1
|
Zhang L, Du FH, Kun KX, Yan Y. Abscisic acid improves non-alcoholic fatty liver disease in mice through the AMPK/NRF2/KEAP1 signaling axis. Biochem Biophys Res Commun 2025; 747:151291. [PMID: 39793400 DOI: 10.1016/j.bbrc.2025.151291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a global health concern, placing a substantial financial strain on public health systems. Currently, no specific pharmacological treatments are recommended in existing guidelines. Abscisic acid (ABA), a natural plant hormone, is recognized for its promising potential in the healthcare field due to its diverse biological activities. Therefore, this study is aimed at exploring the protective mechanism of ABA against NAFLD. In vitro, experiments were conducted using palmitic acid (PA) to establish a fatty liver cell model, whereas in vivo, an NAFLD model was established using a continuous high-fat diet (HFD). It was found that ABA, as a natural activator of NRF2 and AMPK, reduced lipid accumulation in hepatocytes and exerted anti-inflammatory and antioxidant effects by enhancing the nuclear expression of NRF2, thereby alleviating NAFLD in mice. Furthermore, AMPK was activated by ABA through the promotion of its phosphorylation, which subsequently enhanced the p62-dependent autophagic degradation of KEAP1, leading to the release and nuclear translocation of NRF2. In conclusion, it is indicated that ABA reduces lipid accumulation, inflammation, and oxidative stress in hepatocytes via the NRF2 and AMPK pathways, potentially serving as a promising candidate for alleviating NAFLD.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastroenterology, Mianyang 404 Hospital, Sichuan, 621000, China
| | - Fu Hua Du
- Sichuan Science City Hospital, Sichuan, 621022, China
| | - Kai Xiao Kun
- Department of Gastroenterology, Mianyang 404 Hospital, Sichuan, 621000, China
| | - Yong Yan
- Department of Gastroenterology, Mianyang 404 Hospital, Sichuan, 621000, China.
| |
Collapse
|
2
|
Spinelli S, Humma Z, Magnone M, Zocchi E, Sturla L. Role of Abscisic Acid in the Whole-Body Regulation of Glucose Uptake and Metabolism. Nutrients 2024; 17:13. [PMID: 39796447 PMCID: PMC11723322 DOI: 10.3390/nu17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Abscisic acid (ABA) is a hormone with a long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely descendants, which existed long before the separation of the plant and animal kingdoms, with a conserved role as signals regulating cell responses to environmental challenges. In mammals, along with the anti-inflammatory and neuroprotective function of ABA, nanomolar ABA regulates the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue via an insulin-independent mechanism and increasing metabolic energy production and also dissipation in brown and white adipocytes. Chronic ABA intake of micrograms per Kg body weight improves blood glucose, lipids, and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and metabolic syndrome. This review summarizes the most recent in vitro and in vivo data obtained with nanomolar ABA, the involvement of the receptors LANCL1 and LANCL2 in the hormone's action, and the importance of mammals' endowment with two distinct hormones governing the metabolic response to glucose availability. Finally, unresolved issues and future directions for the clinical use of ABA in diabetes are discussed.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Zelle Humma
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (Z.H.); (M.M.); (E.Z.)
| | - Mirko Magnone
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (Z.H.); (M.M.); (E.Z.)
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (Z.H.); (M.M.); (E.Z.)
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (Z.H.); (M.M.); (E.Z.)
| |
Collapse
|
3
|
Van Gaever F, Mingneau F, Vanherle S, Driege Y, Haegman M, Van Wonterghem E, Xie J, Vandenbroucke RE, Hendriks JJA, Beyaert R, Staal J. The phytohormone abscisic acid enhances remyelination in mouse models of multiple sclerosis. Front Immunol 2024; 15:1500697. [PMID: 39742273 PMCID: PMC11685095 DOI: 10.3389/fimmu.2024.1500697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Over the past few decades, there has been a sudden rise in the incidence of Multiple Sclerosis (MS) in Western countries. However, current treatments often show limited efficacy in certain patients and are associated with adverse effects, which highlights the need for safer and more effective therapeutic approaches. Environmental factors, particularly dietary habits, have been observed to play a substantial role in the development of MS. In this study, we are the first to investigate the potential protective effect of the phytohormone abscisic acid (ABA) in MS. ABA, which is abundant in fruits such as figs, apricots and bilberries, is known to cross the blood-brain barrier and has demonstrated neuroprotective effects in conditions like depression and Alzheimer's disease. Methods In this study, we investigated whether ABA supplementation enhances remyelination in both ex vivo and in vivo mouse models. Results Our results indicated that ABA enhanced remyelination and that this enhanced remyelination is associated with increased lipid droplet load, reduced levels of degraded myelin, and a higher abundance of F4/80+ cells in the demyelinated brain of mice treated with ABA. In in vitro models, we further demonstrated that ABA treatment elevates lipid droplet formation by enhancing the phagocytic capacity of macrophages. Additionally, in a mouse model of microglial activation, we showed that ABA-treated mice maintain a less inflammatory microglial phenotype. Conclusion Our findings highlight a crucial role for macrophages and microglia in enabling ABA to enhance the remyelination process. Furthermore, ABA's ability to improve remyelination together with its ability to reduce microglial activation, make ABA a promising candidate for modulating macrophage phenotype and reducing neuroinflammation in MS.
Collapse
Affiliation(s)
- Femke Van Gaever
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Fleur Mingneau
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Yasmine Driege
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mira Haegman
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Junhua Xie
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jerome J. A. Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Gharib A, Marquez C, Meseguer-Beltran M, Sanchez-Sarasua S, Sanchez-Perez AM. Abscisic acid, an evolutionary conserved hormone: Biosynthesis, therapeutic and diagnostic applications in mammals. Biochem Pharmacol 2024; 229:116521. [PMID: 39251140 DOI: 10.1016/j.bcp.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Abscisic acid (ABA), a phytohormone traditionally recognized for its role in plant stress responses, has recently emerged as a significant player in mammalian defense mechanisms. Like plants, various mammalian cell types synthesize ABA in response to specific health challenges, although the precise pathways remain not fully elucidated. ABA is associated with the regulation of inflammation and insulin signaling, prompting extensive research into its potential as a therapeutic agent for various diseases. ABA exerts its effects through its receptors, particularly PPAR-γ and LANCL-2, which serve as signaling hubs regulating numerous pathways. Through these interactions, ABA profoundly impacts mammalian health, and new ABA targets continue to be identified. Numerous studies in animal models demonstrate ABA's benefit in managing conditions such as neurological and psychiatric disorders, cancer, and malaria infections, all of which involve significant inflammatory dysregulation. In this manuscript we review the studies covering ABA synthesis and release in cell cultures, the signaling pathways regulated by ABA, and how these impact health in preclinical models. Furthermore, we highlight recent research suggesting that measuring ABA levels in human body fluids could serve as a useful biomarker for pathological conditions, providing insights into disease progression and treatment efficacy. This comprehensive review outlines the current understanding of ABA in mammalian pathophysiology, identifying gaps in knowledge, particularly concerning ABA biosynthesis and metabolism in mammals. In addition, this study emphasizes the need for clinical trials to validate the effectiveness of ABA-based therapies and its reliability as a biomarker for various diseases.
Collapse
Affiliation(s)
- Amir Gharib
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain; Department of Laboratory Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Carlee Marquez
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain
| | - Maria Meseguer-Beltran
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain
| | - Sandra Sanchez-Sarasua
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain; CNRS UMR 5293, Institut Des Maladies Neurodégénératives, Centre Paul Broca-Nouvelle Aquitaine, University of Bordeaux, Bordeaux, France.
| | - Ana M Sanchez-Perez
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain.
| |
Collapse
|
5
|
Iranmanesh Z, Dehestani M, Esmaeili-Mahani S. Discovering novel targets of abscisic acid using computational approaches. Comput Biol Chem 2024; 112:108157. [PMID: 39047594 DOI: 10.1016/j.compbiolchem.2024.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Abscisic acid (ABA) is a crucial plant hormone that is naturally produced in various mammalian tissues and holds significant potential as a therapeutic molecule in humans. ABA is selected for this study due to its known roles in essential human metabolic processes, such as glucose homeostasis, immune responses, cardiovascular system, and inflammation regulation. Despite its known importance, the molecular mechanism underlying ABA's action remain largely unexplored. This study employed computational techniques to identify potential human ABA receptors. We screened 64 candidate molecules using online servers and performed molecular docking to assess binding affinity and interaction types with ABA. The stability and dynamics of the best complexes were investigated using molecular dynamics simulation over a 100 ns time period. Root mean square fluctuations (RMSF), root mean square deviation (RMSD), solvent-accessible surface area (SASA), radius of gyration (Rg), free energy landscape (FEL), and principal component analysis (PCA) were analyzed. Next, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method was employed to calculate the binding energies of the complexes based on the simulated data. Our study successfully pinpointed four key receptors responsible for ABA signaling (androgen receptor, glucocorticoid receptor, mineralocorticoid receptor, and retinoic acid receptor beta) that have a strong affinity for binding with ABA and remained structurally stable throughout the simulations. The simulations with Hydralazine as an unrelated ligand were conducted to validate the specificity of the identified receptors for ABA. The findings of this study can contribute to further experimental validation and a better understanding of how ABA functions in humans.
Collapse
Affiliation(s)
- Zahra Iranmanesh
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Dehestani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| | | |
Collapse
|
6
|
Han T, Xu Y, Liu H, Sun L, Cheng X, Shen Y, Wei J. Function and Mechanism of Abscisic Acid on Microglia-Induced Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2024; 25:4920. [PMID: 38732130 PMCID: PMC11084589 DOI: 10.3390/ijms25094920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Haixuan Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiangshu Cheng
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| |
Collapse
|
7
|
Singh S, Shukla A, Sharma S. Overview of Natural Supplements for the Management of Diabetes and Obesity. Curr Diabetes Rev 2024; 20:e061123223235. [PMID: 37933216 DOI: 10.2174/0115733998262859231020071715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 11/08/2023]
Abstract
Bioactive compounds found in various natural sources, such as fruits, vegetables, and herbs, have been studied for their potential benefits in managing obesity and diabetes. These compounds include polyphenols, flavonoids, other antioxidants, fiber, and certain fatty acids. Studies have found that these compounds may improve insulin sensitivity, regulate blood sugar levels, and promote weight loss. However, the effects of these compounds can vary depending on the type and amount consumed, as well as individual factors, such as genetics and lifestyle. Nutraceutical substances have multifaceted therapeutic advantages, and they have been reported to have disease-prevention and health-promoting properties. Several clinically used nutraceuticals have been shown to target the pathogenesis of diabetes mellitus, obesity, and metabolic syndrome and their complications and modulate various clinical outcomes favorably. This review aims to highlight and comment on some of the most prominent natural components used as antidiabetics and in managing obesity.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Arpit Shukla
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Shiwangi Sharma
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| |
Collapse
|
8
|
Scarano N, Di Palma F, Origlia N, Musumeci F, Schenone S, Spinelli S, Passalacqua M, Zocchi E, Sturla L, Cichero E, Cavalli A. New Insights into the LANCL2- ABA Binding Mode towards the Evaluation of New LANCL Agonists. Pharmaceutics 2023; 15:2754. [PMID: 38140095 PMCID: PMC10747503 DOI: 10.3390/pharmaceutics15122754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The lanthionine synthetase C-like (LANCL) proteins include LANCL2, which is expressed in the central nervous system (CNS) and in peripheral tissues. LANCL2 exhibits glutathionylation activity and is involved in the neutralization of reactive electrophiles. Several studies explored LANCL2 activation as a validated pharmacological target for diabetes and inflammatory bowel disease. In this context, LANCL2 was found to bind the natural product abscisic acid (ABA), whose pre-clinical effectiveness in different inflammatory diseases was reported in the literature. More recently, LANCL2 attracted more attention as a valuable resource in the field of neurodegenerative disorders. ABA was found to regulate neuro-inflammation and synaptic plasticity to enhance learning and memory, exhibiting promising neuroprotective effects. Up until now, a limited number of LANCL2 ligands are known; among them, BT-11 is the only compound patented and investigated for its anti-inflammatory properties. To guide the design of novel putative LANCL2 agonists, a computational study including molecular docking and long molecular dynamic (MD) simulations of both ABA and BT-11 was carried out. The results pointed out the main LANCL2 ligand chemical features towards the following virtual screening of a novel putative LANCL2 agonist (AR-42). Biochemical assays on rat H9c2 cardiomyocytes showed a similar, LANCL2-mediated stimulation by BT-11 and by AR-42 of the mitochondrial proton gradient and of the transcriptional activation of the AMPK/PGC-1α/Sirt1 axis, the master regulator of mitochondrial function, effects that are previously observed with ABA. These results may allow the development of LANCL2 agonists for the treatment of mitochondrial dysfunction, a common feature of chronic and degenerative diseases.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Francesco Di Palma
- Computational & Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.P.); (A.C.)
| | - Nicola Origlia
- National Research Council (CNR), Institute of Neuroscience, 56124 Pisa, Italy;
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Sonia Spinelli
- Laboratorio di Nefrologia Molecolare, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Andrea Cavalli
- Computational & Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.P.); (A.C.)
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
9
|
Morissette A, André DM, Agrinier AL, Varin TV, Pilon G, Flamand N, Houde VP, Marette A. The metabolic benefits of substituting sucrose for maple syrup are associated with a shift in carbohydrate digestion and gut microbiota composition in high-fat high-sucrose diet-fed mice. Am J Physiol Endocrinol Metab 2023; 325:E661-E671. [PMID: 37877794 DOI: 10.1152/ajpendo.00065.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
Overconsumption of added sugars is now largely recognized as a major culprit in the global situation of obesity and metabolic disorders. Previous animal studies reported that maple syrup (MS) is less deleterious than refined sugars on glucose metabolism and hepatic health, but the mechanisms remain poorly studied. Beyond its content in sucrose, MS is a natural sweetener containing several bioactive compounds, such as polyphenols and inulin, which are potential gut microbiota modifiers. We aimed to investigate the impact of MS on metabolic health and gut microbiota in male C57Bl/6J mice fed a high-fat high-sucrose (HFHS + S) diet or an isocaloric HFHS diet in which a fraction (10% of the total caloric intake) of the sucrose was substituted by MS (HFHS + MS). Insulin and glucose tolerance tests were performed at 5 and 7 wk into the diet, respectively. The fecal microbiota was analyzed by whole-genome shotgun sequencing. Liver lipids and inflammation were determined, and hepatic gene expression was assessed by transcriptomic analysis. Maple syrup was less deleterious on insulin resistance and decreased liver steatosis compared with mice consuming sucrose. This could be explained by the decreased intestinal α-glucosidase activity, which is involved in carbohydrate digestion and absorption. Metagenomic shotgun sequencing analysis revealed that MS intake increased the abundance of Faecalibaculum rodentium, Romboutsia ilealis, and Lactobacillus johnsonii, which all possess gene clusters involved in carbohydrate metabolism, such as sucrose utilization and butyric acid production. Liver transcriptomic analyses revealed that the cytochrome P450 (Cyp450) epoxygenase pathway was differently modulated between HFHS + S- and HFHS + MS-fed mice. These results show that substituting sucrose for MS alleviated dysmetabolism in diet-induced obese mice, which were associated with decreased carbohydrate digestion and shifting gut microbiota.NEW & NOTEWORTHY The natural sweetener maple syrup has sparked much interest as an alternative to refined sugars. This study aimed to investigate whether the metabolic benefits of substituting sucrose with an equivalent dose of maple syrup could be linked to changes in gut microbiota composition and digestion of carbohydrates in obese mice. We demonstrated that maple syrup is less detrimental than sucrose on metabolic health and possesses a prebiotic-like activity through novel gut microbiota and liver mechanisms.
Collapse
Affiliation(s)
- Arianne Morissette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Diana Majolli André
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Anne-Laure Agrinier
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
| | - Nicolas Flamand
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, Québec, Canada
| | - Vanessa P Houde
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| |
Collapse
|
10
|
Kishor PBK, Guddimalli R, Kulkarni J, Singam P, Somanaboina AK, Nandimandalam T, Patil S, Polavarapu R, Suravajhala P, Sreenivasulu N, Penna S. Impact of Climate Change on Altered Fruit Quality with Organoleptic, Health Benefit, and Nutritional Attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17510-17527. [PMID: 37943146 DOI: 10.1021/acs.jafc.3c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
As a consequence of global climate change, acute water deficit conditions, soil salinity, and high temperature have been on the rise in their magnitude and frequency, which have been found to impact plant growth and development negatively. However, recent evidence suggests that many fruit plants that face moderate abiotic stresses can result in beneficial effects on the postharvest storage characters of the fruits. Salinity, drought, and high temperature conditions stimulate the synthesis of abscisic acid (ABA), and secondary metabolites, which are vital for fruit quality. The secondary metabolites like phenolic acids and anthocyanins that accumulate under abiotic stress conditions have antioxidant activity, and therefore, such fruits have health benefits too. It has been noticed that fruits accumulate more sugar and anthocyanins owing to upregulation of phenylpropanoid pathway enzymes. The novel information that has been generated thus far indicates that the growth environment during fruit development influences the quality components of the fruits. But the quality depends on the trade-offs between productivity, plant defense, and the frequency, duration, and intensity of stress. In this review, we capture the current knowledge of the irrigation practices for optimizing fruit production in arid and semiarid regions and enhancement in the quality of fruit with the application of exogenous ABA and identify gaps that exist in our understanding of fruit quality under abiotic stress conditions.
Collapse
Affiliation(s)
- P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | | | - Jayant Kulkarni
- Department of Botany, Savithribai Phule Pune University, Pune 411 007, India
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - Anil Kumar Somanaboina
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Tejaswi Nandimandalam
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Swaroopa Patil
- Department of Botany, Shivaji University, Kolhapur 416 004, Maharashtra, India
| | - Rathnagiri Polavarapu
- Genomix Molecular Diagnostics Pvt. Ltd., Pragathi Nagar, Kukatapally, Hyderabad 500 072, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwavidyapeetham, Clappana, 690 525, Amritapuri, Vallikavu, Kerala, India & Bioclues.org, Hyderabad, India
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Banos, DAPO Box 7777, Metro Manil 1301, Philippines
| | - Suprasanna Penna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University of Maharashtra, Mumbai 410 206, India
| |
Collapse
|
11
|
Mohammed F, Sibley P, Abdulwali N, Guillaume D. Nutritional, pharmacological, and sensory properties of maple syrup: A comprehensive review. Heliyon 2023; 9:e19216. [PMID: 37662821 PMCID: PMC10469071 DOI: 10.1016/j.heliyon.2023.e19216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Maple syrup is a naturally sweet product consumed directly or introduced in the preparation of various maple-derived food products. Several studies have described the chemical isolation and identification of maple syrup compounds, with some presenting pharmacological properties. However, a detailed review on maple syrup nutritional properties has not been undertaken. This review presents detailed information about the nutritional, organoleptic, and pharmacological properties of maple syrup. Studies carried out on animal models and a limited number of human models emphasize the potential benefits of maple syrup as a substitute for refined sugars, indicating that it could contribute to improved metabolic health when used in moderation. However, further medical and nutritional health studies based on human health assessments are needed to better understand the mechanisms of action of the various components of maple syrup and its potential therapeutic properties to demonstrate a stronger justification for its consumption relative to refined sugars. In addition, we compare maple syrup and common sweeteners to provide a further critical perspective on the potential nutritional and health benefits of maple syrup.
Collapse
Affiliation(s)
- Faez Mohammed
- School of Environmental Sciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
- Faculty of Applied Science-Arhab, Sana'a University, Sana'a, Yemen
| | - Paul Sibley
- School of Environmental Sciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| | - Nada Abdulwali
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Dominique Guillaume
- ICMR, School of Medicine-Pharmacy, CNRS-UMR 7312, 51 Rue Cognacq Jay, 51100 Reims, France
| |
Collapse
|
12
|
Shabani M, Soti M, Ranjbar H, Naderi R. Abscisic acid ameliorates motor disabilities in 6-OHDA-induced mice model of Parkinson's disease. Heliyon 2023; 9:e18473. [PMID: 37576242 PMCID: PMC10412891 DOI: 10.1016/j.heliyon.2023.e18473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Parkinson's disease (PD) is characterized by a myriad of symptoms, encompassing both motor disabilities and cognitive impairments. Recent research has shown that abscisic acid (ABA) is a phytohormone found in various brain regions of several mammals and exhibits neuroprotective properties. To investigate the effects of ABA on cognitive and motor disorders, a mouse model of PD was utilized. The administration of 6-hydroxydopamine (6-OHDA) to the lateral ventricles was conducted, with ABA (10 and 15 μg/mouse, i. c.v.) being administered for one week after the 6-OHDA injection for 4 days. Motor and cognitive performance were evaluated through the use of open field, rotarod, wire grip, and shuttle box tests. The results indicated that cognitive function and motor disorders were significantly impaired in 6-OHDA-treated animals. However, in mice treated with 6-OHDA, ABA (15 μg/mouse) significantly reversed balance and muscle strength deficits. It should be noted that the administration of ABA did not significantly improve cognitive impairment or rearing in Parkinsonism mice. Therefore, the findings suggest that ABA plays a crucial role in protecting mice from motor disabilities caused by 6-OHDA.
Collapse
Affiliation(s)
- Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Reyhaneh Naderi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Validation of an LC-MS/MS Method for the Determination of Abscisic Acid Concentration in a Real-World Setting. Foods 2023; 12:foods12051077. [PMID: 36900594 PMCID: PMC10000556 DOI: 10.3390/foods12051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
One of the most relevant aspects in evaluating the impact of natural bioactive compounds on human health is the assessment of their bioavailability. In this regard, abscisic acid (ABA) has attracted particular interest as a plant-derived molecule mainly involved in the regulation of plant physiology. Remarkably, ABA was also found in mammals as an endogenous hormone involved in the upstream control of glucose homeostasis, as evidenced by its increase after glucose load. The present work focused on the development and validation of a method for the determination of ABA in biological samples through liquid-liquid extraction (LLE), followed by liquid mass spectrometry (LC-MS) of the extract. To test method suitability, this optimized and validated method was applied to a pilot study on eight healthy volunteers' serum levels to evaluate ABA concentration after consumption of a standardized test meal (STM) and the administration of an ABA-rich nutraceutical product. The results obtained could meet the demands of clinical laboratories to determine the response to a glucose-containing meal in terms of ABA concentration. Interestingly, the detection of this endogenous hormone in such a real-world setting could represent a useful tool to investigate the occurrence of impaired ABA release in dysglycemic individuals and to monitor its eventual improvement in response to chronic nutraceutical supplementation.
Collapse
|
14
|
Liao P, Wu QY, Li S, Hu KB, Liu HL, Wang HY, Long ZY, Lu XM, Wang YT. The ameliorative effects and mechanisms of abscisic acid on learning and memory. Neuropharmacology 2023; 224:109365. [PMID: 36462635 DOI: 10.1016/j.neuropharm.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Abscisic acid (ABA), a conserved hormone existing in plants and animals, not only regulates blood glucose and inflammation but also has good therapeutic effects on obesity, diabetes, atherosclerosis and inflammatory diseases in animals. Studies have shown that exogenous ABA can pass the blood-brain barrier and inhibit neuroinflammation, promote neurogenesis, enhance synaptic plasticity, improve learning, memory and cognitive ability in the central nervous system. At the same time, ABA plays a crucial role in significant improvement of Alzheimer's disease, depression, and anxiety. Here we review the previous research progress of ABA on the physiological effects and clinical application in the related diseases. By summarizing the biological functions of ABA, we aim to reveal the possible mechanisms of ameliorative function of ABA on learning and memory, to provide a theoretical basis that ABA as a novel and safe drug improves learning memory and cognitive impairment in central system diseases such as aging, neurodegenerative diseases and traumatic brain injury.
Collapse
Affiliation(s)
- Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kai-Bin Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
15
|
Subodh, Ravina, Priyanka, Narang J, Mohan H. Biosensors for phytohormone Abscisic acid and its role in humans: A review. SENSORS INTERNATIONAL 2023. [DOI: 10.1016/j.sintl.2023.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
16
|
The ABA/LANCL Hormone/Receptor System in the Control of Glycemia, of Cardiomyocyte Energy Metabolism, and in Neuroprotection: A New Ally in the Treatment of Diabetes Mellitus? Int J Mol Sci 2023; 24:ijms24021199. [PMID: 36674711 PMCID: PMC9863406 DOI: 10.3390/ijms24021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Abscisic acid (ABA), long known as a plant stress hormone, is present and functionally active in organisms other than those pertaining to the land plant kingdom, including cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. The ancient, cross-kingdom role of this stress hormone allows ABA and its signaling pathway to control cell responses to environmental stimuli in diverse organisms such as marine sponges, higher plants, and humans. Recent advances in our knowledge about the physiological role of ABA and of its mammalian receptors in the control of energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells allow us to foresee therapeutic applications for ABA in the fields of pre-diabetes, diabetes, and cardio- and neuro-protection. Vegetal extracts titrated in their ABA content have shown both efficacy and tolerability in preliminary clinical studies. As the prevalence of glucose intolerance, diabetes, and cardiovascular and neurodegenerative diseases is steadily increasing in both industrialized and rapidly developing countries, new and cost-efficient therapeutics to combat these ailments are much needed to ensure disease-free aging for the current and future working generations.
Collapse
|
17
|
Shabani M, Ranjbar H, Soti M, Naderi R. Central injection of abscisic acid attenuates mood disorders induced by subchronic stress in male mice. Brain Behav 2022; 12:e2796. [PMID: 36355391 PMCID: PMC9759152 DOI: 10.1002/brb3.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/10/2022] [Accepted: 10/08/2022] [Indexed: 11/12/2022] Open
Abstract
Stressful life increases the risk of mental and psychological disorders and cognitive deficits. Abscisic acid (ABA) is a plant hormone that has been recently discovered in mammalians. ABA is produced in response to stressful stimuli and it can reduce anxiety-like behaviors and depression and improve cognitive function. This study was designed to evaluate the effects of microinjection of ABA on depression, anxiety, passive avoidance learning and memory deficits induced by subchronic stress. ABA (10 and 15 μ $\umu $ g/mouse, i.c.v.) was administered one week after recovery period for 4 consecutive days. A three-session forced swimming test (FST) protocol for induction of subchronic stress was administered to the mice. Exploratory, anxiety-like behavior, depression and cognitive function were assessed 24 h after the last swim stress session. The results indicated that ABA (15 μ $\umu $ g/mouse) could ameliorate anxiety and depression induced by FST. In addition, ABA had no effect on the subchronic stress-induced cognitive impairments. Taken together, the results suggest that ABA could improve anxiety and depression induced by subchronic stress.
Collapse
Affiliation(s)
- Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Reyhaneh Naderi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Mohd Azam NS, Che Soh N‘A, Rapi HS, Ismail N, Jusoh AZ, Haron MN, Ali AM, Maulidiani, Wan Ismail WI. In vivo study of subacute oral toxicity of kelulut honey. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kelulut honey is favoured for its tremendous nutritional benefits. However, the lack of systematic safety studies leads to it having no quality control or safety guarantee for the consumers. Consequently, the present work was designed to assess the effect of daily kelulut honey consumption. Subacute oral toxicity study was conducted following the Organization for Economic Co-operation and Development (OECD) test guideline 407. Sprague Dawley rats were administered with kelulut honey at the concentrations of 500, 1,000, and 2,000 mg/kg for four weeks, and observed for any changes or toxicity signs following daily consumption. The rats were physically and biochemically analysed, and the serum of highest honey concentration (2,000 mg/kg) consumption underwent metabolite analysis. Histopathology observations on the kidney and liver were also performed. The highest concentration of kelulut honey did not show any mortality or toxicity. Overall, there were no significant differences in all parameters, physically and biochemically, as compared to the control (distilled water), thus indicating the absence of toxicity of kelulut honey daily consumption. It was found that kelulut honey consumption demonstrated generally good health effects, such as in controlling food intake, weight gain, and increasing immune function. The honey’s lethal medium dose surpassed 2,000 mg/kg, thus classified in category 5 according to the Globally Harmonized System of Classification and Labelling of Chemicals, which means that it is safe to consume at a high dose.
Collapse
|
19
|
Saraiva A, Carrascosa C, Ramos F, Raheem D, Lopes M, Raposo A. Maple Syrup: Chemical Analysis and Nutritional Profile, Health Impacts, Safety and Quality Control, and Food Industry Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13684. [PMID: 36294262 PMCID: PMC9603788 DOI: 10.3390/ijerph192013684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Maple syrup is a delicacy prepared by boiling the sap taken from numerous Acer species, primarily sugar maple trees. Compared to other natural sweeteners, maple syrup is believed to be preferable to refined sugar for its high concentration of phenolic compounds and mineral content. The presence of organic acids (malic acid), amino acids and relevant amounts of minerals, such as potassium, calcium, zinc and manganese, make maple syrup unique. Given the growing demand for naturally derived sweeteners over the past decade, this review paper deals with and discusses in detail the most important aspects of chemical maple syrup analyses, with a particular emphasis on the advantages and disadvantages of the different analytical approaches. A successful utilization on the application of maple syrup in the food industry, will rely on a better understanding of its safety, quality control, nutritional profile, and health impacts, including its sustainability issues.
Collapse
Affiliation(s)
- Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland
| | - Maria Lopes
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
20
|
Kim SW, Alci K, Van Gaever F, Driege Y, Bicalho K, Goeminne G, Libert C, Goossens A, Beyaert R, Staal J. Engineering a highly sensitive biosensor for abscisic acid in mammalian cells. FEBS Lett 2022; 596:2576-2590. [PMID: 35727199 DOI: 10.1002/1873-3468.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Abscisic acid (ABA) is a signaling molecule conserved in plants, bacteria, fungi and animals. Recently, ABA has gained attention for its pharmacological activities and its potential as a biomarker for the severity of chronic obstructive pulmonary disease (COPD) and glioma. This prompts the development of a reliable, sensitive, rapid, and cost-effective method to quantify ABA levels in mammalian cells and tissues. The previously described ABA biosensor system based on the ABA-dependent interaction between the plant ABA receptor PYL1 and co-receptor ABI1 is not sensitive enough for the low ABA levels seen in mammals. Therefore, we optimized this system by replacing PYL1 with other high-affinity plant PYL proteins. The optimized biosensor system engineered with the PYL8 receptor enabled the quantification of ABA at low concentrations in HEK293T cells.
Collapse
Affiliation(s)
- Seo Woo Kim
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kübra Alci
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,BCCM/GeneCorner, Ghent University, Ghent, Belgium
| | - Femke Van Gaever
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | | | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alain Goossens
- Center for Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Maixner D, Christy D, Kong L, Viatchenko-Karpinski V, Horner A, Hooks S, Weng HR. Phytohormone abscisic acid ameliorates neuropathic pain via regulating LANCL2 protein abundance and glial activation at the spinal cord. Mol Pain 2022; 18:17448069221107781. [PMID: 35647699 PMCID: PMC9248043 DOI: 10.1177/17448069221107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal neuroinflammation plays a critical role in the genesis of neuropathic
pain. Accumulating data suggest that abscisic acid (ABA), a phytohormone,
regulates inflammatory processes in mammals. In this study, we found that
reduction of the LANCL2 receptor protein but not the agonist ABA in the spinal
cord is associated with the genesis of neuropathic pain. Systemic or intrathecal
administration of ABA ameliorates the development and pre-existence of
mechanical allodynia and heat hyperalgesia in animals with partial sciatic nerve
ligation (pSNL). LANCL2 is expressed only in microglia in the spinal dorsal
horn. Pre-emptive treatment with ABA attenuates activation of microglia and
astrocytes, ERK activity, and TNFα protein abundance in the dorsal horn in rats
with pSNL. These are accompanied by restoration of spinal LANCL2 protein
abundance. Spinal knockdown of LANCL2 gene with siRNA recapitulates the
behavioral and spinal molecular changes induced by pSNL. Activation of spinal
toll-like receptor 4 (TLR4) with lipopolysaccharide leads to activation of
microglia, and over production of TNFα, which are concurrently accompanied by
suppression of protein levels of LANCL2 and peroxisome proliferator
activated-receptor γ. These changes are ameliorated when ABA is added with LPS.
The anti-inflammatory effects induced by ABA do not requires Gi
protein activity. Our study reveals that the ABA/LANCL2 system is a powerful
endogenous system regulating spinal neuroinflammation and nociceptive
processing, suggesting the potential utility of ABA as the management of
neuropathic pain.
Collapse
Affiliation(s)
- Dylan Maixner
- Pharmaceutical and Biomedical Sciences15506University of Georgia College of Pharmacy
| | | | | | | | | | | | - Han-Rong Weng
- Basic Sciences436933California Northstate University
| |
Collapse
|
22
|
Shabani M, Naderi R. Phytohormone abscisic acid elicits positive effects on harmaline-induced cognitive and motor disturbances in a rat model of essential tremor. Brain Behav 2022; 12:e2564. [PMID: 35591769 PMCID: PMC9120731 DOI: 10.1002/brb3.2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Essential tremor (ET) as a neurological disorder is accompanied by cognitive and motor disturbances. Despite the high incidence of ET, the drug treatment of ET remains unsatisfactory. Recently, abscisic acid (ABA) has been reported to have positive neurophysiological effects in mammals. Here, the effects of ABA on harmaline-induced motor and cognitive impairments were investigated in rats. METHODS Male Wistar rats weighing 120-140 g were divided into control, harmaline (30 mg/kg, ip), ABA vehicle (DMSO+normal saline), and ABA (10 μg/rat, icv, 30 min before harmaline injection) groups. Exploratory, balance and motor performance, anxiety, and cognitive function were assessed using footprint, open field, wire grip, rotarod, and shuttle box tests. RESULTS The results indicated that ABA (10 μg/rat) can improve harmaline-induced tremor in rats. The administration of ABA significantly increased time spent on wire grip and rotarod. In addition, ABA had a promising effect against the cognitive impairments induced by harmaline. CONCLUSION Taken together, ABA has positive effects on locomotor and cognitive impairments induced by tremor. However, further studies are required to determine the exact mechanisms of ABA on the ET.
Collapse
Affiliation(s)
- Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Reyhaneh Naderi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
23
|
Abstract
This review describes the various synthetic methods commonly used to obtain molecules possessing conjugated dienes. We focus on methods involving cross-coupling reactions using various metals such as nickel, palladium, ruthenium, cobalt, cobalt/zinc, manganese, zirconium, or iron, mainly through examples that aimed to access natural molecules or their analogues. Among the natural molecules covered in this review, we discuss the total synthesis of a phytohormone, Acid Abscisic (ABA), carried out by our team involving the development of a conjugated diene chain.
Collapse
|
24
|
First-in-class topical therapeutic omilancor ameliorates disease severity and inflammation through activation of LANCL2 pathway in psoriasis. Sci Rep 2021; 11:19827. [PMID: 34615968 PMCID: PMC8494925 DOI: 10.1038/s41598-021-99349-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Psoriasis (PsO) is a complex immune-mediated disease that afflicts 100 million people. Omilancor is a locally-acting, small molecule that selectively activates the Lanthionine Synthetase C-like 2 (LANCL2) pathway, resulting in immunoregulatory effects at the intersection of immunity and metabolism. Topical omilancor treatment in an imiquimod-induced mouse model of PsO ameliorates disease severity, epidermal hyperplasia and acanthosis. Further, pharmacological activation of LANCL2 results in significant downregulation of proinflammatory markers including local reduction of IL17, and infiltration of proinflammatory cell subsets. These therapeutic effects were further validated in an IL-23 PsO model. This model reported increased preservation of homeostatic skin structure, accompanied by a decreased infiltration of proinflammatory T cell subsets. In CD4+ T cells and Th17 cells, the LANCL2 pathway regulates proinflammatory cytokine production, proliferation and glucose metabolism. Metabolically, the loss of Lancl2 resulted in increased glycolytic rates, lactate production and upregulated enzymatic activity of hexokinase and lactate dehydrogenase (LDH). Inhibition of LDH activity abrogated the increased proliferation rate in Lancl2-/- CD4+ T cells. Additionally, topical omilancor treatment decreased the metabolic upregulation in keratinocytes, keratinocyte hyperproliferation and expression of inflammatory markers. Omilancor is a promising topical, LANCL2-targeting therapeutic candidate for the treatment of PsO and other dermatology indications.
Collapse
|
25
|
Whelan LC, Geary M, Healy J. A Novel, Simple Rapid Reverse-Phase HPLC-DAD Analysis, for the Simultaneous Determination of Phenolic Compounds and Abscisic Acid Commonly Found in Foodstuff and Beverages. J Chromatogr Sci 2021; 60:648-654. [PMID: 34553229 DOI: 10.1093/chromsci/bmab114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 11/13/2022]
Abstract
A novel, simple, rapid, 7-minute HPLC-DAD method for the determination of 10 phenolic compounds and abscisic acid commonly found in teas, wines, fruit and honey was successfully developed and validated according to the International Council of Harmonization (ICH) guidelines. This reverse-phase (RP) HPLC-DAD method boasts rapid separation and excellent resolution while introducing green chemistry techniques. The Agilent 1200 series diode array detector SL coupled with a reverse-phase Advanced Materials Technology Halo C18 column (100 × 3.0 mm i.d., 2.7 μm) contributed to the rapid analyses. This, together with a 0.1% formic acid in water (v/v) and methanol mobile phase, a flow rate of 0.8 mL/min and the utilization of a meticulous gradient elution resulted in a validated method for the determination of 10 phenolic compounds and abscisic acid commonly found in various foodstuffs. The resulting method proved to be rapid, accurate, precise and linear with sensitive detection limits from 0.025 μg/mL to 0.500 μg/mL and percentage recoveries of 98.07%-101.94%. Phenolic compounds have been acknowledged throughout literature for their therapeutic properties, interalia, antioxidant, anti-inflammatory and antiaging due to free radical scavenging potentials. However, resulting analysis, can be frequently complicated and long and very often discounts green chemistry techniques. The developed and validated method successfully and rapidly analyses, gallic acid, caffeic acid, trans-p-coumaric acid, rutin, myricetin, abscisic acid, trans-cinnamic acid, quercetin, luteolin, kaempferol and chrysin with excellent resolution and precision.
Collapse
Affiliation(s)
- Laura Curtin Whelan
- Department of Applied Science, Shannon ABC, Limerick Institute of Technology, Moylish, Park, Limerick V94EC5T, Ireland
| | - Michael Geary
- Department of Applied Science, Shannon ABC, Limerick Institute of Technology, Moylish, Park, Limerick V94EC5T, Ireland
| | - Jim Healy
- Department of Applied Science, Shannon ABC, Limerick Institute of Technology, Moylish, Park, Limerick V94EC5T, Ireland
| |
Collapse
|
26
|
Ramadan MF, Gad HA, Farag MA. Chemistry, processing, and functionality of maple food products: An updated comprehensive review. J Food Biochem 2021; 45:e13832. [PMID: 34180070 DOI: 10.1111/jfbc.13832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/26/2022]
Abstract
Maple sap is a rich nutrient matrix collected from Acer trees to produce several food products (i.e., sap, water, extract, syrup, and sugar), of which syrup is the most famous in the food industry for its distinct taste and flavor. Maple syrup is produced from the sap of several species (Acer saccharum, Acer nigrum, and Acer rubrum) of maple. Maple syrup is chiefly produced through the concentration of sap via thermal evaporation (pan evaporation) or membrane separation. Each processing technique affects the quality and characteristics of processed maple products. The chemistry of maple products is dominated by a myriad of other phytoconstituents other than sugar, that is, phenolics, to mediate for its many health benefits. The health-promoting effects of maple products included antioxidant, antimicrobial, antimutagenic, anti-inflammatory, and antiproliferative activities. This review capitalizes on maple food products focusing on their chemistry, processing, and health benefits compared with other sugar sweeteners. The impact of processing on maple syrup composition and biological effects in relation to original maple sap are further presented. PRACTICAL APPLICATIONS: Maple food products are natural sweeteners of significant importance due to their economic, nutritional, and health benefits. Apart from the predominant ingredient sucrose, the chemical composition of maple products comprises phenolics, pyrazines, vitamins, minerals, organic acids, and phytohormones. These bioactive compounds are of potential value owing to their health-promoting benefits, including antioxidant, antiproliferative, and antimutagenic effects. Quebecol, lariciresinol, and secoisolariciresinol are suggested as distinct markers for maple products and not common in other plant-derived syrups. Several factors, including the processing parameters and the phytochemical profile, affect maple products' flavor and color. In addition, microbial contamination of maple sap can also affect maple product quality. Further research on the effect of processing techniques and environmental conditions on the phytochemicals profile and biological effects of maple food products should now follow. Application of other omics tools, that is, genomics, proteomics, and metabolomics, to understand maple syrup effects on the human body can help reveal its exact action mechanisms or points for any potential health hazards for certain ailments.
Collapse
Affiliation(s)
- Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haidy A Gad
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
27
|
Hoang QTM, Nguyen VK, Oberacher H, Fuchs D, Hernandez-Vargas EA, Borucki K, Waldburg N, Wippermann J, Schreiber J, Bruder D, Veluswamy P. Serum Concentration of the Phytohormone Abscisic Acid Is Associated With Immune-Regulatory Mediators and Is a Potential Biomarker of Disease Severity in Chronic Obstructive Pulmonary Disease. Front Med (Lausanne) 2021; 8:676058. [PMID: 34169084 PMCID: PMC8217626 DOI: 10.3389/fmed.2021.676058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
COPD and asthma are two distinct but sometimes overlapping diseases exhibiting varying degrees and types of inflammation on different stages of the disease. Although several biomarkers are defined to estimate the inflammatory endotype and stages in these diseases, there is still a need for new markers and potential therapeutic targets. We investigated the levels of a phytohormone, abscisic acid (ABA) and its receptor, LANCL2, in COPD patients and asthmatics. In addition, PPAR-γ that is activated by ABA in a ligand-binding domain-independent manner was also included in the study. In this study, we correlated ABA with COPD-propagating factors to define the possible role of ABA, in terms of immune regulation, inflammation, and disease stages. We collected blood from 101 COPD patients, 52 asthmatics, and 57 controls. Bronchoscopy was performed on five COPD patients and 29 controls. We employed (i) liquid chromatography–tandem mass spectrometry and HPLC to determine the ABA and indoleamine 2,3-dioxygenase levels, respectively; (ii) real-time PCR to quantify the gene expression of LANCL2 and PPAR-γ; (iii) Flow cytometry to quantify adipocytokines; and (iv) immunoturbidimetry and ELISA to measure CRP and cytokines, respectively. Finally, a multinomial regression model was used to predict the probability of using ABA as a biomarker. Blood ABA levels were significantly reduced in COPD patients and asthmatics compared to age- and gender-matched normal controls. However, PPAR-γ was elevated in COPD patients. Intriguingly, ABA was positively correlated with immune-regulatory factors and was negatively correlated with inflammatory markers, in COPD. Of note, ABA was increased in advanced COPD stages. We thereby conclude that ABA might be involved in regulation of COPD pathogenesis and might be regarded as a potential biomarker for COPD stages.
Collapse
Affiliation(s)
- Quynh Trang Mi Hoang
- Department of Pneumonology, Otto-von-Guericke-University Magdeburg, University Hospital, Magdeburg, Germany.,Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Van Kinh Nguyen
- Department of Infectious Diseases Epidemiology, Imperial College, London, United Kingdom
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Esteban A Hernandez-Vargas
- Systems Medicine for Infectious Diseases, Frankfurt Institute for Advanced Studies, Frankfurt, Germany.,Instituto de Matematicas, Universidad Nacional Autónoma de México (UNAM), Queretaro, Mexico
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Jens Schreiber
- Department of Pneumonology, Otto-von-Guericke-University Magdeburg, University Hospital, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Hospital, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Priya Veluswamy
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Hospital, Magdeburg, Germany.,Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Magdeburg, Germany
| |
Collapse
|
28
|
Mora MR, Dando R. The sensory properties and metabolic impact of natural and synthetic sweeteners. Compr Rev Food Sci Food Saf 2021; 20:1554-1583. [PMID: 33580569 DOI: 10.1111/1541-4337.12703] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
The global rise in obesity, type II diabetes, and other metabolic disorders in recent years has been attributed in part to the overconsumption of added sugars. Sugar reduction strategies often rely on synthetic and naturally occurring sweetening compounds to achieve their goals, with popular synthetic sweeteners including saccharin, cyclamate, acesulfame potassium, aspartame, sucralose, neotame, alitame, and advantame. Natural sweeteners can be further partitioned into nutritive, including polyols, rare sugars, honey, maple syrup, and agave, and nonnutritive, which include steviol glycosides and rebaudiosides, luo han guo (monk fruit), and thaumatin. We choose the foods we consume largely on their sensory properties, an area in which these sugar substitutes often fall short. Here, we discuss the most popular synthetic and natural sweeteners, with the goal of providing an understanding of differences in the sensory profiles of these sweeteners versus sucrose, that they are designed to replace, essential for the effectiveness of sugar reduction strategies. In addition, we break down the influence of these sweeteners on metabolism, and present results from a large survey of consumers' opinions on these sweeteners. Consumer interest in clean label foods has driven a move toward natural sweeteners; however, neither natural nor synthetic sweeteners are metabolically inert. Identifying sugar replacements that not only closely imitate the sensory profile of sucrose but also exert advantageous effects on body weight and metabolism is critical in successfully the ultimate goals of reducing added sugar in the average consumer's diet. With so many options for sucrose replacement available, consumer opinion and cost, which vary widely with suagr replacements, will also play a vital role in which sweeteners are successful in widespread adoption.
Collapse
Affiliation(s)
- Margaux R Mora
- Department of Food Science, Cornell University, Ithaca, New York
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, New York
| |
Collapse
|
29
|
Zhao CC, Xu J, Xie QM, Zhang HY, Fei GH, Wu HM. Abscisic acid suppresses the activation of NLRP3 inflammasome and oxidative stress in murine allergic airway inflammation. Phytother Res 2021; 35:3298-3309. [PMID: 33570219 DOI: 10.1002/ptr.7051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022]
Abstract
Abscisic acid (ABA), a well-known natural phytohormone reportedly exerts anti-inflammatory and anti-oxidative properties in diabetes and colitis. However, the efficacy of ABA against allergic airway inflammation and the underlying mechanism remain unknown. Herein, an OVA-induced murine allergic airway inflammation model was established and treated with ABA in the presence or absence of PPAR-γ antagonist GW9662. The results showed that ABA effectively stunted the development of airway inflammation, and concordantly downregulated OVA-induced activation of NLRP3 inflammasome, suppressed oxidative stress and decreased the expression of mitochondrial fusion/fission markers including Optic Atrophy 1 (OPA1), Mitofusion 2 (Mfn2), dynamin-related protein 1 (DRP1) and Fission 1 (Fis1). Moreover, ABA treatment further increased OVA-induced expression of PPAR-γ, while GW9662 abrogated the inhibitory effect of ABA on allergic airway inflammation as well as on the activation of NLRP3 inflammasome and oxidative stress. Consistently, ABA inhibited the activation of NLRP3 inflammasome, suppressed oxidative stress and mitochondrial fusion/fission in LPS-stimulated Raw264.7 cells via PPAR-γ. Collectively, ABA ameliorates OVA-induced allergic airway inflammation in a PPAR-γ dependent manner, and such effect of ABA may be associated with its inhibitory effect on NLRP3 inflammasome and oxidative stress. Our results suggest the potential of ABA or ABA-rich food in protecting against asthma.
Collapse
Affiliation(s)
- Cui-Cui Zhao
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| | - Juan Xu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| | - Qiu-Meng Xie
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| | - Hai-Yun Zhang
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| | - Guang-He Fei
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China.,Department of Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui-Mei Wu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| |
Collapse
|
30
|
Abstract
Obesity has become a worldwide issue and is accompanied by serious complications. Western high energy diet has been identified to be a major factor contributing to the current obesity pandemic. Thus, it is important to optimize dietary composition, bioactive substances, and agents to prevent and treat obesity. To date, extracts from plants, such as vegetables, tea, fruits, and Chinese herbal medicine, have been showed to have the abilities of regulating adipogenesis and attenuating obesity. These plant extracts mainly contain polyphenols, alkaloids, and terpenoids, which could play a significant role in anti-obesity through various signaling pathways and gut microbiota. Those reported anti-obesity mechanisms mainly include inhibiting white adipose tissue growth and lipogenesis, promoting lipolysis, brown/beige adipose tissue development, and muscle thermogenesis. In this review, we summarize the plant extracts and their possible mechanisms responsible for their anti-obesity effects. Based on the current findings, dietary plant extracts and foods containing these bioactive compounds can be potential preventive or therapeutic agents for obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Han-Ning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jin-Zhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhi Qi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
31
|
Jeon SH, Kim N, Ju YJ, Gee MS, Lee D, Lee JK. Phytohormone Abscisic Acid Improves Memory Impairment and Reduces Neuroinflammation in 5xFAD Mice by Upregulation of LanC-Like Protein 2. Int J Mol Sci 2020; 21:ijms21228425. [PMID: 33182586 PMCID: PMC7697599 DOI: 10.3390/ijms21228425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD), a type of dementia, is the most common neurodegenerative disease in the elderly. Neuroinflammation caused by deposition of amyloid β (Aβ) is one of the most important pathological causes in AD. The isoprenoid phytohormone abscisic acid (ABA) has recently been found in mammals and was shown to be an endogenous hormone, acting in stress conditions. Although ABA has been associated with anti-inflammatory effects and reduced cognitive impairment in several studies, the mechanisms of ABA in AD has not been ascertained clearly. To investigate the clearance of Aβ and anti-inflammatory effects of ABA, we used quantitative real-time polymerase chain reaction and immunoassay. ABA treatment inhibited Aβ deposition and neuroinflammation, thus resulting in improvement of memory impairment in 5xFAD mice. Interestingly, these effects were not associated with activation of peroxisome proliferator-activated receptor gamma, well known as a molecular target of ABA, but related with modulation of the LanC-like protein 2 (LANCL2), known as a receptor of ABA. Taken together, our results indicate that ABA reduced Aβ deposition, neuroinflammation, and memory impairment, which is the most characteristic pathology of AD, via the upregulation of LANCL2. These data suggest that ABA might be a candidate for therapeutics for AD treatment.
Collapse
Affiliation(s)
- Seung Ho Jeon
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.H.J.); (Y.-J.J.); (M.S.G.)
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (N.K.); (D.L.)
| | - Yeon-Joo Ju
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.H.J.); (Y.-J.J.); (M.S.G.)
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.H.J.); (Y.-J.J.); (M.S.G.)
| | - Danbi Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (N.K.); (D.L.)
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.H.J.); (Y.-J.J.); (M.S.G.)
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9590; Fax: +82-2-961-9580
| |
Collapse
|
32
|
Chen X, Ding C, Liu W, Liu X, Zhao Y, Zheng Y, Dong L, Khatoon S, Hao M, Peng X, Zhang Y, Chen H. Abscisic acid ameliorates oxidative stress, inflammation, and apoptosis in thioacetamide-induced hepatic fibrosis by regulating the NF-кB signaling pathway in mice. Eur J Pharmacol 2020; 891:173652. [PMID: 33069671 DOI: 10.1016/j.ejphar.2020.173652] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to determine whether abscisic acid (ABA) can protect against liver fibrosis induced by thioacetamide (TAA) in vivo by inhibiting apoptosis and inflammatory responses. To this end, three times per week, mice were injected intraperitoneally with TAA (200 mg/kg) for 8 weeks to induce liver fibrosis. After the fourth week of treatment, histological changes, the serum biochemical index, inflammation, and hepatocyte apoptosis factors (e.g., caspase-3, B-cell lymphoma 2 [Bcl-2], Bcl-2-associated X [Bax]) were detected to clarify its underlying mechanism. The results clearly indicated that ABA improves TAA-induced hepatic injury and collagen accumulation in mice. Otherwise, ABA significantly reduced liver fibrosis by regulating caspase-3 and Bcl-2, α-smooth muscle actin, and collagen I. ABA inhibited the nuclear factor kappa B pathway, significantly alleviating oxidative stress and inflammatory cytokines. Therefore, ABA may be a potential therapeutic agent for preventing liver damage.
Collapse
Affiliation(s)
- Xueyan Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; College of Resources and Environment Sciences, Jilin Agricultural University, Changchun, China.
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ling Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Sadia Khatoon
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Mingqian Hao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Huiying Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
33
|
Abscisic Acid Treatment in Patients with Prediabetes. Nutrients 2020; 12:nu12102931. [PMID: 32987917 PMCID: PMC7599846 DOI: 10.3390/nu12102931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: to evaluate the effects of abscisic acid (ABA), contained in dwarf peaches, on the regression of impaired fasting glucose (IFG) or impaired glucose tolerance (IGT) conditions. Materials and methods: sixty-five patients with IFG or IGT were randomized to take ABA or placebo for 3 months. We evaluated: fasting plasma glucose (FPG), postprandial plasma glucose (PPG), glycated hemoglobin (HbA1c), fasting plasma insulin (FPI), homeostatic model assessment of insulin resistance (HOMA-IR), lipid profile and high sensitivity C-reactive protein (Hs-CRP). At baseline, and after 3 months, all patients underwent an oral glucose tolerance test (OGTT), an euglycemic hyperinsulinemic clamp, and a glucagon test. Results: a significant reduction of HbA1c, FPG, PPG, FPI and HOMA-IR was observed in the ABA group. After 3 months, 26.7% of patients returned to a normal glycemic status in the ABA group versus zero patients in placebo group; 20.0% were classified as IFG and 53.3% as IGT in the nutraceutical group versus 33.3% and 63.3% in the placebo group. The M value was higher in the ABA group at the end of the treatment. Finally, Hs-CRP was reduced after 3 months of ABA consumption. Conclusions: abscisic acid can be effective in ameliorating glyco-metabolic compensation and in reducing inflammatory status in patients with IFG or IGT.
Collapse
|
34
|
Seo KH, Jeong J, Kim H. Synergistic Effects of Heat-Killed Kefir Paraprobiotics and Flavonoid-Rich Prebiotics on Western Diet-Induced Obesity. Nutrients 2020; 12:nu12082465. [PMID: 32824369 PMCID: PMC7468817 DOI: 10.3390/nu12082465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
The synergistic anti-obesity effect of paraprobiotic heat-killed lactic acid bacteria (HLAB) and prebiotics has not been studied. To determine the anti-obesity properties of prebiotic polyphenol-rich wine grape seed flour (GSF) and paraprobiotic HLAB, C57BL/6J mice were administered a high-fat and high-fructose diet (HFFrD) with 5% microcrystalline cellulose (CON), HFFrD supplemented with 2.5% GSF, HFFrD with orally administered HLAB, or HFFrD with a combination of GSF and orally administered HLAB (GSF+HLAB) for 8 weeks. Compared with the CON group, the GSF and HLAB groups both showed significant reductions in HFFrD-induced body weight gain and adipose tissue weights (p < 0.05). Interestingly, combined supplementation with GSF and HLAB revealed statistically significant synergistic effects on body weight gain, visceral adiposity, and plasma triacylglycerol concentrations (p < 0.05). The synergistic action was significantly related to a decreased adipocyte gene expression in fatty acid synthesis and inflammation metabolism. In conclusion, the combination of prebiotic GSF and paraprobiotic kefir HLAB is potentially useful, as natural food ingredients, in the prevention of obesity and obesity-related diseases, especially for immunocompromised individuals.
Collapse
Affiliation(s)
- Kun-Ho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (K.-H.S.); (J.J.)
| | - Jaewoon Jeong
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (K.-H.S.); (J.J.)
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Hyunsook Kim
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2220-1208; Fax: +82-2-2220-1856
| |
Collapse
|
35
|
González FV, Bou‐Iserte L, Miguel‐López B, Hoz‐Rodríguez S, Kersten C, Sánchez‐Sarasúa S, Espinosa‐Fernández V, Sánchez‐Pérez AM. Design, Synthesis and Evaluation of Fluorescent Analogues of Abscisic Acid. ChemistrySelect 2020. [DOI: 10.1002/slct.202002294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Florenci V. González
- Departament de química inorgànica i orgànicaUniversitat Jaume I Avda. Sos Baynat, s/n 12071- Castelló Spain
| | - Lledó Bou‐Iserte
- Departament de química inorgànica i orgànicaUniversitat Jaume I Avda. Sos Baynat, s/n 12071- Castelló Spain
| | - Borja Miguel‐López
- Departament de medicinaUniversitat Jaume I Avda. Sos Baynat, s/n, 12071-Castelló, Spain
| | - Sergio Hoz‐Rodríguez
- Departament de química inorgànica i orgànicaUniversitat Jaume I Avda. Sos Baynat, s/n 12071- Castelló Spain
| | - Christian Kersten
- Institute of Pharmacy and BiochemistryJohannes-Gutenberg University Mainz Staudingerweg 5 55128 Mainz Germany
| | | | | | | |
Collapse
|
36
|
Leber A, Hontecillas R, Tubau-Juni N, Zoccoli-Rodriguez V, Goodpaster B, Bassaganya-Riera J. Abscisic acid enriched fig extract promotes insulin sensitivity by decreasing systemic inflammation and activating LANCL2 in skeletal muscle. Sci Rep 2020; 10:10463. [PMID: 32591558 PMCID: PMC7319979 DOI: 10.1038/s41598-020-67300-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022] Open
Abstract
Abscisic acid is a phytohormone found in fruits and vegetables and is endogenously produced in mammals. In humans and mice, lanthionine synthetase C-like 2 (LANCL2) has been characterized as the natural receptor for ABA. Herein, we characterize the efficacy of a fig fruit extract of ABA in promoting glycemic control. This ABA-enriched extract, at 0.125 µg ABA/kg body weight, improves glucose tolerance, insulin sensitivity and fasting blood glucose in diet-induced obesity (DIO) and db/db mouse models. In addition to decreasing systemic inflammation and providing glycemic control without increasing insulin, ABA extract modulates the metabolic activity of muscle. ABA increases expression of important glycogen synthase, glucose, fatty acid and mitochondrial metabolism genes and increases direct measures of fatty acid oxidation, glucose oxidation and metabolic flexibility in soleus muscle cells from ABA-treated mice with DIO. Glycolytic and mitochondrial ATP production were increased in ABA-treated human myotubes. Further, ABA synergized with insulin to dramatically increase the rate of glycogen synthesis. The loss of LANCL2 in skeletal muscle abrogated the effect of ABA extract in the DIO model and increased fasting blood glucose levels. This data further supports the clinical development of ABA in the treatment of pre-diabetes, type 2 diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Andrew Leber
- NIMML Institute, Blacksburg, VA, 24060, USA
- BioTherapeutics, Blacksburg, VA, 24060, USA
| | - Raquel Hontecillas
- NIMML Institute, Blacksburg, VA, 24060, USA
- BioTherapeutics, Blacksburg, VA, 24060, USA
| | - Nuria Tubau-Juni
- NIMML Institute, Blacksburg, VA, 24060, USA
- BioTherapeutics, Blacksburg, VA, 24060, USA
| | | | | | - Josep Bassaganya-Riera
- NIMML Institute, Blacksburg, VA, 24060, USA.
- BioTherapeutics, Blacksburg, VA, 24060, USA.
| |
Collapse
|
37
|
Magnone M, Sturla L, Guida L, Spinelli S, Begani G, Bruzzone S, Fresia C, Zocchi E. Abscisic Acid: A Conserved Hormone in Plants and Humans and a Promising Aid to Combat Prediabetes and the Metabolic Syndrome. Nutrients 2020; 12:nu12061724. [PMID: 32526875 PMCID: PMC7352484 DOI: 10.3390/nu12061724] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Abscisic acid (ABA) is a hormone with a very long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely the descendants, well before separation of the plant and animal kingdoms, with a conserved role as a signal regulating cell responses to environmental challenges. In mammals, nanomolar ABA controls the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue with an insulin-independent mechanism and increasing energy expenditure in the brown and white adipose tissues. Activation by ABA of AMP-dependent kinase (AMPK), in contrast to the insulin-induced activation of AMPK-inhibiting Akt, is responsible for stimulation of GLUT4-mediated muscle glucose uptake, and for the browning effect on white adipocytes. Intake of micrograms per Kg body weight of ABA improves glucose tolerance in both normal and in borderline subjects and chronic intake of such a dose of ABA improves blood glucose, lipids and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and the metabolic syndrome. This review summarizes the most recent results obtained in vivo with microgram amounts of ABA, the role of the receptor LANCL2 in the hormone’s action and the significance of the endowment by mammals of two different hormones controlling the metabolic response to glucose availability. Finally, open issues in need of further investigation and perspectives for the clinical use of nutraceutical ABA are discussed.
Collapse
Affiliation(s)
- Mirko Magnone
- Nutravis S.r.l., Via Corsica 2/19, 16128 Genova, Italy
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
- Correspondence: (M.M.); (E.Z.); Tel.: +39-10-3538131 (M.M.); +39-10-3538161 (E.Z.)
| | - Laura Sturla
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
| | - Lucrezia Guida
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
| | - Sonia Spinelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
| | - Giulia Begani
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
| | - Chiara Fresia
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA;
| | - Elena Zocchi
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
- Correspondence: (M.M.); (E.Z.); Tel.: +39-10-3538131 (M.M.); +39-10-3538161 (E.Z.)
| |
Collapse
|
38
|
Li D, Zhang T, Lu J, Peng C, Lin L. Natural constituents from food sources as therapeutic agents for obesity and metabolic diseases targeting adipose tissue inflammation. Crit Rev Food Sci Nutr 2020; 61:1-19. [PMID: 32462898 DOI: 10.1080/10408398.2020.1768044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue, an endocrine and paracrine organ, plays critical roles in the regulation of whole-body metabolic homeostasis. Obesity is accompanied with a chronic low-grade inflammation status in adipose tissue, which disrupts its endocrine function and results in metabolic derangements, such as type 2 diabetes. Dietary bioactive components, such as flavonoids, polyphenols and unsaturated fatty acids from fruits and vegetables, have been widely revealed to alleviate both systemic and adipose tissue inflammation, and improve metabolic disorders. Remarkably, some dietary bioactive components mitigate the inflammatory response in adipocytes, macrophages, and other immune cells, and modulate the crosstalk between adipocytes and macrophages or other immune cells, in adipose tissue. Epidemiological and preclinical studies related to these substances have indicated beneficial effects on adipose tissue inflammation. The main purpose of this review is to provide a comprehensive and up-to-date state of knowledge on dietary components targeting adipose tissue inflammation and their underlying mechanisms. These natural products have great potential to be developed as functional food or lead compounds for treating and/or preventing metabolic disorders.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Tian Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
39
|
Mollashahi M, Abbasnejad M, Esmaeili-Mahani S. Spinal protein kinase A and phosphorylated extracellular signal-regulated kinase signaling are involved in the antinociceptive effect of phytohormone abscisic acid in rats. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:21-27. [PMID: 32074185 DOI: 10.1590/0004-282x20190137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The phytohormone abscisic acid (ABA) as a signaling molecule exists in various types of organisms from early multicellular to animal cells and tissues. It has been demonstrated that ABA has an antinociceptive effect in rodents. The present study was designed to assess the possible role of PKA and phosphorylated ERK (p-ERK) on the antinociceptive effects of intrathecal (i.t.) ABA in male Wistar rats. METHODS The animals were cannulated intrathecally and divided into different experimental groups (n=6‒7): Control (no surgery), vehicle (received ABA vehicle), ABA-treated groups (received ABA in doses of 10 or 20 µg/rat), ABA plus H.89 (PKA inhibitor)-treated group which received the inhibitor 15 min prior to the ABA injection. Tail-flick and hot-plate tests were used as acute nociceptive stimulators to assess ABA analgesic effects. p-ERK was evaluated in the dorsal portion of the spinal cord using immunoblotting. RESULTS Data showed that a microinjection of ABA (10 and 20 µg/rat, i.t.) significantly increased the nociceptive threshold in tail flick and hot plate tests. The application of PKA inhibitor (H.89, 100 nM/rat) significantly inhibited ABA-induced analgesic effects. Expression of p-ERK was significantly decreased in ABA-injected animals, which were not observed in the ABA+H.89-treated group. CONCLUSIONS Overall, i.t. administration of ABA (10 µg/rat) induced analgesia and p-ERK down-expression likely by involving the PKA-dependent mechanism.
Collapse
Affiliation(s)
- Mahtab Mollashahi
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| | - Mehdi Abbasnejad
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
- Kerman University of Medical Sciences, Kerman Neuroscience Research Center (KNRC), Laboratory of Molecular Neuroscience, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| |
Collapse
|
40
|
Atkinson FS, Villar A, Mulà A, Zangara A, Risco E, Smidt CR, Hontecillas R, Leber A, Bassaganya-Riera J. Abscisic Acid Standardized Fig ( Ficus carica) Extracts Ameliorate Postprandial Glycemic and Insulinemic Responses in Healthy Adults. Nutrients 2019; 11:nu11081757. [PMID: 31370154 PMCID: PMC6722713 DOI: 10.3390/nu11081757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Abscisic acid (ABA) can improve glucose homeostasis and reduce inflammation in mammals by activating lanthionine synthetase C-like 2 (LANCL2). This study examined the effects of two fig fruit extracts (FFEs), each administered at two different ABA doses, on glycemic index (GI) and insulinemic index (II) to a standard glucose drink. In a randomized, double-blind crossover study, 10 healthy adults consumed 4 test beverages containing FFE with postprandial glucose and insulin assessed at regular intervals over 2 h to determine GI and II responses. Test beverages containing 200 mg FFE-50× and 1200 mg FFE-10× significantly reduced GI values by -25% (P = 0.001) and -24% (P = 0.002), respectively. Two lower doses of FFE also reduced GI values compared with the reference drink (by approximately -14%), but the differences did not reach statistical significance. Addition of FFE to the glucose solution significantly reduced II values at all dosages and displayed a clear dose-response reduction: FFE-50× at 100 mg and 200 mg (-14% (P < 0.05) and -24% (P = 0.01), respectively) and FFE-10× at 600 mg and 1200 mg (-16% (P < 0.05) and -24% (P = 0.01), respectively). FFE supplementation is a promising nutritional intervention for the management of acute postprandial glucose and insulin homeostasis, and it is a possible adjunctive treatment for glycemic management of chronic metabolic disorders such as prediabetes and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Fiona S Atkinson
- School of Life and Environmental Sciences and Charles Perkins Centre, D17, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Agusti Villar
- Euromed S.A., C/ Rec de Dalt, 21-23, Pol. Ind. Can Magarola, 08100 Mollet del Valles, Barcelona, Spain
| | - Anna Mulà
- Euromed S.A., C/ Rec de Dalt, 21-23, Pol. Ind. Can Magarola, 08100 Mollet del Valles, Barcelona, Spain
| | - Andrea Zangara
- Euromed S.A., C/ Rec de Dalt, 21-23, Pol. Ind. Can Magarola, 08100 Mollet del Valles, Barcelona, Spain.
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia.
| | - Ester Risco
- Euromed S.A., C/ Rec de Dalt, 21-23, Pol. Ind. Can Magarola, 08100 Mollet del Valles, Barcelona, Spain
| | | | - Raquel Hontecillas
- BioTherapeutics, Inc, 1800 Kraft Drive, Suite 200, Blacksburg, VA 24060, USA
| | - Andrew Leber
- BioTherapeutics, Inc, 1800 Kraft Drive, Suite 200, Blacksburg, VA 24060, USA
| | | |
Collapse
|
41
|
Khorasani A, Abbasnejad M, Esmaeili-Mahani S. Phytohormone abscisic acid ameliorates cognitive impairments in streptozotocin-induced rat model of Alzheimer's disease through PPARβ/δ and PKA signaling. Int J Neurosci 2019; 129:1053-1065. [PMID: 31215291 DOI: 10.1080/00207454.2019.1634067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: Alzheimer's disease (AD) is characterized by oxidative stress, neuroinflammation and progressive cognitive decline. Abscisic acid (ABA) is produced in a variety of mammalian tissues, including brain. It has anti-inflammatory and antioxidant effects and elicits a positive effect on spatial learning and memory performance. Here, the possible protective effect of ABA was evaluated in streptozotocin (STZ)-induced AD rat model which were injected intracerebroventriculary (i.c.v.) with STZ (3 mg/kg). Material and Methods: The STZ-treated animals received ABA (10 μg/rat, i.c.v.), ABA plus PPARβ/δ receptor antagonist (GSK0660, 80 nM/rat) or ABA plus selective inhibitor of PKA (KT5720, 0.5 μg/rat) for 14 d. Learning and memory were determined using Morris water maze (MWM) and passive avoidance (PA) tests. Results: The data showed that STZ produced a significant learning and memory deficit in both MWM and PA tests. ABA significantly prevented the learning and memory impairment in STZ-treated rats. However, ABA effects were blocked by GSK0660 and KT5720. Conclusion: The data indicated that ABA attenuates STZ-induced learning and memory impairment and PPAR-β/δ receptors and PKA signaling are involved, at least in part, in the ABA mechanism.
Collapse
Affiliation(s)
- Ali Khorasani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman , Iran.,Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Institute of neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman , Iran.,Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Institute of neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman , Iran.,Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Institute of neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| |
Collapse
|
42
|
Effect of the new high vacuum technology on the chemical composition of maple sap and syrup. Heliyon 2019; 5:e01786. [PMID: 31198865 PMCID: PMC6556809 DOI: 10.1016/j.heliyon.2019.e01786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/18/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Background Techniques used to produce maple syrup have considerably evolved over the last decades making them more efficient and economically profitable. However, these advances must respect composition and quality standards as well as authenticity of maple products. Recently, a new and improved high vacuum technology has been made available to producers to achieve higher sap yields. The aim of the present study was therefore to evaluate the effect of this new system on the yield of sap and on the sap and syrup chemical composition. Results Sap yield was monitored during the 2013 and 2014 seasons for high vacuum collection systems (25–28 InHg) and compared to the control systems (20 InHg). Samples of sap and syrup were also collected for chemical analysis. During the 2013 season, a sap volume of 166.19 L/tap was recorded at 25 InHg vacuum level while the control vacuum level permitted to collect 139.47 L/tap, corresponding to a yield increase of 19.2 %. The following season, a yield increase of 38.2 % was measured when control and 28 InHg vacuum levels were compared with 118.06 and 163.13 L/tap, respectively. Results on the pH, color, flavor, minerals, sugars, organic acids, total polyphenols, total nitrogen, abscisic acid and auxin (Indol-3-acetic acid) showed no major differences between high vacuum technology and the control with values remaining within ranges previously published. Conclusion Results showed that a use of high vacuum systems increased sap yield and had no major impact on the quality and purity of maple sap and syrups compared with the control systems.
Collapse
|
43
|
Leber A, Hontecillas R, Zoccoli-Rodriguez V, Ehrich M, Davis J, Chauhan J, Bassaganya-Riera J. Nonclinical Toxicology and Toxicokinetic Profile of an Oral Lanthionine Synthetase C-Like 2 (LANCL2) Agonist, BT-11. Int J Toxicol 2019; 38:96-109. [PMID: 30791754 DOI: 10.1177/1091581819827509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BT-11 is an orally active, gut-restricted investigational therapeutic targeting the lanthionine synthetase C-like 2 pathway with lead indications in ulcerative colitis (UC) and Crohn disease (CD), 2 manifestations of inflammatory bowel disease (IBD). In 5 mouse models of IBD, BT-11 is effective at oral doses of 8 mg/kg. BT-11 was also efficacious at nanomolar concentrations in primary human samples from patients with UC and CD. BT-11 was tested under Good Laboratory Practice conditions in 90-day repeat-dose general toxicity studies in rats and dogs, toxicokinetics, respiratory, cardiovascular and central nervous system safety pharmacology, and genotoxicity studies. Oral BT-11 did not cause any clinical signs of toxicity, biochemical or hematological changes, or macroscopic or microscopic changes to organs in 90-day repeat-dose toxicity studies in rats and dogs at doses up to 1,000 mg/kg/d. Oral BT-11 resulted in low systemic exposure in both rats (area under the curve exposure from t = 0 to t = 8 hours [AUC0-8] of 216 h × ng/mL) and dogs (650 h × ng/mL) and rapid clearance with an average half-life of 3 hours. BT-11 did not induce changes in respiratory function, electrocardiogram parameters, or behavior with single oral doses of 1,000 mg/kg/d. There was no evidence of mutagenic or genotoxic potential for BT-11 up to tested limit doses using an Ames test, chromosomal aberration assay in human peripheral blood lymphocytes, or micronucleus assay in rats. Therefore, nonclinical studies show BT-11 to be a safe and well-tolerated oral therapeutic with potential as a potent immunometabolic therapy for UC and CD with no-observed adverse effect level >1,000 mg/kg in in vivo studies.
Collapse
Affiliation(s)
| | | | | | - Marion Ehrich
- 2 Department of Biomedical Sciences & Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Jennifer Davis
- 2 Department of Biomedical Sciences & Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | | | | |
Collapse
|
44
|
Leber A, Hontecillas R, Zoccoli-Rodriguez V, Chauhan J, Bassaganya-Riera J. Oral Treatment with BT-11 Ameliorates Inflammatory Bowel Disease by Enhancing Regulatory T Cell Responses in the Gut. THE JOURNAL OF IMMUNOLOGY 2019; 202:2095-2104. [PMID: 30760618 DOI: 10.4049/jimmunol.1801446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is an expanding autoimmune disease afflicting millions that remains difficult to treat due to the accumulation of multiple immunological changes. BT-11 is an investigational new drug for IBD that is orally active, gut restricted, and targets the lanthionine synthetase C-like 2 immunometabolic pathway. CD25+ FOXP3+ CD4+ T cells are increased locally within the colon of BT-11-treated mice in Citrobacter rodentium and IL-10-/- mouse models of colitis. The maintained efficacy of BT-11 in the absence of IL-10 combined with the loss of efficacy when direct cell-cell interactions are prevented suggest that the regulatory T cell (Treg)-related elements of suppression are cell contact-mediated. When PD-1 is inhibited, both in vitro and in vivo, the efficacy of BT-11 is reduced, validating this assertion. The depletion of CD25+ cells in vivo abrogated the retention of therapeutic efficacy postdiscontinuation of treatment, indicating that Tregs are implicated in the maintenance of tolerance mediated by BT-11. Furthermore, the involvement of CD25 suggested a role of BT-11 in IL-2 signaling. Cotreatment with BT-11 and IL-2 greatly enhances the differentiation of CD25+ FOXP3+ cells from naive CD4+ T cells relative to either alone. BT-11 enhances phosphorylation of STAT5, providing a direct linkage to the regulation of FOXP3 transcription. Notably, when STAT5 is inhibited, the effects of BT-11 on the differentiation of Tregs are blocked. BT-11 effectively enhances the IL-2/STAT5 signaling axis to induce the differentiation and stability of CD25+ FOXP3+ cells in the gastrointestinal mucosa to support immunoregulation and immunological tolerance in IBD.
Collapse
|
45
|
Booz V, Christiansen CB, Kuhre RE, Saltiel MY, Sociali G, Schaltenberg N, Fischer AW, Heeren J, Zocchi E, Holst JJ, Bruzzone S. Abscisic acid stimulates the release of insulin and of GLP-1 in the rat perfused pancreas and intestine. Diabetes Metab Res Rev 2019; 35:e3102. [PMID: 30468287 DOI: 10.1002/dmrr.3102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/07/2018] [Accepted: 11/19/2018] [Indexed: 01/28/2023]
Abstract
AIMS Previous results indicate that nanomolar concentrations of abscisic acid (ABA) stimulate insulin release from β-pancreatic cells in vitro and that oral ABA at 50 mg/kg increases plasma GLP-1 in the fasted rat. The aim of this study was to test the effect of ABA on the perfused rat pancreas and intestine, to verify the insulin- and incretin-releasing actions of ABA in controlled physiological models. MATERIALS AND METHODS Rat pancreas and small intestine were perfused with solutions containing ABA at high-micromolar concentrations, or control secretagogues. Insulin and GLP-1 concentrations in the venous effluent were analysed by radioimmunoassay, and ABA levels were determined by ELISA. RESULTS High micromolar concentrations of ABA induced GLP-1 secretion from the proximal half of the small intestine and insulin secretion from pancreas. GLP-1 stimulated ABA secretion from pancreas in a biphasic manner. Notably, a positive correlation was found between the ABA area under the curve (AUC) and the insulin AUC upon GLP-1 administration. CONCLUSION Our results indicate the existence of a cross talk between GLP-1 and ABA, whereby ABA stimulates GLP-1 secretion, and vice versa. Release of ABA could be considered as a new promising molecule in the strategy of type 2 diabetes treatment and as a new endogenous hormone in the regulation of glycaemia.
Collapse
Affiliation(s)
- Valeria Booz
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, Genoa, Italy
| | - Charlotte Bayer Christiansen
- NovoNordisk Foundation Center for Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rune Ehrenreich Kuhre
- NovoNordisk Foundation Center for Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Monika Yosifova Saltiel
- NovoNordisk Foundation Center for Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Giovanna Sociali
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, Genoa, Italy
| | - Nicola Schaltenberg
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, Genoa, Italy
| | - Jens J Holst
- NovoNordisk Foundation Center for Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, Genoa, Italy
| |
Collapse
|
46
|
Liu Q, Liu J, Fan S, Yang D, Wang H, Wang Y. Rapid discovery and global characterization of multiple components in corn silk using a multivariate data processing approach based on UHPLC coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry. J Sep Sci 2018; 41:4022-4030. [PMID: 30194802 DOI: 10.1002/jssc.201800605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
Corn silk is an important traditional Chinese medicine which has been widely used as diuretic, antilithiasic, uricosuric, antiseptic, etc. for thousands of years. However, it is a pity that the chemical ingredients in corn silk, especially the constituents absorbed into blood, are unclear up to now. The aim of our study was to investigate the multiple components of corn silk in vitro and in vivo. In this present study, a sensitive and rapid method using ultra high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight tandem mass spectrometry and a multivariate data processing approach was established to detect the constituents of corn silk in vitro and in vivo. Consequently, total 41 ingredients in vitro and 19 of them absorbed into blood including luteolin, various C-glycosyl flavones, jasmonic acid, abscisic acid, gibberellin A, etc. were tentatively characterized in sequence. Furthermore, of particular importance, a kind of stable compound named C-glycosyl flavones is a great discovery in vivo, which can point the further pharmacological study target in future. In a word, this is the first serum pharmacochemistry study of corn silk, which played a critical role in exploring the pharmacological and effective data for further research.
Collapse
Affiliation(s)
- Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jianhua Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Songjie Fan
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dezhu Yang
- Pharmacy School, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Huimin Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
47
|
Cys 2His 2 Zinc Finger Transcription Factor BcabaR1 Positively Regulates Abscisic Acid Production in Botrytis cinerea. Appl Environ Microbiol 2018; 84:AEM.00920-18. [PMID: 29959241 DOI: 10.1128/aem.00920-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023] Open
Abstract
Abscisic acid (ABA) is one of the five classical phytohormones involved in increasing the tolerance of plants for various kinds of stresses caused by abiotic or biotic factors, and it also plays important roles in regulating the activation of innate immune cells and glucose homeostasis in mammals. For these reasons, as a "stress hormone," ABA has recently received attention as a candidate drug for agriculture and biomedical applications, prompting significant development of ABA synthesis. Some plant-pathogenic fungi can synthesize natural ABA. The fungus Botrytis cinerea has been used for biotechnological production of ABA. Identification of the transcription factors (TFs) involved in regulation of ABA biosynthesis in B. cinerea would provide new clues to understand how ABA is synthesized and regulated. In this study, we defined a novel Cys2His2 TF, BcabaR1, that regulates the transcriptional levels of ABA synthase genes (bcaba1, bcaba2, bcaba3, and bcaba4) in an ABA-overproducing mutant, B. cinerea TBC-A. Electrophoretic mobility shift assays revealed that recombinant BcabaR1 can bind specifically to both a 14-nucleotide sequence motif and a 39-nucleotide sequence motif in the promoter region of bcaba1 to -4 genes in vitro A decreased transcriptional level of the bcabaR1 gene in B. cinerea led to significantly decreased ABA production and downregulated transcription of bcaba1 to -4 When bcabaR1 was overexpressed in B. cinerea, ABA production was significantly increased, with upregulated transcription of bcaba1 to -4 Thus, in this study, we found that BcabaR1 acts as a positive regulator of ABA biosynthesis in B. cinereaIMPORTANCE Abscisic acid (ABA) could make a potentially important contribution to theoretical research and applications in agriculture and medicine. Botrytis cinerea is a plant-pathogenic fungus that was found to produce ABA. There has been a view that ABA is related to the interaction between pathogenic fungi and plants. Identification of regulatory genes involved in ABA biosynthesis may facilitate an understanding of the underlying molecular mechanisms of ABA biosynthesis and the pathogenesis of B. cinerea Here, we present a positive regulator, BcabaR1, of ABA biosynthesis in B. cinerea that can affect the transcriptional level of the ABA biosynthesis gene cluster, bcaba1 to -4, by directly binding to the conserved sequence elements in the promoter of the bcaba1 to -4 genes. This TF was found to be specifically involved in regulation of ABA biosynthesis. This work provides new clues for finding other ABA biosynthesis genes and improving ABA yield in B. cinerea.
Collapse
|
48
|
Mollashahi M, Abbasnejad M, Esmaeili-Mahani S. Phytohormone abscisic acid elicits antinociceptive effects in rats through the activation of opioid and peroxisome proliferator-activated receptors β/δ. Eur J Pharmacol 2018; 832:75-80. [DOI: 10.1016/j.ejphar.2018.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
|
49
|
Elevated plasma abscisic acid is associated with asymptomatic falciparum malaria and with IgG-/caspase-1-dependent immunity in Plasmodium yoelii-infected mice. Sci Rep 2018; 8:8896. [PMID: 29891920 PMCID: PMC5995817 DOI: 10.1038/s41598-018-27073-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/24/2018] [Indexed: 12/29/2022] Open
Abstract
Abscisic acid (ABA) is an ancient stress hormone and is detectable in a wide variety of organisms where it regulates innate immunity and inflammation. Previously, we showed that oral supplementation with ABA decreased parasitemia in a mouse model of malaria, decreased liver and spleen pathology and reduced parasite transmission to mosquitoes. Here, we report that higher circulating ABA levels were associated with a reduced risk of symptomatic malaria in a cohort of Plasmodium falciparum-infected Ugandan children. To understand possible mechanisms of ABA protection in malaria, we returned to our mouse model to show that ABA effects on Plasmodium yoelii 17XNL infection were accompanied by minimal effects on complete blood count and blood chemistry analytes, suggesting a benefit to host health. In addition, orally delivered ABA induced patterns of gene expression in mouse liver and spleen that suggested enhancement of host anti-parasite defenses. To test these inferences, we utilized passive immunization and knockout mice to demonstrate that ABA supplementation increases circulating levels of protective, parasite-specific IgG and requires caspase-1 to reduce parasitemia. Collectively, ABA induces host responses that ameliorate infection and disease in an animal model and suggest that further studies of ABA in the context of human malaria are warranted.
Collapse
|
50
|
Samir SM, Mostafa AF. Abscisic acid: a novel uterine stimulator in normal and diabetic rats. Can J Physiol Pharmacol 2018; 96:943-952. [PMID: 29883554 DOI: 10.1139/cjpp-2018-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes is usually associated with alterations in myometrial contractility with altered oxytocin responsiveness that increase the incidence of fetal and maternal morbidity and mortality. Pancreatic β-cells release abscisic acid (ABA) in response to glucose, which in turn potentiates insulin secretion. The aim of the study was to find out the effect of ABA on the uterine contractility in normal and diabetic induced rats and tried to detect its possible underlying signaling pathway. Adult non-pregnant female rats were divided into normal nondiabetic group (n = 27) and diabetic group (n = 12). The effect of ABA on the normal and diabetic isolated myometrium was determined alone or after different blockers. Spontaneous diabetic myometrial contraction showed significant decrease and less responsiveness to oxytocin, KCL, and acetylcholine than nondiabetic samples. ABA showed 60% of oxytocin stimulatory effects on myometrial contraction in a dose-response manner in both groups. Meanwhile, this effect was decreased after blocking L-type calcium channels and completely abolished after blocking prostaglandin F (FP) and inositol trisphosphate (IP3) receptors. ABA is found to have an uterotonic effect that is mediated mainly via FP receptor through increasing the level of IP3. So, ABA by its novel effect could be beneficial as pre-labor prescription, especially in diabetic females.
Collapse
Affiliation(s)
- Shereen M Samir
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abeer F Mostafa
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|