network analysis of CCSRs can be used to identify increased excitability of SOZ sites and discriminate important surgical targets within the SOZ. SIGNIFICANCE CCSRs may supplement traditional passive iEEG monitoring in seizure localization, potentially reducing the need for recording numerous seizures.
Collapse
Affiliation(s)
- Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Amir H Daraie
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rachel J Smith
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neuroengineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Nagata K, Kunii N, Fujitani S, Shimada S, Saito N. Evaluating cortical excitatory and inhibitory activity through interictal intracranial electroencephalography in mesial temporal lobe epilepsy. Front Neurosci 2024; 18:1424401. [PMID: 39381684 PMCID: PMC11458560 DOI: 10.3389/fnins.2024.1424401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Gamma oscillation regularity (GOR) indicates the synchronization of inhibitory interneurons, while the reactivity of cortico-cortical evoked potentials (CCEPs) is supposed to reflect local cortical excitability. Under the assumption that the early response of CCEP near the stimulation site also indicates excitatory activity primarily mediated by pyramidal cells, we aimed to visualize the cortical inhibitory and excitatory activities using GOR and CCEP in combination and to use them to predict the epileptogenic zone (EZ) in mesial temporal lobe epilepsy (MTLE). In five patients who underwent intracranial electrode implantation, GOR and CCEP reactivity in the vicinity of the stimulation site was quantified. The interictal GOR was calculated using multiscale entropy (MSE), the decrease of which was related to the enhanced GOR. These parameters were compared on an electrode-and-electrode basis, and spatially visualized on the brain surface. As a result, elevated GOR and CCEP reactivities, indicative of enhanced inhibitory and excitatory activities, were observed in the epileptogenic regions. Elevated CCEP reactivity was found to be localized to a restricted area centered on the seizure onset region, whereas GOR elevation was observed in a broader region surrounding it. Although these parameters independently predicted the EZ with high specificity, we combined the two to introduce a novel parameter, the excitatory and inhibitory (EI) index. The EI index predicted EZ with increased specificity compared with GOR or CCEP reactivity alone. Our results demonstrate that GOR and CCEP reactivity provided a quantitative visualization of the distribution of cortical inhibitory and excitatory activities and highlighted the relationship between the two parameters. The combination of GOR and CCEP reactivities are expected to serve as biomarkers for localizing the epileptogenic zone in MTLE from interictal intracranial electroencephalograms.
Collapse
Affiliation(s)
- Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoto Kunii
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Hajnal B, Szabó JP, Tóth E, Keller CJ, Wittner L, Mehta AD, Erőss L, Ulbert I, Fabó D, Entz L. Intracortical mechanisms of single pulse electrical stimulation (SPES) evoked excitations and inhibitions in humans. Sci Rep 2024; 14:13784. [PMID: 38877093 PMCID: PMC11178858 DOI: 10.1038/s41598-024-62433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
Cortico-cortical evoked potentials (CCEPs) elicited by single-pulse electric stimulation (SPES) are widely used to assess effective connectivity between cortical areas and are also implemented in the presurgical evaluation of epileptic patients. Nevertheless, the cortical generators underlying the various components of CCEPs in humans have not yet been elucidated. Our aim was to describe the laminar pattern arising under SPES evoked CCEP components (P1, N1, P2, N2, P3) and to evaluate the similarities between N2 and the downstate of sleep slow waves. We used intra-cortical laminar microelectrodes (LMEs) to record CCEPs evoked by 10 mA bipolar 0.5 Hz electric pulses in seven patients with medically intractable epilepsy implanted with subdural grids. Based on the laminar profile of CCEPs, the latency of components is not layer-dependent, however their rate of appearance varies across cortical depth and stimulation distance, while the seizure onset zone does not seem to affect the emergence of components. Early neural excitation primarily engages middle and deep layers, propagating to the superficial layers, followed by mainly superficial inhibition, concluding in a sleep slow wave-like inhibition and excitation sequence.
Collapse
Affiliation(s)
- Boglárka Hajnal
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
| | - Johanna Petra Szabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Emília Tóth
- Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Corey J Keller
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
- Department of Neuroscience, Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, 94304, USA
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Ashesh D Mehta
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Loránd Erőss
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| | - István Ulbert
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Dániel Fabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary.
| | - László Entz
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| |
Collapse
|
4
|
Abdi-Sargezeh B, Shirani S, Sanei S, Took CC, Geman O, Alarcon G, Valentin A. A review of signal processing and machine learning techniques for interictal epileptiform discharge detection. Comput Biol Med 2024; 168:107782. [PMID: 38070202 DOI: 10.1016/j.compbiomed.2023.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Brain interictal epileptiform discharges (IEDs), as one of the hallmarks of epileptic brain, are transient events captured by electroencephalogram (EEG). IEDs are generated by seizure networks, and they occur between seizures (interictal periods). The development of a robust method for IED detection could be highly informative for clinical treatment procedures and epileptic patient management. Since 1972, different machine learning techniques, from template matching to deep learning, have been developed to automatically detect IEDs from scalp EEG (scEEG) and intracranial EEG (iEEG). While the scEEG signals suffer from low information details and high attenuation of IEDs due to the high skull electrical impedance, the iEEG signals recorded using implanted electrodes enjoy higher details and are more suitable for identifying the IEDs. In this review paper, we group IED detection techniques into six categories: (1) template matching, (2) feature representation (mimetic, time-frequency, and nonlinear features), (3) matrix decomposition, (4) tensor factorization, (5) neural networks, and (6) estimation of the iEEG from the concurrent scEEG followed by detection and classification. The methods are compared quantitatively (e.g., in terms of accuracy, sensitivity, and specificity), and their general advantages and limitations are described. Finally, current limitations and possible future research paths related to this field are mentioned.
Collapse
Affiliation(s)
- Bahman Abdi-Sargezeh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| | - Sepehr Shirani
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Saeid Sanei
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Clive Cheong Took
- Department of Electronic Engineering, Royal Holloway, University of London, London, UK
| | - Oana Geman
- Computer, Electronics and Automation Department, University Stefan cel Mare, Suceava, Romania
| | - Gonzalo Alarcon
- Department of Clinical Neurophysiology, Royal Manchester Children's Hospital, Manchester, UK
| | - Antonio Valentin
- Department of Clinical Neuroscience, King's College London, London, UK
| |
Collapse
|
5
|
Xie T, Foutz TJ, Adamek M, Swift JR, Inman CS, Manns JR, Leuthardt EC, Willie JT, Brunner P. Single-pulse electrical stimulation artifact removal using the novel matching pursuit-based artifact reconstruction and removal method (MPARRM). J Neural Eng 2023; 20:066036. [PMID: 38063368 PMCID: PMC10751949 DOI: 10.1088/1741-2552/ad1385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Objective.Single-pulse electrical stimulation (SPES) has been widely used to probe effective connectivity. However, analysis of the neural response is often confounded by stimulation artifacts. We developed a novel matching pursuit-based artifact reconstruction and removal method (MPARRM) capable of removing artifacts from stimulation-artifact-affected electrophysiological signals.Approach.To validate MPARRM across a wide range of potential stimulation artifact types, we performed a bench-top experiment in which we suspended electrodes in a saline solution to generate 110 types of real-world stimulation artifacts. We then added the generated stimulation artifacts to ground truth signals (stereoelectroencephalography signals from nine human subjects recorded during a receptive speech task), applied MPARRM to the combined signal, and compared the resultant denoised signal with the ground truth signal. We further applied MPARRM to artifact-affected neural signals recorded from the hippocampus while performing SPES on the ipsilateral basolateral amygdala in nine human subjects.Main results.MPARRM could remove stimulation artifacts without introducing spectral leakage or temporal spread. It accommodated variable stimulation parameters and recovered the early response to SPES within a wide range of frequency bands. Specifically, in the early response period (5-10 ms following stimulation onset), we found that the broadband gamma power (70-170 Hz) of the denoised signal was highly correlated with the ground truth signal (R=0.98±0.02, Pearson), and the broadband gamma activity of the denoised signal faithfully revealed the responses to the auditory stimuli within the ground truth signal with94%±1.47%sensitivity and99%±1.01%specificity. We further found that MPARRM could reveal the expected temporal progression of broadband gamma activity along the anterior-posterior axis of the hippocampus in response to the ipsilateral amygdala stimulation.Significance.MPARRM could faithfully remove SPES artifacts without confounding the electrophysiological signal components, especially during the early-response period. This method can facilitate the understanding of the neural response mechanisms of SPES.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States of America
- National Center for Adaptive Neurotechnologies, St. Louis, MO, United States of America
| | - Thomas J Foutz
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Markus Adamek
- National Center for Adaptive Neurotechnologies, St. Louis, MO, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States of America
| | - James R Swift
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States of America
- National Center for Adaptive Neurotechnologies, St. Louis, MO, United States of America
| | - Cory S Inman
- Department of Psychology, University of Utah, Salt Lake City, UT, United States of America
| | - Joseph R Manns
- Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jon T Willie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States of America
- National Center for Adaptive Neurotechnologies, St. Louis, MO, United States of America
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States of America
- National Center for Adaptive Neurotechnologies, St. Louis, MO, United States of America
| |
Collapse
|
6
|
Shirani S, Valentin A, Alarcon G, Kazi F, Sanei S. Response to the Discussion on S. Shirani, A. Valentin, G. Alarcon, F. Kazi and S. Sanei, Separating Inhibitory and Excitatory Responses of Epileptic Brain to Single-Pulse Electrical Stimulation, International Journal of Neural Systems, Vol. 33, No. 2 (2023) 2350008. Int J Neural Syst 2023; 33:2375002. [PMID: 36853275 DOI: 10.1142/s0129065723750023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Sepehr Shirani
- Department of Computer Science, School of Science and Technology, Nottingham Trent University, UK
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience [Formula: see text], King's College London, UK
| | | | - Farhana Kazi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience [Formula: see text], King's College London, UK
| | - Saeid Sanei
- Department of Computer Science, School of Science and Technology, Nottingham Trent University, UK
| |
Collapse
|
7
|
Shirani S, Valentin A, Alarcon G, Kazi F, Sanei S. Separating Inhibitory and Excitatory Responses of Epileptic Brain to Single-Pulse Electrical Stimulation. Int J Neural Syst 2023; 33:2350008. [PMID: 36495050 DOI: 10.1142/s0129065723500089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To enable an accurate recognition of neuronal excitability in an epileptic brain for modeling or localization of epileptic zone, here the brain response to single-pulse electrical stimulation (SPES) has been decomposed into its constituent components using adaptive singular spectrum analysis (SSA). Given the response at neuronal level, these components are expected to be the inhibitory and excitatory components. The prime objective is to thoroughly investigate the nature of delayed responses (elicited between 100[Formula: see text]ms-1 s after SPES) for localization of the epileptic zone. SSA is a powerful subspace signal analysis method for separation of single channel signals into their constituent uncorrelated components. The consistency in the results for both early and delayed brain responses verifies the usability of the approach.
Collapse
Affiliation(s)
- Sepehr Shirani
- Department of Computer Science, School of Science and Technology, Nottingham Trent University, UK
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | | | - Farhana Kazi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | - Saeid Sanei
- Department of Computer Science, School of Science and Technology, Nottingham Trent University, UK
| |
Collapse
|
8
|
Alarcón G, Stavropoulos I, Valentin A. Single-pulse electrical stimulation: Where do we stand? Clin Neurophysiol 2023; 145:100-101. [PMID: 36402724 DOI: 10.1016/j.clinph.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Gonzalo Alarcón
- Department of Clinical Neurophysiology, Royal Manchester Children's Hospital, Manchester, UK.
| | - Ioannis Stavropoulos
- Department of Basic and Clinical Neuroscience, King's College London, London, UK; Department of Clinical Neurophysiology, King's College Hospital, London, UK
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, King's College London, London, UK; Department of Clinical Neurophysiology, King's College Hospital, London, UK
| |
Collapse
|
9
|
Curot J, Barbeau E, Despouy E, Denuelle M, Sol JC, Lotterie JA, Valton L, Peyrache A. Local neuronal excitation and global inhibition during epileptic fast ripples in humans. Brain 2022; 146:561-575. [PMID: 36093747 PMCID: PMC9924905 DOI: 10.1093/brain/awac319] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
Understanding the neuronal basis of epileptic activity is a major challenge in neurology. Cellular integration into larger scale networks is all the more challenging. In the local field potential, interictal epileptic discharges can be associated with fast ripples (200-600 Hz), which are a promising marker of the epileptogenic zone. Yet, how neuronal populations in the epileptogenic zone and in healthy tissue are affected by fast ripples remain unclear. Here, we used a novel 'hybrid' macro-micro depth electrode in nine drug-resistant epileptic patients, combining classic depth recording of local field potentials (macro-contacts) and two or three tetrodes (four micro-wires bundled together) enabling up to 15 neurons in local circuits to be simultaneously recorded. We characterized neuronal responses (190 single units) with the timing of fast ripples (2233 fast ripples) on the same hybrid and other electrodes that target other brain regions. Micro-wire recordings reveal signals that are not visible on macro-contacts. While fast ripples detected on the closest macro-contact to the tetrodes were always associated with fast ripples on the tetrodes, 82% of fast ripples detected on tetrodes were associated with detectable fast ripples on the nearest macro-contact. Moreover, neuronal recordings were taken in and outside the epileptogenic zone of implanted epileptic subjects and they revealed an interlay of excitation and inhibition across anatomical scales. While fast ripples were associated with increased neuronal activity in very local circuits only, they were followed by inhibition in large-scale networks (beyond the epileptogenic zone, even in healthy cortex). Neuronal responses to fast ripples were homogeneous in local networks but differed across brain areas. Similarly, post-fast ripple inhibition varied across recording locations and subjects and was shorter than typical inter-fast ripple intervals, suggesting that this inhibition is a fundamental refractory process for the networks. These findings demonstrate that fast ripples engage local and global networks, including healthy tissue, and point to network features that pave the way for new diagnostic and therapeutic strategies. They also reveal how even localized pathological brain dynamics can affect a broad range of cognitive functions.
Collapse
Affiliation(s)
- Jonathan Curot
- Correspondence to: Jonathan Curot, MD, PhD CerCo CNRS UMR 5549, Université Toulouse III CHU Purpan, Pavillon Baudot, 31052 Toulouse Cedex, France E-mail:
| | - Emmanuel Barbeau
- Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France,Faculty of Health, University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Elodie Despouy
- Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France
| | - Marie Denuelle
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France
| | - Jean Christophe Sol
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Faculty of Health, University of Toulouse, Paul Sabatier University, Toulouse, France,Toulouse Neuro Imaging Center (ToNIC), INSERM, U1214, Toulouse, France
| | - Jean-Albert Lotterie
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Toulouse Neuro Imaging Center (ToNIC), INSERM, U1214, Toulouse, France
| | - Luc Valton
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France
| | - Adrien Peyrache
- Correspondence may also be addressed to: Adrien Peyrache, PhD Montreal Neurological Institute Department of Neurology and Neurosurgery McGill University, 3810 University Street Montreal, Quebec, Canada E-mail:
| |
Collapse
|
10
|
Paulk AC, Zelmann R, Crocker B, Widge AS, Dougherty DD, Eskandar EN, Weisholtz DS, Richardson RM, Cosgrove GR, Williams ZM, Cash SS. Local and distant cortical responses to single pulse intracranial stimulation in the human brain are differentially modulated by specific stimulation parameters. Brain Stimul 2022; 15:491-508. [PMID: 35247646 PMCID: PMC8985164 DOI: 10.1016/j.brs.2022.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Electrical neuromodulation via direct electrical stimulation (DES) is an increasingly common therapy for a wide variety of neuropsychiatric diseases. Unfortunately, therapeutic efficacy is inconsistent, likely due to our limited understanding of the relationship between the massive stimulation parameter space and brain tissue responses. OBJECTIVE To better understand how different parameters induce varied neural responses, we systematically examined single pulse-induced cortico-cortico evoked potentials (CCEP) as a function of stimulation amplitude, duration, brain region, and whether grey or white matter was stimulated. METHODS We measured voltage peak amplitudes and area under the curve (AUC) of intracranially recorded stimulation responses as a function of distance from the stimulation site, pulse width, current injected, location relative to grey and white matter, and brain region stimulated (N = 52, n = 719 stimulation sites). RESULTS Increasing stimulation pulse width increased responses near the stimulation location. Increasing stimulation amplitude (current) increased both evoked amplitudes and AUC nonlinearly. Locally (<15 mm), stimulation at the boundary between grey and white matter induced larger responses. In contrast, for distant sites (>15 mm), white matter stimulation consistently produced larger responses than stimulation in or near grey matter. The stimulation location-response curves followed different trends for cingulate, lateral frontal, and lateral temporal cortical stimulation. CONCLUSION These results demonstrate that a stronger local response may require stimulation in the grey-white boundary while stimulation in the white matter could be needed for network activation. Thus, stimulation parameters tailored for a specific anatomical-functional outcome may be key to advancing neuromodulatory therapy.
Collapse
Affiliation(s)
- Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Britni Crocker
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Darin D Dougherty
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel S Weisholtz
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, 02114, USA
| | - R Mark Richardson
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, 02114, USA
| | - Ziv M Williams
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
11
|
Sonoda M, Silverstein BH, Jeong JW, Sugiura A, Nakai Y, Mitsuhashi T, Rothermel R, Luat AF, Sood S, Asano E. Six-dimensional dynamic tractography atlas of language connectivity in the developing brain. Brain 2021; 144:3340-3354. [PMID: 34849596 PMCID: PMC8677551 DOI: 10.1093/brain/awab225] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 11/12/2022] Open
Abstract
During a verbal conversation, our brain moves through a series of complex linguistic processing stages: sound decoding, semantic comprehension, retrieval of semantically coherent words, and overt production of speech outputs. Each process is thought to be supported by a network consisting of local and long-range connections bridging between major cortical areas. Both temporal and extratemporal lobe regions have functional compartments responsible for distinct language domains, including the perception and production of phonological and semantic components. This study provides quantitative evidence of how directly connected inter-lobar neocortical networks support distinct stages of linguistic processing across brain development. Novel six-dimensional tractography was used to intuitively visualize the strength and temporal dynamics of direct inter-lobar effective connectivity between cortical areas activated during each linguistic processing stage. We analysed 3401 non-epileptic intracranial electrode sites from 37 children with focal epilepsy (aged 5-20 years) who underwent extra-operative electrocorticography recording. Principal component analysis of auditory naming-related high-gamma modulations determined the relative involvement of each cortical area during each linguistic processing stage. To quantify direct effective connectivity, we delivered single-pulse electrical stimulation to 488 temporal and 1581 extratemporal lobe sites and measured the early cortico-cortical spectral responses at distant electrodes. Mixed model analyses determined the effects of naming-related high-gamma co-augmentation between connecting regions, age, and cerebral hemisphere on the strength of effective connectivity independent of epilepsy-related factors. Direct effective connectivity was strongest between extratemporal and temporal lobe site pairs, which were simultaneously activated between sentence offset and verbal response onset (i.e. response preparation period); this connectivity was approximately twice more robust than that with temporal lobe sites activated during stimulus listening or overt response. Conversely, extratemporal lobe sites activated during overt response were equally connected with temporal lobe language sites. Older age was associated with increased strength of inter-lobar effective connectivity especially between those activated during response preparation. The arcuate fasciculus supported approximately two-thirds of the direct effective connectivity pathways from temporal to extratemporal auditory language-related areas but only up to half of those in the opposite direction. The uncinate fasciculus consisted of <2% of those in the temporal-to-extratemporal direction and up to 6% of those in the opposite direction. We, for the first time, provided an atlas which quantifies and animates the strength, dynamics, and direction specificity of inter-lobar neural communications between language areas via the white matter pathways. Language-related effective connectivity may be strengthened in an age-dependent manner even after the age of 5.
Collapse
Affiliation(s)
- Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Ayaka Sugiura
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurological Surgery, Wakayama Medical University, Wakayama, Wakayama 6418509, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo, 1138421, Japan
| | - Robert Rothermel
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Kobayashi K, Matsumoto R, Usami K, Matsuhashi M, Shimotake A, Kikuchi T, Yoshida K, Kunieda T, Miyamoto S, Takahashi R, Ikeda A. Cortico-cortical evoked potential by single-pulse electrical stimulation is a generally safe procedure. Clin Neurophysiol 2021; 132:1033-1040. [PMID: 33743298 DOI: 10.1016/j.clinph.2020.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Cortico-cortical evoked potential (CCEP) by single-pulse electrical stimulation (SPES) is useful to investigate effective connectivity and cortical excitability. We aimed to clarify the safety of CCEPs. METHODS We retrospectively analyzed 29 consecutive patients with intractable partial epilepsy undergoing chronic subdural grid implantation and CCEP recording. Repetitive SPES (1 Hz) was systematically applied to a pair of adjacent electrodes over almost all electrodes. We evaluated the incidences of afterdischarges (ADs) and clinical seizures. RESULTS Out of 1283 electrode pairs, ADs and clinical seizures were observed in 12 and 5 pairs (0.94% and 0.39%, per electrode pair) in 7 and 3 patients (23.3% and 10.0%, per patient), respectively. Of the 18-82 pairs per patient, ADs and clinical seizures were induced in 0-4 and 0-3 pairs, respectively. Stimulating 4 SOZ (seizure onset zone) (2.5%) and 8 non-SOZ pairs (0.75%) resulted in ADs. We observed clinical seizures in stimulating 4 SOZ (2.5%) and 1 non-SOZ pair (0.09%). The incidence of clinical seizures varied significantly between SOZ and non-SOZ stimulations (p = 0.001), while the difference in AD incidence tended towards significance (p = 0.058). CONCLUSION Although caution should be taken in stimulating SOZ, CCEP is a safe procedure for presurgical evaluation. SIGNIFICANCE CCEP is safe under the established protocol.
Collapse
Affiliation(s)
- Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Department of Epilepsy, Neurological Institute, Cleveland Clinic, USA.
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Japan.
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan.
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan.
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Japan.
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan.
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
13
|
Towards linking diffusion MRI based macro- and microstructure measures with cortico-cortical transmission in brain tumor patients. Neuroimage 2020; 226:117567. [PMID: 33221443 DOI: 10.1016/j.neuroimage.2020.117567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/29/2020] [Accepted: 11/16/2020] [Indexed: 11/19/2022] Open
Abstract
We aimed to link macro- and microstructure measures of brain white matter obtained from diffusion MRI with effective connectivity measures based on a propagation of cortico-cortical evoked potentials induced with intrasurgical direct electrical stimulation. For this, we compared streamline lengths and log-transformed ratios of streamlines computed from presurgical diffusion-weighted images, and the delays and amplitudes of N1 peaks recorded intrasurgically with electrocorticography electrodes in a pilot study of 9 brain tumor patients. Our results showed positive correlation between these two modalities in the vicinity of the stimulation sites (Pearson coefficient 0.54±0.13 for N1 delays, and 0.47±0.23 for N1 amplitudes), which could correspond to the neural propagation via U-fibers. In addition, we reached high sensitivities (0.78±0.07) and very high specificities (0.93±0.03) in a binary variant of our comparison. Finally, we used the structural connectivity measures to predict the effective connectivity using a multiple linear regression model, and showed a significant role of brain microstructure-related indices in this relation.
Collapse
|
14
|
Mitsuhashi T, Sonoda M, Iwaki H, Luat AF, Sood S, Asano E. Effects of depth electrode montage and single-pulse electrical stimulation sites on neuronal responses and effective connectivity. Clin Neurophysiol 2020; 131:2781-2792. [PMID: 33130438 DOI: 10.1016/j.clinph.2020.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/05/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To determine the optimal depth electrode montages for the assessment of effective connectivity based on single-pulse electrical stimulation (SPES). To determine the effect of SPES locations on the extent of resulting neuronal propagations. METHODS We studied 14 epilepsy patients who underwent invasive monitoring with depth electrodes and measurement of cortico-cortical evoked potentials (CCEPs) and cortico-cortical spectral responses (CCSRs). We determined the effects of electrode montage and stimulus sites on the CCEP/CCSR amplitudes. RESULTS Bipolar and Laplacian montages effectively reduced the degree of SPES-related signal deflections at extra-cortical levels, including outside the brain, while maintaining those at the cortical level. SPES of structures more proximal to the deep white matter, compared to the cortical surface, elicited greater CCEPs and CCSRs. CONCLUSIONS On depth electrode recording, bipolar and Laplacian montages are suitable for measurement of near-field CCEPs and CCSRs. SPES of the white matter axons may induce neuronal propagations to extensive regions of the cerebral cortex. SIGNIFICANCE This study helps to establish the practical guidelines on the diagnostic use of CCEPs/CCSRs.
Collapse
Affiliation(s)
- Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Juntendo University, Tokyo 1138421, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama 2360004, Japan
| | - Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
15
|
Freigang S, Jiménez-Jiménez D, Kazi F, Díaz-Díaz J, Pina M, Cunha M, Alarcón G, Selway RP, Valentín A. Subacute neocortical stimulation (SNCS) and its effects on epileptic activity in adults and children diagnosed with focal cortical dysplasia (FCD). Epilepsy Res 2020; 166:106392. [PMID: 32688271 DOI: 10.1016/j.eplepsyres.2020.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Chronic intracranial electrical stimulation is now widely used as treatment for drug resistant epilepsy. Subacute neocortical stimulation (SNCS) can also be performed during EEG recordings with intracranial electrodes (iEEG), but its diagnostic value remains largely unknown. METHODS We assessed the effects of SNCS on the frequency of seizures and epileptiform discharges (EDs) during 290 h of iEEG- from 12 patients (6 adults, 6 children) with epilepsy secondary to focal cortical dysplasia (FCD). RESULTS In 9/12 patients, SNCS periods showed decreased seizure-frequency (Median -73 %, p = 0.0093). At baseline, incidence of EDs were correlated with seizure-frequency (Spearman r = 0.59). However, this correlation disappeared during SNCS and a significant change in the incidence of EDs was observed. In addition, there was a trend towards greater reduction in seizure-frequency during SNCS in patients who underwent surgery. CONCLUSION In summary, SNCS can reduce seizure-frequency and changes ED-frequency. The variability in ED changes may be explained by different effects of SNCS depending on electrode location. The magnitude of seizure reduction during SNCS suggests that this technique could contribute to preoperative assessment in epilepsy surgery.
Collapse
Affiliation(s)
- Sascha Freigang
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience London, UK; Department of Neurosurgery, Medical University Graz, Austria.
| | - Diego Jiménez-Jiménez
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience London, UK; Department of Clinical Neurophysiology, King's College Hospital NHS FT, London, UK; Universidad San Francisco De Quito, School of Medicine, Quito, Ecuador; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Service Foundation Trust, London, UK; The Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Farhana Kazi
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience London, UK; Weill Cornell Medical College, Doha, Qatar
| | - Judit Díaz-Díaz
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
| | - Marisa Pina
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
| | - Maria Cunha
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
| | - Gonzalo Alarcón
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience London, UK; Department of Clinical and Experimental Epilepsy, Institute of Neurology, Queen Square, London, UK; Weill Cornell Medical College, Doha, Qatar
| | - Richard P Selway
- Department of Neurosurgery, King's College Hospital NHS FT, London, UK
| | - Antonio Valentín
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience London, UK; Department of Clinical Neurophysiology, King's College Hospital NHS FT, London, UK
| |
Collapse
|
16
|
Sprengers M, Raedt R, Larsen LE, Delbeke J, Wadman WJ, Boon P, Vonck K. Deep brain stimulation reduces evoked potentials with a dual time course in freely moving rats: Potential neurophysiological basis for intermittent as an alternative to continuous stimulation. Epilepsia 2020; 61:903-913. [DOI: 10.1111/epi.16498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/18/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Mathieu Sprengers
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| | - Robrecht Raedt
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| | - Lars Emil Larsen
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| | - Jean Delbeke
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| | - Wytse Jan Wadman
- Swammerdam Institute of Life Sciences University of Amsterdam Amsterdam The Netherlands
| | - Paul Boon
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| | - Kristl Vonck
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| |
Collapse
|
17
|
Silverstein BH, Asano E, Sugiura A, Sonoda M, Lee MH, Jeong JW. Dynamic tractography: Integrating cortico-cortical evoked potentials and diffusion imaging. Neuroimage 2020; 215:116763. [PMID: 32294537 DOI: 10.1016/j.neuroimage.2020.116763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Cortico-cortical evoked potentials (CCEPs) are utilized to identify effective networks in the human brain. Following single-pulse electrical stimulation of cortical electrodes, evoked responses are recorded from distant cortical areas. A negative deflection (N1) which occurs 10-50 ms post-stimulus is considered to be a marker for direct cortico-cortical connectivity. However, with CCEPs alone it is not possible to observe the white matter pathways that conduct the signal or accurately predict N1 amplitude and latency at downstream recoding sites. Here, we develop a new approach, termed "dynamic tractography," which integrates CCEP data with diffusion-weighted imaging (DWI) data collected from the same patients. This innovative method allows greater insights into cortico-cortical networks than provided by each method alone and may improve the understanding of large-scale networks that support cognitive functions. The dynamic tractography model produces several fundamental hypotheses which we investigate: 1) DWI-based pathlength predicts N1 latency; 2) DWI-based pathlength negatively predicts N1 voltage; and 3) fractional anisotropy (FA) along the white matter path predicts N1 propagation velocity. METHODS Twenty-three neurosurgical patients with drug-resistant epilepsy underwent both extraoperative CCEP recordings and preoperative DWI scans. Subdural grids of 3 mm diameter electrodes were used for stimulation and recording, with 98-128 eligible electrodes per patient. CCEPs were elicited by trains of 1 Hz stimuli with an intensity of 5 mA and recorded at a sample rate of 1 kHz. N1 peak and latency were defined as the maximum of a negative deflection within 10-50 ms post-stimulus with a z-score > 5 relative to baseline. Electrodes and DWI were coregistered to construct electrode connectomes for white matter quantification. RESULTS Clinical variables (age, sex, number of anti-epileptic drugs, handedness, and stimulated hemisphere) did not correlate with the key outcome measures (N1 peak amplitude, latency, velocity, or DWI pathlength). All subjects and electrodes were therefore pooled into a group-level analysis to determine overall patterns. As hypothesized, DWI path length positively predicted N1 latency (R2 = 0.81, β = 1.51, p = 4.76e-16) and negatively predicted N1 voltage (R2 = 0.79, β = -0.094, p = 9.30e-15), while FA predicted N1 propagation velocity (R2 = 0.35, β = 48.0, p = 0.001). CONCLUSION We have demonstrated that the strength and timing of the CCEP N1 is dependent on the properties of the underlying white matter network. Integrated CCEP and DWI visualization allows robust localization of intact axonal pathways which effectively interconnect eloquent cortex.
Collapse
Affiliation(s)
- Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | - Eishi Asano
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA; Dept. of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA; Dept. of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA
| | - Ayaka Sugiura
- Dept. of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA
| | - Masaki Sonoda
- Dept. of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA
| | - Min-Hee Lee
- Dept. of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA; Translational Imaging Laboratory, Wayne State University, Detroit, MI, USA
| | - Jeong-Won Jeong
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA; Dept. of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA; Dept. of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA; Translational Imaging Laboratory, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
18
|
Usami K, Milsap GW, Korzeniewska A, Collard MJ, Wang Y, Lesser RP, Anderson WS, Crone NE. Cortical Responses to Input From Distant Areas are Modulated by Local Spontaneous Alpha/Beta Oscillations. Cereb Cortex 2020; 29:777-787. [PMID: 29373641 DOI: 10.1093/cercor/bhx361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 01/13/2023] Open
Abstract
Any given area in human cortex may receive input from multiple, functionally heterogeneous areas, potentially representing different processing threads. Alpha (8-13 Hz) and beta oscillations (13-20 Hz) have been hypothesized by other investigators to gate local cortical processing, but their influence on cortical responses to input from other cortical areas is unknown. To study this, we measured the effect of local oscillatory power and phase on cortical responses elicited by single-pulse electrical stimulation (SPES) at distant cortical sites, in awake human subjects implanted with intracranial electrodes for epilepsy surgery. In 4 out of 5 subjects, the amplitudes of corticocortical evoked potentials (CCEPs) elicited by distant SPES were reproducibly modulated by the power, but not the phase, of local oscillations in alpha and beta frequencies. Specifically, CCEP amplitudes were higher when average oscillatory power just before distant SPES (-110 to -10 ms) was high. This effect was observed in only a subset (0-33%) of sites with CCEPs and, like the CCEPs themselves, varied with stimulation at different distant sites. Our results suggest that although alpha and beta oscillations may gate local processing, they may also enhance the responsiveness of cortex to input from distant cortical sites.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Griffin W Milsap
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maxwell J Collard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Ronald P Lesser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Abstract
Although Alzheimer's disease (AD) was described over a century ago, there are no effective approaches to its prevention and treatment. Such a slow progress is explained, at least in part, by our incomplete understanding of the mechanisms underlying the pathogenesis of AD. Here, I champion a hypothesis whereby AD is initiated on a disruption of the blood-brain barrier (BBB) caused by either genetic or non-genetic risk factors. The BBB disruption leads to an autoimmune response against pyramidal neurons located in the allo- and neocortical structures involved in memory formation and storage. The response caused by the adaptive immune system is not strong enough to directly kill neurons but may be sufficient to make them selectively vulnerable to neurofibrillary pathology. This hypothesis is based on the recent data showing that memory formation is associated with epigenetic chromatin modifications and, therefore, may be accompanied by expression of memory-specific proteins recognized by the immune system as "non-self" antigens. The autoimmune hypothesis is testable, and I discuss potential ways for its experimental and clinical verification. If confirmed, this hypothesis can radically change therapeutic approaches to AD prevention and treatment.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Sugiura A, Silverstein BH, Jeong JW, Nakai Y, Sonoda M, Motoi H, Asano E. Four-dimensional map of direct effective connectivity from posterior visual areas. Neuroimage 2020; 210:116548. [PMID: 31958582 DOI: 10.1016/j.neuroimage.2020.116548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022] Open
Abstract
Lower- and higher-order visual cortices in the posterior brain, ranging from the medial- and lateral-occipital to fusiform regions, are suggested to support visual object recognition, whereas the frontal eye field (FEF) plays a role in saccadic eye movements which optimize visual processing. Previous studies using electrophysiology and functional MRI techniques have reported that tasks requiring visual object recognition elicited cortical activation sequentially in the aforementioned posterior visual regions and FEFs. The present study aims to provide unique evidence of direct effective connectivity outgoing from the posterior visual regions by measuring the early component (10-50 ms) of cortico-cortical spectral responses (CCSRs) elicited by weak single-pulse direct cortical electrical stimulation. We studied 22 patients who underwent extraoperative intracranial EEG recording for clinical localization of seizure foci and functionally-important brain regions. We used animations to visualize the spatiotemporal dynamics of gamma band CCSRs elicited by stimulation of three different posterior visual regions. We quantified the strength of CCSR-defined effective connectivity between the lower- and higher-order posterior visual regions as well as from the posterior visual regions to the FEFs. We found that effective connectivity within the posterior visual regions was larger in the feedforward (i.e., lower-to higher-order) direction compared to the opposite direction. Specifically, connectivity from the medial-occipital region was largest to the lateral-occipital region, whereas that from the lateral-occipital region was largest to the fusiform region. Among the posterior visual regions, connectivity to the FEF was largest from the lateral-occipital region and the mean peak latency of CCSR propagation from the lateral-occipital region to FEF was 26 ms. Our invasive study of the human brain using a stimulation-based intervention supports the model that the posterior visual regions have direct cortico-cortical connectivity pathways in which neural activity is transferred preferentially from the lower-to higher-order areas. The human brain has direct cortico-cortical connectivity allowing a rapid transfer of neural activity from the lateral-occipital region to the FEF.
Collapse
Affiliation(s)
- Ayaka Sugiura
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI, 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, 6418509, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Hirotaka Motoi
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
21
|
Extent of Single-Neuron Activity Modulation by Hippocampal Interictal Discharges Predicts Declarative Memory Disruption in Humans. J Neurosci 2019; 40:682-693. [PMID: 31754015 PMCID: PMC6961998 DOI: 10.1523/jneurosci.1380-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/17/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022] Open
Abstract
Memory deficits are common in epilepsy patients. In these patients, the interictal EEG commonly shows interictal epileptiform discharges (IEDs). While IEDs are associated with transient cognitive impairments, it remains poorly understood why this is. We investigated the effects of human (male and female) hippocampal IEDs on single-neuron activity during a memory task in patients with medically refractory epilepsy undergoing depth electrode monitoring. We quantified the effects of hippocampal IEDs on single-neuron activity and the impact of this modulation on subjectively declared memory strength. Across all recorded neurons, the activity of 50 of 728 neurons were significantly modulated by IEDs, with the strongest modulation in the medial temporal lobe (33 of 416) and in particular the right hippocampus (12 of 58). Putative inhibitory neurons, as identified by their extracellular signature, were more likely to be modulated by IEDs than putative excitatory neurons (19 of 157 vs 31 of 571). Behaviorally, the occurrence of hippocampal IEDs was accompanied by a disruption of recognition of familiar images only if they occurred up to 2 s before stimulus onset. In contrast, IEDs did not impair encoding or recognition of novel images, indicating high temporal and task specificity of the effects of IEDs. The degree of modulation of individual neurons by an IED correlated with the declared confidence of a retrieval trial, with higher firing rates indicative of reduced confidence. Together, these data link the transient modulation of individual neurons by IEDs to specific declarative memory deficits in specific cell types, thereby revealing a mechanism by which IEDs disrupt medial temporal lobe-dependent declarative memory retrieval processes. SIGNIFICANCE STATEMENT Interictal epileptiform discharges (IEDs) are thought to be a cause of memory deficits in chronic epilepsy patients, but the underlying mechanisms are not understood. Utilizing single-neuron recordings in epilepsy patients, we found that hippocampal IEDs transiently change firing of hippocampal neurons and disrupted selectively the retrieval, but not encoding, of declarative memories. The extent of the modulation of the individual firing of hippocampal neurons by an IED predicted the extent of reduction of subjective retrieval confidence. Together, these data reveal a specific kind of transient cognitive impairment caused by IEDs and link this impairment to the modulation of the activity of individual neurons. Understanding the mechanisms by which IEDs impact memory is critical for understanding memory impairments in epilepsy patients.
Collapse
|
22
|
File B, Nánási T, Tóth E, Bokodi V, Tóth B, Hajnal B, Kardos Z, Entz L, Erőss L, Ulbert I, Fabó D. Reorganization of Large-Scale Functional Networks During Low-Frequency Electrical Stimulation of the Cortical Surface. Int J Neural Syst 2019; 30:1950022. [DOI: 10.1142/s0129065719500229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the functional network reorganization caused by low-frequency electrical stimulation (LFES) of human brain cortical surface. Intracranial EEG data from subdural grid positions were analyzed in 16 pre-surgery epileptic patients. LFES was performed by injecting current pulses (10[Formula: see text]mA, 0.2[Formula: see text]ms pulse width, 0.5[Formula: see text]Hz, 25 trials) into all adjacent electrode contacts. Dynamic functional connectivity analysis was carried out on two frequency bands (low: 1–4[Formula: see text]Hz; high: 10–40[Formula: see text]Hz) to investigate the early, high frequency and late, low frequency responses elicited by the stimulation. The centralization increased in early compared to late responses, suggesting a more prominent role of direct neural links between primarily activated areas and distant brain regions. Injecting the current into the seizure onset zone (SOZ) evoked a more integrated functional topology during the early (N1) period of the response, whereas during the late (N2) period — regardless of the stimulation site — the connectedness of the SOZ was elevated compared to the non-SOZ tissue. The abnormal behavior of the epileptic sub-network during both part of the responses supports the idea of the pathogenic role of impaired inhibition and excitation mechanisms in epilepsy.
Collapse
Affiliation(s)
- Bálint File
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Computational Neuroscience Group, Wigner Research Centre for Physics, HAS, Budapest, H-1121, Hungary
| | - Tibor Nánási
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, H-1085, Hungary
| | - Emília Tóth
- Department of Neurology, University of Alabama at Birmingham, AL 35233, USA
| | - Virág Bokodi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, H-1145, Hungary
| | - Brigitta Tóth
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
| | - Boglárka Hajnal
- Juhász Pál Epilepsy Centrum, National Institute of Clinical Neuroscience, Budapest, H-1145, Hungary
| | - Zsófia Kardos
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
| | - László Entz
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, H-1145, Hungary
| | - Loránd Erőss
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, H-1145, Hungary
| | - István Ulbert
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
| | - Dániel Fabó
- Juhász Pál Epilepsy Centrum, National Institute of Clinical Neuroscience, Budapest, H-1145, Hungary
| |
Collapse
|
23
|
Hebbink J, Huiskamp G, van Gils SA, Leijten FSS, Meijer HGE. Pathological responses to single-pulse electrical stimuli in epilepsy: The role of feedforward inhibition. Eur J Neurosci 2019; 51:1122-1136. [PMID: 31454445 PMCID: PMC7079068 DOI: 10.1111/ejn.14562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022]
Abstract
Delineation of epileptogenic cortex in focal epilepsy patients may profit from single‐pulse electrical stimulation during intracranial EEG recordings. Single‐pulse electrical stimulation evokes early and delayed responses. Early responses represent connectivity. Delayed responses are a biomarker for epileptogenic cortex, but up till now, the precise mechanism generating delayed responses remains elusive. We used a data‐driven modelling approach to study early and delayed responses. We hypothesized that delayed responses represent indirect responses triggered by early response activity and investigated this for 11 patients. Using two coupled neural masses, we modelled early and delayed responses by combining simulations and bifurcation analysis. An important feature of the model is the inclusion of feedforward inhibitory connections. The waveform of early responses can be explained by feedforward inhibition. Delayed responses can be viewed as second‐order responses in the early response network which appear when input to a neural mass falls below a threshold forcing it temporarily to a spiking state. The combination of the threshold with noisy background input explains the typical stochastic appearance of delayed responses. The intrinsic excitability of a neural mass and the strength of its input influence the probability at which delayed responses to occur. Our work gives a theoretical basis for the use of delayed responses as a biomarker for the epileptogenic zone, confirming earlier clinical observations. The combination of early responses revealing effective connectivity, and delayed responses showing intrinsic excitability, makes single‐pulse electrical stimulation an interesting tool to obtain data for computational models of epilepsy surgery.
Collapse
Affiliation(s)
- Jurgen Hebbink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands.,Department of Applied Mathematics and Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Geertjan Huiskamp
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Stephan A van Gils
- Department of Applied Mathematics and Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Frans S S Leijten
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hil G E Meijer
- Department of Applied Mathematics and Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
24
|
Usami K, Korzeniewska A, Matsumoto R, Kobayashi K, Hitomi T, Matsuhashi M, Kunieda T, Mikuni N, Kikuchi T, Yoshida K, Miyamoto S, Takahashi R, Ikeda A, Crone NE. The neural tides of sleep and consciousness revealed by single-pulse electrical brain stimulation. Sleep 2019; 42:zsz050. [PMID: 30794319 PMCID: PMC6559171 DOI: 10.1093/sleep/zsz050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Wakefulness and sleep arise from global changes in brain physiology that may also govern the flow of neural activity between cortical regions responsible for perceptual processing versus planning and action. To test whether and how the sleep/wake cycle affects the overall propagation of neural activity in large-scale brain networks, we applied single-pulse electrical stimulation (SPES) in patients implanted with intracranial EEG electrodes for epilepsy surgery. SPES elicited cortico-cortical spectral responses at high-gamma frequencies (CCSRHG, 80-150 Hz), which indexes changes in neuronal population firing rates. Using event-related causality (ERC) analysis, we found that the overall patterns of neural propagation among sites with CCSRHG were different during wakefulness and different sleep stages. For example, stimulation of frontal lobe elicited greater propagation toward parietal lobe during slow-wave sleep than during wakefulness. During REM sleep, we observed a decrease in propagation within frontal lobe, and an increase in propagation within parietal lobe, elicited by frontal and parietal stimulation, respectively. These biases in the directionality of large-scale cortical network dynamics during REM sleep could potentially account for some of the unique experiential aspects of this sleep stage. Together these findings suggest that the regulation of conscious awareness and sleep is associated with differences in the balance of neural propagation across large-scale frontal-parietal networks.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Masao Matsuhashi
- Research and Educational Unit of Leaders for Integrated Medical System, Kyoto University Graduate School of medicine, Sakyo-ku, Kyoto, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Shizukawa Toon city, Ehime, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Neurosurgery, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Intracortical Dynamics Underlying Repetitive Stimulation Predicts Changes in Network Connectivity. J Neurosci 2019; 39:6122-6135. [PMID: 31182638 DOI: 10.1523/jneurosci.0535-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Targeted stimulation can be used to modulate the activity of brain networks. Previously we demonstrated that direct electrical stimulation produces predictable poststimulation changes in brain excitability. However, understanding the neural dynamics during stimulation and its relationship to poststimulation effects is limited but critical for treatment optimization. Here, we applied 10 Hz direct electrical stimulation across several cortical regions in 14 human subjects (6 males) implanted with intracranial electrodes for seizure monitoring. The stimulation train was characterized by a consistent increase in high gamma (70-170 Hz) power. Immediately post-train, low-frequency (1-8 Hz) power increased, resulting in an evoked response that was highly correlated with the neural response during stimulation. Using two measures of network connectivity, corticocortical evoked potentials (indexing effective connectivity), and theta coherence (indexing functional connectivity), we found a stronger response to stimulation in regions that were highly connected to the stimulation site. In these regions, repeated cycles of stimulation trains and rest progressively altered the stimulation response. Finally, after just 2 min (∼10%) of repetitive stimulation, we were able to predict poststimulation connectivity changes with high discriminability. Together, this work reveals a relationship between stimulation dynamics and poststimulation connectivity changes in humans. Thus, measuring neural activity during stimulation can inform future plasticity-inducing protocols.SIGNIFICANCE STATEMENT Brain stimulation tools have the potential to revolutionize the treatment of neuropsychiatric disorders. Despite the widespread use of brain stimulation techniques such as transcranial magnetic stimulation, the therapeutic efficacy of these technologies remains suboptimal. This is in part because of a lack of understanding of the dynamic neural changes that occur during stimulation. In this study, we provide the first detailed characterization of neural activity during plasticity induction through intracranial electrode stimulation and recording in 14 medication-resistant epilepsy patients. These results fill a missing gap in our understanding of stimulation-induced plasticity in humans. In the longer-term, these data will also guide our translational efforts toward non-invasive, personalized, closed-loop neuromodulation therapy for neurological and psychiatric disorders in humans.
Collapse
|
26
|
Large-Scale 3-5 Hz Oscillation Constrains the Expression of Neocortical Fast Ripples in a Mouse Model of Mesial Temporal Lobe Epilepsy. eNeuro 2019; 6:eN-CFN-0494-18. [PMID: 30783615 PMCID: PMC6378326 DOI: 10.1523/eneuro.0494-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/12/2023] Open
Abstract
Large-scale slow oscillations allow the integration of neuronal activity across brain regions during sensory or cognitive processing. However, evidence that this form of coding also holds for pathological networks, such as for distributed networks in epileptic disorders, does not yet exist. Here, we show in a mouse model of unilateral hippocampal epilepsy that epileptic fast ripples generated in the neocortex distant from the primary focus occur during transient trains of interictal epileptic discharges. During these epileptic paroxysms, local phase-locking of neuronal firing and a phase-amplitude coupling of the epileptic discharges over a slow oscillation at 3-5 Hz are detected. Furthermore, the buildup of the slow oscillation begins in the bihippocampal network that includes the focus, which synchronizes and drives the activity across the large-scale epileptic network into the frontal cortex. This study provides the first functional description of the emergence of neocortical fast ripples in hippocampal epilepsy and shows that cross-frequency coupling might be a fundamental mechanism underlying the spreading of epileptic activity.
Collapse
|
27
|
Xu W, Gao L, Li T, Shao A, Zhang J. Neuroprotective Role of Agmatine in Neurological Diseases. Curr Neuropharmacol 2018; 16:1296-1305. [PMID: 28786346 PMCID: PMC6251039 DOI: 10.2174/1570159x15666170808120633] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Background: Neurological diseases have always been one of the leading cause of mobility and mortality world-widely. However, it is still lacking efficient agents. Agmatine, an endogenous polyamine, exerts its diverse biological characteristics and therapeutic potential in varied aspects. Methods: This review would focus on the neuroprotective actions of agmatine and its potential mechanisms in the setting of neurological diseases. Results: Numerous studies had demonstrated the neuroprotective effect of agmatine in varied types of neurological diseases, including acute attack (stroke and trauma brain injury) and chronic neurodegenerative diseases (Parkinson's disease, Alz-heimer’s disease). The potential mechanism of agmatine induced neuroprotection includes anti-oxidation, anti-apoptosis, anti-inflammation, brain blood barrier (BBB) protection and brain edema prevention. Conclusions: The safety and low incidence of adverse effects indicate the vast potential therapeutic value of agmatine in the treatment of neurological diseases. However, most of the available studies relate to the agmatine are conducted in experi-mental models, more clinical trials are needed before the agmatine could be extensively clinically used
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Delayed high-frequency suppression after automated single-pulse electrical stimulation identifies the seizure onset zone in patients with refractory epilepsy. Clin Neurophysiol 2018; 129:2466-2474. [DOI: 10.1016/j.clinph.2018.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 11/19/2022]
|
29
|
Huiskamp G, van Blooijs D, van der Stoel M. Harvesting responses to single pulse electrical stimulation for presurgical evaluation in epilepsy. Clin Neurophysiol 2018; 129:2444-2445. [DOI: 10.1016/j.clinph.2018.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
|
30
|
Waldman ZJ, Camarillo-Rodriguez L, Chervenova I, Berry B, Shimamoto S, Elahian B, Kucewicz M, Ganne C, He XS, Davis LA, Stein J, Das S, Gorniak R, Sharan AD, Gross R, Inman CS, Lega BC, Zaghloul K, Jobst BC, Davis KA, Wanda P, Khadjevand M, Tracy J, Rizzuto DS, Worrell G, Sperling M, Weiss SA. Ripple oscillations in the left temporal neocortex are associated with impaired verbal episodic memory encoding. Epilepsy Behav 2018; 88:33-40. [PMID: 30216929 PMCID: PMC6240385 DOI: 10.1016/j.yebeh.2018.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND We sought to determine if ripple oscillations (80-120 Hz), detected in intracranial electroencephalogram (iEEG) recordings of patients with epilepsy, correlate with an enhancement or disruption of verbal episodic memory encoding. METHODS We defined ripple and spike events in depth iEEG recordings during list learning in 107 patients with focal epilepsy. We used logistic regression models (LRMs) to investigate the relationship between the occurrence of ripple and spike events during word presentation and the odds of successful word recall following a distractor epoch and included the seizure onset zone (SOZ) as a covariate in the LRMs. RESULTS We detected events during 58,312 word presentation trials from 7630 unique electrode sites. The probability of ripple on spike (RonS) events was increased in the SOZ (p < 0.04). In the left temporal neocortex, RonS events during word presentation corresponded with a decrease in the odds ratio (OR) of successful recall, however, this effect only met significance in the SOZ (OR of word recall: 0.71, 95% confidence interval (CI): 0.59-0.85, n = 158 events, adaptive Hochberg, p < 0.01). Ripple on oscillation (RonO) events that occurred in the left temporal neocortex non-SOZ also correlated with decreased odds of successful recall (OR: 0.52, 95% CI: 0.34-0.80, n = 140, adaptive Hochberg, p < 0.01). Spikes and RonS that occurred during word presentation in the left middle temporal gyrus (MTG) correlated with the most significant decrease in the odds of successful recall, irrespective of the location of the SOZ (adaptive Hochberg, p < 0.01). CONCLUSION Ripples and spikes generated in the left temporal neocortex are associated with impaired verbal episodic memory encoding. Although physiological and pathological ripple oscillations were not distinguished during cognitive tasks, our results show an association of undifferentiated ripples with impaired encoding. The effect was sometimes specific to regions outside the SOZ, suggesting that widespread effects of epilepsy outside the SOZ may contribute to cognitive impairment.
Collapse
Affiliation(s)
- Zachary J. Waldman
- Dept. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA USA 19107
| | | | - Inna Chervenova
- Dept. of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA USA 19107
| | - Brent Berry
- Dept. of Neurology, Mayo Systems Electrophysiology Laboratory (MSEL).,Dept. of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA 55905
| | - Shoichi Shimamoto
- Dept. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA USA 19107
| | - Bahareh Elahian
- Dept. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA USA 19107
| | - Michal Kucewicz
- Dept. of Neurology, Mayo Systems Electrophysiology Laboratory (MSEL).,Dept. of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA 55905
| | - Chaitanya Ganne
- Dept. of Neurology, Thomas Jefferson University, Philadelphia, PA USA 19107
| | - Xiao-Song He
- Dept. of Neurology, Thomas Jefferson University, Philadelphia, PA USA 19107
| | - Leon A. Davis
- Dept. of Psychology, Mayo Clinic, Rochester, MN USA 55905
| | - Joel Stein
- Department of Radiology, Mayo Clinic, Rochester, MN USA 55905
| | - Sandhitsu Das
- Penn Image Computing and Science Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN USA 55905.,Penn Memory Center, Department of Neurology, Mayo Clinic, Rochester, MN USA 55905
| | - Richard Gorniak
- Dept. of Radiology, Thomas Jefferson University, Philadelphia, PA USA 19107
| | - Ashwini D. Sharan
- Dept. of Neurosurgery, Thomas Jefferson University, Philadelphia, PA USA 19107
| | - Robert Gross
- Emory University, Dept. of Neurosurgery, Atlanta, GA USA 30322
| | - Cory S. Inman
- Emory University, Dept. of Neurosurgery, Atlanta, GA USA 30322
| | - Bradley C. Lega
- University of Texas Southwestern Medical Center, Dept. of Neurosurgery, Dallas, TX USA 75390
| | - Kareem Zaghloul
- Surgical Neurology Branch, NINDS, NIH, Bethesda, MD USA 20892
| | - Barbara C. Jobst
- Dartmouth-Hitchcock Medical Center, Dept. of Neurology, Lebanon, NH USA 03756
| | - Katheryn A. Davis
- Dept. of Neurology, University of Pennsylvania, Philadelphia, PA USA 19104
| | - Paul Wanda
- Dept. of Psychology, Mayo Clinic, Rochester, MN USA 55905
| | - Mehraneh Khadjevand
- Dept. of Neurology, Mayo Systems Electrophysiology Laboratory (MSEL).,Dept. of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA 55905
| | - Joseph Tracy
- Dept. of Neurology, Thomas Jefferson University, Philadelphia, PA USA 19107
| | | | - Gregory Worrell
- Dept. of Neurology, Mayo Systems Electrophysiology Laboratory (MSEL).,Dept. of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA 55905
| | - Michael Sperling
- Dept. of Neurology, Thomas Jefferson University, Philadelphia, PA USA 19107
| | - Shennan A. Weiss
- Dept. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA USA 19107
| |
Collapse
|
31
|
Kamada K, Ogawa H, Kapeller C, Prueckl R, Hiroshima S, Tamura Y, Takeuchi F, Guger C. Disconnection of the pathological connectome for multifocal epilepsy surgery. J Neurosurg 2018; 129:1182-1194. [PMID: 29271713 DOI: 10.3171/2017.6.jns17452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVERecent neuroimaging studies suggest that intractable epilepsy involves pathological functional networks as well as strong epileptogenic foci. Combining cortico-cortical evoked potential (CCEP) recording and tractography is a useful strategy for mapping functional connectivity in normal and pathological networks. In this study, the authors sought to demonstrate the efficacy of preoperative combined CCEP recording, high gamma activity (HGA) mapping, and tractography for surgical planning, and of intraoperative CCEP measures for confirmation of selective pathological network disconnection.METHODSThe authors treated 4 cases of intractable epilepsy. Diffusion tensor imaging-based tractography data were acquired before the first surgery for subdural grid implantation. HGA and CCEP investigations were done after the first surgery, before the second surgery was performed to resect epileptogenic foci, with continuous CCEP monitoring during resection.RESULTSAll 4 patients in this report had measurable pathological CCEPs. The mean negative peak-1 latency of normal CCEPs related to language functions was 22.2 ± 3.5 msec, whereas pathological CCEP latencies varied between 18.1 and 22.4 msec. Pathological CCEPs diminished after complete disconnection in all cases. At last follow-up, all of the patients were in long-term postoperative seizure-free status, although 1 patient still suffered from visual aura every other month.CONCLUSIONSCombined CCEP measurement, HGA mapping, and tractography greatly facilitated targeted disconnection of pathological networks in this study. Although CCEP recording requires technical expertise, it allows for assessment of pathological network involvement in intractable epilepsy and may improve seizure outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fumiya Takeuchi
- 3Center for Advanced Research and Education, School of Medicine, Asahikawa Medical University, Hokkaido, Japan; and
| | | |
Collapse
|
32
|
Alarcón G, Jiménez-Jiménez D, Valentín A, Martín-López D. Characterizing EEG Cortical Dynamics and Connectivity with Responses to Single Pulse Electrical Stimulation (SPES). Int J Neural Syst 2018; 28:1750057. [DOI: 10.1142/s0129065717500575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objectives: To model cortical connections in order to characterize their oscillatory behavior and role in the generation of spontaneous electroencephalogram (EEG). Methods: We studied averaged responses to single pulse electrical stimulation (SPES) from the non-epileptogenic hemisphere of five patients assessed with intracranial EEG who became seizure free after contralateral temporal lobectomy. Second-order control system equations were modified to characterize the systems generating a given response. SPES responses were modeled as responses to a unit step input. EEG power spectrum was calculated on the 20[Formula: see text]s preceding SPES. Results: 121 channels showed responses to 32 stimulation sites. A single system could model the response in 41.3% and two systems were required in 58.7%. Peaks in the frequency response of the models tended to occur within the frequency range of most activity on the spontaneous EEG. Discrepancies were noted between activity predicted by models and activity recorded in the spontaneous EEG. These discrepancies could be explained by the existence of alpha rhythm or interictal epileptiform discharges. Conclusions: Cortical interactions shown by SPES can be described as control systems which can predict cortical oscillatory behavior. The method is unique as it describes connectivity as well as dynamic interactions.
Collapse
Affiliation(s)
- Gonzalo Alarcón
- Comprehensive Epilepsy Center Neuroscience Institute, Academic Health Systems, Hamad Medical Corporation, Doha, Qatar
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Weill Cornell Medical College, Doha, Qatar
| | - Diego Jiménez-Jiménez
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Universidad San Francisco de Quito, School of Medicine, Quito, Ecuador
| | - Antonio Valentín
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Weill Cornell Medical College, Doha, Qatar
| | - David Martín-López
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Weill Cornell Medical College, Doha, Qatar
- Department of Clinical Neurophysiology, Kingston Hospital NHS FT, London, UK
- Department of Clinical Neurophysiology, St George’s University Hospitals NHS FT, London, UK
| |
Collapse
|
33
|
Bartoli A, Tyrand R, Vargas MI, Momjian S, Boëx C. Low Frequency Microstimulation Is Locally Excitatory in Patients With Epilepsy. Front Neural Circuits 2018; 12:22. [PMID: 29670511 PMCID: PMC5893788 DOI: 10.3389/fncir.2018.00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) could become a palliative treatment for patients with drug-resistant epilepsy for which surgery cannot be proposed. The objective of this study was to perform microstimulation to measure the effects of DBS in epilepsy locally at the level of a few neurons, with microelectrode recordings, for the first time in patients with epilepsy. Microelectrode recordings were performed before, during and after microstimulation in nine patients with refractory epilepsy. Neuronal spikes were successfully extracted from multi-unit recordings with clustering in six out of seven patients during hippocampal and in one out of two patients during cortical dysplasia microstimulation (1 Hz, charge-balanced biphasic waveform, 60 μs/ph, 25 μA). The firing rates increased in four out of the six periods of microstimulation that could be analyzed. The firing rates were found higher than before microstimulation in all eight periods with increases reaching significance in six out of eight periods. Low-frequency microstimulation was hence sufficient to induce neuronal excitation lasting beyond the stimulation period. No inhibition was observed. This report presents the first evidence that microstimulation performed in epileptic patients produced locally neuronal excitation. Hence neuronal excitation is shown here as the local mechanism of action of DBS. This local excitation is in agreement with epileptogenic effects of low-frequency hippocampal macrostimulation.
Collapse
Affiliation(s)
- Andrea Bartoli
- Department of Neurosurgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Rémi Tyrand
- Department of Neurology, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maria I Vargas
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Neuroradiology, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Shahan Momjian
- Department of Neurosurgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Colette Boëx
- Department of Neurology, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Prime D, Rowlands D, O'Keefe S, Dionisio S. Considerations in performing and analyzing the responses of cortico-cortical evoked potentials in stereo-EEG. Epilepsia 2017; 59:16-26. [DOI: 10.1111/epi.13939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- David Prime
- Griffith University School of Engineering; Brisbane Qld Australia
- Mater Advanced Epilepsy Unit; Mater Hospital; Brisbane Qld Australia
| | - David Rowlands
- Griffith University School of Engineering; Brisbane Qld Australia
| | - Steven O'Keefe
- Griffith University School of Engineering; Brisbane Qld Australia
| | - Sasha Dionisio
- Mater Advanced Epilepsy Unit; Mater Hospital; Brisbane Qld Australia
| |
Collapse
|
35
|
Martín-López D, Jiménez-Jiménez D, Cabañés-Martínez L, Selway RP, Valentín A, Alarcón G. The Role of Thalamus Versus Cortex in Epilepsy: Evidence from Human Ictal Centromedian Recordings in Patients Assessed for Deep Brain Stimulation. Int J Neural Syst 2017; 27:1750010. [DOI: 10.1142/s0129065717500101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: The onset of generalized seizures is a long debated subject in epilepsy. The relative roles of cortex and thalamus in initiating and maintaining the different seizure types are unclear. Objective: The purpose of the study is to estimate whether the cortex or the centromedian thalamic nucleus is leading in initiating and maintaining seizures in humans. Methods: We report human ictal recordings with simultaneous thalamic and cortical electrodes from three patients without anesthesia being assessed for deep brain stimulation (DBS). Patients 1 and 2 had idiopathic generalized epilepsy whereas patient 3 had frontal lobe epilepsy. Visual inspection was combined with nonlinear correlation analysis. Results: In patient 1, seizure onset was bilateral cortical and the belated onset of leading thalamic discharges was associated with an increase in rhythmicity of discharges, both in thalamus and cortex. In patient 2, we observed bilateral independent interictal discharges restricted to the thalamus. However, ictal onset was diffuse, with discharges larger in the cortex even though they were led by the thalamus. In patient 3, seizure onset was largely restricted to frontal structures, with belated lagging thalamic involvement. Conclusion: In human generalized seizures, the thalamus may become involved early or late in the seizure but, once it becomes involved, it leads the cortex. In contrast, in human frontal seizures the thalamus gets involved late in the seizure and, once it becomes involved, it lags behind the cortex. In addition, the centromedian nucleus of the thalamus is capable of autonomous epileptogenesis as suggested by the presence of independent focal unilateral epileptiform discharges restricted to thalamic structures. The thalamus may also be responsible for maintaining the rhythmicity of ictal discharges.
Collapse
Affiliation(s)
- David Martín-López
- Department of Clinical Neurophysiology, Kingston Hospital NHS FT, London, UK
- Department of Clinical Neurophysiology, St George’s University Hospitals NHS FT, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Diego Jiménez-Jiménez
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Universidad San Francisco de Quito, School of Medicine, Quito, Ecuador
| | | | - Richard P. Selway
- Department of Neurosurgery, King’s College Hospital NHS FT, London, UK
| | - Antonio Valentín
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
| | - Gonzalo Alarcón
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Comprehensive Epilepsy Center Neuroscience Institute, Academic Health Systems, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
36
|
Kobayashi K, Matsumoto R, Matsuhashi M, Usami K, Shimotake A, Kunieda T, Kikuchi T, Yoshida K, Mikuni N, Miyamoto S, Fukuyama H, Takahashi R, Ikeda A. High frequency activity overriding cortico-cortical evoked potentials reflects altered excitability in the human epileptic focus. Clin Neurophysiol 2017; 128:1673-1681. [PMID: 28750290 DOI: 10.1016/j.clinph.2017.06.249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/10/2017] [Accepted: 06/22/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to clarify that high frequency activity (HFA) of cortico-cortical evoked potentials (CCEPs), elicited by single pulse electrical stimulation (SPES), reflects cortical excitability. METHODS We recruited 16 patients with refractory partial epilepsy who had chronic subdural electrode implantation for presurgical evaluation. A repetitive SPES was given to (1) the seizure onset zone (SOZ) and (2) the control cortices (non-seizure onset zone: nSOZ). CCEPs were recorded from the neighboring cortices within SOZ and nSOZ. We applied short-time Fourier transform to obtain the induced responses for the timing of early (<50ms after SPES) and late CCEP components and analyzed the logarithmic power change for ripple (<200Hz) and fast ripple (>200Hz) bands. RESULTS Twenty-one clear CCEPs were recorded for both the SOZ and nSOZ. The HFA power of early CCEPs in SOZ significantly increased compared to that in nSOZ in both frequency bands, particularly in mesial temporal lobe epilepsy (MTLE). CONCLUSION Similar to the features of spontaneous pathological HFOs, the power of stimulus-induced HFAs in SOZ were greater than that outside SOZ, particularly in MTLE. SIGNIFICANCE HFA overriding CCEPs can be a surrogate marker of cortical excitability in epileptic focus.
Collapse
Affiliation(s)
- Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Masao Matsuhashi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Shizukawa Toon City, Ehime 791-0295, Japan; Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo 060-8543, Japan.
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
37
|
Donos C, Mîndruţă I, Malîia MD, Raşină A, Ciurea J, Barborica A. Co-occurrence of high-frequency oscillations and delayed responses evoked by intracranial electrical stimulation in stereo-EEG studies. Clin Neurophysiol 2017; 128:1043-1052. [DOI: 10.1016/j.clinph.2016.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
38
|
Single pulse electrical stimulation and high-frequency oscillations, a complicated marriage. Clin Neurophysiol 2017; 128:1026-1027. [PMID: 28341565 DOI: 10.1016/j.clinph.2017.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/23/2022]
|
39
|
Keller CJ, Davidesco I, Megevand P, Lado FA, Malach R, Mehta AD. Tuning face perception with electrical stimulation of the fusiform gyrus. Hum Brain Mapp 2017; 38:2830-2842. [PMID: 28345189 DOI: 10.1002/hbm.23543] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/09/2022] Open
Abstract
The fusiform gyrus (FG) is an important node in the face processing network, but knowledge of its causal role in face perception is currently limited. Recent work demonstrated that high frequency stimulation applied to the FG distorts the perception of faces in human subjects (Parvizi et al. []: J Neurosci 32:14915-14920). However, the timing of this process in the FG relative to stimulus onset and the spatial extent of FG's role in face perception are unknown. Here, we investigate the causal role of the FG in face perception by applying precise, event-related electrical stimulation (ES) to higher order visual areas including the FG in six human subjects undergoing intracranial monitoring for epilepsy. We compared the effects of single brief (100 μs) electrical pulses to the FG and non-face-selective visual areas on the speed and accuracy of detecting distorted faces. Brief ES applied to face-selective sites did not affect accuracy but significantly increased the reaction time (RT) of detecting face distortions. Importantly, RT was altered only when ES was applied 100ms after visual onset and in face-selective but not place-selective sites. Furthermore, ES applied to face-selective areas decreased the amplitude of visual evoked potentials and high gamma power over this time window. Together, these results suggest that ES of face-selective regions within a critical time window induces a delay in face perception. These findings support a temporally and spatially specific causal role of face-selective areas and signify an important link between electrophysiology and behavior in face perception. Hum Brain Mapp 38:2830-2842, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Corey J Keller
- Department of Neurosurgery, Hofstra Northwell School of Medicine, and Feinstein Institute for Medical Research, Manhasset, New York.,Departments of Neuroscience and Neurology, Albert Einstein College of Medicine, Bronx, New York.,Departments of Psychiatry and Behavioral Sciences and Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, California
| | | | - Pierre Megevand
- Department of Neurosurgery, Hofstra Northwell School of Medicine, and Feinstein Institute for Medical Research, Manhasset, New York
| | - Fred A Lado
- Departments of Neuroscience and Neurology, Albert Einstein College of Medicine, Bronx, New York.,Department of Neurology, Montefiore Medical Center, Bronx, New York
| | | | - Ashesh D Mehta
- Department of Neurosurgery, Hofstra Northwell School of Medicine, and Feinstein Institute for Medical Research, Manhasset, New York
| |
Collapse
|
40
|
David LS, Topolnik L. Target-specific alterations in the VIP inhibitory drive to hippocampal GABAergic cells after status epilepticus. Exp Neurol 2017; 292:102-112. [PMID: 28315308 DOI: 10.1016/j.expneurol.2017.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 01/09/2023]
Abstract
Status epilepticus (SE) is associated with complex reorganization of hippocampal circuits involving a significant loss of specific subtypes of GABAergic interneurons. While adaptive circuit plasticity may increase the chances for recruitment of surviving interneurons, the underlying mechanisms remain largely unknown. We studied the alterations in the inhibitory tone received by the hippocampal CA1 oriens/alveus (O/A) interneurons from the vasoactive intestinal peptide (VIP)- and calretinin (CR)-expressing interneurons using the pilocarpine-induced status epilepticus (SE) model of epilepsy. Our data showed that, while the overall density of the VIP/CR-co-expressing interneurons remained preserved, the number of axonal boutons made by these cells within the CA1 O/A was significantly lower after SE. Furthermore, VIP/CR interneurons exhibited significant alterations in their dendritic morphology and passive membrane properties. Subsequently, while all O/A interneuron types, including oriens-lacunosum moleculare (OLM), bistratified (Bis) and basket cells, exhibited decrease in spontaneous inhibitory drive, Bis and basket cells showed a smaller amplitude of light-evoked IPSCs mediated by the selective activation of VIP-positive interneurons. These data point to the target cell-specific changes in the inhibitory tone provided by the VIP cells to O/A interneurons following SE. Given that basket, Bis and OLM cells coordinate different subcellular domains of pyramidal neurons, significant disinhibition of basket and Bis cells along with a previously reported loss of the OLMs may result in a redistribution of inhibition converging onto pyramidal neurons, with a direct impact onto their recruitment to epileptiform network activity and seizure propagation.
Collapse
Affiliation(s)
- Linda Suzanne David
- Neuroscience Axis, CHU de Québec Research Center, Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, PQ, Canada
| | - Lisa Topolnik
- Neuroscience Axis, CHU de Québec Research Center, Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, PQ, Canada.
| |
Collapse
|
41
|
Asano E. High-frequency oscillations are under your control. Don't chase all of them. Clin Neurophysiol 2017; 128:841-842. [PMID: 28283356 DOI: 10.1016/j.clinph.2017.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Eishi Asano
- Departments of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
42
|
van 't Klooster MA, van Klink NEC, van Blooijs D, Ferrier CH, Braun KPJ, Leijten FSS, Huiskamp GJM, Zijlmans M. Evoked versus spontaneous high frequency oscillations in the chronic electrocorticogram in focal epilepsy. Clin Neurophysiol 2017; 128:858-866. [PMID: 28258937 DOI: 10.1016/j.clinph.2017.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/15/2016] [Accepted: 01/26/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Spontaneous high frequency oscillations (HFOs; ripples 80-250Hz, fast ripples (FRs) 250-500Hz) are biomarkers for epileptogenic tissue in focal epilepsy. Single pulse electrical stimulation (SPES) can evoke HFOs. We hypothesized that stimulation distinguishes pathological from physiological ripples and compared the occurrence of evoked and spontaneous HFOs within the seizure onset zone (SOZ) and eloquent functional areas. METHODS Ten patients underwent SPES during 2048Hz electrocorticography (ECoG). Evoked HFOs in time-frequency plots and spontaneous HFOs were visually analyzed. We compared electrodes with evoked and spontaneous HFOs for: percentages in the SOZ, sensitivity and specificity for the SOZ, percentages in functional areas outside the SOZ. RESULTS Two patients without spontaneous FRs showed evoked FRs in the SOZ. Percentages of evoked and spontaneous HFOs in the SOZ were similar (ripples 32:33%, p=0.77; FRs 43:48%, p=0.63), but evoked HFOs had generally a lower specificity (ripples 45:69%, p=0.02; FRs 83:92%, p=0.04) and higher sensitivity (ripples 85:70%, p=0.27; FRs 52:37%, p=0.05). More electrodes with evoked than spontaneous ripples were found in functional (54:30%, p=0.03) and 'silent' areas (57:27%, p=0.01) outside the SOZ. CONCLUSIONS SPES can elicit SOZ-specific FRs in patients without spontaneous FRs, but activates ripples in all areas. SIGNIFICANCE SPES is an alternative for waiting for spontaneous HFOs, but does not warrant exclusively pathological ripples.
Collapse
Affiliation(s)
- M A van 't Klooster
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands.
| | - N E C van Klink
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - D van Blooijs
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - C H Ferrier
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - K P J Braun
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - F S S Leijten
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - G J M Huiskamp
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - M Zijlmans
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
43
|
Valentín A, Selway RP, Amarouche M, Mundil N, Ughratdar I, Ayoubian L, Martín-López D, Kazi F, Dar T, Jiménez-Jiménez D, Hughes E, Alarcón G. Intracranial stimulation for children with epilepsy. Eur J Paediatr Neurol 2017; 21:223-231. [PMID: 27840024 DOI: 10.1016/j.ejpn.2016.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To evaluate the efficacy of intracranial stimulation to treat refractory epilepsy in children. METHODS This is a retrospective analysis of a pilot study on all 8 children who had intracranial electrical stimulation for the investigation and treatment of refractory epilepsy at King's College Hospital between 2014 and 2015. Five children (one with temporal lobe epilepsy and four with frontal lobe epilepsy) had subacute cortical stimulation (SCS) for a period of 20-161 h during intracranial video-telemetry. Efficacy of stimulation was evaluated by counting interictal discharges and seizures. Two children had thalamic deep brain stimulation (DBS) of the centromedian nucleus (one with idiopathic generalized epilepsy, one with presumed symptomatic generalized epilepsy), and one child on the anterior nucleus (right fronto-temporal epilepsy). The incidence of interictal discharges was evaluated visually and quantified automatically. RESULTS Among the three children with DBS, two had >60% improvement in seizure frequency and severity and one had no improvement. Among the five children with SCS, four showed improvement in seizure frequency (>50%) and one chid did not show improvement. Procedures were well tolerated by children. CONCLUSION Cortical and thalamic stimulation appear to be effective and well tolerated in children with refractory epilepsy. SCS can be used to identify the focus and predict the effects of resective surgery or chronic cortical stimulation. Further larger studies are necessary.
Collapse
Affiliation(s)
- Antonio Valentín
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of Clinical Neurophysiology, King's College Hospital NHS Trust, London, UK.
| | - Richard P Selway
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK
| | - Meriem Amarouche
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK
| | - Nilesh Mundil
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK
| | - Ismail Ughratdar
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK
| | - Leila Ayoubian
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - David Martín-López
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of Clinical Neurophysiology, Kingston Hospital NHS FT, London, UK; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Farhana Kazi
- Department of Clinical Neurophysiology, King's College Hospital NHS Trust, London, UK
| | - Talib Dar
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Diego Jiménez-Jiménez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of Clinical Neurophysiology, King's College Hospital NHS Trust, London, UK; School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Elaine Hughes
- Department of Paediatric Neurosciences, King's College Hospital NHS Trust, London, UK; Department of Paediatric Neurology, Evelina Children's Hospital, London, UK
| | - Gonzalo Alarcón
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of Clinical Neurophysiology, King's College Hospital NHS Trust, London, UK; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Comprehensive Epilepsy Center, Neuroscience Institute, Academic Health Systems Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
44
|
High frequency spectral changes induced by single-pulse electric stimulation: Comparison between physiologic and pathologic networks. Clin Neurophysiol 2016; 128:1053-1060. [PMID: 28131532 DOI: 10.1016/j.clinph.2016.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate functional coupling between brain networks using spectral changes induced by single-pulse electric stimulation (SPES). METHOD We analyzed 20 patients with focal epilepsy, implanted with depth electrodes. SPES was applied to each pair of adjacent contacts, and responses were recorded from all other contacts. The mean response amplitude value was quantified in three time-periods after stimulation (10-60, 60-255, 255-500ms) for three frequency-ranges (Gamma, Ripples, Fast-Ripples), and compared to baseline. A total of 30,755 responses were analyzed, taking into consideration three dichotomous pairs: stimulating in primary sensory areas (S1-V1) vs. outside them, to test the interaction in physiologic networks; stimulating in seizure onset zone (SOZ) vs. non-SOZ, to test pathologic interactions; recording in default mode network (DMN) vs. non-DMN. RESULTS Overall, we observed an early excitation (10-60ms) and a delayed inhibition (60-500ms). More specifically, in the delayed period, stimulation in S1-V1 produced a higher gamma-inhibition in the DMN, while stimulation in the SOZ induced a higher inhibition in the epilepsy-related higher frequencies (Ripples and Fast-Ripples). CONCLUSION Physiologic and pathologic interactions can be assessed using spectral changes induced by SPES. SIGNIFICANCE This is a promising method for connectivity studies in patients with drug-resistant focal epilepsy.
Collapse
|
45
|
Hartl E, Rémi J, Vollmar C, Goc J, Loesch AM, Rominger A, Noachtar S. PET imaging in extratemporal epilepsy requires consideration of electroclinical findings. Epilepsy Res 2016; 125:72-6. [DOI: 10.1016/j.eplepsyres.2016.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 11/27/2022]
|
46
|
Gast H, Niediek J, Schindler K, Boström J, Coenen VA, Beck H, Elger CE, Mormann F. Burst firing of single neurons in the human medial temporal lobe changes before epileptic seizures. Clin Neurophysiol 2016; 127:3329-34. [PMID: 27592159 DOI: 10.1016/j.clinph.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/15/2016] [Accepted: 08/15/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To better understand the mechanisms that lead to the sudden and unexpected occurrence of seizures, with the neuronal correlate being abnormally synchronous discharges that disrupt neuronal function. METHODS To address this problem, we recorded single neuron activity in epilepsy patients during the transition to seizures to uncover specific changes of neuronal firing patterns. We focused particularly on neurons repeatedly firing discrete groups of high-frequency action potentials (so called bursters) that have been associated with ictogenesis. We analyzed a total of 459 single neurons and used the mean autocorrelation time as a quantitative measure of burstiness. To unravel the intricate roles of excitation and inhibition, we also examined differential contributions from putative principal cells and interneurons. RESULTS During interictal recordings, burstiness was significantly higher in the seizure onset hemisphere, an effect found only for principal cells, but not for interneurons, and which disappeared before seizures. CONCLUSION These findings deviate from conventional views of ictogenesis that propose slowly-increasing aggregates of bursting neurons which give rise to seizures once they reach a critical mass. SIGNIFICANCE Instead our results are in line with recent hypotheses that bursting may represent a protective mechanism by preventing direct transmission of postsynaptic high-frequency oscillations.
Collapse
Affiliation(s)
- Heidemarie Gast
- Cognitive and Clinical Neurophysiology, Department of Epileptology, University of Bonn, Bonn, Germany
| | - Johannes Niediek
- Cognitive and Clinical Neurophysiology, Department of Epileptology, University of Bonn, Bonn, Germany
| | - Kaspar Schindler
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Boström
- Stereotaxy and MR-Based OR Techniques, Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Volker A Coenen
- Stereotaxy and MR-Based OR Techniques, Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Heinz Beck
- Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, University of Bonn, Bonn, Germany
| | - Christian E Elger
- Cognitive and Clinical Neurophysiology, Department of Epileptology, University of Bonn, Bonn, Germany
| | - Florian Mormann
- Cognitive and Clinical Neurophysiology, Department of Epileptology, University of Bonn, Bonn, Germany.
| |
Collapse
|
47
|
Malali A, Chaitanya G, Gowda S, Majumdar K. Analysis of cortical rhythms in intracranial EEG by temporal difference operators during epileptic seizures. Biomed Signal Process Control 2016. [DOI: 10.1016/j.bspc.2016.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
A comparative study of the effects of pulse parameters for intracranial direct electrical stimulation in epilepsy. Clin Neurophysiol 2016; 127:91-101. [DOI: 10.1016/j.clinph.2015.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 12/31/2014] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
|
49
|
Usami K, Matsumoto R, Kobayashi K, Hitomi T, Shimotake A, Kikuchi T, Matsuhashi M, Kunieda T, Mikuni N, Miyamoto S, Fukuyama H, Takahashi R, Ikeda A. Sleep modulates cortical connectivity and excitability in humans: Direct evidence from neural activity induced by single-pulse electrical stimulation. Hum Brain Mapp 2015; 36:4714-29. [PMID: 26309062 PMCID: PMC6869089 DOI: 10.1002/hbm.22948] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/22/2015] [Accepted: 08/10/2015] [Indexed: 02/06/2023] Open
Abstract
Sleep-induced changes in human brain connectivity/excitability and their physiologic basis remain unclear, especially in the frontal lobe. We investigated sleep-induced connectivity and excitability changes in 11 patients who underwent chronic implantation of subdural electrodes for epilepsy surgery. Single-pulse electrical stimuli were directly injected to a part of the cortices, and cortico-cortical evoked potentials (CCEPs) and CCEP-related high-gamma activities (HGA: 100-200 Hz) were recorded from adjacent and remote cortices as proxies of effective connectivity and induced neuronal activity, respectively. HGA power during the initial CCEP component (N1) correlated with the N1 size itself across all states investigated. The degree of cortical connectivity and excitability changed during sleep depending on sleep stage, approximately showing dichotomy of awake vs. non-rapid eye movement (REM) [NREM] sleep. On the other hand, REM sleep partly had properties of both awake and NREM sleep, placing itself in the intermediate state between them. Compared with the awake state, single-pulse stimulation especially during NREM sleep induced increased connectivity (N1 size) and neuronal excitability (HGA increase at N1), which was immediately followed by intense inhibition (HGA decrease). The HGA decrease was temporally followed by the N2 peak (the second CCEP component), and then by HGA re-increase during sleep across all lobes. This HGA rebound or re-increase of neuronal synchrony was largest in the frontal lobe compared with the other lobes. These properties of sleep-induced changes of the cortex may be related to unconsciousness during sleep and frequent nocturnal seizures in frontal lobe epilepsy.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of NeurologyKyoto University Graduate School of MedicineKyoto606‐8507Japan
| | - Riki Matsumoto
- Department of Epilepsy, Movement Disorders and PhysiologyKyoto University Graduate School of MedicineKyoto606‐8507Japan
| | - Katsuya Kobayashi
- Department of NeurologyKyoto University Graduate School of MedicineKyoto606‐8507Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory MedicineKyoto University Graduate School of MedicineKyoto606‐8507Japan
- Department of Respiratory Care and Sleep Control MedicineKyoto University Graduate School of MedicineKyoto606‐8507Japan
| | - Akihiro Shimotake
- Department of NeurologyKyoto University Graduate School of MedicineKyoto606‐8507Japan
| | - Takayuki Kikuchi
- Department of NeurosurgeryKyoto University Graduate School of MedicineKyoto606‐8507Japan
| | - Masao Matsuhashi
- Human Brain Research CenterKyoto University Graduate School of MedicineKyoto606‐8507Japan
| | - Takeharu Kunieda
- Department of NeurosurgeryKyoto University Graduate School of MedicineKyoto606‐8507Japan
| | - Nobuhiro Mikuni
- Department of NeurosurgerySapporo Medical University School of MedicineSapporo060‐8543Japan
| | - Susumu Miyamoto
- Department of NeurosurgeryKyoto University Graduate School of MedicineKyoto606‐8507Japan
| | - Hidenao Fukuyama
- Human Brain Research CenterKyoto University Graduate School of MedicineKyoto606‐8507Japan
| | - Ryosuke Takahashi
- Department of NeurologyKyoto University Graduate School of MedicineKyoto606‐8507Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and PhysiologyKyoto University Graduate School of MedicineKyoto606‐8507Japan
| |
Collapse
|
50
|
Tóth E, Fabó D, Entz L, Ulbert I, Erőss L. Intracranial neuronal ensemble recordings and analysis in epilepsy. J Neurosci Methods 2015; 260:261-9. [PMID: 26453987 DOI: 10.1016/j.jneumeth.2015.09.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Abstract
Pathological neuronal firing was demonstrated 50 years ago as the hallmark of epileptically transformed cortex with the use of implanted microelectrodes. Since then, microelectrodes remained only experimental tools in humans to detect unitary neuronal activity to reveal physiological and pathological brain functions. This recording technique has evolved substantially in the past few decades; however, based on recent human data implying their usefulness as diagnostic tools, we expect a substantial increase in the development of microelectrodes in the near future. Here, we review the technological background and history of microelectrode array development for human examinations in epilepsy, including discussions on of wire-based and microelectrode arrays fabricated using micro-electro-mechanical system (MEMS) techniques and novel future techniques to record neuronal ensemble. We give an overview of clinical and surgical considerations, and try to provide a list of probes on the market with their availability for human recording. Then finally, we briefly review the literature on modulation of single neuron for the treatment of epilepsy, and highlight the current topics under examination that can be background for the future development.
Collapse
Affiliation(s)
- Emília Tóth
- Epilepsy Centrum, National Institute of Clinical Neurosciences, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Dániel Fabó
- Epilepsy Centrum, National Institute of Clinical Neurosciences, Budapest, Hungary.
| | - László Entz
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - István Ulbert
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Loránd Erőss
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, Hungary
| |
Collapse
|