1
|
Chu Z, Hu Z, Yang F, Zhou Y, Tang Y, Luo F. Didymin Ameliorates Dextran Sulfate Sodium (DSS)-Induced Ulcerative Colitis by Regulating Gut Microbiota and Amino Acid Metabolism in Mice. Metabolites 2024; 14:547. [PMID: 39452928 PMCID: PMC11509612 DOI: 10.3390/metabo14100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Didymin is a dietary flavonoid derived from citrus fruits and has been shown to have extensive biological functions, especially anti-inflammatory effects, but its mechanism is unclear. The purpose of this study was to investigate the potential mechanism of didymin that alleviates ulcerative colitis. Methods and Results: Our results indicated that didymin could alleviate the symptoms of ulcerative colitis, as it inhibited the expressions of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Didymin also promoted the expressions of claudin-1 and zona occludens-1(ZO-1), which are closely related with restoring colon barrier function. Didymin also increased the abundance of Firmicutes and Verrucomicobiota, while decreasing the abundance of Bacteroidota and Proteobacteria. Meanwhile, didymin significantly altered the levels of metabolites related to arginine synthesis and metabolism, and lysine degradation in the colitis mice. Utilizing network pharmacology and molecular docking, our results showed that the metabolites L-ornithine and saccharin could interact with signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-B (NF-κB). In this in vitro study, L-ornithine could reduce the expressions of transcription factors STAT3 and NF-κB, and it also inhibited the expressions of IL-6 and IL-1β in the lipopolysaccharides (LPS) induced in RAW264.7 cells, while saccharin had the opposite effect. Conclusions: Taken together, didymin can regulate gut microbiota and alter metabolite products, which can modulate STAT3 and NF-κB pathways and inhibit the expressions of inflammatory factors and inflammatory response in the DSS-induced colitis mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Feijun Luo
- Hunan Provincial Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Process and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China; (Z.C.); (Z.H.); (F.Y.); (Y.Z.); (Y.T.)
| |
Collapse
|
2
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Ye Z, Ji B, Peng Y, Song J, Zhao T, Wang Z. Screening and Characterization of Probiotics Isolated from Traditional Fermented Products of Ethnic-Minorities in Northwest China and Evaluation Replacing Antibiotics Breeding Effect in Broiler. Pol J Microbiol 2024; 73:275-295. [PMID: 39213263 PMCID: PMC11398283 DOI: 10.33073/pjm-2024-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, Lactobacillus fermentum DM7-6 (DM7-6), Lactobacillus plantarum DM9-7 (DM9-7), and Bacillus subtilis YF9-4 (YF9-4) were isolated from traditional fermented products. The survival rate of DM7-6, DM9-7, and YF9-4 in simulated intestinal gastric fluid reached 61.29%, 44.82%, and 55.26%, respectively. These strains had inhibition ability against common pathogens, and the inhibition zone diameters were more than 7 mm. Antioxidant tests showed these strains had good scavenging capacity for superoxide anion, hydroxyl radical and DPPH, and the total reduction capacity reached 65%. Then DM7-6, DM9-7 and YF9-4 were fed to broilers to study the effects on antioxidant capacity, immune response, biochemical indices, tissue morphology, and gut microbiota. 180 healthy broilers were allocated randomly into six experimental groups. SOD, GSH-Px, and T-AOC in broilers serum were detected, and the results showed probiotics significantly improve antioxidant capacity compared to CK group, while antibiotics showed the opposite result. Besides, IgA, IgM, IgG, TNF-α, and IL-2 indicated it could significantly improve immunity by adding probiotics in broilers diets. However, antibiotics reduced immunoglobulin levels and enhanced inflammation index. Biochemical indicators and tissue morphology showed probiotics had a protective effect on metabolic organs. Gut microbiota analysis proved antibiotics could significantly decrease microbial community diversity and increase the proportion of opportunistic pathogens, while probiotics could improve the diversity of gut microbiota and promote the colonization of beneficial microorganisms. In summary, probiotics DM7-6, DM9-7, and YF9-4 can improve the broiler's health by improving antioxidant capacity and immune function, regulating gut microbiota, and can be used as alternative probiotics for antibiotics-free breeding of broilers.
Collapse
Affiliation(s)
- Ze Ye
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Bin Ji
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Yinan Peng
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Jie Song
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Tingwei Zhao
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
- School of Life Science, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
4
|
D’Ambrosio A, Altomare A, Boscarino T, Gori M, Balestrieri P, Putignani L, Del Chierico F, Carotti S, Cicala M, Guarino MPL, Piemonte V. Mathematical Modeling of Vedolizumab Treatment's Effect on Microbiota and Intestinal Permeability in Inflammatory Bowel Disease Patients. Bioengineering (Basel) 2024; 11:710. [PMID: 39061792 PMCID: PMC11274165 DOI: 10.3390/bioengineering11070710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Growing evidence suggests that impaired gut permeability and gut microbiota alterations are involved in the pathogenesis of Inflammatory Bowel Diseases (IBDs), which include Ulcerative Colitis (UC) and Crohn's Disease (CD). Vedolizumab is an anti-α4β7 antibody approved for IBD treatment, used as the first treatment or second-line therapy when the first line results in inadequate effectiveness. The aim of this study is to develop a mathematical model capable of describing the pathophysiological mechanisms of Vedolizumab treatment in IBD patients. In particular, the relationship between drug concentration in the blood, colonic mucosal permeability and fecal microbiota composition was investigated and modeled to detect and predict trends in order to support and tailor Vedolizumab therapies. To pursue this aim, clinical data from a pilot study on a cluster of 11 IBD patients were analyzed. Enrolled patients underwent colonoscopy in three phases (before (t0), after 24 weeks of (t1) and after 52 weeks of (t2 ) Vedolizumab treatment) to collect mucosal biopsies for transepithelial electrical resistance (TEER) evaluation (permeability to ions), intestinal permeability measurement and histological analysis. Moreover, fecal samples were collected for the intestinal microbiota analysis at the three time points. The collected data were compared to those of 11 healthy subjects at t0, who underwent colonoscopy for screening surveillance, and used to implement a three-compartmental mathematical model (comprising central blood, peripheral blood and the intestine). The latter extends previous evidence from the literature, based on the regression of experimental data, to link drug concentration in the peripheral blood compartment with Roseburia abundance and intestinal permeability. The clinical data showed that Vedolizumab treatment leads to an increase in TEER and a reduction in intestinal permeability to a paracellular probe, improving tissue inflammation status. Microbiota analysis showed increasing values of Roseburia, albeit not statistically significant. This trend was adequately reproduced by the mathematical model, which offers a useful tool to describe the pathophysiological effects of Vedolizumab therapy on colonic mucosal permeability and fecal microbiota composition. The model's satisfactory predictive capabilities and simplicity shed light on the relationship between the drug, the microbiota and permeability and allow for its straightforward extension to diverse therapeutic conditions.
Collapse
Affiliation(s)
- Antonio D’Ambrosio
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (T.B.); (V.P.)
| | - Annamaria Altomare
- Department of Sciences and Technology of Sustainable Development and Human Health, Università Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Gastroenterology Research Unit, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.G.); (M.C.); (M.P.L.G.)
| | - Tamara Boscarino
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (T.B.); (V.P.)
| | - Manuele Gori
- Gastroenterology Research Unit, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.G.); (M.C.); (M.P.L.G.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), International Campus “A. Buzzati-Traverso”, Via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Paola Balestrieri
- Gastroenterology Unit, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy;
| | - Lorenza Putignani
- Units of Microbiomics and Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Federica Del Chierico
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Simone Carotti
- Microscopic and Ultrastructural Anatomy Research Unit, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Michele Cicala
- Gastroenterology Research Unit, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.G.); (M.C.); (M.P.L.G.)
- Microscopic and Ultrastructural Anatomy Research Unit, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Michele Pier Luca Guarino
- Gastroenterology Research Unit, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.G.); (M.C.); (M.P.L.G.)
- Gastroenterology Unit, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy;
| | - Vincenzo Piemonte
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (T.B.); (V.P.)
| |
Collapse
|
5
|
Ousaaid D, Bakour M, Laaroussi H, El Ghouizi A, Lyoussi B, El Arabi I. Fruit vinegar as a promising source of natural anti-inflammatory agents: an up-to-date review. Daru 2024; 32:307-317. [PMID: 38040916 PMCID: PMC11087403 DOI: 10.1007/s40199-023-00493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES Fruit vinegar is one of the most famous fruit byproducts worldwide with several unique properties. There are two types of fruit vinegar, artisanal and industrial, for consumers to choose from. This review aims to assess for the first time the phytochemistry of fruit vinegar and its anti-inflammatory effects. METHOD The present work was conducted based on a literature search that selected the relevant papers from indexed databases such as Scopus, Science Direct, MDPI, PubMed, Hindawi, and Web of Science. We used numerous terms to assure a good search in different databases, including fruit vinegar, phytochemistry, bioavailability and bioaccessibility, and anti-inflammatory effect. All articles were selected based on their relevance, quality, and problematic treatment. RESULTS Literature data have shown that vinegar has a long medicinal history and has been widely used by different civilizations, due to its richness in bioactive molecules, vinegar plays an important role in the prevention and treatment of various inflammatory diseases, including atopic dermatitis, mastitis, asthma, arthritis, acute pancreatitis, and colitis. Fruit vinegar consumption benefit is highly dependent on its chemical composition, especially organic acids and antioxidants, which can act as nutraceuticals. CONCLUSION Fruit vinegar has a rich chemical composition, including organic acids that can be transformed in the digestive system into compounds that play an important role in health-promoting features such as anti-inflammatory effects throughout the control of intestinal microbiota and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Ilham El Arabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
6
|
Fu X, Tan H, Huang L, Chen W, Ren X, Chen D. Gut microbiota and eye diseases: a bibliometric study and visualization analysis. Front Cell Infect Microbiol 2023; 13:1225859. [PMID: 37621873 PMCID: PMC10445766 DOI: 10.3389/fcimb.2023.1225859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Recently the role of gut microbial dysbiosis in many ocular disorders, including but not limited to uveitis, age-related macular degeneration (AMD), diabetic retinopathy (DR), dry eye, keratitis and orbitopathy is a hot research topic in the field. Targeting gut microbiota to treat these diseases has become an unstoppable trend. Bibliometric study and visualization analysis have become essential methods for literature analysis in the medical research field. We aim to depict this area's research hotspots and future directions by bibliometric software and methods. Methods We search all the related publications from the Web of Science Core Collection. Then, CiteSpace was applied to analyze and visualize the country distributions, dual-map overlay of journals, keyword bursts, and co-cited references. VOSviewer was employed to identify authors, co-cited authors, journals and co-cited journals and display the keyword co-occurrence networks. Results A total of 284 relevant publications were identified from 2009 to 2023. The number of studies has been small in the first five years and has grown steadily since 2016. These studies were completed by 1,376 authors from 41 countries worldwide, with the United States in the lead. Lin P has published the most papers while Horai R is the most co-cited author. The top journal and co-cited journal are both Investigative Ophthalmology & Visual Science. In the keyword co-occurrence network, except gut microbiota, inflammation becomes the keyword with the highest frequency. Co-citation analyses reveal that gut dysbiosis is involved in common immune- and inflammation-mediated eye diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, dry eye, and Graves' orbitopathy, and the study of microbiomes is no longer limited to the bacterial populations. Therapeutic strategies that target the gut microbiota, such as probiotics, healthy diet patterns, and fecal microbial transplantation, are effective and critical to future research. Conclusions In conclusion, the bibliometric analysis displays the research hotspots and developmental directions of the involvement of gut microbiota in the pathogenesis and treatment of some ocular diseases. It provides an overview of this field's dynamic evolution and structural relationships.
Collapse
Affiliation(s)
- Xiangyu Fu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haishan Tan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyue Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Jalil AT, Thabit SN, Hanan ZK, Alasheqi MQ, Al-Azzawi AKJ, Zabibah RS, Fadhil AA. Modulating gut microbiota using nanotechnology to increase anticancer efficacy of the treatments. Macromol Res 2023; 31:739-752. [DOI: 10.1007/s13233-023-00168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 01/03/2025]
|
8
|
Mignini I, Ainora ME, Di Francesco S, Galasso L, Gasbarrini A, Zocco MA. Tumorigenesis in Inflammatory Bowel Disease: Microbiota-Environment Interconnections. Cancers (Basel) 2023; 15:3200. [PMID: 37370812 DOI: 10.3390/cancers15123200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colo-rectal cancer (CRC) is undoubtedly one of the most severe complications of inflammatory bowel diseases (IBD). While sporadic CRC develops from a typical adenoma-carcinoma sequence, IBD-related CRC follows different and less understood pathways and its pathophysiological mechanisms were not completely elucidated. In contrast to chronic inflammation, which is nowadays a well-recognised drive towards neoplastic transformation in IBD, only recently was gut microbiota demonstrated to interfere with both inflammation processes and immune-mediated anticancer surveillance. Moreover, the role of microbiota appears particularly complex and intriguing when also considering its multifaceted interactions with multiple environmental stimuli, notably chronic pathologies such as diabetes and obesity, lifestyle (diet, smoking) and vitamin intake. In this review, we presented a comprehensive overview on current evidence of the influence of gut microbiota on IBD-related CRC, in particular its mutual interconnections with the environment.
Collapse
Affiliation(s)
- Irene Mignini
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Maria Elena Ainora
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Silvino Di Francesco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Linda Galasso
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Antonio Gasbarrini
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
9
|
de Lara-Sánchez SS, Sánchez-Pérez AM. Probiotics Treatment Can Improve Cognition in Patients with Mild Cognitive Impairment: A Systematic Review. J Alzheimers Dis 2022; 89:1173-1191. [DOI: 10.3233/jad-220615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: In recent years, the existence of the gut-brain axis and the impact of intestinal microbiota on brain function has received much attention. Accumulated evidence has prompted the postulation of the infectious hypothesis underlying or facilitating neurodegenerative diseases, such as Alzheimer’s disease. Under this hypothesis, intervention with probiotics could be useful at a preventive and therapeutic level. Objective: The objective of this systematic review is to reveal a benefit of improved cognitive function following the use of probiotics in individuals with mild cognitive impairment. Methods: We searched bibliographic databases and analyzed in detail the evidence and methodological quality of five recent randomized, double-blind, placebo-controlled clinical trials using the Cochrane Tool and the SIGN checklist. Results: Overall, and with satisfactory methodological quality, the studies evaluated support the use of probiotics as a weapon to slow the progression of cognitive decline in subjects with mild cognitive impairment. The literature review also indicates that maximum benefit of probiotics is found in subjects with incipient cognitive dysfunction and has no effect in those with advanced disease or absence of disease. Conclusion: These results support the intervention with probiotics, especially as a preventive approach. However, caution is required in the interpretation of the results as microbiota has not been evaluated in all studies, and further large-scale research with a prolonged study period is necessary to ensure the translatability of the results into real practice.
Collapse
Affiliation(s)
| | - Ana María Sánchez-Pérez
- Faculty of Health Sciences, University Jaume I. Avda Sos Banyat, s/n. Castellon, Spain
- Institute of Advances Materials (INAM), University Jaume I. Avda Sos Banyat, s/n. Castellon, Spain
| |
Collapse
|
10
|
Mitigation of DSS-Induced Colitis Potentially via Th1/Th2 Cytokine and Immunological Function Balance Induced by Phenolic-Enriched Buckwheat (Fagopyrum esculentum Moench) Bee Pollen Extract. Foods 2022; 11:foods11091293. [PMID: 35564016 PMCID: PMC9105923 DOI: 10.3390/foods11091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Colitis is an inflammatory disease that results from the overactivation of effector immune cells, producing a high quantity of pro-inflammatory cytokines. Our study aimed to explore whether buckwheat (F. esculentum) bee pollen extract (FBPE) could inhibit the progression of dextran sulfate sodium (DSS)-induced colitis via regulating immune function. We isolated and identified six main phenolic compounds of FBPE such as luteolin (9.46 mg/g) by column chromatography, HPLC-DAD, ESI-MS and NMR spectroscopy, then assessed their effects on colonic mucosal injury by clinical symptoms, histomorphology and immunohistochemistry examinations. The results showed that FBPE at 25.2 g/kg body weight (g/kg BW) changed the clinical symptoms of colitis, the ICAM-1 expression in colon, the activity of related inflammatory mediators in colon tissue and helped restore the immune system. Compared with the model group (40.28%), the CD4 positivity was significantly reduced in the HD (High-dose group: 25.2 g FBPE/kg BW/day) group (20.45%). Administration of 25.2 g/kg BW of FBPE decreased the IFN-γ, TNF-α and IL-4 levels, while enhancing the IL-10 level, and significantly inhibited the abnormally decreased IgG (Model: 13.25 mg/mL, HD: 14.06 mg/mL), showing a reversal effect on the Th1/Th2 levels in colitis. These findings suggested that FBPE at 25.2 g/kg BW had the effects of alleviating colitis and immunomodulation, which can help in the development of safe and effective immune therapy.
Collapse
|
11
|
Ahmed O, Farid A, Elamir A. Dual role of melatonin as an anti-colitis and anti-extra intestinal alterations against acetic acid-induced colitis model in rats. Sci Rep 2022; 12:6344. [PMID: 35428860 PMCID: PMC9012815 DOI: 10.1038/s41598-022-10400-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The available ulcerative colitis drugs exhibit limited outcomes and adverse side effects. Therefore, our study aimed to investigate the therapeutic efficacy of melatonin in acetic acid (AA)-induced colitis to establish a possible treatment for colitis and its impacts on vital organs. Following colitis induction (2 ml 5% AA, rectally), rats were orally received melatonin (5 mg/kg) once per day for 6 days after colitis induction. Then, histopathological examination of colon, kidney, liver, and spleen was conducted, interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), and total antioxidant capacity (TAC) levels were assessed in colon tissue. Colitis induction in untreated rats caused necrotic effects in colon tissues, a significant increase in colonic IL-1β, TNF-α, MPO, and MDA levels, and a remarkable decrease in GSH and TAC levels in colon tissue in comparison to the control group. Meanwhile, melatonin treatment reversed these parameters by improving the microscopic and macroscopic colitis features and extra-intestinal (kidney, liver, and spleen) changes in all treated rats compared to the colitis control group. These results denote a reduction in colitis severity due to the anti-inflammatory and anti-oxidative effects of melatonin and its positive impact on the vital organs.
Collapse
Affiliation(s)
- Osama Ahmed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Azza Elamir
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
12
|
Ahmed O, Abdel-Halim M, Farid A, Elamir A. Taurine loaded chitosan-pectin nanoparticle shows curative effect against acetic acid-induced colitis in rats. Chem Biol Interact 2022; 351:109715. [PMID: 34695389 DOI: 10.1016/j.cbi.2021.109715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Owing to the poor outcomes and adverse side effects of existing ulcerative colitis drugs, the study aimed to develop an alternative nano-based treatment approach. The study was designed to characterize the in vitro and in vivo properties of taurine, taurine-loaded chitosan pectin nanoparticles (Tau-CS-PT-NPs) and chitosan pectin nanoparticles (CS-PT-NPs) in the therapy of acetic acid (AA)-induced colitis in rats. CS-PT-NPs and Tau-CS-PT-NPs were prepared by ionic gelation method then in vitro characterized, including transmission electron microscopy (TEM), polydispersity index (PDI), zeta potential, Fourier transform infrared (FTIR) spectroscopy, encapsulation efficiency (EE), and drug release profile. Following colitis induction, rats were orally administrated with free taurine, Tau-CS-PT-NPs, and CS-PT-NPs once per day for six days. The sizes of Tau-CS-PT-NPs and CS-PT-NPs were 74.17 ± 2.88 nm and 42.22 ± 2.41 nm, respectively. EE was about 69.09 ± 1.58%; furthermore, 60% of taurine was released in 4 h in simulated colon content. AA-induced colitis in untreated rats led to necrosis of colon tissues and a significant increase in interleukin-1beta (IL-1β), Tumor Necrosis Factor-alpha (TNF-α), myeloperoxidase (MPO), and malondialdehyde (MDA) levels associated with a remarkable reduction in glutathione (GSH) level in colon tissue in comparison to control group. Treatment with taurine, Tau-CS-PT-NPs, and CS-PT-NPs partly reversed these effects. The present study demonstrated that the administration of free taurine, CS-PT-NPs, and Tau-CS-PT-NPs exerted beneficial effects in acetic acid-induced colitis by their anti-inflammatory and antioxidant activities. The best therapeutic effect was observed in animals treated with taurine-loaded chitosan pectin nanoparticles.
Collapse
Affiliation(s)
- Osama Ahmed
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mohammad Abdel-Halim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University, Cairo, 11835, Egypt
| | - Alyaa Farid
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Azza Elamir
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
13
|
Zhang M, Wang Y, Zhao X, Liu C, Wang B, Zhou J. Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review. Nutr Res 2021; 95:1-18. [PMID: 34757305 DOI: 10.1016/j.nutres.2021.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023]
Abstract
A key event featured in the early stage of chronic gut inflammatory diseases is the disordered recruitment and excess accumulation of immune cells in the gut lamina propria. This process is followed by the over-secretion of pro-inflammatory factors and the prolonged overactive inflammatory responses. Growing evidence has suggested that gut inflammatory diseases may be mitigated by butyric acid (BA) or butyrate sodium (NaB). Laboratory studies show that BA and NaB can enhance gut innate immune function through G-protein-mediated signaling pathways while mitigating the overactive inflammatory responses by inhibiting histone deacetylase. The regulatory effects may occur in both epithelial enterocytes and the immune cells in the lamina propria. Prior to further clinical trials, comprehensive literature reviews and rigid examination concerning the underlying mechanism are necessary. To this end, we collected and reviewed 197 published reports regarding the mechanisms, bioactivities, and clinical effects of BA and NaB to modulate gut inflammatory diseases. Our review found insufficient evidence to guarantee the safety of clinical practice of BA and NaB, either by anal enema or oral administration of capsule or tablet. The safety of clinical use of BA and NaB should be further evaluated. Alternatively, dietary patterns rich in "fruits, vegetables and beans" may be an effective and safe approach to prevent gut inflammatory disease, which elevates gut microbiota-dependent production of BA. Our review provides a comprehensive reference to future clinical trials of BA and NaB to treat gut inflammatory diseases.
Collapse
Affiliation(s)
- Mingbao Zhang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Yanan Wang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Chang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Baozhen Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| |
Collapse
|
14
|
Martínez-López LM, Perez-Gonzalez A, Washington EA, Woodward AP, Roth-Schulze AJ, Dandrieux JRS, Johnstone T, Prakash N, Jex A, Mansfield C. Hierarchical modelling of immunoglobulin coated bacteria in dogs with chronic enteropathy shows reduction in coating with disease remission but marked inter-individual and treatment-response variability. PLoS One 2021; 16:e0255012. [PMID: 34411114 PMCID: PMC8376084 DOI: 10.1371/journal.pone.0255012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic enteropathies are a common problem in dogs, but many aspects of the pathogenesis remain unknown, making the therapeutic approach challenging in some cases. Environmental factors are intimately related to the development and perpetuation of gastrointestinal disease and the gut microbiome has been identified as a contributing factor. Previous studies have identified dysbiosis and reduced bacterial diversity in the gastrointestinal microbiota of dogs with chronic enteropathies. In this case-controlled study, we use flow cytometry and 16S rRNA sequencing to characterise bacteria highly coated with IgA or IgG in faecal samples from dogs with chronic enteropathy and evaluated their correlation with disease and resolution of the clinical signs. IgA and IgG-coated faecal bacterial counts were significantly higher during active disease compared to healthy dogs and decreased with the resolution of the clinical signs. Characterisation of taxa-specific coating of the intestinal microbiota with IgA and IgG showed marked variation between dogs and disease states, and different patterns of immunoglobulin enrichment were observed in dogs with chronic enteropathy, particularly for Erysipelotrichaceae, Clostridicaceae, Enterobacteriaceae, Prevotellaceae and Bacteroidaceae, families. Although, members of these bacterial groups have been associated with strong immunogenic properties and could potentially constitute important biomarkers of disease, their significance and role need to be further investigated.
Collapse
Affiliation(s)
- Lina María Martínez-López
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Alexis Perez-Gonzalez
- Melbourne Cytometry Platform, Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | | | - Andrew P. Woodward
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | | | - Julien R. S. Dandrieux
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Thurid Johnstone
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Nathalee Prakash
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Aaron Jex
- Veterinary Biosciences, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Caroline Mansfield
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
15
|
Gui X, Yang Z, Li MD. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Front Physiol 2021; 12:673341. [PMID: 34220536 PMCID: PMC8245763 DOI: 10.3389/fphys.2021.673341] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a representative source of toxic chemical exposures to humans, and the adverse consequences of cigarette smoking are mediated by its effect on both neuronal and immune-inflammatory systems. Cigarette smoking also is a major risk factor for intestinal disorders, such as Crohn's disease and peptic ulcer. On the other hand, cigarette smoking is protective against developing ulcerative colitis. The effects of cigarette smoking on intestinal disorders include changes in intestinal irrigation and microbiome, increases in permeability of the mucosa, and impaired mucosal immune responses. However, the underlying mechanism linking cigarette smoking with intestinal microbiota dysbiosis is largely unknown. In this communication, we first review the current knowledge about the mechanistic interaction between cigarette smoke and intestinal microbiota dysbiosis, which include the likely actions of nicotine, aldehydes, polycyclic aromatic hydrocarbons, heavy metals, volatile organic compounds and toxic gases, and then reveal the potential mechanisms of the lung-gut cross talk and skin-gut cross talk in regulating the balance of intestinal microbiota and the interrelation of intestinal microbiota dysbiosis and systemic disorders.
Collapse
Affiliation(s)
- Xiaohua Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Tavakoli P, Vollmer-Conna U, Hadzi-Pavlovic D, Grimm MC. A Review of Inflammatory Bowel Disease: A Model of Microbial, Immune and Neuropsychological Integration. Public Health Rev 2021; 42:1603990. [PMID: 34692176 PMCID: PMC8386758 DOI: 10.3389/phrs.2021.1603990] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Objective: Inflammatory bowel diseases (IBDs) are complex chronic inflammatory disorders of the gastro-intestinal (GI) tract with uncertain etiology. IBDs comprise two idiopathic disorders: Crohn's disease (CD) and ulcerative colitis (UC). The aetiology, severity and progression of such disorders are still poorly understood but thought to be influenced by multiple factors (including genetic, environmental, immunological, physiological, psychological factors and gut microbiome) and their interactions. The overarching aim of this review is to evaluate the extent and nature of the interrelationship between these factors with the disease course. A broader conceptual and longitudinal framework of possible neuro-visceral integration, core microbiome analysis and immune modulation assessment may be useful in accurately documenting and characterizing the nature and temporal continuity of crosstalk between these factors and the role of their interaction (s) in IBD disease activity. Characterization of these interactions holds the promise of identifying novel diagnostic, interventions, and therapeutic strategies. Material and Methods: A search of published literature was conducted by exploring PubMed, EMBASE, MEDLINE, Medline Plus, CDSR library databases. Following search terms relating to key question were set for the search included: "Inflammatory bowel diseases," "gut microbiota," "psychological distress and IBD," "autonomic reactivity and IBD," "immune modulation," "chronic inflammation," "gut inflammation," "enteric nervous system," "gut nervous system," "Crohn's disease," "Ulcerative colitis", "depression and IBD", "anxiety and IBD", "quality of life in IBD patients," "relapse in IBDs," "remission in IBDs," "IBD disease activity," "brain-gut-axis," "microbial signature in IBD," "validated questionnaires in IBD," "IBD activity indices," "IBD aetiology," "IBDs and stress," "epidemiology of IBDs", "autonomic nervous system and gut inflammation", "IBD and environment," "genetics of IBDs," "pathways of immune response in IBDs," "sleep disturbances in IBD," "hypothalamic-pituitary-adrenal axis (HPA)," "sympatho-adrenal axis," "CNS and its control of gut function" "mucosal immune response," "commensal and pathogenic bacteria in the gut," "innate and adaptive immunity." Studies evaluating any possible associations between gut microbiome, psychological state, immune modulation, and autonomic function with IBDs were identified. Commonly cited published literatures with high quality research methodology/results and additional articles from bibliographies of recovered papers were examined and included where relevant. Results: Although there is a substantial literature identifying major contributing factors with IBD, there has been little attempt to integrate some factors over time and assess their interplay and relationship with IBD disease activity. Such contributing factors include genetic and environmental factors, gut microbiota composition and function, physiological factors, psychological state and gut immune response. Interdependences are evident across psychological and biological factors and IBD disease activity. Although from the available evidence, it is implausible that a single explanatory model could elucidate the interplay between such factors and the disease course as well as the sequence of the effect during the pathophysiology of IBD. Conclusion: Longitudinal monitoring of IBD patients and integrating data related to the contributing/risk factors including psychological state, physiological conditions, inflammatory/immune modulations, and microbiome composition/function, could help to explain how major factors associate and interrelate leading to exacerbation of symptoms and disease activity. Identifying the temporal trajectory of biological and psychosocial disturbances may also help to assess their effects and interdependence on individuals' disease status. Moreover, this allows greater insight into understanding the temporal progressions of subclinical events as potential ground for disease severity in IBD. Furthermore, understanding the interaction between these risk factors may help better interventions in controlling the disease, reducing the costs related to disease management, further implications for clinical practice and research approaches in addition to improving patients' mental health and quality of life.
Collapse
Affiliation(s)
- P. Tavakoli
- St George and Sutherland Clinical School, Sydney, NSW, Australia
| | - U. Vollmer-Conna
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - D. Hadzi-Pavlovic
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - M. C. Grimm
- St George and Sutherland Clinical School, Sydney, NSW, Australia
| |
Collapse
|
17
|
Jovanovic MM, Jurisevic MM, Gajovic NM, Arsenijevic NN, Jocic MV, Jovanovic IP, Zdravkovic ND, Djukic AL, Maric VJ, Jovanovic MM. Increased Severity of Ulcerative Colitis in the Terminal Phase of the Metabolic Syndrome. TOHOKU J EXP MED 2021; 254:171-182. [PMID: 34248084 DOI: 10.1620/tjem.254.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ulcerative colitis is chronic immune-mediated disorder that affects primarily colonic mucosa. The metabolic syndrome has increasing global prevalence with a significant impact on biology of chronic diseases, such as ulcerative colitis. Today it is known that the metabolic syndrome attenuates severity of ulcerative colitis. Still, there is no evidence that different stages of metabolic syndrome alter the course of the ulcerative colitis. The aim of this study was to dissect out how progression of the metabolic syndrome impacted the biology of ulcerative colitis and severity of clinical presentation. Seventy-two patients (41 men and 31 women, 22-81 years old) were enrolled in this observational cross-sectional study. Concentrations of pro- and anti-inflammatory cytokines in serum and feces samples were measured and phenotype of colon infiltrating cells was analyzed. Patients in the terminal phase of the metabolic syndrome have clinically and pathohistologically more severe form of ulcerative colitis, which is followed by decreased concentrations of systemic galectin-1, increased values of systemic pro-inflammatory mediators and increased influx of lymphocytes in affected colon tissue. Our data suggest that reduced concentrations of galectin-1 and predomination of the pro-inflammatory mediators in patients with terminal stage of the metabolic syndrome enhance local chronic inflammatory response and subsequent tissue damage, and together point on important role of galectin-1 in immune response in ulcerative colitis patients with the metabolic syndrome.
Collapse
Affiliation(s)
| | | | - Nevena Miroslav Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac
| | - Nebojsa Nikola Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac
| | | | - Ivan Petar Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac
| | | | | | - Veljko Jovo Maric
- Department of Surgery, Faculty of Medicine Foca, University of East Sarajevo
| | | |
Collapse
|
18
|
Ashammakhi N, Nasiri R, Barros NRD, Tebon P, Thakor J, Goudie M, Shamloo A, Martin MG, Khademhosseini A. Gut-on-a-chip: Current progress and future opportunities. Biomaterials 2020; 255:120196. [PMID: 32623181 PMCID: PMC7396314 DOI: 10.1016/j.biomaterials.2020.120196] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/11/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Organ-on-a-chip technology tries to mimic the complexity of native tissues in vitro. Important progress has recently been made in using this technology to study the gut with and without microbiota. These in vitro models can serve as an alternative to animal models for studying physiology, pathology, and pharmacology. While these models have greater physiological relevance than two-dimensional (2D) cell systems in vitro, endocrine and immunological functions in gut-on-a-chip models are still poorly represented. Furthermore, the construction of complex models, in which different cell types and structures interact, remains a challenge. Generally, gut-on-a-chip models have the potential to advance our understanding of the basic interactions found within the gut and lay the foundation for future applications in understanding pathophysiology, developing drugs, and personalizing medical treatments.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA.
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Natan Roberto de Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA.
| | - Peyton Tebon
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Jai Thakor
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Marcus Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Martin G Martin
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Arda-Pirincci P, Aykol-Celik G. Galectin-1 reduces the severity of dextran sulfate sodium (DSS)-induced ulcerative colitis by suppressing inflammatory and oxidative stress response. Bosn J Basic Med Sci 2020; 20:319-328. [PMID: 31999939 PMCID: PMC7416175 DOI: 10.17305/bjbms.2019.4539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/29/2019] [Indexed: 01/17/2023] Open
Abstract
Ulcerative colitis is an inflammatory bowel disease that affects a large number of people around the world. Galectin-1 is a β-galactoside-binding lectin with a broad range of biological activities. The effects of galectin-1 on dextran sulfate sodium (DSS)-induced ulcerative colitis in vivo is not clear. We investigated the effect of galectin-1 on colon morphology, cell proliferation, oxidative stress, antioxidant system, and proinflammatory/antiinflammatory cytokines in a DSS-induced mouse model of ulcerative colitis. Thirty-two C57BL/6 mice were randomly assigned to one of the four groups: control, acute colitis, galectin-1, and DSS+galectin-1. Controls were treated with phosphate-buffered saline (PBS) for seven days. Acute colitis was induced by 3% DSS in drinking water administered orally for five days. Mice in galectin-1 groups were treated with 1 mg/kg recombinant human galectin-1 in PBS for seven consecutive days. Oral DSS administration resulted in acute colitis by causing histopathological changes; an increase in disease activity index (DAI), lipid peroxidation (malondialdehyde [MDA]), myeloperoxidase (MPO), and tumor necrosis factor (TNF)-α levels; a decrease in body weight, colon length, cell proliferation index, catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities, and GSH and interleukin (IL)-10 levels. The treatment with galectin-1 attenuated DSS-induced acute colitis by reducing DAI, MDA, MPO, and TNF-α levels and by increasing body weight, colon length, cell proliferation, antioxidant enzyme activity, GSH, and IL-10 levels. These findings suggest that galectin-1 has proliferative, antioxidant, antiinflammatory, and cytoprotective effects against DSS-induced ulcerative colitis in mice. Due to its antiinflammatory and antioxidant activity galectin-1 may be effective in preventing and treating ulcerative colitis.
Collapse
Affiliation(s)
- Pelin Arda-Pirincci
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Guliz Aykol-Celik
- Institute of Graduate Studies in Sciences, Section of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
20
|
Li X, Luo J, Zhang C, Liu L, Ou S, Zhang G, Peng X. Alliin protects against inflammatory bowel disease by preserving the gene expression in colonic epithelial cells rather than altering gut microbiota. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
21
|
Abstract
The present review is focused on the prebiotic impact of inulin on the management of the gastrointestinal disorder. Prebiotics can be described as "non-digestible food ingredient stimulating the growth of a certain number of bacteria in the colon, which can improve the host health". In 2004 this definition was modernized to include other areas that may benefit from selective targeting of particular microorganisms: "selectively fermented ingredients that alter the configuration and activity in the gastrointestinal microbiota that confer positive effect". The positive impact of prebiotics in experimental colitis and human inflammatory bowel disease (IBD) has already been established. Prebiotics shows a positive effect in the prevention of IBD by modulating the trophic functions of the flora. Inulin enhances the growth of indigenous lactobacilli and/or bifidobacteria by inducing colonic production of short chain fatty acids (SCFA's) and these properties are related to decreased mucosal lesion scores and diminished mucosal inflammation. Inulin shows a positive approach to retain microbial populations and to support epithelial barrier function by their prebiotic effect which helps in the host defense against invasion and pathogens translocation (endogenous and/or exogenous) and in the inhibition of gastrointestinal diseases and this impact should be verified in further clinical studies. In the present review, we discussed the positive effect of prebiotics in rat IBD models and in human subjects along with their potential protective mechanisms. Preclinical and clinical data revealed that the gut mucosal barrier would be improved by the use of prebiotics in IBD.
Collapse
Affiliation(s)
- Wasim Akram
- School of Studies in Pharmaceutical Sciences, Jiwaji University
| | - Navneet Garud
- School of Studies in Pharmaceutical Sciences, Jiwaji University
| | - Ramakant Joshi
- School of Studies in Pharmaceutical Sciences, Jiwaji University
| |
Collapse
|
22
|
Robledo‐Sierra J, Ben‐Amy DP, Varoni E, Bavarian R, Simonsen JL, Paster BJ, Wade WG, Kerr AR, Peterson DE, Frandsen Lau E. World Workshop on Oral Medicine VII: Targeting the oral microbiome Part 2: Current knowledge on malignant and potentially malignant oral disorders. Oral Dis 2019; 25 Suppl 1:28-48. [DOI: 10.1111/odi.13107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/19/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Dalit Porat Ben‐Amy
- Oral Medicine Unit Department of Oral & Maxillofacial Surgery The Baruch Padeh Medical Center Poriya Israel
| | - Elena Varoni
- Department of Biomedical, Surgical and Dental Sciences University of Milan Milan Italy
| | - Roxanne Bavarian
- Division of Oral Medicine and Dentistry Brigham and Women's Hospital Boston Massachusetts
- Department of Oral Medicine, Infection, and Immunity Harvard School of Dental Medicine, Harvard University Cambridge Massachusetts
| | - Janne L. Simonsen
- Aarhus University Library – Health Sciences Aarhus University Aarhus Denmark
| | | | - William G. Wade
- Centre for Host‐Microbiome Interactions Faculty of Dentistry, Oral & Craniofacial Sciences King's College London London UK
| | - Alexander R. Kerr
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine New York University College of Medicine New York City New York
| | - Douglas E. Peterson
- Oral Medicine Section School of Dental Medicine UConn Health University of Connecticut Mansfield Connecticut
| | - Ellen Frandsen Lau
- Section for Periodontology Department of Dentistry and Oral Health Faculty of Health Aarhus University Aarhus Denmark
| |
Collapse
|
23
|
Yang YQ, Wu YF, Xu FF, Deng JB, Wu LL, Han XD, Liang J, Guo DA, Liu B. Tripterygium glycoside fraction n2: Alleviation of DSS-induced colitis by modulating immune homeostasis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152855. [PMID: 30851581 DOI: 10.1016/j.phymed.2019.152855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The Tripterygium glycosides (TG) is the main active extractive of Tripterygium wilfordii Hook F and is widely used in clinical practice to treat inflammatory diseases (including inflammatory bowel disease). However, due to its severe toxicity, TG is restricted to the treatment of many diseases. Therefore, it is necessary to study a new method to obtain the attenuated and synergistic extracts from TG. PURPOSE Tripterygium glycosides-n2 (TG-n2) was obtained from TG by a new preparation method. In this study, we aimed to investigate the difference in the chemical compositions between TG and TG-n2, further explored its toxicity and therapeutic effects on DSS-induced colitis in mice. METHODS The major chemical compositions of TG and TG-n2 were analyzed by ultra-performance liquid chromatography (UPLC). Subsequently, acute toxicity test was applied to evaluate the toxicity difference between TG and TG-n2. Dextran sulfate sodium (DSS)-induced acute colitis model was used to explore the therapeutic effect of TG and TG-n2 and their potential mechanisms of action. RESULTS We found that the chemical compositions of TG-n2 is different from TG. The main difference is the ratio of triptriolide (T11) / triptolide (T9). Acute toxicity test proved that TG-n2 was less toxic than TG. Base on this, further studies showed that TG-n2 has a similar therapeutic effect as compared to TG on attenuating the symptoms of colitis, such as diarrhea, bloody stools, body weight loss, colonic atrophy, histopathological changes, inhibiting cytokines secretion and reducing absolute lymph number. In addition, TG and TG-n2 can increase the apoptosis of T lymphocyte in vivo. Further investigated showed that TG and TG-n2 could increase the expressions of Bax and p62 on CD3-positive T cells. CONCLUSION This study showed that oral administration of TG-n2 is safer than TG. Moreover, the attenuated TG-n2 has the similar therapeutic effect on treating experimental colitis in mice when compared to TG. Its mechanism may be related to activating the expression of Bax in T cells and inducing T cells autophagy to regulate the survival of T lymphocytes in colitis mice, thus reducing inflammation in colon.
Collapse
Affiliation(s)
- Y Q Yang
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Y F Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - F F Xu
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China
| | - J B Deng
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - L L Wu
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - X D Han
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China
| | - J Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - D A Guo
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China.
| | - B Liu
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China.
| |
Collapse
|
24
|
Gholizadeh P, Mahallei M, Pormohammad A, Varshochi M, Ganbarov K, Zeinalzadeh E, Yousefi B, Bastami M, Tanomand A, Mahmood SS, Yousefi M, Asgharzadeh M, Kafil HS. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microb Pathog 2018; 127:48-55. [PMID: 30503960 DOI: 10.1016/j.micpath.2018.11.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
Abstract
Recent studies have been considered to symbiotic interactions of the human gastrointestinal microbiota and human lifestyle-related disorders. The human gastrointestinal microbiota continuously stimulates the immune system against opportunistic and pathogen bacteria from infancy. Changes in gastrointestinal microbiota have been associated with numbers of human diseases such as allergic diseases, autoimmune encephalitis, atherosclerosis, colorectal cancer, obesity, diabetes etc. In this review article, we evaluate studies on the roles of human gastrointestinal microbiota and interference pathogenicity in allergic diseases, obesity, and diabetes. Several studies indicated association between allergic diseases and changes in bacterial balance such as increased of Clostridium spp., some species of Bifidobacterium spp., or decreased of Bacteroidetes phylum and some species of Bifiobacterium spp. and production of specific short-chain fatty acids due to food type, delivery modes of infant, infant evolvement environment and time of getting bacteria at an early-life age. In addition, obesity and diabetes are associated with food type, production of short chain fatty acids undergo fermentation of the intestinal microbiota, metabolic endotoxemia, endocannabinoid system and properties of the immune system. Well-characterized underlying mechanisms may provide novel strategies for using prebiotic and probiotic to prevent and treatment of allergic diseases, obesity, diabetes, and other lifestyle-related disorders.
Collapse
Affiliation(s)
- Pourya Gholizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahallei
- Children Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Varshochi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Tanomand
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Suhad Saad Mahmood
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Shukla R, Ghoshal U, Ranjan P, Ghoshal UC. Expression of Toll-like Receptors, Pro-, and Anti-inflammatory Cytokines in Relation to Gut Microbiota in Irritable Bowel Syndrome: The Evidence for Its Micro-organic Basis. J Neurogastroenterol Motil 2018; 24:628-642. [PMID: 30347939 PMCID: PMC6175562 DOI: 10.5056/jnm18130] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background/Aims A Subset of patients with irritable bowel syndrome (IBS) may have mild inflammation due to immune activation. Toll-like receptors (TLRs) and cytokines may cause intestinal inflammation. We studied their expression in relation to gut microbiota. Methods Expression of TLRs and cytokines was assessed in 47 IBS patients (Rome III) and 25 controls using quantitative real-time polymerase chain reaction. Immunohistochemistry was further performed to confirm the expression of TLR-4 and TLR-5. Results Of 47 patients with IBS, 20 had constipation (IBS-C), 20 diarrhea (IBS-D), and 7 unclassified (IBS-U). The mRNA levels of TLR-4 and TLR-5 were up-regulated in IBS patients than controls (P = 0.013 and P < 0.001, respectively). Expression of TLR-4 and TLR-5 at protein level was 4.2-folds and 6.6-folds higher in IBS-D than controls. The mRNA levels of IL-6 (P = 0.003), C-X-C motif chemokine ligand 11 (CXCL-11) (P < 0.001) and C-X-C motif chemokine receptor 3 (CXCR-3) (P < 0.001) were higher among IBS patients than controls. Expression of IL-6 (P = 0.002), CXCL-11 (P < 0.001), and CXCR-3 (P < 0.001) were up-regulated and IL-10 (P = 0.012) was down-regulated in IBS-D patients than controls. Positive correlation was seen between TLR-4 and IL-6 (P = 0.043), CXCR-3, and CXCL-11 (P = 0.047), and IL-6 and CXCR-3 (P = 0.003). Stool frequency per week showed positive correlation with mRNA levels of TLR-4 (P = 0.016) and CXCR-3 (P = 0.005), but inversely correlated with IL-10 (P = 0.002). Copy number of Lactobacillus (P = 0.045) and Bifidobacterium (P = 0.011) showed correlation with IL-10 in IBS-C, while Gram-positive (P = 0.031) and Gram-negative bacteria (P = 0.010) showed correlation with CXCL-11 in IBS-D patients. Conclusions Altered immune activation in response to dysbiotic microbiota may promote intestinal inflammation in a subset of patients with IBS.
Collapse
Affiliation(s)
- Ratnakar Shukla
- Departments of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ujjala Ghoshal
- Departments of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prabhat Ranjan
- Departments of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Uday C Ghoshal
- Departments of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
26
|
Liu H, Ye H, Sun C, Xi H, Ma J, Lai F, Wu H. Antioxidant activity in HepG2 cells, immunomodulatory effects in RAW 264.7 cells and absorption characteristics in Caco-2 cells of the peptide fraction isolated from Dendrobium aphyllum. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huifan Liu
- College of Food Science and Engineering; South China University of Technology; Guangzhou, Guangdong 510640 China
| | - Hongji Ye
- College of Food Science and Engineering; South China University of Technology; Guangzhou, Guangdong 510640 China
| | - Chongzhen Sun
- College of Food Science and Engineering; South China University of Technology; Guangzhou, Guangdong 510640 China
| | - Hongru Xi
- College of Food Science and Engineering; South China University of Technology; Guangzhou, Guangdong 510640 China
| | - Juanjuan Ma
- College of Food Science and Engineering; South China University of Technology; Guangzhou, Guangdong 510640 China
| | - Furao Lai
- College of Food Science and Engineering; South China University of Technology; Guangzhou, Guangdong 510640 China
| | - Hui Wu
- College of Food Science and Engineering; South China University of Technology; Guangzhou, Guangdong 510640 China
| |
Collapse
|
27
|
Girard-Madoux MJ, Gomez de Agüero M, Ganal-Vonarburg SC, Mooser C, Belz GT, Macpherson AJ, Vivier E. The immunological functions of the Appendix: An example of redundancy? Semin Immunol 2018; 36:31-44. [DOI: 10.1016/j.smim.2018.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
|
28
|
Dong P, Feng JJ, Yan DY, Lyu YJ, Xu X. Early-life gut microbiome and cow's milk allergy- a prospective case - control 6-month follow-up study. Saudi J Biol Sci 2017; 25:875-880. [PMID: 30108435 PMCID: PMC6088111 DOI: 10.1016/j.sjbs.2017.11.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that perturbations in the intestinal microbiota in early infancy are implicated in the pathogenesis of food allergy (FA); existing evidence on the structure and composition of the intestinal microbiota in human beings with FA is limited and conflicting. The main object of the study was to compare the faecal microbiota between healthy and cow’s milk allergy (CMA) infants at the baseline immediately after the diagnosis, and to evaluate the changes in the faecal microbiota after 6 months of treatment of CMA infants with hypoallergenic formula (HF), compared with healthy children fed on standard milk formulae. Sixty infants younger than 4 months of age with challenge-proven CMA and 60 healthy age-matched children were investigated in this prospective case - control follow-up study. Faecal samples were collected at baseline and at 6 months of follow-up, microbial diversity and composition were characterized by high-throughput 16S rRNA sequencing. The average age (±SD) of the infants at inclusion was 2.9 ± 1.0 months. Children with CMA have lower gut microbiota diversity and an elevated Enterobacteriaceae to Bacteroidaceae (E/B ratio) in early infancy compared with healthy children (115.8 vs. 0.8, P = 0.0002). After 6 months of treatment with HF, CMA infants had a higher Lactobacillaceae (6.3% vs. 0.5%, P = 0.04) and lower Bifidobacteriaceae (0.3% vs. 8.2%, P = 0.03) and Ruminococcaceae (1.5% vs. 10.5%, P = 0.03) abundance compared with control children. Conclusion: Low gut microbiota diversity and an elevated E/B ratio in early infancy may contribute to the development of FA, including CMA. A strict elimination diet may weaken FA by reducing E/B ratio and promoting a gut microbiota that would benefit the acquisition of oral tolerance.
Collapse
Affiliation(s)
- Ping Dong
- Department of Child Healthcare, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, PR China
| | - Jing-Jing Feng
- Department of Child Healthcare, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, PR China
| | - Dong-Yong Yan
- Department of Child Healthcare, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, PR China
| | - Yu-Jing Lyu
- Department of Child Healthcare, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, PR China
| | - Xiu Xu
- Department of Child Healthcare, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, PR China
| |
Collapse
|
29
|
Huseyin CE, O'Toole PW, Cotter PD, Scanlan PD. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev 2017; 41:479-511. [PMID: 28430946 DOI: 10.1093/femsre/fuw047] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
The human body is home to a complex and diverse microbial ecosystem that plays a central role in host health. This includes a diversity of fungal species that is collectively referred to as our 'mycobiome'. Although research into the mycobiome is still in its infancy, its potential role in human disease is increasingly recognised. Here we review the existing literature available on the human mycobiota with an emphasis on the gut mycobiome, including how fungi interact with the human host and other microbes. In doing so, we provide a comprehensive critique of the methodologies available to research the human mycobiota as well as highlighting the latest research findings from mycological surveys of different groups of interest including infants, obese and inflammatory bowel disease cohorts. This in turn provides new insights and directions for future studies in this burgeoning research area.
Collapse
Affiliation(s)
- Chloe E Huseyin
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul W O'Toole
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| | - Pauline D Scanlan
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| |
Collapse
|
30
|
Quercia S, Turroni S, Fiori J, Soverini M, Rampelli S, Biagi E, Castagnetti A, Consolandi C, Severgnini M, Pianesi M, Fallucca F, Pozzilli P, Brigidi P, Candela M. Gut microbiome response to short-term dietary interventions in reactive hypoglycemia subjects. Diabetes Metab Res Rev 2017; 33. [PMID: 28806487 DOI: 10.1002/dmrr.2927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/02/2017] [Accepted: 08/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Reactive hypoglycemia is a metabolic disorder that provokes severe hypoglycemic episodes after meals. Over recent years, the gut microbiota has been recognized as potential target for the control of metabolic diseases, and the possibility to correct gut microbiota dysbioses through diet, favouring the recovery of metabolic homeostasis, has been considered. METHODS We investigate the impact of 2 short-term (3-day) nutritional interventions, based on the macrobiotic Ma-Pi 2 diet and a control Mediterranean diet, on the structure and functionality of the gut microbiota in 12 patients affected by reactive hypoglycemia. The gut microbiota composition was characterized by next-generation sequencing of the V3 to V4 region of the 16S rRNA gene, and the ecosystem functionality was addressed by measuring the faecal concentration of short-chain fatty acids (SCFAs). In order to measure the short-term physiological gut microbiota fluctuation, the microbiomes of 7 healthy people were characterized before and after 3 days of constant diet. RESULTS While no convergence of the gut microbiota compositional profiles was observed, a significant increase in SCFA faecal levels was induced only in the Ma-Pi 2 diet group, suggesting the potential of this diet to support a short-term functional convergence of the gut microbiota, regardless of the individual compositional layout. CONCLUSIONS The Ma-Pi 2 diet, with its high fibre load, was effective in increasing the production of SCFAs by the gut microbiota. Because these metabolites are known for their ability to counterbalance the metabolic deregulation in persons with glucose impairment disorders, their increased bioavailability could be of some relevance in reactive hypoglycemia.
Collapse
Affiliation(s)
- Sara Quercia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jessica Fiori
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Matteo Soverini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Castagnetti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, Italian National Research Council, Milan, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, Italian National Research Council, Milan, Italy
| | - Mario Pianesi
- International Study Center for Environment, Agriculture, Food, Health, and Economics, Rome, Italy
| | - Francesco Fallucca
- Department of Clinical Sciences, La Sapienza University II Faculty, Rome, Italy
| | - Paolo Pozzilli
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Wen L, Duffy A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J Nutr 2017; 147:1468S-1475S. [PMID: 28615382 DOI: 10.3945/jn.116.240754] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
The gut microbiota is a complex community of bacteria residing in the intestine. Animal models have demonstrated that several factors contribute to and can significantly alter the composition of the gut microbiota, including genetics; the mode of delivery at birth; the method of infant feeding; the use of medications, especially antibiotics; and the diet. There may exist a gut microbiota signature that promotes intestinal inflammation and subsequent systemic low-grade inflammation, which in turn promotes the development of type 2 diabetes. There are preliminary studies that suggest that the consumption of probiotic bacteria such as those found in yogurt and other fermented milk products can beneficially alter the composition of the gut microbiome, which in turn changes the host metabolism. Obesity, insulin resistance, fatty liver disease, and low-grade peripheral inflammation are more prevalent in patients with low α diversity in the gut microbiome than they are in patients with high α diversity. Fermented milk products, such as yogurt, deliver a large number of lactic acid bacteria to the gastrointestinal tract. They may modify the intestinal environment, including inhibiting lipopolysaccharide production and increasing the tight junctions of gut epithelia cells.
Collapse
Affiliation(s)
- Li Wen
- Section of Endocrinology and
| | - Andrew Duffy
- Department of Surgery, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
32
|
Wu WJ, Yan R, Li T, Li YP, Zhou RN, Wang YT. Pharmacokinetic alterations of rhubarb anthraquinones in experimental colitis induced by dextran sulfate sodium in the rat. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:600-607. [PMID: 28214059 DOI: 10.1016/j.jep.2017.01.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb (Rhei Rhizoma et Radix) is used for the treatment of digestive diseases in traditional medicinal practice in China. Recent studies also support its beneficial activities in alleviating ulcerative colitis (UC). AIM OF THE STUDY This study aimed to characterize the oral pharmacokinetics of rhubarb anthraquinones, the main bioactive components of this herb, in the experimental chronic colitis rat model induced by dextran sulfate sodium (DSS) and to identify the factors causing the pharmacokinetic alterations. MATERIALS AND METHODS Rats received drinking water (normal group) or 5% DSS for the first 7 days and 3% DSS for additional 14 days (UC group). On day 21 both groups received an oral dose of the rhubarb extract (equivalent to 5.0g crude drug/kg body weight). Plasma anthraquinone aglycones levels were determined directly by an LC-MS/MS method and the total of each anthraquinone (aglycone+conjugates) was quantified after β-glucuronidases hydrolysis. RESULTS Rhubarb anthraquinones predominantly existed as conjugates in plasma samples from both groups and only free aloe-emodin, rhein and emodin were detected. Compared to the normal rats, both Cmax and AUC of the three free anthraquinones were increased, while the systemic exposure (AUC) of the total (aglycone+conjugates) of most anthraquinones decreased by UC accompanied by the disappearance of multiple-peak phenomenon in the plasma concentration-time profiles. Gut bacteria from UC rats exhibited a decreased activity in hydrolyzing anthraquinone glycosides to form respective aglycone and there were significant decreases in microbial β-glucosidases and β-glucuronidases activities. Moreover, the intestinal microsomes from UC rats catalyzed glucuronidation of free anthraquinones with higher activities, while the activities of hepatic microsomes were comparable to normal rats. CONCLUSIONS The decreases of β-glucuronidases activity in DSS-induced chronic rat colitis should mainly account for the decreases in systemic exposure and abrogation of enterohepatic recirculation of most rhubarb anthraquinones after oral intake.
Collapse
Affiliation(s)
- Wen-Jin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ya-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Rui-Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
33
|
Huang H, Krishnan HB, Pham Q, Yu LL, Wang TTY. Soy and Gut Microbiota: Interaction and Implication for Human Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8695-8709. [PMID: 27798832 DOI: 10.1021/acs.jafc.6b03725] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soy (Glycine max) is a major commodity in the United States, and soy foods are gaining popularity due to their reported health-promoting effects. In the past two decades, soy and soy bioactive components have been studied for their health-promoting/disease-preventing activities and potential mechanisms of action. Recent studies have identified gut microbiota as an important component in the human body ecosystem and possibly a critical modulator of human health. Soy foods' interaction with the gut microbiota may critically influence many aspects of human development, physiology, immunity, and nutrition at different stages of life. This review summarizes current knowledge on the effects of soy foods and soy components on gut microbiota population and composition. It was found, although results vary in different studies, in general, both animal and human studies have shown that consumption of soy foods can increase the levels of bifidobacteria and lactobacilli and alter the ratio between Firmicutes and Bacteroidetes. These changes in microbiota are consistent with reported reductions in pathogenic bacteria populations in the gut, thereby lowering the risk of diseases and leading to beneficial effects on human health.
Collapse
Affiliation(s)
- Haiqiu Huang
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| | - Hari B Krishnan
- Plant Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, University of Missouri , Columbia, Missouri 65211, United States
| | - Quynhchi Pham
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland , College Park, Maryland 20742, United States
| | - Thomas T Y Wang
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| |
Collapse
|
34
|
Simultaneous determination of six short-chain fatty acids in colonic contents of colitis mice after oral administration of polysaccharides from Chrysanthemum morifolium Ramat by gas chromatography with flame ionization detector. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:88-94. [PMID: 27428450 DOI: 10.1016/j.jchromb.2016.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/02/2016] [Indexed: 12/19/2022]
Abstract
Short-chain fatty acids (SCFAs) produced by the intestinal bacteria are very critical for the intestinal barrier, mucosal cytoprotection and normal intestinal biology. However, accumulation of SCFAs promoted by the polysaccharides from Chrysanthemum morifolium Ramat remains unknown. Thus, it is necessary to investigate SCFAs in the colonic contents of dextran sulfate sodium (DSS) induced colitis mice after oral administration of the polysaccharides from C. morifolium Ramat which is very helpful to unravel how it works. In this study, a rapid and reliable gas chromatographic method with flame ionization detector (GC-FID) for simultaneous determination of six SCFAs such as acetic acid (AA), propionic acid (PA), butyric acid (BA), isobutyric acid (IBA), valeric acid (VA) and isovaleric acid (IVA) has been developed and validated. Under the optimized chromatographic conditions and sample extraction procedure, good separation for 6 target compounds was obtained on a HP-INNOWAX column within 12min. Results revealed that polysaccharides from C. morifolium Ramat positively affected the SCFAs intestinal production. The polysaccharides group had greater SCFAs concentration in colonic content than the DSS-treated group (P<0.05), which was decreased remarkably compared to the normal group (P<0.01). With the decrease of the polysaccharides dosage, the contents of AA, PA and VA increased gradually, while the change of BA concentration was the opposite. There was no significant difference in the content of IBA at the different administration concentrations. And the content of IVA reached the highest concentration 0.953mg/g at lower dose of the polysaccharides. Additionally, oral administration of the polysaccharides prominently attenuated the body weight loss, reduced the disease activity index, rectal bleeding and stool consistency, improved colon shortening and macroscopic score of colitis. Our results indicated that the polysaccharides of C. morifolium Ramat might be used as prebiotic agents to prevent gut dysbiosis and inflammatory bowel disease.
Collapse
|
35
|
Katsanos KH, Torres J, Roda G, Brygo A, Delaporte E, Colombel JF. Review article: non-malignant oral manifestations in inflammatory bowel diseases. Aliment Pharmacol Ther 2015; 42:40-60. [PMID: 25917394 DOI: 10.1111/apt.13217] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/04/2015] [Accepted: 04/08/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Patients with inflammatory bowel diseases (IBD) may present with lesions in their oral cavity. Lesions may be associated with the disease itself representing an extraintestinal manifestation, with nutritional deficiencies or with complications from therapy. AIM To review and describe the spectrum of oral nonmalignant manifestations in patients with inflammatory bowel diseases [ulcerative colitis (UC), Crohn's disease (CD)] and to critically review all relevant data. METHODS A literature search using the terms and variants of all nonmalignant oral manifestations of inflammatory bowel diseases (UC, CD) was performed in November 2014 within Pubmed, Embase and Scopus and restricted to human studies. RESULTS Oral lesions in IBD can be divided into three categories: (i) lesions highly specific for IBD, (ii) lesions highly suspicious of IBD and (iii) nonspecific lesions. Oral lesions are more common in CD compared to UC, and more prevalent in children. In adult CD patients, the prevalence rate of oral lesions is higher in CD patients with proximal gastrointestinal tract and/or perianal involvement, and estimated to range between 20% and 50%. Oral lesions can also occur in UC, with aphthous ulcers being the most frequent type. Oral manifestations in paediatric UC may be present in up to one-third of patients and are usually nonspecific. CONCLUSIONS Oral manifestations in IBD can be a diagnostic challenge. Treatment generally involves managing the underlying intestinal disease. In cases presenting with local disabling symptoms and impaired quality of life, local and systemic medical therapy must be considered and/or oral surgery may be required.
Collapse
Affiliation(s)
- K H Katsanos
- The Henry D. Janowitz Division of Gastroenterology, The Leona M. Harry B. Helmsley Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Torres
- The Henry D. Janowitz Division of Gastroenterology, The Leona M. Harry B. Helmsley Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Roda
- The Henry D. Janowitz Division of Gastroenterology, The Leona M. Harry B. Helmsley Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Brygo
- Department of Stomatology, Centre Hospitalier Régional Universitaire de Lille 2, Lille Cedex, France
| | - E Delaporte
- Department of Dermatology, Centre Hospitalier Régional Universitaire de Lille 2, Lille Cedex, France
| | - J-F Colombel
- The Henry D. Janowitz Division of Gastroenterology, The Leona M. Harry B. Helmsley Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
36
|
Amit-Romach E, Uni Z, Friedman M, Aizenberg I, Berkovich Z, Reifen R. A new mode of probiotic therapy: Specific targeting. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
37
|
Patel R, DuPont HL. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin Infect Dis 2015; 60 Suppl 2:S108-21. [PMID: 25922396 PMCID: PMC4490231 DOI: 10.1093/cid/civ177] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota has a significant role in human health and disease. Dysbiosis of the intestinal ecosystem contributes to the development of certain illnesses that can be reversed by favorable alterations by probiotics. The published literature was reviewed to identify scientific data showing a relationship between imbalance of gut bacteria and development of diseases that can be improved by biologic products. The medical conditions vary from infectious and antibiotic-associated diarrhea to obesity to chronic neurologic disorders. A number of controlled clinical trials have been performed to show important biologic effects in a number of these conditions through administration of prebiotics, probiotics, and synbiotics. Controlled clinical trials have identified a limited number of prebiotics, probiotic strains, and synbiotics that favorably prevent or improve the symptoms of various disorders including inflammatory bowel disease, irritable bowel syndrome, infectious and antibiotic-associated diarrhea, diabetes, nonalcoholic fatty liver disease, necrotizing enterocolitis in very low birth weight infants, and hepatic encephalopathy. Studies have shown that probiotics alter gut flora and lead to elaboration of flora metabolites that influence health through 1 of 3 general mechanisms: direct antimicrobial effects, enhancement of mucosal barrier integrity, and immune modulation. Restoring the balance of intestinal flora by introducing probiotics for disease prevention and treatment could be beneficial to human health. It is also clear that significant differences exist between different probiotic species. Metagenomics and metatranscriptomics together with bioinformatics have allowed us to study the cross-talk between the gut microbiota and the host, furthering insight into the next generation of biologic products.
Collapse
Affiliation(s)
| | - Herbert L. DuPont
- University of Texas School of Public Health
- Baylor St Luke's Medical Center
- Baylor College of Medicine, Houston, Texas
| |
Collapse
|
38
|
Accuracy of nelson and best guess formulae in estimation of weights in nigerian children population. Ann Ib Postgrad Med 2015; 12:80-8. [PMID: 25960698 PMCID: PMC4415390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: An alternative method of estimating children's weights,
when direct weighing is impracticable is the use of age-based
formulae but these formulae have not been validated in Nigeria.
This study compares estimated weights from two commonly used
formulae against actual weights of healthy children. Methods: Children aged 1 month to 11 years (n= 2754) were randomly
selected in Ibadan, Nigeria using a two-stage sampling procedure.
Weight of each child, measured using a standard calibrated scale
and determined using Nelson and Best Guess formulae, were
compared. Demographic characteristics were also obtained. Mean
percentage error (MPE) was calculated and stratified by gender and
age. Bland-Altman graphs were used for visual assessment of the
agreement between estimated and measured weights. Clinically
acceptable MPE was defined as ±5%. Descriptive statistics and paired
t test were used to examine the data. Statistical level of significance
was set at p = 0.05. Results: There were 1349 males and 1405 females. Nelson and Best
Guess formulae overestimated weight by 10.11% (95% CI: -20.44,
40.65) in infants. For 1-5 years group, Nelson formula marginally
underestimated weight by -0.59% (95% CI: -5.16, 3.96) while it
overestimated weight by 9.87% (95% CI: 24.89, 44.63) in 6-11 years.
Best Guess formulae consistently overestimated weight in all age
groups with the MPE ranging from 10.11 to 30.67%. Conclusion: Nelson and Best Guess formulae are inaccurate for
weight estimations in infants and children aged 6-11 years.
Development of new formulae or modifications should be considered
for use in the Nigerian children population.
Collapse
|
39
|
García-Mazcorro JF, Garza-González E, Marroquín-Cardona AG, Tamayo JL. [Characterization, influence and manipulation of the gastrointestinal microbiota in health and disease]. GASTROENTEROLOGIA Y HEPATOLOGIA 2015; 38:445-66. [PMID: 25769877 DOI: 10.1016/j.gastrohep.2015.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/12/2015] [Accepted: 01/26/2015] [Indexed: 01/08/2023]
Abstract
The gastrointestinal tract harbors trillions of microorganisms that are indispensable for health. The gastrointestinal microbiota can be studied using culture and molecular methods. The applications of massive sequencing are constantly increasing, due to their high yield, increasingly accessible costs, and the availability of free software for data analysis. The present article provides a detailed review of a large number of studies on the gastrointestinal microbiota and its influence on human health; particular emphasis is placed on the evidence suggesting a relationship between the gastrointestinal microbial ecosystem and diverse physiological and immune/inflammatory processes. Discussion of the articles analyzed combines a medical approach and current concepts of microbial molecular ecology. The present revision aims to be useful to those interested in the gastrointestinal microbiota and its possible alteration to maintain, re-establish and enhance health in the human host.
Collapse
Affiliation(s)
- José F García-Mazcorro
- Facultad de Medicina Veterinaria, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo León, México; Grupo de investigación Ecobiología Médica, Facultad de Medicina Veterinaria, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo León, México.
| | - Elvira Garza-González
- Servicio de Gastroenterología y Departamento de Patología Clínica, Hospital Universitario «Dr. José Eleuterio González», Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Alicia G Marroquín-Cardona
- Facultad de Medicina Veterinaria, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo León, México; Grupo de investigación Ecobiología Médica, Facultad de Medicina Veterinaria, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo León, México; Departamento de Fisiología, Farmacología y Toxicología, Facultad de Medicina Veterinaria, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo León, México
| | - José L Tamayo
- Centro de Investigación y Docencia en Ciencias de la Salud, Hospital Civil de Culiacán, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| |
Collapse
|
40
|
Saez-Lara MJ, Gomez-Llorente C, Plaza-Diaz J, Gil A. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. BIOMED RESEARCH INTERNATIONAL 2015; 2015:505878. [PMID: 25793197 PMCID: PMC4352483 DOI: 10.1155/2015/505878] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/04/2014] [Accepted: 09/12/2014] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammation of the small intestine and colon caused by a dysregulated immune response to host intestinal microbiota in genetically susceptible subjects. A number of fermented dairy products contain lactic acid bacteria (LAB) and bifidobacteria, some of which have been characterized as probiotics that can modify the gut microbiota and may be beneficial for the treatment and the prevention of IBD. The objective of this review was to carry out a systematic search of LAB and bifidobacteria probiotics and IBD, using the PubMed and Scopus databases, defined by a specific equation using MeSH terms and limited to human clinical trials. The use of probiotics and/or synbiotics has positive effects in the treatment and maintenance of UC, whereas in CD clear effectiveness has only been shown for synbiotics. Furthermore, in other associated IBD pathologies, such as pouchitis and cholangitis, LAB and bifidobacteria probiotics can provide a benefit through the improvement of clinical symptoms. However, more studies are needed to understand their mechanisms of action and in this way to understand the effect of probiotics prior to their use as coadjuvants in the therapy and prevention of IBD conditions.
Collapse
Affiliation(s)
- Maria Jose Saez-Lara
- Department of Biochemistry & Molecular Biology I, School of Sciences, University of Granada, 18071 Granada, Spain
- Institute of Nutrition & Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18100 Armilla, Spain
| | - Carolina Gomez-Llorente
- Institute of Nutrition & Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18100 Armilla, Spain
- Department of Biochemistry & Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Julio Plaza-Diaz
- Institute of Nutrition & Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18100 Armilla, Spain
- Department of Biochemistry & Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Angel Gil
- Institute of Nutrition & Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18100 Armilla, Spain
- Department of Biochemistry & Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
41
|
McMullen L, T Leach S, A Lemberg D, S Day A. Current roles of specific bacteria in the pathogenesis of inflammatory bowel disease. AIMS Microbiol 2015. [DOI: 10.3934/microbiol.2015.1.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
42
|
Janšáková K, Bábíčková J, Filová B, Lengyelová E, Havrlentová M, Kraic J, Celec P, Tóthová Ľ. Anthocyanin-Rich Diet in Chemically Induced Colitis in Mice. Folia Biol (Praha) 2015; 61:104-9. [PMID: 26213856 DOI: 10.14712/fb2015061030104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The aetiology of inflammatory bowel diseases is unclear, but oxidative stress plays a key role in the pathogenesis. Anthocyanins--plant polyphenols--were shown to have antioxidant and anti-inflammatory properties. The aim of this study was to investigate the potential protective effects of anthocyanins on the oxidative status in mice with chemically induced colitis. Adult male mice were randomly divided into a control group drinking tap water and a colitis group drinking 1% dextran sulphate sodium solution. Animals had ad libitum access to a control wheat-based diet or food based on wheat producing anthocyanins. Bodyweight and stool consistency were monitored daily for 14 days. At the end of the experiment, colon length was measured and tissue samples were collected for the assessment of histology and oxidative status. Mice with colitis had lower body weight, higher stool score and shorter colon than control mice. Anthocyanins had neither an effect on stool consistency, nor on bodyweight loss and colon length. In the colon, liver and plasma, analysis of oxidative stress markers and antioxidant status revealed no significant differences between the groups. Food made from wheat producing anthocyanins did not protect mice from the consequences of chemically induced colitis. The measured biomarkers do not confirm the role of oxidative stress in this model of colitis. Further optimization of the anthocyanin-rich food might be needed before further experiments are conducted.
Collapse
Affiliation(s)
- K Janšáková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - J Bábíčková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - B Filová
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - E Lengyelová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - M Havrlentová
- National Agricultural and Food Centre - Research Institute of Plant Production, Piešťany, Slovakia
| | - J Kraic
- National Agricultural and Food Centre - Research Institute of Plant Production, Piešťany, Slovakia
| | - P Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ľ Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
43
|
Koleva P, Ketabi A, Valcheva R, Gänzle MG, Dieleman LA. Chemically defined diet alters the protective properties of fructo-oligosaccharides and isomalto-oligosaccharides in HLA-B27 transgenic rats. PLoS One 2014; 9:e111717. [PMID: 25369019 PMCID: PMC4219767 DOI: 10.1371/journal.pone.0111717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/07/2014] [Indexed: 01/04/2023] Open
Abstract
Non-digestible oligosaccharides (NDO) were shown to reduce inflammation in experimental colitis, but it remains unclear whether microbiota changes mediate their colitis-modulating effects. This study assessed intestinal microbiota and intestinal inflammation after feeding chemically defined AIN-76A or rat chow diets, with or without supplementation with 8 g/kg body weight of fructo-oligosaccharides (FOS) or isomalto-oligosaccharides (IMO). The study used HLA-B27 transgenic rats, a validated model of inflammatory bowel disease (IBD), in a factorial design with 6 treatment groups. Intestinal inflammation and intestinal microbiota were analysed after 12 weeks of treatment. FOS and IMO reduced colitis in animals fed rat chow, but exhibited no anti-inflammatory effect when added to AIN-76A diets. Both NDO induced specific but divergent microbiota changes. Bifidobacteria and Enterobacteriaceae were stimulated by FOS, whereas copy numbers of Clostridium cluster IV were decreased. In addition, higher concentrations of total short-chain fatty acids (SCFA) were observed in cecal contents of rats on rat chow compared to the chemically defined diet. AIN-76A increased the relative proportions of propionate, iso-butyrate, valerate and iso-valerate irrespective of the oligosaccharide treatment. The SCFA composition, particularly the relative concentration of iso-butyrate, valerate and iso-valerate, was associated (P ≤ 0.004 and r ≥ 0.4) with increased colitis and IL-1 β concentration of the cecal mucosa. This study demonstrated that the protective effects of fibres on colitis development depend on the diet. Although diets modified specific cecal microbiota, our study indicates that these changes were not associated with colitis reduction. Intestinal inflammation was positively correlated to protein fermentation and negatively correlated with carbohydrate fermentation in the large intestine.
Collapse
Affiliation(s)
- Petya Koleva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
| | - Ali Ketabi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Rosica Valcheva
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
- School of Food and Pharmaceutical Engineering, Hubei University of Technology, Wuhan, China
| | - Levinus A. Dieleman
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
| |
Collapse
|
44
|
Manresa MC, Godson C, Taylor CT. Hypoxia-sensitive pathways in inflammation-driven fibrosis. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1369-80. [PMID: 25298511 DOI: 10.1152/ajpregu.00349.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue injury can occur for a variety of reasons, including physical damage, infection, and ischemia. The ability of tissues to effectively recover from injury is a cornerstone of human health. The healing response in tissues is conserved across organs and typically involves distinct but overlapping inflammatory, proliferative, and maturation/resolution phases. If the inflammatory phase is not successfully controlled and appropriately resolved, an excessive healing response characterized by scar formation can lead to tissue fibrosis, a major clinical complication in disorders such as Crohn's disease (CD). As a result of enhanced metabolic and inflammatory processes during chronic inflammation, profound changes in tissue oxygen levels occur leading to localized tissue hypoxia. Therefore, inflammation, fibrosis, and hypoxia are coincidental events during inflammation-driven fibrosis. Our current understanding of the mechanism(s) underpinning fibrosis is limited as are the therapeutic options available. In this review, we discuss what is known about the cellular and molecular mechanisms underpinning inflammation-driven fibrosis and how hypoxia may play a role in shaping this process.
Collapse
Affiliation(s)
- Mario C Manresa
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Catherine Godson
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
45
|
Effects of bacteria‑mediated reprogramming and antibiotic pretreatment on the course of colitis in mice. Mol Med Rep 2014; 10:983-8. [PMID: 24841084 DOI: 10.3892/mmr.2014.2244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/24/2014] [Indexed: 01/14/2023] Open
Abstract
Since the original study by Takahashi and Yamanaka in 2006, there have been significant advances in the field of induced pluripotent stem cells. However, to the best of our knowledge, all of the studies published to date are based on ex vivo gene delivery and subsequent reimplantation of the cells. By contrast, in vivo reprogramming allows the direct administration of DNA encoding the reprogramming factors into the target tissue. In our previous study we demonstrated the beneficial effects of Salmonella‑mediated oral delivery of genes into colonic mucosa as a therapy for colitis. In the present study, the effect of the bacterial vector Salmonella typhimurium SL7207, carrying a plasmid encoding the reprogramming factors Sox2, Oct3/4 and Klf4, on colitis in mice was investigated. Therapeutic intervention, consisting of repeated gavaging following the induction of colitis, did not exhibit beneficial effects. However, preventive oral administration of the therapeutic bacterial strain resulted in improvements in weight loss, colon length and stool consistency. Recently it has been shown that antibiotic pretreatment may alleviate chemically induced colitis in mice. Therefore, in the present study it was investigated whether antibiotic pretreatment of mice was able to enhance colonization of the administered bacterial strain in the colon, and therefore improve therapeutic outcome. C57BL/6 mice were administered streptomycin and metronidazole for four days, prior to multiple oral administrations of therapeutic bacteria every other day. Following three gavages, mice were administered dextran sulfate sodium in their drinking water to induce colitis. Disease activity parameters, including stool consistency, weight loss and colon length, were improved in the group receiving antibiotics and bacterial vectors. These results indicate that antibiotic pretreatment may enhance bacterial gene delivery into the colon. Furthermore, the anticipated in vivo reprogramming of colon cells appears to have a beneficial effect on the severity of colitis. These effects, however, still require further analyses.
Collapse
|
46
|
Verma N, Verma R, Kumari R, Ranjha R, Paul J. Effect of salicin on gut inflammation and on selected groups of gut microbiota in dextran sodium sulfate induced mouse model of colitis. Inflamm Res 2013; 63:161-9. [DOI: 10.1007/s00011-013-0685-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/18/2013] [Accepted: 10/31/2013] [Indexed: 12/17/2022] Open
|
47
|
Salecan diet increases short chain fatty acids and enriches beneficial microbiota in the mouse cecum. Carbohydr Polym 2013; 102:772-9. [PMID: 24507346 DOI: 10.1016/j.carbpol.2013.10.091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 01/05/2023]
Abstract
Salecan, a linear extracellular polysaccharide consisting of β-(1,3)-D-glucan, has potential applications in the food industry due to its excellent toxicological profile and rheological properties. The aim of the present study was to evaluate the effects of dietary supplementation with 8% Salecan on the gastrointestinal microbiota in mice. In the Salecan group, the following significant differences (p<0.05) from the cellulose group were found: increased body weight gain, greater mass of cecum and cecal contents, and higher butyrate concentrations in the cecal and colonic contents at wk 4. Moreover, populations of Lactobacillus and Bifidobacterium increased 3- and 6-fold, respectively, in the cecal contents of mice consuming Salecan. These results suggest that the dietary incorporation of Salecan, by providing SCFAs and increasing beneficial microbiota, may be beneficial in improving gastrointestinal health, and have relevance to the use of Salecan as a dietary supplement for human consumption.
Collapse
|
48
|
McDonald JA, Schroeter K, Fuentes S, Heikamp-deJong I, Khursigara CM, de Vos WM, Allen-Vercoe E. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J Microbiol Methods 2013; 95:167-74. [DOI: 10.1016/j.mimet.2013.08.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 11/25/2022]
|
49
|
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a chronic non-specific inflammatory condition of the gastrointestinal tract with unknown etiology. During the exploration of the etiology, treatment and other aspects of IBD, it has been gradually realized that microbial ecological agents (MEAs) are helpful in the treatment of IBD. This article reviews the relationship between MEAs and IBD with regard to the intestinal environment in IBD, the therapeutic effect of MEA in IBD and the possible mechanisms involved.
Collapse
|
50
|
Wagnerova A, Gardlik R. In vivo reprogramming in inflammatory bowel disease. Gene Ther 2013; 20:1111-8. [PMID: 24025994 DOI: 10.1038/gt.2013.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/30/2013] [Accepted: 07/18/2013] [Indexed: 02/07/2023]
Abstract
The direct reprogramming of somatic cells has immense implications in various areas of medicine. Although remarkable progress has been made in developing novel reprogramming methods, the efficiency and fidelity of reprogramming still need to be improved. Inflammatory bowel disease (IBD) involves chronic inflammatory diseases of the gastrointestinal tract with a complex etiology caused by various genetic, immunological and environmental factors. Recently, the role of stem cells has been proposed in pathogenesis and therapy of IBD. However, the efficiency and the safety of the stem cell treatments depend on the origin of the stem cell and the administration method. We hypothesize that the reprogramming of the intestinal cells into a pluripotent state is of huge importance for IBD therapy and prevention. The vectors carrying reprogramming genes encoding pluripotency factors can be transferred to the damaged tissue, in this case the intestine, by means of invasive bacterial vectors able to colonize colon mucosa. Reconstruction of tissues in vivo might avoid problems encountered in tissue rebuilding in vitro because of lack of appropriate scaffolds and microenvironments. Herein we present a review of recent literature and a perspective of in vivo reprogramming in IBD using bacterial vectors and analyze the rationale for such approach.
Collapse
Affiliation(s)
- A Wagnerova
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | | |
Collapse
|