1
|
Bowman LC, Brandone AC. Neural correlates of preschoolers' passive-viewing false belief: Insights into continuity and change and the function of right temporoparietal activity in theory of mind development. Dev Sci 2024; 27:e13530. [PMID: 39421901 DOI: 10.1111/desc.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/15/2024] [Accepted: 04/07/2024] [Indexed: 10/19/2024]
Abstract
Behavioral research demonstrates a critical transition in preschooler's mental-state understanding (i.e., theory of mind; ToM), revealed most starkly in performance on tasks about a character's false belief (e.g., about an object's location). Questions remain regarding the neural and cognitive processes differentiating children who pass versus fail behavioral false-belief tasks and the extent to which there is continuity versus change in the ToM neural network. To address these questions, we analyzed event-related spectral power in the electroencephalogram (EEG) to investigate how preschoolers' neural activity during passive viewing of false-belief scenarios related to their explicit behavioral ToM performance. We found that neural activity during passive viewing of false-belief events (6-9 Hz EEG 'alpha' suppression in right temporoparietal [RTP] electrodes) strongly related to children's explicit ToM. However, children's RTP alpha suppression differed depending on their explicit behavioral ToM performance: Children who did better on a broad battery of standard ToM tasks and who passed explicit behavioral false-belief tasks showed greater RTP alpha suppression when the character's belief first became false (during the 'location-change' event); whereas children who did worse on the ToM battery and who failed explicit behavioral false-belief tasks showed greater RTP alpha suppression only later when they could evaluate the character's behavior in the context of prior events (during the 'active-search' event). Findings shed light on what differentiates preschoolers who pass versus fail explicit false-belief tasks and raise questions about how to interpret existing neuroscience data from ToM tasks across infancy to adulthood. RESEARCH HIGHLIGHTS: Preschool children's neural activity (EEG 6-9 Hz suppression in right temporoparietal [RTP] electrodes) during passive-viewing of false-belief events was related to their explicit behavioral theory-of-mind performance. Children who did better on a theory-of-mind (ToM) battery and passed explicit false-belief tasks showed greater RTP alpha suppression when the character's belief first became false. Children who performed worse on the ToM battery and failed explicit false-belief tasks showed greater RTP alpha suppression later when observing the character's search behavior. Findings reveal change in preschoolers' ToM neural correlates and suggest that the presence of RTP activity does not necessarily indicate 'mature' theory of mind.
Collapse
Affiliation(s)
- Lindsay C Bowman
- Center for Mind and Brain, Department of Psychology, University of California, Davis, USA
| | | |
Collapse
|
2
|
Andreu-Sánchez C, Martín-Pascual MÁ, Gruart A, Delgado-García JM. Differences in Mu rhythm when seeing grasping/motor actions in a real context versus on screens. Sci Rep 2024; 14:22921. [PMID: 39358411 PMCID: PMC11447160 DOI: 10.1038/s41598-024-74453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
Mu rhythm (∼8-12 Hz) in the somatosensory cortex has traditionally been linked with doing and seeing motor activities. Here, we aimed to learn how the medium (physical or screened) in which motor actions are seen could impact on that specific brain rhythm. To do so, we presented to 40 participants the very same narrative content both in a one-shot movie with no cuts and in a real theatrical performance. We recorded subjects' brain activities with electroencephalographic (EEG) procedures, and analyzed Mu rhythm present in left (C3) and right (C4) somatosensory areas in relation to the 24 motor activities included in each visual stimulus (screen vs. reality) (24 motor and grasping actions x 40 participants x 2 conditions = 1920 trials). We found lower Mu spectral power in the somatosensory area after the onset of the motor actions in real performance than on-screened content, more pronounced in the left hemisphere. In our results, the sensorimotor Mu-ERD (event-related desynchronization) was stronger during the real-world observation compared to screen observation. This could be relevant in research areas where the somatosensory cortex is important, such as online learning, virtual reality, or brain-computer interfaces.
Collapse
Affiliation(s)
- Celia Andreu-Sánchez
- Neuro-Com Research Group, Department of Audiovisual Communication and Advertising, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain.
| | - Miguel Ángel Martín-Pascual
- Neuro-Com Research Group, Department of Audiovisual Communication and Advertising, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
- Research and Development, Institute of Spanish Public Television (RTVE), Corporación Radio Televisión Española, Barcelona, 08174, Spain
| | - Agnès Gruart
- Division of Neurosciences, University Pablo de Olavide, Seville, 41013, Spain
| | | |
Collapse
|
3
|
Ahmed A, Hugo B, Lucas S, Diana R, Etienne O, Pascal G. Distinct and additive effects of visual and vibratory feedback for motor rehabilitation: an EEG study in healthy subjects. J Neuroeng Rehabil 2024; 21:158. [PMID: 39267092 PMCID: PMC11391611 DOI: 10.1186/s12984-024-01453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The use of visual and proprioceptive feedback is a key property of motor rehabilitation techniques. This feedback can be used alone, for example, for vision in mirror or video therapy, for proprioception in focal tendon vibration therapy, or in combination, for example, in robot-assisted training. This Electroencephalographic (EEG) study in healthy subjects explored the distinct neurophysiological impact of adding visual (video therapy), proprioceptive (focal tendinous vibration), or combined feedback (video therapy and focal tendinous vibration) to a motor imagery task. METHODS Sixteen healthy volunteers performed 20 mental imagery (MI) tasks involving right wrist extension and flexion under four conditions: MI alone (IA), MI + video feedback observation (IO), MI + vibratory feedback (IV), and MI + observation + vibratory feedback (IOV). Brain activity was monitored with EEG, and time-frequency neurophysiological markers of movement were computed. The emotions of the patients were also measured during the task. RESULTS In the alpha band, we observed bilateral ERD in the visual feedback conditions (IO, IOV). In the beta band, the ERD was bilateral in the IA, IV and IOV but more lateralized in the IV and IOV. After movement, we observed strong ERS in the IO and IOV but not in the IA or IV. Embodiment was stronger in conditions with vibratory feedback (IOV > IV > IA and IO) CONCLUSION: Conditions with visual feedback (IO, IOV) recruit the mirror neurons system (alpha ERD) and provide more accurate feedback of the task than IA and IV, which triggers motor validation pathways (beta rebound analysis). Vibratory feedback enhances the recruitment of the left sensorimotor areas, with a synergistic effect in the IOV (beta ERD analysis), thus maximizing embodiment. Visual and vibratory feedback recruits the sensorimotor cortex during motor imagery in different ways and can be combined to maximize the benefits of both techniques TRIAL REGISTRATION: https://clinicaltrials.gov/study/NCT04449328 .
Collapse
Affiliation(s)
- Adham Ahmed
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France.
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France.
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France.
| | - Bessaguet Hugo
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Inter-University Laboratory of Human Movement Biology, "Physical Ability and Fatigue in Health and Disease" Team, Saint-Etienne "Jean Monnet" & Lyon 1 & "Savoie Mont- Blanc" Universities, Saint- Etienne, F-42023, France
| | - Struber Lucas
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | - Rimaud Diana
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
| | - Ojardias Etienne
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France
| | - Giraux Pascal
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France
| |
Collapse
|
4
|
Shin N, Ikeda Y, Motomura Y, Higuchi S. Effects of observing own/others hand movement in different perspectives on mu rhythm suppression: an EEG study. J Physiol Anthropol 2024; 43:21. [PMID: 39232843 PMCID: PMC11373409 DOI: 10.1186/s40101-024-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Previous studies have reported that the sense of "self" is associated with specific brain regions and neural network activities. In addition, the mirror system, which functions when executing or observing an action, might contribute to differentiating the self from others and form the basis of the sense of self as a fundamental physical representation. This study investigated whether differences in mu suppression, an indicator of mirror system activity, reflect cognitions related to self-other discrimination. METHODS The participants were 30 of healthy college students. The participants observed short video clips of hand movements performed by themselves or actors from two perspectives (i.e., first-person and third-person). The electroencephalogram (EEG) mu rhythm (8-13 Hz) was measured during video observation as an index of mirror neuron system activity. EEG activity related to self-detection was analyzed using participants' hand movements as self-relevant stimuli. RESULTS The results showed that mu suppression in the 8-13-Hz range exhibited perspective-dependent responses to self/other stimuli. There was a significant self-oriented mu suppression response in the first-person perspective. However, the study found no significant response orientation in the third-person perspective. The results suggest that mirror system activity may involve self-other discrimination differently depending on the perspective. CONCLUSIONS In summary, this study examined the mirror system's activity for self and others using the EEG's mu suppression. As a result, it was suggested that differences in self and others or perspectives may influence mu suppression.
Collapse
Affiliation(s)
- Nakyeong Shin
- Graduate School of Integrated Frontier Sciences, Kyushu University, 4-9-1 Shiobaru, Minami-Ku, Fukuoka City, Fukuoka, Japan.
- Research Fellow of the Japan Society for the Promotion of Science, Kojimachi Business Center, Building, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, Japan.
| | - Yuki Ikeda
- Faculty of Health Science, Kyorin University, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Kojimachi Business Center, Building, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, Japan
| | - Yuki Motomura
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku Fukuoka City, Fukuoka, Japan
| | - Shigekazu Higuchi
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku Fukuoka City, Fukuoka, Japan
| |
Collapse
|
5
|
Su Z, Zhang H, Wang Y, Chen B, Zhang Z, Wang B, Liu J, Shi Y, Zhao X. Neural oscillation in bipolar disorder: a systematic review of resting-state electroencephalography studies. Front Neurosci 2024; 18:1424666. [PMID: 39238928 PMCID: PMC11375681 DOI: 10.3389/fnins.2024.1424666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric disease with high rates of misdiagnosis and underdiagnosis, resulting in a significant disease burden on both individuals and society. Abnormal neural oscillations have garnered significant attention as potential neurobiological markers of BD. However, untangling the mechanisms that subserve these baseline alternations requires measurement of their electrophysiological underpinnings. This systematic review investigates consistent abnormal resting-state EEG power of BD and conducted an initial exploration into how methodological approaches might impact the study outcomes. This review was conducted in Pubmed-Medline and Web-of-Science in March 2024 to summarize the oscillation changes in resting-state EEG (rsEEG) of BD. We focusing on rsEEG to report spectral power in different frequency bands. We identified 10 studies, in which neural oscillations was compared with healthy individuals (HCs). We found that BD patients had abnormal oscillations in delta, theta, beta, and gamma bands, predominantly characterized by increased power, indicating potential widespread neural dysfunction, involving multiple neural networks and cognitive processes. However, the outcomes regarding alpha oscillation in BD were more heterogeneous, which is thought to be potentially influenced by the disease severity and the diversity of samples. Furthermore, we conducted an initial exploration into how demographic and methodological elements might impact the study outcomes, underlining the importance of implementing standardized data collection methods. Key aspects we took into account included gender, age, medication usage, medical history, the method of frequency band segmentation, and situation of eye open/eye close during the recordings. Therefore, in the face of abnormal multiple oscillations in BD, we need to adopt a comprehensive research approach, consider the multidimensional attributes of the disease and the heterogeneity of samples, and pay attention to the standardized experimental design to improve the reliability and reproducibility of the research results.
Collapse
Affiliation(s)
- Ziyao Su
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- The second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Haoran Zhang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yingtan Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Bingxu Chen
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Zhizhen Zhang
- School of Mathematical Sciences, East China Normal University, Shanghai, China
| | - Bin Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jun Liu
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuwei Shi
- The second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xixi Zhao
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Ünsal E, Duygun R, Yemeniciler İ, Bingöl E, Ceran Ö, Güntekin B. From Infancy to Childhood: A Comprehensive Review of Event- and Task-Related Brain Oscillations. Brain Sci 2024; 14:837. [PMID: 39199528 PMCID: PMC11352659 DOI: 10.3390/brainsci14080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Brain development from infancy through childhood involves complex structural and functional changes influenced by both internal and external factors. This review provides a comprehensive analysis of event and task-related brain oscillations, focusing on developmental changes across different frequency bands, including delta, theta, alpha, beta, and gamma. Electroencephalography (EEG) studies highlight that these oscillations serve as functional building blocks for sensory and cognitive processes, with significant variations observed across different developmental stages. Delta oscillations, primarily associated with deep sleep and early cognitive demands, gradually diminish as children age. Theta rhythms, crucial for attention and memory, display a distinct pattern in early childhood, evolving with cognitive maturation. Alpha oscillations, reflecting thalamocortical interactions and cognitive performance, increase in complexity with age. Beta rhythms, linked to active thinking and problem-solving, show developmental differences in motor and cognitive tasks. Gamma oscillations, associated with higher cognitive functions, exhibit notable changes in response to sensory stimuli and cognitive tasks. This review underscores the importance of understanding oscillatory dynamics to elucidate brain development and its implications for sensory and cognitive processing in childhood. The findings provide a foundation for future research on developmental neuroscience and potential clinical applications.
Collapse
Affiliation(s)
- Esra Ünsal
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Rümeysa Duygun
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - İrem Yemeniciler
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Elifnur Bingöl
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Ömer Ceran
- Department of Pediatrics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Bahar Güntekin
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| |
Collapse
|
7
|
Bernardo D, Xie X, Verma P, Kim J, Liu V, Numis AL, Wu Y, Glass HC, Yap PT, Nagarajan SS, Raj A. Simulation-based Inference of Developmental EEG Maturation with the Spectral Graph Model. ARXIV 2024:arXiv:2405.02524v3. [PMID: 39040639 PMCID: PMC11261974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The spectral content of macroscopic neural activity evolves throughout development, yet how this maturation relates to underlying brain network formation and dynamics remains unknown. Here, we assess the developmental maturation of electroencephalogram spectra via Bayesian model inversion of the spectral graph model, a parsimonious whole-brain model of spatiospectral neural activity derived from linearized neural field models coupled by the structural connectome. Simulation-based inference was used to estimate age-varying spectral graph model parameter posterior distributions from electroencephalogram spectra spanning the developmental period. This model-fitting approach accurately captures observed developmental electroencephalogram spectral maturation via a neurobiologically consistent progression of key neural parameters: long-range coupling, axonal conduction speed, and excitatory:inhibitory balance. These results suggest that the spectral maturation of macroscopic neural activity observed during typical development is supported by age-dependent functional adaptations in localized neural dynamics and their long-range coupling across the macroscopic structural network.
Collapse
Affiliation(s)
- Danilo Bernardo
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Xihe Xie
- Department of Neuroscience, Weill Cornell Medicine, New York, NY, USA
| | - Parul Verma
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Kim
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Virginia Liu
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Adam L. Numis
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Hannah C. Glass
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Adham A, Le BT, Bonnal J, Bessaguet H, Ojardias E, Giraux P, Auzou P. Neural basis of lower-limb visual feedback therapy: an EEG study in healthy subjects. J Neuroeng Rehabil 2024; 21:114. [PMID: 38978051 PMCID: PMC11229246 DOI: 10.1186/s12984-024-01408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Video-feedback observational therapy (VOT) is an intensive rehabilitation technique based on movement repetition and visualization that has shown benefits for motor rehabilitation of the upper and lower limbs. Despite an increase in recent literature on the neurophysiological effects of VOT in the upper limb, there is little knowledge about the cortical effects of visual feedback therapies when applied to the lower limbs. The aim of our study was to better understand the neurophysiological effects of VOT. Thus, we identified and compared the EEG biomarkers of healthy subjects undergoing lower limb VOT during three tasks: passive observation, observation and motor imagery, observation and motor execution. METHODS We recruited 38 healthy volunteers and monitored their EEG activity while they performed a right ankle dorsiflexion task in the VOT. Three graded motor tasks associated with action observation were tested: action observation alone (O), motor imagery with action observation (OI), and motor execution synchronized with action observation (OM). The alpha and beta event-related desynchronization (ERD) and event-related synchronization (or beta rebound, ERS) rhythms were used as biomarkers of cortical activation and compared between conditions with a permutation test. Changes in connectivity during the task were computed with phase locking value (PLV). RESULTS During the task, in the alpha band, the ERD was comparable between O and OI activities across the precentral, central and parietal electrodes. OM involved the same regions but had greater ERD over the central electrodes. In the beta band, there was a gradation of ERD intensity in O, OI and OM over central electrodes. After the task, the ERS changes were weak during the O task but were strong during the OI and OM (Cz) tasks, with no differences between OI and OM. CONCLUSION Alpha band ERD results demonstrated the recruitment of mirror neurons during lower limb VOT due to visual feedback. Beta band ERD reflects strong recruitment of the sensorimotor cortex evoked by motor imagery and action execution. These results also emphasize the need for an active motor task, either motor imagery or motor execution task during VOT, to elicit a post-task ERS, which is absent during passive observation. Trial Registration NCT05743647.
Collapse
Affiliation(s)
- Ahmed Adham
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France.
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, Saint-Étienne, France.
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France.
| | - Ba Thien Le
- Department of Neurology, CHU of Orleans, Orleans, France
| | - Julien Bonnal
- Department of Neurology, CHU of Orleans, Orleans, France
| | - Hugo Bessaguet
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France
- Jean Monnet University, Lyon 1, Université Savoie Mont-Blanc, "Laboratoire Inter-Universitaire de Biologie de La Motricité", 42023, Saint-Étienne, France
| | - Etienne Ojardias
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France
- Jean Monnet University, Lyon 1, Université Savoie Mont-Blanc, "Laboratoire Inter-Universitaire de Biologie de La Motricité", 42023, Saint-Étienne, France
| | - Pascal Giraux
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, Saint-Étienne, France
| | - Pascal Auzou
- Department of Neurology, CHU of Orleans, Orleans, France
- "Laboratoire Interdisciplinaire d'innovation et de Recherche en Santé d'Orléans", LI2RSO, University of Orleans, Orleans, France
| |
Collapse
|
9
|
Meachon EJ, Kundlacz M, Wilmut K, Alpers GW. EEG spectral power in developmental coordination disorder and attention-deficit/hyperactivity disorder: a pilot study. Front Psychol 2024; 15:1330385. [PMID: 38765829 PMCID: PMC11099285 DOI: 10.3389/fpsyg.2024.1330385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/22/2024] [Indexed: 05/22/2024] Open
Abstract
Developmental coordination disorder (DCD) and attention-deficit/hyperactivity disorder (ADHD) overlap in symptoms and often co-occur. Differentiation of DCD and ADHD is crucial for a better understanding of the conditions and targeted support. Measuring electrical brain activity with EEG may help to discern and better understand the conditions given that it can objectively capture changes and potential differences in brain activity related to externally measurable symptoms beneficial for targeted interventions. Therefore, a pilot study was conducted to exploratorily examine neurophysiological differences between adults with DCD and/or ADHD at rest. A total of N = 46 adults with DCD (n = 12), ADHD (n = 9), both DCD + ADHD (n = 8), or typical development (n = 17) completed 2 min of rest with eyes-closed and eyes-open while their EEG was recorded. Spectral power was calculated for frequency bands: delta (0.5-3 Hz), theta (3.5-7 Hz), alpha (7.5-12.5 Hz), beta (13-25 Hz), mu (8-13 Hz), gamma (low: 30-40 Hz; high: 40-50 Hz). Within-participants, spectral power in a majority of waveforms significantly increased from eyes-open to eyes-closed conditions. Groups differed significantly in occipital beta power during the eyes-open condition, driven by the DCD versus typically developing group comparison. However, other group comparisons reached only marginal significance, including whole brain alpha and mu power with eyes-open, and frontal beta and occipital high gamma power during eyes-closed. While no strong markers could be determined to differentiate DCD versus ADHD, we theorize that several patterns in beta activity were indicative of potential motor maintenance differences in DCD at rest. Therefore, larger studies comparing EEG spectral power may be useful to identify neurological mechanisms of DCD and continued differentiation of DCD and ADHD.
Collapse
Affiliation(s)
- Emily J. Meachon
- School of Social Sciences, University of Mannheim, Mannheim, Germany
- Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Marlene Kundlacz
- School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Kate Wilmut
- Centre for Psychological Research, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Georg W. Alpers
- School of Social Sciences, University of Mannheim, Mannheim, Germany
| |
Collapse
|
10
|
Vitali H, Campus C, De Giorgis V, Signorini S, Morelli F, Fasce M, Gori M. Sensorimotor Oscillations in Human Infants during an Innate Rhythmic Movement. Brain Sci 2024; 14:402. [PMID: 38672051 PMCID: PMC11047852 DOI: 10.3390/brainsci14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The relationship between cerebral rhythms and early sensorimotor development is not clear. In recent decades, evidence revealed a rhythmic modulation involving sensorimotor processing. A widely corroborated functional role of oscillatory activity is to coordinate the information flow across sensorimotor networks. Their activity is coordinated by event-related synchronisation and desynchronisation in different sensorimotor rhythms, which indicate parallel processes may be occurring in the neuronal network during movement. To date, the dynamics of these brain oscillations and early sensorimotor development are unexplored. Our study investigates the relationship between the cerebral rhythms using EEG and a typical rhythmic movement of infants, the non-nutritive sucking (NNS) behaviour. NNS is an endogenous behaviour that originates from the suck central pattern generator in the brainstem. We find, in 17 infants, that sucking frequency correlates with beta synchronisation within the sensorimotor area in two phases: one strongly anticipating (~3 s) and the other encompassing the start of the motion. These findings suggest that a beta synchronisation of the sensorimotor cortex may influence the sensorimotor dynamics of NNS activity. Our results reveal the importance of rapid brain oscillations in infants and the role of beta synchronisation and their possible role in the communication between cortical and deep generators.
Collapse
Affiliation(s)
- Helene Vitali
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16152 Genoa, Italy; (H.V.)
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), University of Genova, 16145 Genoa, Italy
| | - Claudio Campus
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16152 Genoa, Italy; (H.V.)
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.D.G.)
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sabrina Signorini
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy (F.M.)
| | - Federica Morelli
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy (F.M.)
| | - Marco Fasce
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.D.G.)
| | - Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16152 Genoa, Italy; (H.V.)
| |
Collapse
|
11
|
Meyer M, Brezack N, Woodward AL. Neural correlates involved in perspective-taking in early childhood. Dev Cogn Neurosci 2024; 66:101366. [PMID: 38507857 PMCID: PMC10965458 DOI: 10.1016/j.dcn.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/07/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Learning to consider another person's perspective is pivotal in early social development. Still, little is known about the neural underpinnings involved in perspective-taking in early childhood. In this EEG study, we examined 4-year-old children's brain activity during a live, social interaction that involved perspective-taking. Children were asked to pass one of two toys to another person. To decide which toy to pass, they had to consider either their partner's perspective (perspective-taking) or visual features unrelated to their partner's perspective (control). We analyzed power changes in midfrontal and temporal-parietal EEG channels. The results indicated that children showed higher power around 7 Hz at right temporal-parietal channels for perspective-taking compared to control trials. This power difference was positively correlated with children's perspective-taking performance, specifically for trials in which they needed to pass the toy their partner could not see. A similar power difference at right temporal-parietal channels was seen when comparing perspective-taking trials where children's visual access mismatched rather than matched that of their partner. No differences were detected for midfrontal channels. In sum, we identified distinct neural activity as 4-year-olds considered another person's perspective in a live interaction; this activity converges with neural findings of adults' social processing network.
Collapse
Affiliation(s)
- M Meyer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands.
| | - N Brezack
- WestEd, Learning & Technology, San Francisco, USA
| | - A L Woodward
- Department of Psychology, University of Chicago, USA
| |
Collapse
|
12
|
Keating J, Gerson SA, Jones CRG, Vanderwert RE, Purcell C. Possible disrupted biological movement processing in Developmental Coordination Disorder. Cortex 2023; 168:1-13. [PMID: 37634268 DOI: 10.1016/j.cortex.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023]
Abstract
AIM There is emerging evidence that the Mirror Neuron System (MNS) might contribute to the motor learning difficulties characteristic of Developmental Coordination Disorder (DCD). This study aimed to identify whether MNS activity differed between children with and without DCD during action observation, action execution and during a non-action baseline. METHODS Electroencephalography (EEG) was used to measure mu rhythm (a proxy for MNS activation) in 8-12-year-old children either with (n = 20) or without (n = 19) a diagnosis of DCD. The mu rhythm was recorded at rest and during five experimental conditions: (1) observation of gross motor and (2) fine motor actions; (3) execution of gross motor and (4) fine motor actions; and (5) non-biological movement. To address whether potential co-occurring traits of other neurodevelopmental conditions were associated with differences in mu rhythm, parents reported their child's attention and social communication skills. Mixed and repeated measure ANOVAs were conducted to examine differences in mu desynchronization and mu power respectively. RESULTS The non-DCD group showed greater mu rhythm desynchronization than children with DCD (i.e., more MNS activity), with both groups demonstrating increasing desynchronization from observation of fine actions to execution of gross actions. However, we also found that the children with DCD had less mu power during the non-biological movement condition than the non-DCD children, although mu power did not differ between groups during the resting condition. Correlations between mu desynchronization and children's attention and motor skills showed that poorer attention and motor abilities were associated with reduced MNS activity. CONCLUSION Compared to children without DCD, the MNS in children with DCD did not distinguish between biological and non-biological movement. It is possible that the reduced specificity of the MNS in children with DCD is an underlying factor in the motor impairments observed in the disorder. The differential MNS activity could reflect broader atypical activity in perceptual networks that feed into the MNS in DCD.
Collapse
Affiliation(s)
- Jennifer Keating
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK
| | - Sarah A Gerson
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK
| | - Catherine R G Jones
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK
| | - Ross E Vanderwert
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | | |
Collapse
|
13
|
Zebarjadi N, Levy J. Neural shifts in alpha rhythm's dual functioning during empathy maturation. Brain Behav 2023; 13:e3110. [PMID: 37334437 PMCID: PMC10498088 DOI: 10.1002/brb3.3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
INTRODUCTION Empathy is a social-cognitive process that operates by relying mainly on the suppression of the cortical alpha rhythm. This phenomenon has been evidenced in dozens of electrophysiological studies targeting adult human subjects. Yet, recent neurodevelopmental studies indicated that at a younger age, empathy involves reversed brain responses (e.g., alpha enhancement patterns). In this multimodal study, we capture neural activity at the alpha range, and hemodynamic response and target subjects at approximately 20 years old as a unique time window in development that allows investigating both low-alpha suppression and high-alpha enhancement. We aim to further investigate the functional role of low-alpha power suppression and high-alpha power enhancement during empathy development. METHODS Brain data from 40 healthy individuals were recorded in two consecutive sessions of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) while subjects perceived vicarious physical pain or no pain. RESULTS MEG revealed that the alpha pattern shift during empathy happens in an all-or-none pattern: power enhancement before 18 and suppression after 18 years of age. Additionally, MEG and fMRI highlight a correspondence between high-alpha power increase and blood-oxygen-level-dependent (BOLD) decrease before 18, but low-alpha power decrease and BOLD increase after 18. Importantly, this neurodevelopmental transition was not revealed by four other measures: self-reported (a) ratings of the task stimuli, (b) ratings of naturalistic vignettes of vicarious pain, (c) trait empathy, or neural data from (d) a control neuroimaging task. DISCUSSION Findings suggest that at the critical age of around 18, empathy is underpinned by an all-or-none transition from high-alpha power enhancement and functional inhibition to low-alpha power suppression and functional activation in particular brain regions, possibly indicating a marker of maturation in empathic ability. This work advances a recent neurodevelopmental line of studies and provides insight into the functional maturation of empathy at the coming of age.
Collapse
Affiliation(s)
- Niloufar Zebarjadi
- Department of Neuroscience and Biomedical EngineeringAalto UniversityEspooFinland
| | - Jonathan Levy
- Department of Neuroscience and Biomedical EngineeringAalto UniversityEspooFinland
- Baruch Ivcher School of PsychologyReichman UniversityHerzliyaIsrael
| |
Collapse
|
14
|
Phillips C, Kline J, Stanley CJ, Bulea TC, Damiano DL. Children With Bilateral Cerebral Palsy Exhibit Bimanual Asymmetric Motor Deficits and EEG Evidence of Dominant Sensorimotor Hemisphere Overreliance During Reaching. Neurorehabil Neural Repair 2023; 37:617-627. [PMID: 37644730 PMCID: PMC10529186 DOI: 10.1177/15459683231195044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND Reaching is a fundamental motor skill often impaired in cerebral palsy (CP). Studies on manual function, intervention, and underlying brain mechanisms largely focus on unilateral CP. This first electroencephalography (EEG) evaluation of reaching exclusively in bilateral CP aims to quantify and relate brain activation patterns to bimanual deficits in this population. METHODS A total of 15 children with bilateral CP (13.4 ± 2.9 years) and 13 with typical development (TD: 14.3 ± 2.4 years) performed 45 reaches per hand while recording motion capture and EEG data. The Box and Blocks test was administered bilaterally. Cortical sources were identified using independent component analysis and clustered using k-means. Alpha (8-12 Hz) and beta (13-30 Hz) band event-related desynchronization (ERD) values were compared across groups and hands within clusters, between dominant and non-dominant sensorimotor clusters, and related to reach kinematics and the Box and Block test. RESULTS The group with CP demonstrated bimanual motor deficits with slower reaches, lower Box and Blocks scores, and stronger hand preference than in TD. Beta ERD, representing motor execution, was notably higher in the dominant sensorimotor cluster in CP compared to TD. Both groups demonstrated more contralateral than ipsilateral activity in both hands and clusters, with CP showing a less lateralized (more bilateral) alpha response. Higher brain activation was generally related to better function. CONCLUSION Bimanual deficits in bilateral CP and related EEG differences warrant more clinical and research attention particularly earlier in life when greater potential for neural and functional recovery exists.
Collapse
Affiliation(s)
- Connor Phillips
- Rehabilitation Medicine Department, Neurorehabilitation and Biomechanics Research Section, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Julia Kline
- Rehabilitation Medicine Department, Neurorehabilitation and Biomechanics Research Section, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Christopher J Stanley
- Rehabilitation Medicine Department, Neurorehabilitation and Biomechanics Research Section, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Thomas C Bulea
- Rehabilitation Medicine Department, Neurorehabilitation and Biomechanics Research Section, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Diane L Damiano
- Rehabilitation Medicine Department, Neurorehabilitation and Biomechanics Research Section, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Christensen JD, Bell MA, Deater-Deckard KD. Maternal age differences in cognitive regulation: examination of associations and interactions between RSA and EEG frontoparietal alpha power coherence. Front Hum Neurosci 2023; 17:1188820. [PMID: 37694174 PMCID: PMC10483125 DOI: 10.3389/fnhum.2023.1188820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Strong cognitive regulation is advantageous for flexible, responsive parenting. Optimal cognitive regulation is reliant on associations between physiological mechanisms of central and peripheral nervous system functioning. Across middle adulthood there may be shifts in how cognitive regulation functions, reflecting changes in the associations and interactions between these physiological mechanisms. Two physiological indicators of cognitive regulation are autonomic regulation of the heart (e.g., respiratory sinus arrhythmia, RSA) and activity of the brain's frontoparietal network (e.g., frontoparietal EEG alpha power coherence, FPc). In the current study we examined maternal age differences (N = 90, age M = 32.35 years, SD = 5.86 years) in correlations and interactions between RSA and FPc in the statistical prediction of cognitive regulation [i.e., executive function (EF), effortful control (EC), cognitive reappraisal (CR)]. Age-related patterns involving interaction between RSA and FPc were found, pointing to a potential shift from optimization to compensation for changes with aging or alternately, the effects of age-based decrements in functioning. Findings are discussed in the context of adult developmental changes in maternal caregiving.
Collapse
Affiliation(s)
- Jennifer D. Christensen
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Martha Ann Bell
- Virginia Tech, Department of Psychology, Blacksburg, VA, United States
| | - Kirby D. Deater-Deckard
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
16
|
Hinchberger V, Kang SH, Kline J, Stanley CJ, Bulea TC, Damiano DL. Investigation of brain mechanisms underlying upper limb function in bilateral cerebral palsy using EEG. Clin Neurophysiol 2023; 151:116-127. [PMID: 37245498 PMCID: PMC10330582 DOI: 10.1016/j.clinph.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE Few studies focus on upper limbs in bilateral cerebral palsy (CP) despite potential bimanual deficits. Electroencephalography (EEG) was utilized to investigate brain mechanisms underlying upper limb tasks in bilateral CP and typical development (TD) and relationships to function. METHODS 26 (14 CP; 12 TD) completed the Box and Blocks Test and transport task with paper, sponge or mixed blocks, while recording EEG and motion data. RESULTS Group effects for path time, path length and Box and Blocks Test revealed bimanual deficits. Four sensorimotor-related EEG clusters were identified. Group effects were found in premotor and dominant motor clusters with greater beta event-related desynchronization (ERD) in CP. Hand and hand by group effects were found in the dominant motor cluster, showing greater ERD with the more affected hand in CP. Condition effects were prominent in the posterior parietal cluster with higher ERD reflecting greater difficulty in force modulation. CONCLUSIONS Higher brain activation associated with greater bimanual deficits is similar to our lower limb findings but contrasts studies in TD or unilateral CP linking higher ERD to greater proficiency. SIGNIFICANCE Bilateral CP shows overreliance on the dominant hemisphere with the less functional hand and higher brain activity presumably related to excessive intracortical connectivity.
Collapse
Affiliation(s)
- Victoria Hinchberger
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA
| | - Si Hyun Kang
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA; Department of Physical Medicine and Rehabilitation, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Julia Kline
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA
| | - Christopher J Stanley
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA
| | - Thomas C Bulea
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA
| | - Diane L Damiano
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA.
| |
Collapse
|
17
|
Chen Y, Lu X, Hu L. Transcutaneous Auricular Vagus Nerve Stimulation Facilitates Cortical Arousal and Alertness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1402. [PMID: 36674156 PMCID: PMC9859411 DOI: 10.3390/ijerph20021402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising noninvasive technique with potential beneficial effects on human emotion and cognition, including cortical arousal and alertness. However, it remains unclear how taVNS could improve cortical arousal and alertness, which are crucial for consciousness and daily task performance. Here, we aimed to estimate the modulatory effect of taVNS on cortical arousal and alertness and to reveal its underlying neural mechanisms. Sixty subjects were recruited and randomly assigned to either the taVNS group (receiving taVNS for 20 min) or the control group (receiving taVNS for 30 s). The effects of taVNS were evaluated behaviorally using a cue-target pattern task, and neurologically using a resting-state electroencephalogram (EEG). We found that taVNS facilitated the reaction time for the targets requiring right-hand responses and attenuated high-frequency alpha oscillations under the close-eye resting state. Importantly, taVNS-modulated alpha oscillations were positively correlated with the facilitated target detection performance, i.e., reduced reaction time. Furthermore, microstate analysis of the resting-state EEG when the eyes were closed illustrated that taVNS reduced the mean duration of microstate C, which has been proven to be associated with alertness. Altogether, this work provided novel evidence suggesting that taVNS could be an enhancer of both cortical arousal and alertness.
Collapse
Affiliation(s)
- Yuxin Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Meredith Weiss S, Marshall PJ. Anticipation across modalities in children and adults: Relating anticipatory alpha rhythm lateralization, reaction time, and executive function. Dev Sci 2023; 26:e13277. [PMID: 35616474 PMCID: PMC10078525 DOI: 10.1111/desc.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
Abstract
The development of the ability to anticipate-as manifested by preparatory actions and neural activation related to the expectation of an upcoming stimulus-may play a key role in the ontogeny of cognitive skills more broadly. This preregistered study examined anticipatory brain potentials and behavioral responses (reaction time; RT) to anticipated target stimuli in relation to individual differences in the ability to use goals to direct action (as indexed by measures of executive function; EF). A cross-sectional investigation was conducted in 40 adults (aged 18-25 years) and 40 children (aged 6-8 years) to examine the association of changes in the amplitude of modality-specific alpha-range rhythms in the electroencephalogram (EEG) during anticipation of lateralized visual, tactile, or auditory stimuli with inter- and intraindividual variation in RT and EF. Children and adults exhibited contralateral anticipatory reductions in the mu rhythm and the visual alpha rhythm for tactile and visual anticipation, respectively, indicating modality and spatially specific attention allocation. Variability in within-subject anticipatory alpha lateralization (the difference between contralateral and ipsilateral alpha power) was related to single-trial RT. This relation was more prominent in adults than in children, and was not apparent for auditory stimuli. Multilevel models indicated that interindividual differences in anticipatory mu rhythm lateralization contributed to the significant association with variability in EF, but this was not the case for visual or auditory alpha rhythms. Exploratory microstate analyses were undertaken to cluster global field power (GFP) into a distribution-free temporal analysis examining developmental differences across samples and in relation to RT and EF. Anticipation is suggested as a developmental bridge construct connecting neuroscience, behavior, and cognition, with anticipatory EEG oscillations being discussed as quantifiable and potentially malleable indicators of stimulus prediction.
Collapse
Affiliation(s)
- Staci Meredith Weiss
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Peter J Marshall
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Han C, Wang T, Wu Y, Li H, Wang E, Zhao X, Cao Q, Qian Q, Wang Y, Dou F, Liu JK, Sun L, Xing D. Compensatory mechanism of attention-deficit/hyperactivity disorder recovery in resting state alpha rhythms. Front Comput Neurosci 2022; 16:883065. [PMID: 36157841 PMCID: PMC9490822 DOI: 10.3389/fncom.2022.883065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Alpha rhythms in the human electroencephalogram (EEG), oscillating at 8-13 Hz, are located in parieto-occipital cortex and are strongest when awake people close their eyes. It has been suggested that alpha rhythms were related to attention-related functions and mental disorders (e.g., Attention-deficit/hyperactivity disorder (ADHD)). However, many studies have shown inconsistent results on the difference in alpha oscillation between ADHD and control groups. Hence it is essential to verify this difference. In this study, a dataset of EEG recording (128 channel EGI) from 87 healthy controls (HC) and 162 ADHD (141 persisters and 21 remitters) adults in a resting state with their eyes closed was used to address this question and a three-gauss model (summation of baseline and alpha components) was conducted to fit the data. To our surprise, the power of alpha components was not a significant difference among the three groups. Instead, the baseline power of remission and HC group in the alpha band is significantly stronger than that of persister groups. Our results suggest that ADHD recovery may have compensatory mechanisms and many abnormalities in EEG may be due to the influence of behavior rather than the difference in brain signals.
Collapse
Affiliation(s)
- Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hui Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Encong Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Xixi Zhao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Qingjiu Cao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Genetic Engineering Drugs and Biotechnology, Beijing Normal University, Beijing, China
| | - Jian K. Liu
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
- Li Sun,
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- *Correspondence: Dajun Xing,
| |
Collapse
|
20
|
Lai M, D'Acunto G, Guzzetta A, Finnigan S, Ngenda N, Ware RS, Boyd RN, Colditz PB. Infant massage and brain maturation measured using EEG: A randomised controlled trial. Early Hum Dev 2022; 172:105632. [PMID: 35905636 DOI: 10.1016/j.earlhumdev.2022.105632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Very preterm (VPT) infants develop adverse neurological sequelae from early exposure of the immature brain to the extrauterine environment. AIMS To determine the effects of infant massage on brain maturation in low-risk VPT infants. STUDY DESIGN A randomised controlled trial of VPT infants, who received standard care or daily massage therapy, administered by the mother, from 34 weeks' to 40 weeks' corrected age (CA). SUBJECTS VPT infants (born at 28 weeks to 32 + 6 weeks' gestational age, G.A.) and a healthy at term cohort for comparison. OUTCOME MEASURES At term equivalent age (39 weeks' to 42 weeks' CA), EEG was recorded to calculate global relative power (GRP), using power spectral analysis. RESULTS Sixty infants were recruited, and EEGs of 25 massage and 20 standard care infants were analysable. There was no difference between groups in primary outcome (beta GRP). There was a significantly higher central alpha relative power measured in the intervention group infants, compared to standard care (SC) group (mean difference = 1.42, 95 % confidence interval (CI): 0.12 to 2.73; p = 0.03). A massage dose effect was shown by a positive correlation between, massage dose and beta, alpha and theta GRP (r = 0.42, 95%CI = 0.12 to 0.64, r = 0.45; 95%CI = 0.16 to 0.66, r = 0.39; 95%CI = 0.10 to 0.62 respectively) and a negative correlation between massage dose and delta GRP (r = -0.41, 95%CI = -0.64 to -0.12), suggesting that a higher dose of massage is associated with more favourable brain maturation. CONCLUSIONS Central alpha regional relative power was greater in massaged infants compared to SC group infants, suggesting relatively greater brain maturation in this area. A measurable massage dose effect in favour of greater brain maturation, shows promise for verification in a larger clinical trial.
Collapse
Affiliation(s)
- Melissa Lai
- Grantley Stable Neonatal Unit, Royal Brisbane & Women's Hospital, Herston, Brisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia.
| | - Giulia D'Acunto
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Andrea Guzzetta
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Simon Finnigan
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Naoni Ngenda
- Grantley Stable Neonatal Unit, Royal Brisbane & Women's Hospital, Herston, Brisbane, Queensland, Australia
| | - Robert S Ware
- Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| | - Roslyn N Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia
| | - Paul B Colditz
- Grantley Stable Neonatal Unit, Royal Brisbane & Women's Hospital, Herston, Brisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Strang CC, Harris A, Moody EJ, Reed CL. Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits. Front Neurosci 2022; 16:950539. [PMID: 35992926 PMCID: PMC9389406 DOI: 10.3389/fnins.2022.950539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (EEG), high autism-spectrum traits in both ASD and neurotypical samples are associated with changes to the mu rhythm, an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex which typically shows reductions in spectral power during both one’s own movements and observation of others’ actions. This mu suppression is thought to reflect integration of perceptual and motor representations for understanding of others’ mental states, which may be disrupted in individuals with autism-spectrum traits. However, because spectral power is usually quantified at the group level, it has limited usefulness for characterizing individual variation in the mu rhythm, particularly with respect to autism-spectrum traits. Instead, individual peak frequency may provide a better measure of mu rhythm variability across participants. Previous developmental studies have linked ASD to slowing of individual peak frequency in the alpha band, or peak alpha frequency (PAF), predominantly associated with selective attention. Yet individual variability in the peak mu frequency (PMF) remains largely unexplored, particularly with respect to autism-spectrum traits. Here we quantified peak frequency of occipitoparietal alpha and sensorimotor mu rhythms across neurotypical individuals as a function of autism-spectrum traits. High-density 128-channel EEG data were collected from 60 participants while they completed two tasks previously reported to reliably index the sensorimotor mu rhythm: motor execution (bimanual finger tapping) and action observation (viewing of whole-body human movements). We found that individual measurement in the peak oscillatory frequency of the mu rhythm was highly reliable within participants, was not driven by resting vs. task states, and showed good correlation across action execution and observation tasks. Within our neurotypical sample, higher autism-spectrum traits were associated with slowing of the PMF, as predicted. This effect was not likely explained by volume conduction of the occipitoparietal PAF associated with attention. Together, these data support individual peak oscillatory alpha-band frequency as a correlate of autism-spectrum traits, warranting further research with larger samples and clinical populations.
Collapse
Affiliation(s)
| | - Alison Harris
- Department of Psychological Science, Claremont McKenna College, Claremont, CA, United States
- *Correspondence: Alison Harris,
| | - Eric J. Moody
- Wyoming Institute for Disabilities (WIND), University of Wyoming, Laramie, WY, United States
| | - Catherine L. Reed
- Department of Psychological Science, Claremont McKenna College, Claremont, CA, United States
| |
Collapse
|
22
|
Fu X, Richards JE. Evaluating Head Models for Cortical Source Localization of the Face-Sensitive N290 Component in Infants. Brain Topogr 2022; 35:398-415. [PMID: 35543889 DOI: 10.1007/s10548-022-00899-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
Abstract
Accurate cortical source localization of event-related potentials (ERPs) requires using realistic head models constructed from the participant's structural magnetic resonance imaging (MRI). A challenge in developmental studies is the limited accessibility of participant-specific MRIs. The present study compared source localization of infants' N290 ERP activities estimated using participant-specific head models with a series of substitute head models. The N290 responses to faces relative to toys were measured in 36 infants aged at 4.5, 7.5, 9, and 12 months. The substitutes were individual-based head models constructed from age-matched MRIs with closely matched ("close") or different ("far") head measures with the participants, age-appropriate average template, and age-inappropriate average templates. The greater source responses to faces than toys at the middle fusiform gyrus (mFG) estimated using participant-specific head models were preserved in individual-based head models, but not average templates. The "close" head models yielded the best fit with the participant-specific head models in source activities at the mFG and across face-processing-related regions of interest (ROIs). The age-appropriate average template showed mixed results, not supporting the stimulus effect but showed topographical distributions across the ROIs like the participant-specific head models. The "close" head models are the most optimal substitute for participant-specific MRIs.
Collapse
Affiliation(s)
- Xiaoxue Fu
- Department of Psychology, University of South Carolina, Columbia, USA.
| | - John E Richards
- Department of Psychology, University of South Carolina, Columbia, USA
| |
Collapse
|
23
|
Morales S, Bowers ME, Leach SC, Buzzell GA, Fifer W, Elliott AJ, Fox NA. Time-frequency dynamics of error monitoring in childhood: An EEG study. Dev Psychobiol 2022; 64:e22215. [PMID: 35312050 PMCID: PMC9203655 DOI: 10.1002/dev.22215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Error monitoring allows individuals to monitor and adapt their behavior by detecting errors. Error monitoring is thought to develop throughout childhood and adolescence. However, most of this evidence comes from studies in late childhood and adolescence utilizing event-related potentials (ERPs). The current study utilizes time-frequency (TF) and connectivity analyses to provide a comprehensive examination of age-related changes in error-monitoring processes across early childhood (N = 326; 50.9% females; 4-9 years). ERP analyses indicated the presence of the error-related negativity (ERN) and error positivity (Pe) across all ages. Results showed no error-specific age-related changes in the ERN and the Pe. However, TF analyses suggested error-related frontocentral responses in delta and theta signal strength (power), delta consistency (intertrial phase synchrony), and delta synchrony (interchannel phase synchrony) between frontrocentral and frontolateral clusters-all of which increased with age. Additionally, the current study examines the reliability and effect size estimates of the ERP and TF measures. For most measures, more trials were needed to achieve acceptable reliability than what is commonly used in the psychophysiological literature. Resources to facilitate the measurement and reporting of reliability are provided. Overall, findings highlight the utility of TF analyses and provide useful information for future studies examining the development of error monitoring.
Collapse
Affiliation(s)
- Santiago Morales
- Department of Human Development and Quantitative Methodology, The University of Maryland, College Park, MD, USA
- Department of Psychology, University of Southern California, CA USA
| | - Maureen E. Bowers
- Department of Human Development and Quantitative Methodology, The University of Maryland, College Park, MD, USA
| | - Stephanie C. Leach
- Department of Human Development and Quantitative Methodology, The University of Maryland, College Park, MD, USA
| | | | - William Fifer
- Department of Psychiatry, Columbia University, New York, NY USA
| | - Amy J. Elliott
- Avera Research Institute, Sioux Falls, SD USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD USA
| | - Nathan A. Fox
- Department of Human Development and Quantitative Methodology, The University of Maryland, College Park, MD, USA
| |
Collapse
|
24
|
Hill AT, Clark GM, Bigelow FJ, Lum JAG, Enticott PG. Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood. Dev Cogn Neurosci 2022; 54:101076. [PMID: 35085871 PMCID: PMC8800045 DOI: 10.1016/j.dcn.2022.101076] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 11/27/2022] Open
Abstract
The neurodevelopmental period spanning early-to-middle childhood represents a time of significant growth and reorganisation throughout the cortex. Such changes are critical for the emergence and maturation of a range of social and cognitive processes. Here, we utilised both eyes open and eyes closed resting-state electroencephalography (EEG) to examine maturational changes in both oscillatory (i.e., periodic) and non-oscillatory (aperiodic, '1/f-like') activity in a large cohort of participants ranging from 4-to-12 years of age (N = 139, average age=9.41 years, SD=1.95). The EEG signal was parameterised into aperiodic and periodic components, and linear regression models were used to evaluate if chronological age could predict aperiodic exponent and offset, as well as well as peak frequency and power within the alpha and beta ranges. Exponent and offset were found to both decrease with age, while aperiodic-adjusted alpha peak frequency increased with age; however, there was no association between age and peak frequency for the beta band. Age was also unrelated to aperiodic-adjusted spectral power within either the alpha or beta bands, despite both frequency ranges being correlated with the aperiodic signal. Overall, these results highlight the capacity for both periodic and aperiodic features of the EEG to elucidate age-related functional changes within the developing brain.
Collapse
Affiliation(s)
- Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Australia.
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Australia
| | - Felicity J Bigelow
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Australia
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Australia
| |
Collapse
|
25
|
Decroix J, Rossetti Y, Quesque F. Les neurones miroirs, hommes à tout faire des neurosciences : analyse critique des limites méthodologiques et théoriques. ANNEE PSYCHOLOGIQUE 2022. [DOI: 10.3917/anpsy1.221.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
26
|
Bach AM, Xie W, Piazzoli L, Jensen SKG, Afreen S, Haque R, Petri WA, Nelson CA. Systemic inflammation during the first year of life is associated with brain functional connectivity and future cognitive outcomes. Dev Cogn Neurosci 2022; 53:101041. [PMID: 34973509 PMCID: PMC8728426 DOI: 10.1016/j.dcn.2021.101041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/09/2021] [Accepted: 11/27/2021] [Indexed: 01/01/2023] Open
Abstract
The first years of life are a sensitive period of rapid neural and immune system development vulnerable to the impact of adverse experiences. Several studies support inflammation as a consequence of various adversities and an exposure negatively associated with developmental outcomes. The mechanism by which systemic inflammation may affect brain development and later cognitive outcomes remains unclear. In this longitudinal cohort study, we examine the associations between recurrent systemic inflammation, defined as C-reactive protein elevation on ≥ 2 of 4 measurements across the first year of life, electroencephalography (EEG) functional connectivity (FC) at 36 months, and composite cognitive outcomes at 3, 4, and 5 years among 122 children living in a limited-resource setting in Dhaka, Bangladesh. Recurrent systemic inflammation during the first year of life is significantly negatively associated with cognitive outcomes at 3, 4, and 5 years, after accounting for stunting and family care indicators (a measure of stimulation in the home environment). Recurrent systemic inflammation is significantly positively associated with parietal-occipital FC in the Beta band at 36 months, which in turn is significantly negatively associated with composite cognitive scores at 3 and 4 years. However, FC does not mediate the relationship between recurrent systemic inflammation and cognitive outcomes.
Collapse
Affiliation(s)
- Ashley M Bach
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, USA; Harvard T.H. Chan School of Public Health, USA
| | - Wanze Xie
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China
| | - Laura Piazzoli
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, USA; Harvard Medical School, USA
| | | | - Sajia Afreen
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - William A Petri
- Division of Infectious Diseases, University of Virginia School of Medicine, USA
| | - Charles A Nelson
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, USA; Harvard Medical School, USA; Harvard Graduate School of Education, USA.
| |
Collapse
|
27
|
Crivelli D, Di Ruocco M, Balena A, Balconi M. The Empowering Effect of Embodied Awareness Practice on Body Structural Map and Sensorimotor Activity: The Case of Feldenkrais Method. Brain Sci 2021; 11:brainsci11121599. [PMID: 34942901 PMCID: PMC8699347 DOI: 10.3390/brainsci11121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
While outcomes of embodied awareness practices in terms of improved posture and flexibility, movement efficiency, and well-being are often reported, systematic investigations of such training effects and of the actual nature, extent, and neurofunctional correlates of learning mechanisms thought to lie at the core of such practices are very limited. The present study focused on the Feldenkrais method (FM), one of the most established embodied awareness practices, and aimed at investigating the neurofunctional outcomes of the somatic learning process at the core of the method by testing the modulations induced by a standardized FM protocol on the complexity of practicers’ body structural map and on the activity of their sensorimotor network during different movement-related tasks (i.e., gestures observation, execution, and imagery). Twenty-five participants were randomly divided into an experimental group—which completed a 28-session FM protocol based on guided group practice—and a control group, and underwent pre-/post-training psychometric and electrophysiological assessment. Data analysis highlighted, at the end of the FM protocol, a significant increase of EEG markers of cortical activation (task-related mu desynchronization) in precentral regions during action observation and in central regions during action execution and imagery. Also, posterior regions of the sensorimotor network showed systematic activation during all the action-related tasks.
Collapse
Affiliation(s)
- Davide Crivelli
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, 20123 Milan, Italy;
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
- Correspondence: ; Tel.: +39-(0)272345929
| | | | - Alessandra Balena
- Sesto Senso Feldenkrais Association, 20129 Milan, Italy; (M.D.R.); (A.B.)
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, 20123 Milan, Italy;
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| |
Collapse
|
28
|
Zebarjadi N, Levy J. Neural shifts in alpha rhythm's dual functioning during empathy. Brain Behav 2021; 11:e2355. [PMID: 34536976 PMCID: PMC8613432 DOI: 10.1002/brb3.2355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/20/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Alpha oscillations are unique in their capacity to relay neuronal information through a dual-process named "gating by inhibition": rhythmic enhancement inhibits task-irrelevant regions while rhythmic suppression engages task-relevant regions in the brain. A social-cognitive process that operates by relying on the suppression of the alpha rhythm in the primary somatosensory cortex (S1) is the ability to generate empathy. This phenomenon has been evidenced in dozens of electrophysiological studies targeting adult human subjects. Yet, recent studies on the neurodevelopment of empathy indicate that in younger age, empathy does not involve alpha suppression in S1 but only enhancement. More interestingly, right before adulthood, this rhythm is still enhanced, but in a remarkable shift, a pattern of suppression emerges. In this registered magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) study, we will capture frequency-decomposed neural activity particularly at the alpha range and its corresponding hemodynamic response and target subjects at around 20 years old as a unique time-window in development that allows investigating in parallel both low-alpha suppression and high-alpha enhancement. We aim to address two questions: (a) Does alpha power suppression in the S1 region during empathy correspond to BOLD increase in this region? (b) What is the functional role of alpha power enhancement during empathy development (BOLD signal increase or decrease)? Addressing these questions will particularly advance knowledge on the process of empathy in the brain, and the way in which it is underpinned by alpha oscillations. Moreover, examining these experimental outcomes can potentially lay the ground for future studies that would further examine the role of alpha oscillations in empathy during the course of development. METHODS Brain data of forty healthy individuals close to 20 years old will be recorded in two consecutive MEG and fMRI sessions while subjects observing physical pain versus neutral stimuli. Besides, each participant's subjective experiences wll be measred by questionnaires, interviews and rating of the stimuli.
Collapse
Affiliation(s)
- Niloufar Zebarjadi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jonathan Levy
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| |
Collapse
|
29
|
Shen G, Weiss SM, Meltzoff AN, Allison ON, Marshall PJ. Exploring developmental changes in infant anticipation and perceptual processing: EEG responses to tactile stimulation. INFANCY 2021; 27:97-114. [PMID: 34617671 DOI: 10.1111/infa.12438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/12/2021] [Accepted: 08/29/2021] [Indexed: 11/26/2022]
Abstract
There is an increasing interest in alpha-range rhythms in the electroencephalogram (EEG) in relation to perceptual and attentional processes. The infant mu rhythm has been extensively studied in the context of linkages between action observation and action production in infancy, but less is known about the mu rhythm in relation to cross-modal processes involving somatosensation. We investigated differences in mu responses to cued vibrotactile stimulation of the hand in two age groups of infants: From 6 to 7 months and 13 to 14 months. We were also interested in anticipatory neural responses in the alpha frequency range prior to tactile stimulation. Tactile stimulation of infants' left or right hand was preceded by an audiovisual cue signaling which hand would be stimulated. In response to the tactile stimulus, infants demonstrated significant mu desynchronization over the central areas contralateral to the hand stimulated, with higher mu peak frequency and greater contralateral mu desynchronization for older infants. Prior to the tactile stimulus, both age groups showed significant bilateral alpha desynchronization over frontocentral sites, which may be indicative of generalized anticipation of an upcoming stimulus. The findings highlight the potential of examining the sensorimotor mu rhythm in the context of infant attentional development.
Collapse
Affiliation(s)
- Guannan Shen
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Staci M Weiss
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Andrew N Meltzoff
- Institute for Learning and Brain Science, University of Washington, Seattle, Washington, USA
| | - Olivia N Allison
- Department of Radiology, Children's Hospital of Philadephia, Philadephia, USA
| | - Peter J Marshall
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Vincent KM, Xie W, Nelson CA. Using different methods for calculating frontal alpha asymmetry to study its development from infancy to 3 years of age in a large longitudinal sample. Dev Psychobiol 2021; 63:e22163. [PMID: 34292586 PMCID: PMC11268489 DOI: 10.1002/dev.22163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022]
Abstract
Frontal electroencephalography (EEG) alpha asymmetry (FAA), defined as the difference in frontal alpha power observed over the right and left frontal scalp regions, has been widely used in developmental research as a measure of multiple aspects of child behavior, such as temperament. Studies have used different equations to calculate FAA, which renders comparison of results across studies challenging. Furthermore, few studies have examined FAA's longitudinal stability across infancy and early childhood, which is a desirable feature of a temperament measure. We investigated the cross-sectional and the longitudinal correlations of FAA values from four different equations to calculate FAA used in the literature. We used baseline EEG data from a longitudinal sample of 321 infants and 168 3-year-old children (149 of whom had data at both timepoints). Consistent with previous work, FAA values calculated using two commonly used equations were highly correlated with each other cross-sectionally but not with values from a different equation that used log-transformed relative power. The log-transformed relative power FAA values were the only values that showed significant longitudinal stability. These findings suggest that researchers interested in FAA as a trait-like measure in children should consider using the relative power equation that renders stability across ages.
Collapse
Affiliation(s)
- Katherine M Vincent
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Department of Psychology, Northeastern University, Boston, Massachusetts, USA
| | - Wanze Xie
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- School of Psychological and Cognitive Sciences, Peking University, China; and PKU-IDG/McGovern Institute for Brain Research, Peking University, China
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles A Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Graduate School of Education, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
The Effect of Baseline on Toddler Event-Related Mu-Rhythm Modulation. Brain Sci 2021; 11:brainsci11091159. [PMID: 34573178 PMCID: PMC8472825 DOI: 10.3390/brainsci11091159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Event-related mu-rhythm activity has become a common tool for the investigation of different socio-cognitive processes in pediatric populations. The estimation of the mu-rhythm desynchronization/synchronization (mu-ERD/ERS) in a specific task is usually computed in relation to a baseline condition. In the present study, we investigated the effect that different types of baseline might have on toddler mu-ERD/ERS related to an action observation (AO) and action execution (AE) task. Specifically, we compared mu-ERD/ERS values computed using as a baseline: (1) the observation of a static image (BL1) and (2) a period of stillness (BL2). Our results showed that the majority of the subjects suppressed the mu-rhythm in response to the task and presented a greater mu-ERD for one of the two baselines. In some cases, one of the two baselines was not even able to produce a significant mu-ERD, and the preferred baseline varied among subjects even if most of them were more sensitive to the BL1, thus suggesting that this could be a good baseline to elicit mu-rhythm modulations in toddlers. These results recommended some considerations for the design and analysis of mu-rhythm studies involving pediatric subjects: in particular, the importance of verifying the mu-rhythm activity during baseline, the relevance of single-subject analysis, the possibility of including more than one baseline condition, and caution in the choice of the baseline and in the interpretation of the results of studies investigating mu-rhythm activity in pediatric populations.
Collapse
|
32
|
McClelland VM, Lin JP. Sensorimotor Integration in Childhood Dystonia and Dystonic Cerebral Palsy-A Developmental Perspective. Front Neurol 2021; 12:668081. [PMID: 34367047 PMCID: PMC8343097 DOI: 10.3389/fneur.2021.668081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Dystonia is a disorder of sensorimotor integration, involving dysfunction within the basal ganglia, cortex, cerebellum, or their inter-connections as part of the sensorimotor network. Some forms of dystonia are also characterized by maladaptive or exaggerated plasticity. Development of the neuronal processes underlying sensorimotor integration is incompletely understood but involves activity-dependent modeling and refining of sensorimotor circuits through processes that are already taking place in utero and which continue through infancy, childhood, and into adolescence. Several genetic dystonias have clinical onset in early childhood, but there is evidence that sensorimotor circuit development may already be disrupted prenatally in these conditions. Dystonic cerebral palsy (DCP) is a form of acquired dystonia with perinatal onset during a period of rapid neurodevelopment and activity-dependent refinement of sensorimotor networks. However, physiological studies of children with dystonia are sparse. This discussion paper addresses the role of neuroplasticity in the development of sensorimotor integration with particular focus on the relevance of these mechanisms for understanding childhood dystonia, DCP, and implications for therapy selection, including neuromodulation and timing of intervention.
Collapse
Affiliation(s)
- Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
33
|
Zapała D, Mikołajewski D. Computational model of decreased suppression of mu rhythms in patients with Autism Spectrum Disorders during movement observation—preliminary findings. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2020-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Autism Spectrum Disorders (ASD) represent developmental conditions with deficits in the cognitive, motor, communication and social domains. It is thought that imitative behaviour may be impaired in children with ASD. The Mirror Neural System (MNS) concept plays an important role in theories explaining the link between action perception, imitation and social decision-making in ASD.
Methods
In this study, Emergent 7.0.1 software was used to build a computational model of the phenomenon of MNS influence on motion imitation. Seven point populations of Hodgkin–Huxley artificial neurons were used to create a simplified model.
Results
The model shows pathologically altered processing in the neural network, which may reflect processes observed in ASD due to reduced stimulus attenuation. The model is considered preliminary—further research should test for a minimally significant difference between the states: normal processing and pathological processing.
Conclusions
The study shows that even a simple computational model can provide insight into the mechanisms underlying the phenomena observed in experimental studies, including in children with ASD.
Collapse
Affiliation(s)
- Dariusz Zapała
- Department of Experimental Psychology , The John Paul II Catholic University of Lublin , Lublin , Poland
| | - Dariusz Mikołajewski
- Institute of Computer Science, Kazimierz Wielki University , Bydgoszcz , Poland
- Neurocognitive Laboratory, Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University , Toruń , Poland
| |
Collapse
|
34
|
EEG measures of sensorimotor processing and their development are abnormal in children with isolated dystonia and dystonic cerebral palsy. NEUROIMAGE-CLINICAL 2021; 30:102569. [PMID: 33583764 PMCID: PMC8044718 DOI: 10.1016/j.nicl.2021.102569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/12/2023]
Abstract
Dystonia is a disorder of sensorimotor integration associated with abnormal oscillatory activity within the basal ganglia-thalamo-cortical networks. Event-related changes in spectral EEG activity reflect cortical processing but are sparsely investigated in relation to sensorimotor processing in dystonia. This study investigates modulation of sensorimotor cortex EEG activity in response to a proprioceptive stimulus in children with dystonia and dystonic cerebral palsy (CP). Proprioceptive stimuli, comprising brief stretches of the wrist flexors, were delivered via a robotic wrist interface to 30 young people with dystonia (20 isolated genetic/idiopathic and 10 dystonic CP) and 22 controls (mean age 12.7 years). Scalp EEG was recorded using the 10-20 international system and the relative change in post-stimulus power with respect to baseline was calculated for the alpha (8-12 Hz) and beta (14-30 Hz) frequency bands. A clear developmental profile in event-related spectral changes was seen in controls. Controls showed a prominent early alpha/mu band event-related desynchronisation (ERD) followed by an event-related synchronisation (ERS) over the contralateral sensorimotor cortex following movement of either hand. The alpha ERD was significantly smaller in the dystonia groups for both dominant and non-dominant hand movement (ANCOVA across the 3 groups with age as covariate: dominant hand F(2,47) = 4.45 p = 0.017; non-dominant hand F(2,42) = 9.397 p < 0.001. Alpha ERS was significantly smaller in dystonia for the dominant hand (ANCOVA F(2,47) = 7.786 p = 0.001). There was no significant difference in ERD or ERS between genetic/idiopathic dystonia and dystonic CP. CONCLUSION: Modulation of alpha/mu activity by a proprioceptive stimulus is reduced in dystonia, demonstrating a developmental abnormality of sensorimotor processing which is common to isolated genetic/idiopathic and acquired dystonia/dystonic CP.
Collapse
|
35
|
George KA, Damiano DL, Kim Y, Bulea TC. Mu Rhythm during Standing and Walking Is Altered in Children with Unilateral Cerebral Palsy Compared to Children with Typical Development. Dev Neurorehabil 2021; 24:8-17. [PMID: 32372674 DOI: 10.1080/17518423.2020.1756005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Rehabilitation in cerebral palsy (CP) seeks to harness neuroplasticity to improve movement, including walking, yet cortical activation underlying gait is not well understood. Methods: We used electroencephalography (EEG) to compare motor related cortical activity, measured by mu rhythm, during quiet standing and treadmill walking in 10 children with unilateral CP and 10 age- and sex-matched children with typical development (TD). Peak mu band frequency, mu rhythm desynchronization (MRD), and gait related intra- and inter-hemispheric coherence were examined. Results: MRD during walking was observed bilaterally over motor cortex in both cohorts but peak mu band frequency showing MRD was significantly lower in CP compared to TD. Coherence during quiet standing between motor and frontal regions was significantly higher in the non-dominant compared to dominant hemisphere in CP with no hemispheric differences in TD. Conclusions: EEG-based measures should be further investigated as clinical biomarkers for atypical motor development and to assess rehabilitation effectiveness.
Collapse
Affiliation(s)
| | | | - Yushin Kim
- National Institutes of Health , Bethesda, MD, USA.,Cheongju University , Cheongju, Republic of Korea
| | | |
Collapse
|
36
|
Kaida AI, Mikhailova AA, Eismont EV, Dzhapparova LL, Pavlenko VB. EEG μ-rhythm reactivity in children during imitation of biological and non-biological motion. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of brain-computer interfaces based on the use of EEG sensorimotor rhythms reactivity parameters and designed for the rehabilitation of people (including children) with impaired motor functions is currently relevant. The study was aimed to analyse the EEG μ-rhythm in the individual frequency range in children during imitation of biological and non-biological motion. EEG was recorded at frontal, central and parietal cortical regions in 136 normally developing right-handed children aged 4–15, at rest and during the execution and imitation of movements using the computer mouse. When the children moved the computer mouse on their own (F1, 132 = 31.17; p < 0.001) and executed the concentric moving of the coloured circle (F1, 132 = 90.34; p < 0.001), the μ-rhythm desynchronization developed in the frontal, central and parietal neocortical regions. The μ-rhythm synchronization was detected during the non-biologocal motion imitation (F1, 132 = 12.65; p < 0.001), compared to the task on the autonomous movement execution. The μ-rhythm desynchronization was observed during the biologocal motion imitation in relation to autonomous movement execution (F1, 132 = 9.58; p = 0.002). The described effects had their own features in the groups of children aged 4–6, 7–9, 10–12 and 13–15. The study results demonstrate the desirability of taking into account the μ-rhythm reactivity age-related features and the visual stimuli nature when developing software for the brain-computer interfaces.
Collapse
Affiliation(s)
- AI Kaida
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| | - AA Mikhailova
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| | - EV Eismont
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| | - LL Dzhapparova
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| | - VB Pavlenko
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| |
Collapse
|
37
|
Simon JC, Styczynski N, Gutsell JN. Social perceptions of warmth and competence influence behavioral intentions and neural processing. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:265-275. [PMID: 31965474 PMCID: PMC7220095 DOI: 10.3758/s13415-019-00767-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Perceptions of the primary social dimensions, warmth and competence, determine how we view and relate to social targets. To discern how warmth and competence might affect neural processing and its downstream behavioral consequences, we manipulated impressions of targets' warmth and competence and then measured intentions toward the target and motor resonance, a neural process previously linked to social processing. While EEG was recorded, 66 participants watched videos of people performing a simple motor activity and completed a measure of hypothetical intentions to help or harm. Both perceptions of warmth and competence predicted an increase in helping intentions. Moreover, participants showed the least motor resonance with high competence-medium warmth targets, suggesting the importance of both social dimensions in driving neural simulation of targets' actions. Perceptions of a person's warmth and competence can affect not only how others might intend to treat them, but also how they might process their basic experiences on a neural level.
Collapse
Affiliation(s)
- Jeremy C Simon
- Psychology Department, Brandeis University, MS062, 415 South Street, Waltham, MA, 02453, USA.
| | - Nadya Styczynski
- Psychology Department, Brandeis University, MS062, 415 South Street, Waltham, MA, 02453, USA
| | - Jennifer N Gutsell
- Psychology Department, Brandeis University, MS062, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
38
|
Quadrelli E, Anzani A, Ferri M, Bolognini N, Maravita A, Zambonin F, Turati C. Electrophysiological correlates of action observation treatment in children with cerebral palsy: A pilot study. Dev Neurobiol 2020; 79:934-948. [PMID: 31981294 DOI: 10.1002/dneu.22734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 11/08/2022]
Abstract
Action Observation Treatment (AOT) has been shown to be effective in the functional recovery of several clinical populations. However, little is known about the neural underpinnings of the clinical efficacy of AOT in children with Cerebral Palsy (CP). Using electroencephalography (EEG), we recorded µ rhythm desynchronization as an index of sensorimotor cortex modulation during a passive action observation task before and after AOT. The relationship between sensorimotor modulation and clinical outcomes was also assessed. Eight children with CP entered the present randomized controlled crossover pilot study in which the experimental AOT preceded or followed a control Videogame Observation Treatment (VOT). Results provide further evidence of the clinical efficacy of AOT for improving hand motor function in CP, as assessed with the Assisting Hand Assessment (AHA) and Melbourne Assessment of Unilateral Upper Limb Function Scale (MUUL). The novel finding is that AOT increases µ rhythm desynchronization at scalp locations corresponding to the hand representation areas. This effect is associated to functional improvement assessed with the MUUL. These preliminary findings, although referred to as a small sample, suggest that AOT may affect upper limb motor recovery in children with CP and modulate the activation of sensorimotor areas, offering a potential neurophysiological correlate to support the clinical utility of AOT.
Collapse
Affiliation(s)
- Ermanno Quadrelli
- Department of Psychology, Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Anna Anzani
- Child Neuropsychiatry Unit, ASST dei Sette Laghi, Varese, Italy
| | - Matteo Ferri
- Child Neuropsychiatry Unit, ASST dei Sette Laghi, Varese, Italy
| | - Nadia Bolognini
- Department of Psychology, Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Angelo Maravita
- Department of Psychology, Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Fabio Zambonin
- Child Neuropsychiatry Unit, ASST dei Sette Laghi, Varese, Italy
| | - Chiara Turati
- Department of Psychology, Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy.,Child Neuropsychiatry Unit, ASST dei Sette Laghi, Varese, Italy
| |
Collapse
|
39
|
Jenson D, Bowers AL, Hudock D, Saltuklaroglu T. The Application of EEG Mu Rhythm Measures to Neurophysiological Research in Stuttering. Front Hum Neurosci 2020; 13:458. [PMID: 31998103 PMCID: PMC6965028 DOI: 10.3389/fnhum.2019.00458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Deficits in basal ganglia-based inhibitory and timing circuits along with sensorimotor internal modeling mechanisms are thought to underlie stuttering. However, much remains to be learned regarding the precise manner how these deficits contribute to disrupting both speech and cognitive functions in those who stutter. Herein, we examine the suitability of electroencephalographic (EEG) mu rhythms for addressing these deficits. We review some previous findings of mu rhythm activity differentiating stuttering from non-stuttering individuals and present some new preliminary findings capturing stuttering-related deficits in working memory. Mu rhythms are characterized by spectral peaks in alpha (8-13 Hz) and beta (14-25 Hz) frequency bands (mu-alpha and mu-beta). They emanate from premotor/motor regions and are influenced by basal ganglia and sensorimotor function. More specifically, alpha peaks (mu-alpha) are sensitive to basal ganglia-based inhibitory signals and sensory-to-motor feedback. Beta peaks (mu-beta) are sensitive to changes in timing and capture motor-to-sensory (i.e., forward model) projections. Observing simultaneous changes in mu-alpha and mu-beta across the time-course of specific events provides a rich window for observing neurophysiological deficits associated with stuttering in both speech and cognitive tasks and can provide a better understanding of the functional relationship between these stuttering symptoms. We review how independent component analysis (ICA) can extract mu rhythms from raw EEG signals in speech production tasks, such that changes in alpha and beta power are mapped to myogenic activity from articulators. We review findings from speech production and auditory discrimination tasks demonstrating that mu-alpha and mu-beta are highly sensitive to capturing sensorimotor and basal ganglia deficits associated with stuttering with high temporal precision. Novel findings from a non-word repetition (working memory) task are also included. They show reduced mu-alpha suppression in a stuttering group compared to a typically fluent group. Finally, we review current limitations and directions for future research.
Collapse
Affiliation(s)
- David Jenson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Andrew L. Bowers
- Epley Center for Health Professions, Communication Sciences and Disorders, University of Arkansas, Fayetteville, AR, United States
| | - Daniel Hudock
- Department of Communication Sciences and Disorders, Idaho State University, Pocatello, ID, United States
| | - Tim Saltuklaroglu
- College of Health Professions, Department of Audiology and Speech-Pathology, University of Tennessee Health Science Center, Knoxville, TN, United States
| |
Collapse
|
40
|
Johnson B, Jobst C, Al-Loos R, He W, Cheyne D. Individual differences in motor development during early childhood: An MEG study. Dev Sci 2020; 23:e12935. [PMID: 31869490 DOI: 10.1111/desc.12935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
In a previous study, we reported the first measurements of pre-movement and sensorimotor cortex activity in preschool age children (ages 3-5 years) using a customized pediatric magnetoencephalographic system. Movement-related activity in the sensorimotor cortex differed from that typically observed in adults, suggesting that maturation of cortical motor networks was still incomplete by late preschool age. Here we compare these earlier results to a group of school age children (ages 6-8 years) including seven children from the original study measured again two years later, and a group of adults (mean age 31.1 years) performing the same task. Differences in movement-related brain activity were observed both longitudinally within children in which repeated measurements were made, and cross-sectionally between preschool age children, school age children, and adults. Movement-related mu (8-12 Hz) and beta (15-30 Hz) oscillations demonstrated linear increases in amplitude and mean frequency with age. In contrast, movement-evoked gamma synchronization demonstrated a step-like transition from low (30-50 Hz) to high (70-90 Hz) narrow-band oscillations, and this occurred at different ages in different children. Notably, pre-movement activity ('readiness fields') observed in adults was absent in even the oldest children. These are the first direct observations of brain activity accompanying motor responses throughout early childhood, confirming that maturation of this activity is still incomplete by mid-childhood. In addition, individual children demonstrated markedly different developmental trajectories in movement-related brain activity, suggesting that individual differences need to be taken into account when studying motor development across age groups.
Collapse
Affiliation(s)
- Blake Johnson
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Cecilia Jobst
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Rita Al-Loos
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Wei He
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Douglas Cheyne
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Festante F, Ferrari PF, Thorpe SG, Buchanan RW, Fox NA. Intranasal oxytocin enhances EEG mu rhythm desynchronization during execution and observation of social action: An exploratory study. Psychoneuroendocrinology 2020; 111:104467. [PMID: 31630052 PMCID: PMC6897365 DOI: 10.1016/j.psyneuen.2019.104467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023]
Abstract
Intranasal administration of oxytocin (OT) has been found to facilitate prosocial behaviors, emotion recognition and cooperation between individuals. Recent electroencephalography (EEG) investigations have reported enhanced mu rhythm (alpha: 8-13 Hz; beta: 15-25 Hz) desynchronization during the observation of biological motion and stimuli probing social synchrony after the administration of intranasal OT. This hormone may therefore target a network of cortical circuits involved in higher cognitive functions, including the mirror neuron system (MNS). Here, in a double-blind, placebo-controlled, between-subjects exploratory study, we investigated whether intranasal OT modulates the cortical activity from sensorimotor areas during the observation and the execution of social and non-social grasping actions. Participants underwent EEG testing after receiving a single dose (24 IU) of either intranasal OT or placebo. Results revealed an enhancement of alpha - but not beta - desynchronization during observation and execution of social grasps, especially over central and parietal electrodes, in participants who received OT (OT group). No differences between the social and non-social condition were found in the control group (CTRL group). Moreover, we found a significant difference over the cortical central-parietal region between the OT and CTRL group only within the social condition. These results suggest a possible action of intranasal OT on sensorimotor circuits involved in social perception and action understanding, which might contribute to facilitate the prosocial effects typically reported by behavioral studies.
Collapse
Affiliation(s)
- Fabrizia Festante
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128, Pisa, Italy,Department of Medicine and Surgery, University of Parma, 43125, Parma, Italy
| | - Pier Francesco Ferrari
- Department of Medicine and Surgery, University of Parma, 43125, Parma, Italy,Institut des Sciences Cognitives Marc Jeannerod, CNRS, Bron, Cedex 69675, France
| | - Samuel G. Thorpe
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA
| | - Robert W. Buchanan
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Nathan A. Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA
| |
Collapse
|
42
|
Xie W, Jensen SKG, Wade M, Kumar S, Westerlund A, Kakon SH, Haque R, Petri WA, Nelson CA. Growth faltering is associated with altered brain functional connectivity and cognitive outcomes in urban Bangladeshi children exposed to early adversity. BMC Med 2019; 17:199. [PMID: 31760950 PMCID: PMC6876085 DOI: 10.1186/s12916-019-1431-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Stunting affects more than 161 million children worldwide and can compromise cognitive development beginning early in childhood. There is a paucity of research using neuroimaging tools in conjunction with sensitive behavioral assays in low-income settings, which has hindered researchers' ability to explain how stunting impacts brain and behavioral development. We employed high-density EEG to examine associations among children's physical growth, brain functional connectivity (FC), and cognitive development. METHODS We recruited participants from an urban impoverished neighborhood in Dhaka, Bangladesh. One infant cohort consisted of 92 infants whose height (length) was measured at 3, 4.5, and 6 months; EEG data were collected at 6 months; and cognitive outcomes were assessed using the Mullen Scales of Early Learning at 27 months. A second, older cohort consisted of 118 children whose height was measured at 24, 30, and 36 months; EEG data were collected at 36 months; and Intelligence Quotient (IQ) scores were assessed at 48 months. Height-for-age (HAZ) z-scores were calculated based on the World Health Organization standard. EEG FC in different frequency bands was calculated in the cortical source space. Linear regression and longitudinal path analysis were conducted to test the associations between variables, as well as the indirect effect of child growth on cognitive outcomes via brain FC. RESULTS In the older cohort, we found that HAZ was negatively related to brain FC in the theta and beta frequency bands, which in turn was negatively related to children's IQ score at 48 months. Longitudinal path analysis showed an indirect effect of HAZ on children's IQ via brain FC in both the theta and beta bands. There were no associations between HAZ and brain FC or cognitive outcomes in the infant cohort. CONCLUSIONS The association observed between child growth and brain FC may reflect a broad deleterious effect of malnutrition on children's brain development. The mediation effect of FC on the relation between child growth and later IQ provides the first evidence suggesting that brain FC may serve as a neural pathway by which biological adversity impacts cognitive development.
Collapse
Affiliation(s)
- Wanze Xie
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, USA. .,Harvard Medical School, Boston, USA.
| | - Sarah K G Jensen
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, USA.,Harvard Medical School, Boston, USA
| | - Mark Wade
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, USA
| | - Swapna Kumar
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, USA
| | - Alissa Westerlund
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, USA
| | | | | | - William A Petri
- Infectious Diseases & International Health, University of Virginia, Charlottesville, USA
| | - Charles A Nelson
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, USA. .,Harvard Medical School, Boston, USA. .,Harvard Graduate School of Education, Cambridge, USA.
| |
Collapse
|
43
|
Oscillatory gamma activity mediates the pathway from socioeconomic status to language acquisition in infancy. Infant Behav Dev 2019; 57:101384. [DOI: 10.1016/j.infbeh.2019.101384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 01/25/2023]
|
44
|
Quadrelli E, Geangu E, Turati C. Human action sounds elicit sensorimotor activation early in life. Cortex 2019; 117:323-335. [DOI: 10.1016/j.cortex.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/24/2018] [Accepted: 05/03/2019] [Indexed: 11/29/2022]
|
45
|
Quadrelli E, Roberti E, Turati C, Craighero L. Observation of the point-light animation of a grasping hand activates sensorimotor cortex in nine-month-old infants. Cortex 2019; 119:373-385. [PMID: 31401422 DOI: 10.1016/j.cortex.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/27/2019] [Accepted: 07/09/2019] [Indexed: 11/20/2022]
Abstract
Measuring changes in sensorimotor alpha band activity in nine-month-old infants we sought to understand the involvement of the sensorimotor cortex during observation of the Point-Light (PL) animation of a grasping hand. Attenuation of alpha activity was found both when the PL display moved towards the to-be-grasped object and when the object was deleted from the video. Before the beginning of the movement of the PL stimuli, only in the presence of the object evoked attenuation of sensorimotor alpha activity was documented, possibly interpreted either as movement prediction or as graspable object perception. Our main findings demonstrate that, during observation of stimuli moving with biological kinematics, the infants' sensorimotor system is activated when the pictorial information is absent or highly reduced, and independently of the presence of the goal-directed object. The possible compensatory function of the sensorimotor system during observation of highly degraded moving stimuli is discussed.
Collapse
Affiliation(s)
- Ermanno Quadrelli
- Department of Psychology, University of Milano-Bicocca, Italy; NeuroMI, Milan Center for Neuroscience, Italy
| | - Elisa Roberti
- Department of Psychology, University of Milano-Bicocca, Italy; NeuroMI, Milan Center for Neuroscience, Italy
| | - Chiara Turati
- Department of Psychology, University of Milano-Bicocca, Italy; NeuroMI, Milan Center for Neuroscience, Italy
| | - Laila Craighero
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy.
| |
Collapse
|
46
|
Démas J, Bourguignon M, Périvier M, De Tiège X, Dinomais M, Van Bogaert P. Mu rhythm: State of the art with special focus on cerebral palsy. Ann Phys Rehabil Med 2019; 63:439-446. [PMID: 31299375 DOI: 10.1016/j.rehab.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/16/2019] [Accepted: 06/10/2019] [Indexed: 01/24/2023]
Abstract
Various specific early rehabilitation strategies are proposed to decrease functional disabilities in patients with cerebral palsy (CP). These strategies are thought to favour the mechanisms of brain plasticity that take place after brain injury. However, the level of evidence is low. Markers of brain plasticity would favour validation of these rehabilitation programs. In this paper, we consider the study of mu rhythm for this goal by describing the characteristics of mu rhythm in adults and children with typical development, then review the current literature on mu rhythm in CP. Mu rhythm is composed of brain oscillations recorded by electroencephalography (EEG) or magnetoencephalography (MEG) over the sensorimotor areas. The oscillations are characterized by their frequency, topography and modulation. Frequency ranges within the alpha band (∼10Hz, mu alpha) or beta band (∼20Hz, mu beta). Source location analyses suggest that mu alpha reflects somatosensory functions, whereas mu beta reflects motor functions. Event-related desynchronisation (ERD) followed by event-related (re-)synchronisation (ERS) of mu rhythm occur in association with a movement or somatosensory input. Even if the functional role of the different mu rhythm components remains incompletely understood, their maturational trajectory is well described. Increasing age from infancy to adolescence is associated with increasing ERD as well as increasing ERS. A few studies characterised mu rhythm in adolescents with spastic CP and showed atypical patterns of modulation in most of them. The most frequent findings in patients with unilateral CP are decreased ERD and decreased ERS over the central electrodes, but atypical topography may also be found. The patterns of modulations are more variable in bilateral CP. Data in infants and young children with CP are lacking and studies did not address the questions of intra-individual reliability of mu rhythm modulations in patients with CP nor their modification after motor learning. Better characterization of mu rhythm in CP, especially in infants and young children, is warranted before considering this rhythm as a potential neurophysiological marker of brain plasticity.
Collapse
Affiliation(s)
- Josselin Démas
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, France; Institut Régional de Formation aux Métiers de Rééducation et de Réadaptation (IFM3R), Nantes, France.
| | - Mathieu Bourguignon
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratoire Cognition Language et Développement, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Department of functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Maximilien Périvier
- Service de Neuropédiatrie et handicaps de l'enfant, Hôpital pédiatrique Gatien de Clocheville, CHRU de Tours, France; Université de Tours, France
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium; Department of functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Mickael Dinomais
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, France; Département de Médecine Physique et de Réadaptation, CHU d'Angers-Les Capucins, France
| | - Patrick Van Bogaert
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, France; Unité de Neuropédiatrie et de Neurochirurgie de l'enfant, CHU d'Angers, France
| |
Collapse
|
47
|
Kang JN, Song JJ, Casanova MF, Sokhadze EM, Li XL. Effects of repetitive transcranial magnetic stimulation on children with low-function autism. CNS Neurosci Ther 2019; 25:1254-1261. [PMID: 31228356 PMCID: PMC6834922 DOI: 10.1111/cns.13150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a very complex neurodevelopmental disorder, characterized by social difficulties and stereotypical or repetitive behavior. Some previous studies using low‐frequency repetitive transcranial magnetic stimulation (rTMS) have proven of benefit in ASD children. Methods In this study, 32 children (26 males and six females) with low‐function autism were enrolled, 16 children (three females and 13 males; mean ± SD age: 7.8 ± 2.1 years) received rTMS treatment twice every week, while the remaining 16 children (three females and 13 males; mean ± SD age: 7.2 ± 1.6 years) served as waitlist group. This study investigated the effects of rTMS on brain activity and behavioral response in the autistic children. Results Peak alpha frequency (PAF) is an electroencephalographic measure of cognitive preparedness and might be a neural marker of cognitive function for the autism. Coherence is one way to assess the brain functional connectivity of ASD children, which has proven abnormal in previous studies. The results showed significant increases in the PAF at the frontal region, the left temporal region, the right temporal region and the occipital region and a significant increase of alpha coherence between the central region and the right temporal region. Autism Behavior Checklist (ABC) scores were also compared before and after receiving rTMS with positive effects shown on behavior. Conclusion These findings supported our hypothesis by demonstration of positive effects of combined rTMS neurotherapy in active treatment group as compared to the waitlist group, as the rTMS group showed significant improvements in behavioral and functional outcomes as compared to the waitlist group.
Collapse
Affiliation(s)
- Jian-Nan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Jia-Jia Song
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, South Carolina
| | - Estate M Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, South Carolina
| | - Xiao-Li Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
48
|
Montirosso R, Piazza C, Giusti L, Provenzi L, Ferrari PF, Reni G, Borgatti R. Exploring the EEG mu rhythm associated with observation and execution of a goal-directed action in 14-month-old preterm infants. Sci Rep 2019; 9:8975. [PMID: 31222153 PMCID: PMC6586615 DOI: 10.1038/s41598-019-45495-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/06/2019] [Indexed: 12/01/2022] Open
Abstract
Electroencephalographic mu rhythm desynchronization is thought to reflect Mirror Neuron System (MNS) activity and represents an important neural correlate of the coupling between action execution and perception. It is still unclear if the MNS in human ontogeny is already available at the beginning of postnatal life and how early experience impacts its development. Premature birth provides a "natural condition" for investigating the effects of early, atypical extra-uterine experience on MNS. The main aim of the present study was to investigate whether the MNS activity is associated with prematurity. We compared the mu rhythm activity in preterm (PT) and full-term (FT) 14-month old infants during an action observation/execution (AO/AE) task. Mu rhythm desynchronization was computed over frontal, central, parietal and occipital regions. Both groups showed mu rhythm suppression in all the scalp regions during action execution. Different desynchronization patterns emerged during action observation. Specifically, FT infants showed mu suppression in the right frontal, bilateral parietal and occipital regions; whereas PT infants exhibited mu suppression only in the right parietal region. Overall, these preliminary findings indicate that an atypical extra uterine experience might have an impact on the MNS activity.
Collapse
Affiliation(s)
- Rosario Montirosso
- Scientific Institute, IRCCS "E. Medea", 0-3 Center for the at-Risk Infant, Bosisio Parini, Lecco, Italy.
| | - Caterina Piazza
- Scientific Institute, IRCCS "E. Medea", Bioengineering Laboratory, Bosisio Parini, Lecco, Italy
| | - Lorenzo Giusti
- Scientific Institute, IRCCS "E. Medea", 0-3 Center for the at-Risk Infant, Bosisio Parini, Lecco, Italy
| | - Livio Provenzi
- Scientific Institute, IRCCS "E. Medea", 0-3 Center for the at-Risk Infant, Bosisio Parini, Lecco, Italy
| | - Pier Francesco Ferrari
- CNRS/Université Claude Bernard, Institut des Sciences Cognitives Marc Jeannerod, Lyon, France
| | - Gianluigi Reni
- Scientific Institute, IRCCS "E. Medea", Bioengineering Laboratory, Bosisio Parini, Lecco, Italy
| | - Renato Borgatti
- Scientific Institute, IRCCS "E. Medea", Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
| |
Collapse
|
49
|
Morales S, Bowman LC, Velnoskey KR, Fox NA, Redcay E. An fMRI study of action observation and action execution in childhood. Dev Cogn Neurosci 2019; 37:100655. [PMID: 31102960 PMCID: PMC6570413 DOI: 10.1016/j.dcn.2019.100655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 11/23/2022] Open
Abstract
Although many studies have examined the location and function of the mirror neuron system (MNS) in human adults, we know relatively little about its development. The current study fills this gap by using fMRI to examine for the first time the development of the brain regions implicated in action execution, action observation, and their overlap. We examined age-related differences in brain activation by contrasting a group of children (n = 21) and adults (n = 18). Surfaced-based analyses of action execution and action observation revealed that brain activity for action observation and execution in children is similar to adults, though adults displayed greater activity than children within the right superior parietal lobe during action execution and the occipital lobe during action observation compared to control. Further, within-individual measures of overlapping activation between action observation and execution revealed age-related differences, such that adults, compared to children, displayed more spatial overlap. Moreover, the extent of the overlap in activation across conditions was related to better motor skills and action representation abilities in children. These data indicate that the MNS changes between middle childhood and adulthood. The data also demonstrate the functional significance of the putative MNS to motor skills and action representation during development.
Collapse
Affiliation(s)
| | - Lindsay C Bowman
- The University of Maryland, College Park, United States; The University of California, Davis, United States
| | | | - Nathan A Fox
- The University of Maryland, College Park, United States
| | | |
Collapse
|
50
|
Rayson H, Bonaiuto JJ, Ferrari PF, Chakrabarti B, Murray L. Building blocks of joint attention: Early sensitivity to having one's own gaze followed. Dev Cogn Neurosci 2019; 37:100631. [PMID: 30970289 PMCID: PMC6556871 DOI: 10.1016/j.dcn.2019.100631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/24/2018] [Accepted: 03/03/2019] [Indexed: 12/22/2022] Open
Abstract
Detecting when one's own gaze has been followed is a critical component of joint attention, but little is known about its development. To address this issue, we used electroencephalography (EEG) to record infant neural responses at 6.5 and 9.5 months during observation of an adult either turning to look at the same object as the infant (congruent actor), or turning to look at a different object (incongruent actor). We also used a preferential looking paradigm to investigate whether infants would demonstrate a preference for the congruent versus incongruent actor. Greater suppression of alpha band activity in the congruent compared to incongruent condition was revealed at both ages in central and parietal regions. However, the effect of congruency on alpha suppression was stronger at 9.5 months, and only at this age did infants demonstrate a preference towards looking at the congruent actor. Together, these results suggest that although infants are sensitive to others' gaze following from early on, important neural and behavioural developments occur between 6.5 and 9.5 months.
Collapse
Affiliation(s)
- Holly Rayson
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom; Institut des Sciences Cognitives - Marc Jeannerod, CNRS, Bron, France.
| | - James J Bonaiuto
- Institut des Sciences Cognitives - Marc Jeannerod, CNRS, Bron, France; Sobell Department for Motor Neuroscience and Movement Disorders, University College London, United Kingdom
| | - Pier F Ferrari
- Institut des Sciences Cognitives - Marc Jeannerod, CNRS, Bron, France
| | - Bhismadev Chakrabarti
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Lynne Murray
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom; Department of Psychology, Stellenbosch University, South Africa; Department of Psychology, University of Cape Town, South Africa
| |
Collapse
|