1
|
Chen H, Wang J, Zheng B, Xia W, Tan G, Wu H, Wang Y, Deng Z, Wang Y, Zhang J, Zhang H. Association of serum fatty acid pattern with depression in U.S. adults: analysis of NHANES 2011-2012. Lipids Health Dis 2024; 23:177. [PMID: 38851716 PMCID: PMC11161977 DOI: 10.1186/s12944-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/11/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Exposure to different concentration levels of fatty acids (FAs) may have an impact on depression. However, previous studies using individual FAs may not reflect the performance of mixtures of various FAs, and the associations of FA patterns with depression remain unclear. METHODS We conducted the cross-sectional analysis in 792 adults aged 18 and older with available serum FAs and depression screening data in the National Health and Nutrition Examination Survey (NHANES) 2011-2012. The serum concentrations of thirty FAs were measured using gas chromatography-mass spectrometry and their percentage compositions were subsequently calculated. Depression was defined as the Patient Health Questionnaire-9 score ≥ 10. We employed principal component analysis to derive serum FA patterns. We examined the association between these patterns and depression in the overall population and various subgroups through survey-weighted logistic regression. RESULTS Four distinct patterns of serum FAs were identified: 'high eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); low docosatetraenoic acid (DTA) and docosapentaenoic acid (DPA) n-6', 'high long-chain saturated FA and long chain FA', 'low median-chain saturated FA and myristoleic acid' and 'low capric acid and lauric acid; high gamma-linolenic acid (GLA) and stearidonic acid (SDA)' pattern. Individuals in the high tertile of 'high EPA and DHA; low DTA and DPA n-6' pattern score had 0.46 (95% CI: 0.22, 0.93) lower odds of developing depression compared to individuals in the lowest tertile after adjusting for confounders such as age, sex, physical activity and total energy intake, etc. The odds ratio (OR) of depression was increased in the population with the highest tertile of 'low capric acid and lauric acid; high GLA and SDA' pattern (OR: 2.45, 95% CI: 1.24, 4.83). In subgroup analyses, we observed that the association between 'high EPA and DHA; low DTA and DPA n-6' and depression persisted among specific demographic and lifestyle subgroups, including females, non-Mexican Americans, non-obese, those aged over 60 years, smokers and drinkers. Similarly, 'low capric acid and lauric acid; high GLA and SDA' showed stable associations in female, non-Mexican Americans and smokers. CONCLUSIONS Serum FA patterns are associated with depression, and their relationships vary across sex, race, BMI, age, smoking and drinking subgroups, highlighting the importance of considering specific FA patterns within these demographic and lifestyle categories. Utilization of combined FA administration may serve as a mitigation measure against depression in these specific populations.
Collapse
Affiliation(s)
- Hengying Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jue Wang
- Huadu District Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Baohua Zheng
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenqi Xia
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gongjun Tan
- Department of Clinical Laboratory, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Hongyuan Wu
- Department of Child Health, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Yao Wang
- Postnatal Care Center (Department of Postpartum Rehabilitation), Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Zhen Deng
- Department of Clinical Laboratory, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Yiyuan Wang
- Department of Child Health, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Hongzhong Zhang
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China.
| |
Collapse
|
2
|
Wimalasena ST, Ramirez-Silva CI, Gonzalez Casanova I, Stein AD, Sun YV, Rivera JA, Demmelmair H, Koletzko B, Ramakrishnan U. Effects of prenatal docosahexaenoic acid supplementation on offspring cardiometabolic health at 11 years differs by maternal single nucleotide polymorphism rs174602: follow-up of a randomized controlled trial in Mexico. Am J Clin Nutr 2023; 118:1123-1132. [PMID: 37839707 PMCID: PMC10797513 DOI: 10.1016/j.ajcnut.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND There is limited evidence regarding long-term effects of prenatal docosahexaenoic acid (DHA) supplementation on offspring cardiometabolic health (CMH). Inconsistent results may be attributable to variants of fatty acid desaturase (FADS) genes. OBJECTIVE We aimed to evaluate the effect of prenatal DHA supplementation on offspring CMH and investigate effect modification by maternal FADS2 single nucleotide polymorphism (SNP) rs174602. METHODS We used follow-up data from a double-blind, randomized controlled trial in Mexico in which pregnant females received 400 mg/d of algal DHA or placebo from midgestation until delivery. The study sample included 314 offspring with data at age 11 y and maternal FADS genetic data (DHA: n = 160; Placebo: n = 154). We derived a Metabolic Syndrome (MetS) score from body mass index, HDL, triglycerides, fasting glucose concentrations, and systolic blood pressure. Generalized linear models were used to evaluate the effect of the intervention on offspring MetS score and test interactions between treatment group and genotype, adjusting for maternal, offspring, and household factors. RESULTS Offspring MetS score did not differ significantly by treatment group. We observed evidence of effect modification by maternal SNP rs174602 (P = 0.001); offspring of maternal TT genotype who received DHA had lower MetS score relative to the placebo group (DHA (mean ± standard error of the mean (SEM)): -0.21 ± 0.11, n = 21; Placebo: 0.05 ± 0.11, n = 23; Δ= -0.26 (95% CI: -0.55, 0.04), P = 0.09); among CC maternal genotype carriers, offspring of mothers who received DHA had higher MetS score (0.18 ± 0.06, n = 62) relative to the placebo group (-0.05 ± 0.06, n = 65, Δ=0.24 (0.06, 0.41), P < 0.01). CONCLUSION The effect of prenatal DHA supplementation on offspring MetS score differed by maternal FADS SNP rs174602. These findings further support incorporating genetic analysis of FADS polymorphisms in DHA supplementation trials. CLINICAL TRIAL DETAILS This trial was registered at clinicaltrials.gov as NCT00646360.
Collapse
Affiliation(s)
- Sonia Tandon Wimalasena
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | | | | | - Aryeh D Stein
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States; Hubert Department of Global Health, Emory University, Atlanta, GA, United States
| | - Yan V Sun
- Department of Epidemiology, Emory University, Atlanta, GA, United States
| | - Juan A Rivera
- National Institute of Public Health, Cuernavaca, Mexico
| | - Hans Demmelmair
- LMU-Ludwig Maximilians Universität, Department of Pediatrics, LMU University Hospitals, Munich, Germany
| | - Berthold Koletzko
- LMU-Ludwig Maximilians Universität, Department of Pediatrics, LMU University Hospitals, Munich, Germany
| | - Usha Ramakrishnan
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States; Hubert Department of Global Health, Emory University, Atlanta, GA, United States.
| |
Collapse
|
3
|
San-Cristobal R, de Toro-Martín J, Guénard F, Pérusse L, Biron S, Marceau S, Lafortune Payette A, Vohl MC. Impact of maternal cardiometabolic status after bariatric surgery on the association between telomere length and adiposity in offspring. Sci Rep 2023; 13:20771. [PMID: 38008763 PMCID: PMC10679094 DOI: 10.1038/s41598-023-47813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023] Open
Abstract
The impact of bariatric surgery on metabolic and inflammatory status are reflected in the epigenetic profile and telomere length mediated by the changes in the metabolic status of the patients. This study compared the telomere length of children born before versus after maternal bariatric surgery as a surrogate to test the influence of the mother's metabolic status on children's telomere length. DNA methylation telomere length (DNAmTL) was estimated from Methylation-EPIC BeadChip array data from a total of 24 children born before and after maternal bariatric surgery in the greater Quebec City area. DNAmTL was inversely associated with chronological age in children (r = - 0.80, p < 0.001) and significant differences were observed on age-adjusted DNAmTL between children born before versus after the maternal bariatric surgery. The associations found between body mass index and body fat percentage with DNAmTL in children born after the surgery were influenced by maternal triglycerides, TG/HDL-C ratio and TyG index. This study reports the impact of maternal bariatric surgery on offspring telomere length. The influence of maternal metabolic status on the association between telomere length and markers of adiposity in children suggests a putative modulating effect of bariatric surgery on the cardiometabolic risk in offspring.
Collapse
Affiliation(s)
- Rodrigo San-Cristobal
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Quebec, QC, G1V 0A6, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Quebec, QC, Canada
- School of Nutrition, Université Laval, Quebec, QC, Canada
| | - Juan de Toro-Martín
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Quebec, QC, G1V 0A6, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Quebec, QC, Canada
- School of Nutrition, Université Laval, Quebec, QC, Canada
| | - Frédéric Guénard
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Quebec, QC, Canada
| | - Louis Pérusse
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Quebec, QC, G1V 0A6, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Quebec, QC, Canada
- Department of Kinesiology, Université Laval, Quebec, QC, Canada
| | - Simon Biron
- Department of Surgery, Université Laval, Quebec, QC, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec, Canada
| | - Simon Marceau
- Department of Surgery, Université Laval, Quebec, QC, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec, Canada
| | - Annie Lafortune Payette
- Department of Surgery, Université Laval, Quebec, QC, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec, Canada
| | - Marie-Claude Vohl
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Quebec, QC, G1V 0A6, Canada.
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Quebec, QC, Canada.
- School of Nutrition, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
4
|
Álvarez D, Ortiz M, Valdebenito G, Crisosto N, Echiburú B, Valenzuela R, Espinosa A, Maliqueo M. Effects of a High-Fat Diet and Docosahexaenoic Acid during Pregnancy on Fatty Acid Composition in the Fetal Livers of Mice. Nutrients 2023; 15:4696. [PMID: 37960348 PMCID: PMC10649644 DOI: 10.3390/nu15214696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
A high-fat diet (HFD) during pregnancy promotes fat accumulation and reduces docosahexaenoic acid (DHA) levels in the liver of the offspring at postnatal ages, which can depend on fetal sex. However, the prenatal mechanisms behind these associations are still unclear. Thus, we analyzed if an HFD alters DHA content and the expression of molecules related to fatty acid (FA) metabolism in the fetal liver. Female C57BL/6 mice were fed a control diet or HFD for 4-6 weeks before pregnancy until the gestational day (GD) 17.5. A subgroup of each diet received DHA (100 mg/Kg) orally from GD 6.5 until 16.5. On GD 17.5, maternal livers, placentas, and livers from male and female fetuses were collected for FA profiling with gas-chromatography and gene expression of molecules related to FA metabolism using qPCR. PPAR-α protein expression was evaluated using Western blot. The gene expression of placental FA transporters was also assessed. An HFD increased eicosapentaenoic acid (EPA) and decreased DHA levels and protein expression of PPAR-α in the fetal livers of both sexes. DHA increased the gene expression of Ppara, Cpt1, and Acsl1 in the livers of female fetuses. Therefore, an HFD reduces DHA levels and PPAR-α, a master regulator of gene expression, in the fetal liver. In turn, the livers of female fetuses seem to be more sensitive to DHA action.
Collapse
Affiliation(s)
- Daniela Álvarez
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine West Division, Universidad de Chile, Santiago 8350499, Chile; (D.Á.); (M.O.); (G.V.); (N.C.); (B.E.)
| | - Macarena Ortiz
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine West Division, Universidad de Chile, Santiago 8350499, Chile; (D.Á.); (M.O.); (G.V.); (N.C.); (B.E.)
| | - Gabriel Valdebenito
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine West Division, Universidad de Chile, Santiago 8350499, Chile; (D.Á.); (M.O.); (G.V.); (N.C.); (B.E.)
| | - Nicolás Crisosto
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine West Division, Universidad de Chile, Santiago 8350499, Chile; (D.Á.); (M.O.); (G.V.); (N.C.); (B.E.)
- Endocrinology Unit, Department of Medicine, Clínica Alemana de Santiago, Faculty of Medicine, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Bárbara Echiburú
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine West Division, Universidad de Chile, Santiago 8350499, Chile; (D.Á.); (M.O.); (G.V.); (N.C.); (B.E.)
| | - Rodrigo Valenzuela
- Nutrition Department, School of Medicine, Universidad de Chile, Santiago 8380000, Chile;
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Manuel Maliqueo
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine West Division, Universidad de Chile, Santiago 8350499, Chile; (D.Á.); (M.O.); (G.V.); (N.C.); (B.E.)
| |
Collapse
|
5
|
Francis EC, Kechris K, Jansson T, Dabelea D, Perng W. Novel Metabolic Subtypes in Pregnant Women and Risk of Early Childhood Obesity in Offspring. JAMA Netw Open 2023; 6:e237030. [PMID: 37014638 PMCID: PMC10074224 DOI: 10.1001/jamanetworkopen.2023.7030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/21/2023] [Indexed: 04/05/2023] Open
Abstract
Importance The in utero metabolic milieu is associated with offspring adiposity. Standard definitions of maternal obesity (according to prepregnancy body mass index [BMI]) and gestational diabetes (GDM) may not be adequate to capture subtle yet important differences in the intrauterine environment that could be involved in programming. Objectives To identify maternal metabolic subgroups during pregnancy and to examine associations of subgroup classification with adiposity traits in their children. Design, Setting, and Participants This cohort study included mother-offspring pairs in the Healthy Start prebirth cohort (enrollment: 2010-2014) recruited from University of Colorado Hospital obstetrics clinics in Aurora, Colorado. Follow-up of women and children is ongoing. Data were analyzed from March to December 2022. Exposures Metabolic subtypes of pregnant women ascertained by applying k-means clustering on 7 biomarkers and 2 biomarker indices measured at approximately 17 gestational weeks: glucose, insulin, Homeostatic Model Assessment for Insulin Resistance, total cholesterol, high-density lipoprotein cholesterol (HDL-C), triglycerides, free fatty acids (FFA), HDL-C:triglycerides ratio, and tumor necrosis factor α. Main Outcomes and Measures Offspring birthweight z score and neonatal fat mass percentage (FM%). In childhood at approximately 5 years of age, offspring BMI percentile, FM%, BMI in the 95th percentile or higher, and FM% in the 95th percentile or higher. Results A total of 1325 pregnant women (mean [SD] age, 27.8 [6.2 years]; 322 [24.3%] Hispanic, 207 non-Hispanic Black [15.6%], and 713 [53.8%] non-Hispanic White), and 727 offspring with anthropometric data measured in childhood (mean [SD] age 4.81 [0.72] years, 48% female) were included. We identified the following 5 maternal metabolic subgroups: reference (438 participants), high HDL-C (355 participants), dyslipidemic-high triglycerides (182 participants), dyslipidemic-high FFA (234 participants), and insulin resistant (IR)-hyperglycemic (116 participants). Compared with the reference subgroup, women in the IR-hyperglycemic and dyslipidemic-high FFA subgroups had offspring with 4.27% (95% CI, 1.94-6.59) and 1.96% (95% CI, 0.45-3.47) greater FM% during childhood, respectively. There was a higher risk of high FM% among offspring of the IR-hyperglycemic (relative risk, 8.7; 95% CI, 2.7-27.8) and dyslipidemic-high FFA (relative risk, 3.4; 95% CI, 1.0-11.3) subgroups; this risk was of greater magnitude compared with prepregnancy obesity alone, GDM alone, or both conditions. Conclusions and Relevance In this cohort study, an unsupervised clustering approach revealed distinct metabolic subgroups of pregnant women. These subgroups exhibited differences in risk of offspring adiposity in early childhood. Such approaches have the potential to refine understanding of the in utero metabolic milieu, with utility for capturing variation in sociocultural, anthropometric, and biochemical risk factors for offspring adiposity.
Collapse
Affiliation(s)
- Ellen C. Francis
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, Colorado
| | - Katerina Kechris
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, Colorado
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora
| | - Dana Dabelea
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora
| | - Wei Perng
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora
| |
Collapse
|
6
|
Ortiz M, Sánchez F, Álvarez D, Flores C, Salas-Pérez F, Valenzuela R, Cantin C, Leiva A, Crisosto N, Maliqueo M. Association between maternal obesity, essential fatty acids and biomarkers of fetal liver function. Prostaglandins Leukot Essent Fatty Acids 2023; 190:102541. [PMID: 36736061 DOI: 10.1016/j.plefa.2023.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Maternal obesity and the imbalance in linoleic acid (C18:2 n-6, LA) and alpha-linolenic acid (C18:3 n-3, ALA) levels are related with hepatic disturbances in the offspring. However, whether these alterations are present during fetal life is not well understood. Obese and normal weight pregnant women were recruited to determine fatty acids (FAs) consumption, FAs profile (in maternal erythrocytes, placenta and neonatal very low-density lipoproteins VLDL) and biomarkers of fetal liver function, such as gamma-glutamyl transferase (GGT), alpha-fetoprotein (AFP) and albumin, in umbilical cord blood. Stearic acid (C18:0, ST) was lower, and total n-3 FAs tended to be lower in umbilical cord VLDLs of obese women compared to controls. Independently of maternal obesity, GGT levels in umbilical cord blood was positively correlated with the LA content and negatively correlated with the ALA content in maternal erythrocytes. We conclude that maternal obesity and its imbalance of LA and ALA are associated with changes in biomarkers of fetal liver function.
Collapse
Affiliation(s)
- Macarena Ortiz
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Francisca Sánchez
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Daniela Álvarez
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Cristian Flores
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | | | - Rodrigo Valenzuela
- Nutrition Department, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudette Cantin
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Andrea Leiva
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Nicolás Crisosto
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile; Endocrinology Unit, Department of Medicine, Clínica Alemana de Santiago, Faculty of Medicine, Universidad del Desarrollo, Santiago, Chile
| | - Manuel Maliqueo
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Osuna E, Symington EA, Malan L, Ricci C, Zandberg L, Smuts CM, Baumgartner J. Higher n-3 polyunsaturated fatty acid status during early pregnancy is associated with lower risk for depression at 12 months postpartum: The NuPED study. Prostaglandins Leukot Essent Fatty Acids 2023; 190:102528. [PMID: 36716632 DOI: 10.1016/j.plefa.2022.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023]
Abstract
Perinatal depression can negatively affect the health of the mother and her offspring. N-3 polyunsaturated fatty acids (PUFA) may play a role in the aetiology of depression. Therefore, we investigated the association of n-3 PUFA status during early pregnancy with perinatal depression among women living in urban Johannesburg, South Africa. For this prospective analysis, we analysed red blood cell (RBC) total phospholipid fatty acid (FA) composition (% of total FA) of 242 pregnant women at <18 weeks' gestation. We used the Edinburgh Postnatal Depression Scale (EPDS) to identify women at risk for depression (EPDS score ≥9) at <18, 22 and 36 weeks' gestation, and at 6 and 12 months postpartum. RBC EPA status was negatively (β=-0.22, p<0.05), and the AA/EPA ratio positively (β=0.24, p<0.05) associated with EPDS scores at 12 months postpartum. Higher RBC DHA and n-3 index were further associated with lower odds (OR=0.56 [95% CI: 0.32-0.91]; OR=0.63 [95% CI: 0.39-0.94]), while higher n-6/n-3 PUFA and AA/EPA ratios early in pregnancy were associated with higher odds for depression at 12 months postpartum ((OR=2.34 [95% CI: 1.12-4.97]; OR=1.02 [95% CI: 1.00-1.05]). Our results suggest that women with a higher RBC n-3 PUFA status during early pregnancy may be at lower risk for depression at 12 months postpartum.
Collapse
Affiliation(s)
- Ester Osuna
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Switzerland
| | - Elizabeth A Symington
- Department of Life and Consumer Sciences, University of South Africa, Johannesburg, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Cristian Ricci
- Africa Unit for Transdisciplinary Health Research (AUTHER), North-West University, Potchefstroom, South Africa
| | - Lizelle Zandberg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Cornelius M Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Jeannine Baumgartner
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Switzerland; Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa; Department of Nutritional Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
8
|
Monasso GS, Voortman T, Felix JF. Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth. Epigenetics 2022; 17:1562-1572. [PMID: 35581922 PMCID: PMC9586633 DOI: 10.1080/15592294.2022.2076051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022] Open
Abstract
Maternal pregnancy fatty acid status is associated with child health. Epigenetic gestational age acceleration, referring to a discrepancy between chronological and epigenetic gestational age, may underlie these associations. Previous research suggests that analysing fatty acid patterns rather than individual fatty acids may overcome the caveat of missing synergistic or additive effects. Among 1226 mother-newborn pairs from the population-based Generation R Study, we examined the associations of three maternal plasma mid-pregnancy fatty acid patterns, identified by principal component analysis, with offspring epigenetic gestational age acceleration. This was estimated from cord blood DNA methylation data using the method developed by Bohlin. As a secondary analysis, we used the method developed by Knight to estimate epigenetic gestational age. The identified 'high n-6 polyunsaturated fatty acid,' 'monounsaturated and saturated fatty acid' and 'high n-3 polyunsaturated fatty acid' patterns were not associated with epigenetic gestational age acceleration in the main analyses. In sensitivity analyses restricted to 337 children born to mothers with more accurate pregnancy dating based on a regular menstrual cycle, a one standard-deviation-score higher maternal plasma 'high n-3 polyunsaturated fatty acid' pattern was associated with an epigenetic gestational age acceleration of 0.20 weeks (95% CI 0.06, 0.33), but only when using the Knight method. Thus, we found some evidence that a maternal plasma fatty acid pattern characterized by higher concentrations of n-3 polyunsaturated fatty acids may be associated with accelerated epigenetic gestational ageing. These findings depended on the method used and the accuracy of pregnancy dating and therefore need confirmation.
Collapse
Affiliation(s)
- Giulietta S. Monasso
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Prenatal exposure to trans fatty acids and head growth in fetal life and childhood: triangulating confounder-adjustment and instrumental variable approaches. Eur J Epidemiol 2022; 37:1171-1180. [DOI: 10.1007/s10654-022-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
AbstractDietary trans fatty acids (TFAs) are primarily industrially produced and remain abundant in processed food, particularly in low- and middle-income countries. Although TFAs are a cause of adverse cardiometabolic outcomes, little is known about exposure to TFAs in relation to brain development. We aimed to investigate the effect of maternal TFA concentration during pregnancy on offspring head growth in utero and during childhood. In a prospective population-based study in Rotterdam, the Netherlands, with 6900 mother–child dyads, maternal plasma TFA concentration was assessed using gas chromatography in mid-gestation. Offspring head circumference (HC) was measured in the second and third trimesters using ultrasonography; childhood brain morphology was assessed using magnetic resonance imaging at age 10 years. We performed regression analyses adjusting for sociodemographic and lifestyle confounders and instrumental variable (IV) analyses. Our IV analysis leveraged a national policy change that led to a substantial reduction in TFA and occurred mid-recruitment. After adjusting for covariates, maternal TFA concentration during pregnancy was inversely related to fetal HC in the third trimester (mean difference per 1% wt:wt increase: − 0.33, 95% CI − 0.51, − 0.15, cm) and to fetal HC growth from the second to the third trimester (− 0.04, 95% CI − 0.06, − 0.02, cm/week). Consistent findings were obtained with IV analyses, strengthening a causal interpretation. Association between prenatal TFA exposure and HC in the second trimester or global brain volume at age 10 years was inconclusive. Our findings are of important public health relevance as TFA levels in food remain high in many countries.
Collapse
|
10
|
Yu HT, Xu WH, Chen YR, Ji Y, Tang YW, Li YT, Gong JY, Chen YF, Liu GL, Xie L. Association of Prepregnancy Obesity and Remodeled Maternal-Fetal Plasma Fatty Acid Profiles. Front Nutr 2022; 9:897059. [PMID: 35651505 PMCID: PMC9149296 DOI: 10.3389/fnut.2022.897059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Fatty acids, especially polyunsaturated fatty acid (PUFA), are found abundantly in the brain and are fundamental for a fetus's growth. The fatty acid profiles of mothers and fetuses may be affected by maternal prepregnancy body mass index (pre-BMI), thus affecting fetal growth and development. Methods A total of 103 mother-fetus pairs were divided into overweight/obese (OW, n = 26), normal weight (NW, n = 60), and underweight (UW, n = 17) groups according to pre-BMI. Fatty acid profiles in maternal and umbilical cord plasma were analyzed by gas chromatography. Results The infant birth BMI z-score of the OW group was higher than that of the NW and UW groups (p < 0.05). The OW mothers had significantly higher plasma n-6 PUFA and n-6/n-3, but lower docosahexaenoic acid (DHA) and n-3 PUFA (p < 0.05). In cord plasma, the proportions of DHA and n-3 PUFA were lower in the OW group (p < 0.05), whereas the n-6/n-3 ratio was higher in the OW group (p < 0.05). The pre-BMI was negatively correlated with cord plasma DHA in all subjects (r = −0.303, p = 0.002), and the same negative correlation can be observed in the OW group (r = −0.561, p = 0.004), but not in the NW and UW groups (p > 0.05). The pre-BMI was positively correlated with cord plasma n-6/n-3 in all subjects (r = 0.325, p = 0.001), and the same positive correlation can be found in the OW group (r = 0.558, p = 0.004), but not in NW and UW groups (p > 0.05). Conclusions Maternal pre-BMI was associated with the maternal-fetal plasma fatty acid profiles, whereas the adverse fatty acid profiles are more noticeable in the prepregnancy OW mothers.
Collapse
Affiliation(s)
- Hai-Tao Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Wen-Hui Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yi-Ru Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Ye Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yi-Wei Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yue-Ting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Jia-Yu Gong
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yi-Fei Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Guo-Liang Liu
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
11
|
Li P, Hu S, Zhu Y, Sun T, Huang Y, Xu Z, Liu H, Luo C, Zhou S, Tan A, Liu L. Associations of Plasma Fatty Acid Patterns During Pregnancy With Gestational Diabetes Mellitus. Front Nutr 2022; 9:836115. [PMID: 35600822 PMCID: PMC9121815 DOI: 10.3389/fnut.2022.836115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Background Limited studies have explored the difference of fatty acid profile between women with and without gestational diabetes mellitus (GDM), and the results were inconsistent. Individual fatty acids tend to be interrelated because of the shared food sources and metabolic pathways. Thus, whether fatty acid patters during pregnancy were related to GDM odds needs further exploration. Objective To identify plasma fatty acid patters during pregnancy and their associations with odds of GDM. Methods A hospital-based case-control study including 217 GDM cases and 217 matched controls was carried out in urban Wuhan, China from August 2012 to April 2015. All the participants were enrolled at the time of GDM screening and provided fasting blood samples with informed consent. We measured plasma concentrations of fatty acids by gas chromatography-mass spectrometry, and derived potential fatty acid patterns (FAPs) through principal components analysis. Conditional logistic regression and restricted cubic spline model were used to evaluate the associations between individual fatty acids or FAPs and odds of GDM. Results Twenty individual fatty acids with relative concentrations ≥0.05% were included in the analyses. Compared with control group, GDM group had significantly higher concentrations of total fatty acids, 24:1n-9, and relatively lower levels of 14:0, 15:0, 17:0, 18:0, 24:0, 16:1n-7, 20:1n-9,18:3n-6, 20:2n-6, 18:3n-3, 20:3n-3, 22:5n-3. Two novel patterns of fatty acids were identified to be associated with lower odds of GDM: (1) relatively higher odd-chain fatty acids, 14:0, 18:0, 18:3n-3, 20:2n-6, 20:3n-6 and lower 24:1n-9 and 18:2n-6 [adjusted odds ratio (OR) (95% confidence interval) (CI) for quartiles 4 vs. 1: 0.42 (0.23-0.76), P-trend = 0.002], (2) relatively higher n-3 polyunsaturated fatty acids, 24:0, 18:3n-6 and lower 16:0 and 20:4n-6 [adjusted OR (95% CI) for quartiles 4 vs. 1: 0.48 (0.26-0.90), P-trend = 0.018]. Conclusion Our findings suggested that two novel FAPs were inversely associated with GDM odds. The combination of circulating fatty acids could be a more significant marker of GDM development than individual fatty acids or their subgroups.
Collapse
Affiliation(s)
- Peiyun Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Clinical Nutrition, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalun Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihui Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjie Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Luo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqiong Zhou
- Department of Clinical Nutrition, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aijun Tan
- Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Maternal polyunsaturated fatty acid concentrations during pregnancy and childhood liver fat accumulation. Clin Nutr 2022; 41:847-854. [DOI: 10.1016/j.clnu.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
|
13
|
Zou R, El Marroun H, Voortman T, Hillegers M, White T, Tiemeier H. Maternal polyunsaturated fatty acids during pregnancy and offspring brain development in childhood. Am J Clin Nutr 2021; 114:124-133. [PMID: 33742211 DOI: 10.1093/ajcn/nqab049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Emerging evidence suggests an association of maternal PUFA concentrations during pregnancy with child cognitive and neuropsychiatric outcomes such as intelligence and autistic traits. However, little is known about prenatal maternal PUFAs in relation to child brain development, which may underlie these associations. OBJECTIVES We aimed to investigate the association of maternal PUFA status during pregnancy with child brain morphology, including volumetric and white matter microstructure measures. METHODS This study was embedded in a prospective population-based study. In total, 1553 mother-child dyads of Dutch origin were included. Maternal plasma glycerophospholipid PUFAs were assessed in midpregnancy. Child brain morphologic outcomes, including total gray and white matter volumes, as well as white matter microstructure quantified by global fractional anisotropy and mean diffusivity, were measured using MRI (including diffusion tensor imaging) at age 9-11 y. RESULTS Maternal ω-3 (n-3) long-chain PUFA (LC-PUFA) concentrations during pregnancy had an inverted U-shaped relation with child total gray volume (linear term: β: 16.7; 95% CI: 2.0, 31.5; quadratic term: β: -1.1; 95% CI: -2.1, -0.07) and total white matter volume (linear term: β: 15.7; 95% CI: 3.6, 27.8; quadratic term: β: -1.0; 95% CI: -1.8, -0.16). Maternal gestational ω-6 LC-PUFA concentrations did not predict brain volumetric differences in children, albeit the linolenic acid concentration was inversely associated with child total white matter volume. Maternal PUFA status during pregnancy was not related to child white matter microstructure. CONCLUSIONS Sufficient maternal ω-3 PUFAs during pregnancy may be related to more optimal child brain development in the long term. In particular, exposure to lower ω-3 PUFA concentrations in fetal life was associated with less brain volume in childhood. Maternal ω-6 LC-PUFAs were not related to child brain morphology.
Collapse
Affiliation(s)
- Runyu Zou
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Social and Behavioral Sciences, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
14
|
Meinilä J, Klemetti MM, Huvinen E, Engberg E, Andersson S, Stach-Lempinen B, Koivusalo S. Macronutrient intake during pregnancy in women with a history of obesity or gestational diabetes and offspring adiposity at 5 years of age. Int J Obes (Lond) 2021; 45:1030-1043. [PMID: 33558642 PMCID: PMC8081655 DOI: 10.1038/s41366-021-00762-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVES The impact of maternal macronutrient intake during pregnancy on offspring childhood adiposity is unclear. We assessed the associations between maternal macronutrient intake during and after pregnancy with offspring adiposity at 5 years of age. Additionally, we investigated whether gestational diabetes (GDM), BMI, or breastfeeding modified these associations. SUBJECTS/METHODS Altogether, 301 mother-child dyads with maternal prepregnancy BMI ≥ 30 and/or previous GDM participated in the Finnish Gestational Diabetes Prevention Study (RADIEL) and its 5 years follow-up. Macronutrient intakes (E%) were calculated from 3-day food records collected at 5-18 weeks' gestation, in the third trimester, and at 12 months and 5 years after pregnancy. Offspring body fat mass (BFM) and fat percentage (BF%) at 5 years were measured by bioimpedance. Statistical analyses were multivariate linear regression. RESULTS Mean (SD) prepregnancy BMI was 33(4) kg/m2. GDM was diagnosed in 47%. In normoglycemic women, higher first half of pregnancy n-3 PUFA intake was associated with lower offspring BFM (g) (ß -0.90; 95% CI -1.62, -0.18) and BF% (ß -3.45; 95% CI -6.17, -0.72). In women with GDM, higher first half of pregnancy n-3 PUFA intake was associated with higher offspring BFM (ß 0.94; 95% CI 0.14, 1.75) and BF% (ß 3.21; 95% CI 0.43, 5.99). Higher SFA intake in the third trimester and cumulative intake across pregnancy (mean of the first half and late pregnancy) was associated with higher BFM and BF% (across pregnancy: ß 0.12; 95% CI 0.03, 0.20 and ß 0.44; 95% CI 0.15, 0.73, respectively). Higher carbohydrate intake across pregnancy was associated with lower BFM (ß -0.044; 95% CI -0.086, -0.003), and borderline associated with BF% (ß -0.15; 95% CI -0.31, 0.00). CONCLUSIONS The macronutrient composition of maternal diet during pregnancy is associated with offspring BFM and BF% at 5 years. GDM modifies the association between prenatal n-3 PUFA intake and offspring anthropometrics.
Collapse
Affiliation(s)
- Jelena Meinilä
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Miira M Klemetti
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, South Karelia Central Hospital, Lappeenranta, Finland
- Department of Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Emilia Huvinen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elina Engberg
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Beata Stach-Lempinen
- Department of Obstetrics and Gynecology, South Karelia Central Hospital, Lappeenranta, Finland
| | - Saila Koivusalo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
15
|
Gómez-Vilarrubla A, Mas-Parés B, Díaz M, Xargay-Torrent S, Carreras-Badosa G, Jové M, Martin-Gari M, Bonmatí-Santané A, de Zegher F, Ibañez L, López-Bermejo A, Bassols J. Fatty acids in the placenta of appropiate- versus small-for-gestational-age infants at term birth. Placenta 2021; 109:4-10. [PMID: 33895685 DOI: 10.1016/j.placenta.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Fatty acids are essential nutrients for the fetus and are supplied by the mother through the placenta. Desaturase and elongase enzymes play an important role in modulating the fatty acid composition of body tissues. We aimed to compare the fatty acid profile and the estimated desaturase and elongase activities in the placenta of appropriate (AGA) versus small-for-gestational-age (SGA), and to determine their relationship with the offspring size at birth. METHODS The placental fatty acid profile was analyzed by gas chromatography in 84 infants (45 AGA and 30 SGA) from a prenatal cohort study. The estimated desaturase and elongase activities were calculated from product-precursor fatty acid ratios. Results were associated with maternal (age, body mass index and weight gain during gestation) and neonatal (gestational age, sex, birth weight and birth length) parameters. RESULTS Differences in placental fatty acid composition between AGA and SGA infants rather than correlations thereof with neonatal parameters were observed. Placentas from SGA infants contained lower levels of omega-3 (ALA, EPA, DPA, and DHA) and high omega-6/omega-3 ratios (AA/DHA and LA/ALA), as well as low elongase (Elovl5) and high desaturase (D9Dn7 and D5Dn6) activity as compared to AGA infants (all p < 0.0001). DISCUSSION Placentas of AGA and SGA infants differed in fatty acids profile as well as in estimated desaturase and elongase activities. A striking feature of SGA placentas was the low availability of omega-3. Hence, omega-3 fatty acid status deserves further attention, as a potential target of prenatal interventions.
Collapse
Affiliation(s)
- Ariadna Gómez-Vilarrubla
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Berta Mas-Parés
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Marta Díaz
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, 08950, Esplugues, Barcelona, Spain; CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), ISCIII, 28029, Madrid, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Meritxell Martin-Gari
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | | | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, 3000, Leuven, Belgium
| | - Lourdes Ibañez
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, 08950, Esplugues, Barcelona, Spain; CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), ISCIII, 28029, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain; Department of Pediatrics, Dr. Josep Trueta Hospital, 17007, Girona, Spain.
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain.
| |
Collapse
|
16
|
Associations of Plasma Fatty Acid Patterns during Pregnancy with Respiratory and Allergy Outcomes at School Age. Nutrients 2020; 12:nu12103057. [PMID: 33036333 PMCID: PMC7601105 DOI: 10.3390/nu12103057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Fatty acids might play a role in asthma and allergy development as they can modulate immune responses. We examined among 4260 mother-child pairs participating in a population-based cohort the associations of maternal plasma fatty acid patterns during pregnancy with a child's respiratory and allergy outcomes at school-age. In mid-pregnancy, 22 individual fatty acids were measured from maternal blood. Three patterns were previously identified by principal component analysis: A 'high n-6 polyunsaturated fatty acid (PUFA)', a 'monounsaturated and saturated fatty acid', and a 'high n-3 PUFA' pattern. At the age of 10 years, a child's lung function was assessed by spirometry, current asthma and physician-diagnosed inhalant allergy by questionnaire, and inhalant allergic sensitization by skin prick tests. A higher 'high n-6 PUFA' pattern was associated with a higher forced expiratory volume in 1 s/forced vital capacity and forced expiratory flow after exhaling 75% of forced vital capacity (Z-score difference (95% CI) 0.04 (0, 0.07) and 0.04 (0.01, 0.07), respectively, per SD increase in the fatty acid pattern). We observed no associations of maternal fatty acid patterns with a child's asthma or allergy outcomes. Our results showed limited associations of maternal patterns of high n-6 PUFA concentrations in pregnancy with a better lung function in school-aged children.
Collapse
|
17
|
Miliku K, Duan QL, Moraes TJ, Becker AB, Mandhane PJ, Turvey SE, Lefebvre DL, Sears MR, Subbarao P, Field CJ, Azad MB. Human milk fatty acid composition is associated with dietary, genetic, sociodemographic, and environmental factors in the CHILD Cohort Study. Am J Clin Nutr 2019; 110:1370-1383. [PMID: 31589250 PMCID: PMC6885479 DOI: 10.1093/ajcn/nqz229] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/20/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Fatty acids are a vital component of human milk. They influence infant neurodevelopment and immune function, and they provide ∼50% of milk's energy content. OBJECTIVES The objectives of this study were to characterize the composition of human milk fatty acids in a large Canadian birth cohort and identify factors influencing their variability. METHODS In a subset of the CHILD cohort (n = 1094), we analyzed milk fatty acids at 3-4 mo postpartum using GLC. Individual and total SFAs, MUFAs, and n-3 and n-6 PUFAs were analyzed using SD scores and principal component analysis (PCA). Maternal diet, sociodemographic, health, and environmental factors were self-reported. Single-nucleotide polymorphisms were assessed in the fatty acid desaturase 1 (FADS1-rs174556) and 2 (FADS2-rs174575) genes. RESULTS Fatty acid profiles were variable, with individual fatty acid proportions varying from 2- to >30-fold between women. Using PCA, we identified 4 milk fatty acid patterns: "MUFA and low SFA," "high n-6 PUFA," "high n-3 PUFA," and "high medium-chain fatty acids." In multivariable-adjusted analyses, fish oil supplementation and fatty cold water fish intake were positively associated with DHA and the "high n-3 PUFA" pattern. Mothers carrying the minor allele of FADS1-rs174556 had lower proportions of arachidonic acid (ARA; 20:4n-6). Independent of selected dietary variables and genetic variants, Asian ethnicity was associated with higher linoleic acid (18:2n-6) and total n-3 PUFAs. Ethnic differences in ARA were explained by FADS1 genotype. Maternal obesity was independently associated with higher total SFAs, the "high medium-chain fatty acid" pattern, and lower total MUFAs. Lactation stage, season, study site, and maternal education were also independently associated with some milk fatty acids. No associations were observed for maternal age, parity, delivery mode, or infant sex. CONCLUSIONS This study provides unique insights about the "normal" variation in the composition of human milk fatty acids and the contributing dietary, genetic, sociodemographic, health, and environmental factors. Further research is required to assess implications for infant health.
Collapse
Affiliation(s)
- Kozeta Miliku
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada,Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Qing Ling Duan
- Department of Biomedical and Molecular Sciences, School of Computing, Queen's University, Kingston, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Allan B Becker
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada,Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | | | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | | | - Malcolm R Sears
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada,Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children's Hospital Research Institute of Manitoba, Winnipeg, Canada,Address correspondence to MBA (e-mail: )
| |
Collapse
|
18
|
Siziba LP, Lorenz L, Stahl B, Mank M, Marosvölgyi T, Decsi T, Rothenbacher D, Genuneit J. Changes in Human Milk Fatty Acid Composition During Lactation: The Ulm SPATZ Health Study. Nutrients 2019; 11:nu11122842. [PMID: 31756908 PMCID: PMC6949892 DOI: 10.3390/nu11122842] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
The lipid fraction of human milk provides the infant with the fatty acids that are necessary for optimal growth and development. The aim of this study was to investigate the fatty acid composition of human milk at three time points during lactation and its change over time using appropriate statistical methods. Human milk samples from breastfeeding mothers at 6 weeks (n = 706), 6 months (n = 483), and 12 months (n = 81 with all three time points) were analyzed. Centered log-ratio (clr) transformation was applied to the fatty acid data. Principal component analysis (PCA) and generalized linear model-based repeated measure analysis were used to assess changes over time. The total lipid content was significantly higher at 6 months (β = 0.199, p < 0.029) and 12 months of lactation (β = 0.421, p < 0.001). The constituents of C20:3n-6 and C20:3n-3 were lower at 6 months (p < 0.001). Four distinct sub-compositional fatty acid groups were only identified at 12 months of lactation. The inclusion of small fatty acids of small constituent size in the analysis resulted in a shift in the balance between fatty acid constituents. Human milk fatty acid composition during prolonged lactation is different from that of human milk during a short duration of lactation. Our findings support the hypothesis that a combination of multiple fatty acids is important in fatty acid profiling beyond the presentation of individual fatty acids. Furthermore, the high variability of small fatty acids warrants attention because a compositional analysis may show more pronounced changes.
Collapse
Affiliation(s)
- Linda P. Siziba
- Pediatric Epidemiology, Department of Pediatrics, University Medicine Leipzig, 04103 Leipzig, Germany;
| | - Leonie Lorenz
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (L.L.); (D.R.)
| | - Bernd Stahl
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (B.S.); (M.M.)
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands
| | - Marko Mank
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (B.S.); (M.M.)
| | - Tamas Marosvölgyi
- Department of Paediatrics, Medical School, University of Pécs, 7623 Pécs, Hungary; (T.M.); (T.D.)
| | - Tamas Decsi
- Department of Paediatrics, Medical School, University of Pécs, 7623 Pécs, Hungary; (T.M.); (T.D.)
| | - Dietrich Rothenbacher
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (L.L.); (D.R.)
| | - Jon Genuneit
- Pediatric Epidemiology, Department of Pediatrics, University Medicine Leipzig, 04103 Leipzig, Germany;
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (L.L.); (D.R.)
- Correspondence: ; Tel.: +49-731-500-31067; Fax: +49-731-5012-31067
| |
Collapse
|
19
|
Sanz N, Malpique R, Sierra C, López-Bermejo A, Bassols J, Ibáñez L. Body Composition and Circulating Polyunsaturated Fatty Acids at Age 6 Years: A Longitudinal Pilot Study. Horm Res Paediatr 2019; 90:414-418. [PMID: 30840955 DOI: 10.1159/000496988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
Maternal polyunsaturated fatty acid (PUFA) status during pregnancy may influence birth outcomes and offspring adiposity during childhood. Cord blood PUFA levels associate positively with maternal PUFA and negatively with the newborn's abdominal adiposity. However, longitudinal, prospective studies consistently evaluating maternal and cord blood and PUFA levels in childhood and their association with the child's body composition are so far lacking. In a population of 16 apparently healthy children born appropriate for gestational age and followed longitudinally since birth, we assessed circulating PUFA (by gas chromatography) in maternal, cord, and peripheral blood at age 6 years and studied their correlation with body composition (by absorptiometry) and endocrine-metabolic variables at age 6 years. No associations were found among parameters of body composition and endocrine-metabolic variables at age 6 years and maternal, cord blood or circulating PUFA in peripheral blood. Maternal levels of n-6 linoleic acid, total n-6, and the ratio of n-6:n-3 correlated with their corresponding PUFA levels at age 6 years. In conclusion, in this pilot study, maternal, cord blood, and children's circulating PUFA do not appear to have an impact on body composition and endocrine-metabolic status at the age of 6 years. The close association between maternal PUFA and offspring PUFA at that age may reflect a similarity in nutritional habits in the mother and child.
Collapse
Affiliation(s)
- Nuria Sanz
- Endocrinology Department, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Esplugues, Spain
| | - Rita Malpique
- Endocrinology Department, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Esplugues, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Cristina Sierra
- Department of Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Spain
| | - Abel López-Bermejo
- Department of Pediatrics, Hospital Dr. Josep Trueta, Girona & Girona Institute for Biomedical Research, Girona, Spain
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain
| | - Lourdes Ibáñez
- Endocrinology Department, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Esplugues, Spain, .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain,
| |
Collapse
|
20
|
Exposition prénatale aux oméga 6 et oméga 3 et santé cardio-métabolique à 5 ans des enfants de la cohorte EDEN. NUTR CLIN METAB 2019. [DOI: 10.1016/j.nupar.2019.01.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Kerling EH, Hilton JM, Thodosoff JM, Wick J, Colombo J, Carlson SE. Effect of Prenatal Docosahexaenoic Acid Supplementation on Blood Pressure in Children With Overweight Condition or Obesity: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2019; 2:e190088. [PMID: 30794304 PMCID: PMC6484605 DOI: 10.1001/jamanetworkopen.2019.0088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IMPORTANCE The blood pressure-lowering property of docosahexaenoic acid (DHA) in children and adults is known, and an observational study from the Netherlands has linked higher intrauterine DHA exposure to lower childhood blood pressure. However, the association of prenatal intake of DHA supplement with childhood blood pressure has not been evaluated in randomized clinical trials. OBJECTIVE To determine the effect of DHA supplementation during pregnancy on childhood blood pressure. DESIGN, SETTING, AND PARTICIPANTS This prespecified secondary analysis of the Kansas University DHA Outcome Study (KUDOS), a phase 3, double-blind, randomized, placebo-controlled clinical trial was conducted at several local hospitals in the Kansas City, Kansas, metropolitan area. Pregnant women (n = 350) were enrolled in the KUDOS trial between January 10, 2006, and November 17, 2009, and were followed up until their children were 18 months of age. During pregnancy, the women received either 3 capsules per day of placebo or 600 mg per day of DHA from a mean (SD) of 14.5 (3.7) weeks' (all before 20 weeks) gestation until birth. The parents of 190 children consented to additional follow-up of their children until 6 years, which ended April 29, 2016. Study personnel involved in testing were blind to the randomization until all children had completed the trial. Data analysis was performed from May 23, 2017, to July 10, 2018. INTERVENTIONS Pregnant women were assigned to either 600 mg per day of DHA or a placebo that was half soy and half corn oil. Both placebo and DHA were provided in 3 capsules per day. MAIN OUTCOMES AND MEASURES Childhood blood pressure was a planned secondary outcome of a study powered to measure cognitive development. The hypothesis was that DHA would lower blood pressure prior to data analysis. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured at 4, 4.5, 5, 5.5, and 6 years and were analyzed for possible covariates using mixed models to generate a final model. RESULTS In total, 171 children (88 [51.5%] female) were included in this analysis. Of these children, 89 (52.0%) were randomized to the DHA group and 82 (47.9%) to the placebo group. A statistically significant interaction was found between treatment (placebo or DHA) and child weight status (5-year body mass index ≤85th or >85th percentile) for both SBP and DBP. Children who were overweight or obese whose mothers received placebo during pregnancy had higher SBP and DBP compared with children who were overweight or obese whose mothers received DHA (mean [SE] SBP, 104.28 [1.37] mm Hg vs 100.34 [1.02] mm Hg; DBP, 64.7 [1.23] mm Hg vs 59.76 [0.91] mm Hg). No differences in the SBP and DBP were found between children who were overweight or obese whose mothers received DHA and children who were not overweight or obese. In the mixed model analysis, the child's age at blood pressure measurement and the maternal prepregnancy body mass index were the only other statistically significant variables (child age, SBP: F = 7.385; P = .001; DBP: F = 7.39; P = .001; prepregnancy BMI, SBP: r = 0.284; P = .001; DBP: r = 0.216; P = .01). CONCLUSIONS AND RELEVANCE Maternal docosahexaenoic acid intake during pregnancy appeared to mitigate the association between childhood overweight condition or obesity and blood pressure. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02487771.
Collapse
Affiliation(s)
- Elizabeth H. Kerling
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City
| | - Jamie M. Hilton
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City
| | - Jocelynn M. Thodosoff
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City
| | - Jo Wick
- Department of Biostatistics, University of Kansas, Lawrence
| | - John Colombo
- Department of Psychology, University of Kansas, Lawrence
| | - Susan E. Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City
| |
Collapse
|
22
|
Maslova E, Rifas-Shiman SL, Olsen SF, Gillman MW, Oken E. Prenatal n-3 long-chain fatty acid status and offspring metabolic health in early and mid-childhood: results from Project Viva. Nutr Diabetes 2018; 8:29. [PMID: 29795533 PMCID: PMC5968023 DOI: 10.1038/s41387-018-0040-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/16/2018] [Accepted: 03/13/2018] [Indexed: 11/09/2022] Open
Abstract
Higher maternal and biomarker levels of n-3 long-chain polyunsaturated fatty acids (LCPUFAs) have been associated with improved perinatal outcomes and may also influence offspring metabolic health. Past studies were not powered to examine metabolic outcomes and few have specifically targeted metabolically vulnerable populations. We examined the associations of prenatal n-3 LCPUFA status with markers of metabolic health in early and mid-childhood in the full population as well as stratified by maternal glucose tolerance. Our data consisted of 1418 mother-child dyads from Project Viva, a longitudinal, prospective pre-birth cohort enrolled in eastern Massachusetts. We assessed maternal dietary intake of fish and n-3 LCPUFA in mid-pregnancy using a validated food frequency questionnaire. N-3 LCPUFA levels were quantified in maternal second trimester and umbilical cord plasma using liquid-gas chromatography. We assessed offspring anthropometry, adiposity, and blood pressure at early (median age: 3.2 years) and mid-childhood (median age: 7.7 years); and assayed blood samples collected at these visits for metabolic biomarkers. We report here multivariable effect estimates and 95% CI. Early childhood BMI z-score was on average 0.46 (1.03) units and waist circumference 51.3 (3.7) cm. At mid-childhood these measures were 0.39 (1.00) units and 60.0 (8.3) cm, respectively. Higher cord plasma DHA levels were associated with lower BMI z-score ((Q)uartile 4 vs. Q1: -0.21, 95% CI: -0.38, -0.03), waist circumference (Q4 vs. Q1: -0.63, 95% CI: -1.27, 0.00 cm), and leptin levels (Q4 vs. Q1: -0.36, 95% CI: -0.77, 0.05 ng/mL) in early childhood. These associations were strongest and reached significance in offspring of women with isolated hyperglycemia vs. better or worse glycemic status. Higher maternal DHA + EPA (Q4 vs. Q1: -1.59, 95% CI: -2.80, -0.38 μg/mL) and fish (≥3 vs. 0 portions/week: -2.18, 95% CI: -3.90, -0.47 μg/mL) intake was related to lower adiponectin in early childhood. None of these associations persisted with mid-childhood outcomes. We did not find associations with any of the other outcomes. This study supports early and possibly transient effects of prenatal n-3 LCPUFA status on anthropometric measures and adipokine levels. It also raises the possibility that offspring of women with isolated hyperglycemia derive the most benefits from higher n-3 LCPUFA status.
Collapse
Affiliation(s)
- Ekaterina Maslova
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark. .,Department of Primary Care and Public Health, Imperial College London, London, UK. .,Danish Diabetes Academy, Odense, Denmark.
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sjurdur F Olsen
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthew W Gillman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
23
|
Reusch JEB, Kumar TR, Regensteiner JG, Zeitler PS. Identifying the Critical Gaps in Research on Sex Differences in Metabolism Across the Life Span. Endocrinology 2018; 159:9-19. [PMID: 29300998 PMCID: PMC5761606 DOI: 10.1210/en.2017-03019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
Abstract
The National Institutes of Health (NIH) Office of Research in Women's Health now functions under a mandate calling for the systematic inclusion of both female and male cells, animals, and human subjects in all types of research, so that sex as a biological variable is understood in health and disease. Sex-specific data can improve disease prevention, diagnosis, and treatment as well as reduce inequities. Inclusion of women in research studies has modestly improved over the last 20 years, yet preclinical research is still primarily done using male animal models and male-derived cells, with the result that many conclusions are made based on incomplete and sex-biased data. There are important, yet poorly studied, sex differences in cardiometabolic disease. To begin to address these sex differences, the Center for Women's Health Research at the University of Colorado held its inaugural National Conference, "Sex Differences Across the Lifespan: A Focus on Metabolism," in September 2016 (cwhr@ucdenver.edu). Research to address the important goal of understanding key sex differences in cardiometabolic disease across the life span is lacking. The goal of this article is to discuss the current state of research addressing sex differences in cardiometabolic health across the life span, to outline critical research gaps that must be addressed in response to NIH mandates, and, importantly, to develop strategies to address sex as a biological variable to understand disease mechanisms as well as develop diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Jane E. B. Reusch
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, Colorado 80045
- Veterans Administration Eastern Colorado Health Care System, Denver, Colorado 80220
| | - T. Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Judith G. Regensteiner
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Philip S. Zeitler
- Department of and Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - on Behalf of the Conference Participants
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, Colorado 80045
- Veterans Administration Eastern Colorado Health Care System, Denver, Colorado 80220
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado 80045
- Department of and Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
24
|
Leermakers ETM, van den Hooven EH, Franco OH, Jaddoe VWV, Moll HA, Kiefte-de Jong JC, Voortman T. A priori and a posteriori derived dietary patterns in infancy and cardiometabolic health in childhood: The role of body composition. Clin Nutr 2017; 37:1589-1595. [PMID: 28830701 DOI: 10.1016/j.clnu.2017.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Cardiometabolic risk has its origins in early life. However, it is unclear whether diet during early childhood is associated with cardiometabolic health, and what the role is of obesity. We aimed to study whether overall diet during early childhood is associated with cardiometabolic health and to examine if difference in body composition explain this association. METHODS We examined associations of different types of dietary patterns in infancy with cardiometabolic health at school age among 2026 Dutch children participating in a population-based cohort in the Netherlands. Food intake at the age of 1 year was assessed with a food-frequency questionnaire. Three dietary pattern approaches were used: 1) An a priori-defined diet quality score; 2) dietary patterns based on variation in food intake, derived from principal component analysis (PCA); and 3) dietary patterns based on variations in fat and fat-free mass index, derived with reduced-rank regression (RRR). At the children's age of 6 years, we measured their body composition, systolic and diastolic blood pressure, and serum concentrations of insulin, triglycerides, and HDL-cholesterol, which we combined in a cardiometabolic risk-factor score. RESULTS We observed that, after adjustment for confounders, children with higher adherence to a 'Health-conscious' PCA-derived pattern had a lower cardiometabolic risk-factor score (-0.07 SD (95%CI -0.12; -0.02) per SD). This association did not change after adjustment for fat and fat-free mass index. The RRR-derived dietary patterns based on variations in body composition were not associated with the cardiometabolic risk-factor score. CONCLUSIONS Our results suggest that diet in early childhood may affect cardiometabolic health independent of differences in body composition.
Collapse
Affiliation(s)
- Elisabeth T M Leermakers
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Edith H van den Hooven
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Henriëtte A Moll
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jessica C Kiefte-de Jong
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Leiden University College, The Hague, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|