1
|
Endesfelder S. Caffeine: The Story beyond Oxygen-Induced Lung and Brain Injury in Neonatal Animal Models-A Narrative Review. Antioxidants (Basel) 2024; 13:1076. [PMID: 39334735 PMCID: PMC11429035 DOI: 10.3390/antiox13091076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Caffeine is one of the most commonly used drugs in intensive care to stimulate the respiratory control mechanisms of very preterm infants. Respiratory instability, due to the degree of immaturity at birth, results in apnea of prematurity (AOP), hyperoxic, hypoxic, and intermittent hypoxic episodes. Oxidative stress cannot be avoided as a direct reaction and leads to neurological developmental deficits and even a higher prevalence of respiratory diseases in the further development of premature infants. Due to the proven antioxidant effect of caffeine in early use, largely protective effects on clinical outcomes can be observed. This is also impressively observed in experimental studies of caffeine application in oxidative stress-adapted rodent models of damage to the developing brain and lungs. However, caffeine shows undesirable effects outside these oxygen toxicity injury models. This review shows the effects of caffeine in hyperoxic, hypoxic/hypoxic-ischemic, and intermittent hypoxic rodent injury models, but also the negative effects on the rodent organism when caffeine is administered without exogenous oxidative stress. The narrative analysis of caffeine benefits in cerebral and pulmonary preterm infant models supports protective caffeine use but should be given critical consideration when considering caffeine treatment beyond the recommended corrected gestational age.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
2
|
Riddle A, Srivastava T, Wang K, Tellez E, O'Neill H, Gong X, O'Niel A, Bell JA, Raber J, Lattal M, Maylie J, Back SA. Mild neonatal hypoxia disrupts adult hippocampal learning and memory and is associated with CK2-mediated dysregulation of synaptic calcium-activated potassium channel KCNN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602558. [PMID: 39071376 PMCID: PMC11275740 DOI: 10.1101/2024.07.10.602558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Objective Although nearly half of preterm survivors display persistent neurobehavioral dysfunction including memory impairment without overt gray matter injury, the underlying mechanisms of neuronal or glial dysfunction, and their relationship to commonly observed cerebral white matter injury are unclear. We developed a mouse model to test the hypothesis that mild hypoxia during preterm equivalence is sufficient to persistently disrupt hippocampal neuronal maturation related to adult cellular mechanisms of learning and memory. Methods: Neonatal (P2) mice were exposed to mild hypoxia (8%O 2 ) for 30 min and evaluated for acute injury responses or survived until adulthood for assessment of learning and memory and hippocampal neurodevelopment. Results Neonatal mild hypoxia resulted in clinically relevant oxygen desaturation and tachycardia without bradycardia and was not accompanied by cerebral gray or white matter injury. Neonatal hypoxia exposure was sufficient to cause hippocampal learning and memory deficits and abnormal maturation of CA1 neurons that persisted into adulthood. This was accompanied by reduced hippocampal CA3-CA1 synaptic strength and LTP and reduced synaptic activity of calcium-sensitive SK2 channels, key regulators of spike timing dependent neuroplasticity, including LTP. Structural illumination microscopy revealed reduced synaptic density, but intact SK2 localization at the synapse. Persistent loss of SK2 activity was mediated by altered casein kinase 2 (CK2) signaling. Interpretation Clinically relevant mild hypoxic exposure in the neonatal mouse is sufficient to produce morphometric and functional disturbances in hippocampal neuronal maturation independently of white matter injury. Additionally, we describe a novel persistent mechanism of potassium channel dysregulation after neonatal hypoxia. Collectively our findings suggest an unexplored explanation for the broad spectrum of neurobehavioral, cognitive and learning disabilities that paradoxically persist into adulthood without overt gray matter injury after preterm birth.
Collapse
|
3
|
Liu X, Mohtasebi M, Safavi P, Fathi F, Haratbar SR, Chen L, Chen J, Bada HS, Chen L, Abu Jawdeh EG, Yu G. Wearable fiber-free optical sensor for continuous monitoring of neonatal cerebral blood flow and oxygenation. Pediatr Res 2024; 96:486-493. [PMID: 38503982 DOI: 10.1038/s41390-024-03137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Unstable cerebral hemodynamics places preterm infants at high risk of brain injury. We adapted an innovative, fiber-free, wearable diffuse speckle contrast flow-oximetry (DSCFO) device for continuous monitoring of both cerebral blood flow (CBF) and oxygenation in neonatal piglets and preterm infants. METHODS DSCFO uses two small laser diodes as focused-point and a tiny CMOS camera as a high-density two-dimensional detector to detect spontaneous spatial fluctuation of diffuse laser speckles for CBF measurement, and light intensity attenuations for cerebral oxygenation measurement. The DSCFO was first validated against the established diffuse correlation spectroscopy (DCS) in neonatal piglets and then utilized for continuous CBF and oxygenation monitoring in preterm infants during intermittent hypoxemia (IH) events. RESULTS Significant correlations between the DSCFO and DCS measurements of CBF variations in neonatal piglets were observed. IH events induced fluctuations in CBF, cerebral oxygenation, and peripheral cardiorespiratory vitals in preterm infants. However, no consistent correlation patterns were observed among peripheral and cerebral monitoring parameters. CONCLUSIONS This pilot study demonstrated the feasibility of DSCFO technology to serve as a low-cost wearable sensor for continuous monitoring of multiple cerebral hemodynamic parameters. The results suggested the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations. IMPACT The innovative DSCFO technology may serve as a low-cost wearable sensor for continuous bedside monitoring of multiple cerebral hemodynamic parameters in neonatal intensive care units. Concurrent DSCFO and DCS measurements of CBF variations in neonatal piglet models generated consistent results. No consistent correlation patterns were observed among peripheral and cerebral monitoring parameters in preterm neonates, suggesting the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations during IH events. Integrating and correlating multiple cerebral functional parameters with clinical outcomes may identify biomarkers for prediction and management of IH associated brain injury.
Collapse
Affiliation(s)
- Xuhui Liu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Mehrana Mohtasebi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Pegah Safavi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Faraneh Fathi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | | | - Li Chen
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jin Chen
- Department of Internal Medicine and Department of Computer Science, Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - Henrietta S Bada
- Division of Neonatology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Lei Chen
- Department of Physiology and the Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Elie G Abu Jawdeh
- Division of Neonatology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Letzkus L, Fairchild K, Lyons G, Pyata H, Ratcliffe S, Lake D. Heart Rate and Pulse Oximetry Dynamics in the First Week after Birth in Neonatal Intensive Care Unit Patients and the Risk of Cerebral Palsy. Am J Perinatol 2024; 41:e528-e535. [PMID: 36174590 PMCID: PMC10050229 DOI: 10.1055/s-0042-1756335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Infants in the neonatal intensive care unit (NICU) are at high risk of adverse neuromotor outcomes. Atypical patterns of heart rate (HR) and pulse oximetry (SpO2) may serve as biomarkers for risk assessment for cerebral palsy (CP). The purpose of this study was to determine whether atypical HR and SpO2 patterns in NICU patients add to clinical variables predicting later diagnosis of CP. STUDY DESIGN This was a retrospective study including patients admitted to a level IV NICU from 2009 to 2017 with archived cardiorespiratory data in the first 7 days from birth to follow-up at >2 years of age. The mean, standard deviation (SD), skewness, kurtosis and cross-correlation of HR and SpO2 were calculated. Three predictive models were developed using least absolute shrinkage and selection operator regression (clinical, cardiorespiratory and combined model), and their performance for predicting CP was evaluated. RESULTS Seventy infants with CP and 1,733 controls met inclusion criteria for a 3.8% population prevalence. Area under the receiver operating characteristic curve for CP prediction was 0.7524 for the clinical model, 0.7419 for the vital sign model, and 0.7725 for the combined model. Variables included in the combined model were lower maternal age, outborn delivery, lower 5-minute Apgar's score, lower SD of HR, and more negative skewness of HR. CONCLUSION In this study including NICU patients of all gestational ages, HR but not SpO2 patterns added to clinical variables to predict the eventual diagnosis of CP. Identification of risk of CP within the first few days of life could result in improved therapy resource allocation and risk stratification in clinical trials of new therapeutics. KEY POINTS · SD and skewness of HR have some added predictive value of later diagnosis of CP.. · SpO2 measures do not add to CP prediction.. · Combining clinical variables with early HR measures may improve the prediction of later CP..
Collapse
Affiliation(s)
- Lisa Letzkus
- University of Virginia School of Medicine; Department of Pediatrics; Neurodevelopmental and Behavioral Pediatrics, UVA Children’s, Charlottesville, Virginia, USA
| | - Karen Fairchild
- University of Virginia School of Medicine; Department of Pediatrics; Neonatology, UVA Children’s, Charlottesville, Virginia, USA
| | - Genevieve Lyons
- University of Virginia School of Medicine; Department of Public Health Sciences; Charlottesville, Virginia, USA
| | - Harshini Pyata
- University of North Carolina at Chapel Hill; Department of Pediatrics
| | - Sarah Ratcliffe
- University of Virginia School of Medicine; Department of Public Health Sciences; Charlottesville, Virginia, USA
| | - Doug Lake
- University of North Carolina at Chapel Hill; Department of Pediatrics
- University of Virginia School of Medicine; Department of Cardiovascular Medicine; Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Weese-Mayer DE, Di Fiore JM, Lake DE, Hibbs AM, Claure N, Qiu J, Ambalavanan N, Bancalari E, Kemp JS, Zimmet AM, Carroll JL, Martin RJ, Krahn KN, Hamvas A, Ratcliffe SJ, Krishnamurthi N, Indic P, Dormishian A, Dennery PA, Moorman JR. Maturation of cardioventilatory physiological trajectories in extremely preterm infants. Pediatr Res 2024; 95:1060-1069. [PMID: 37857848 DOI: 10.1038/s41390-023-02839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND In extremely preterm infants, persistence of cardioventilatory events is associated with long-term morbidity. Therefore, the objective was to characterize physiologic growth curves of apnea, periodic breathing, intermittent hypoxemia, and bradycardia in extremely preterm infants during the first few months of life. METHODS The Prematurity-Related Ventilatory Control study included 717 preterm infants <29 weeks gestation. Waveforms were downloaded from bedside monitors with a novel sharing analytics strategy utilized to run software locally, with summary data sent to the Data Coordinating Center for compilation. RESULTS Apnea, periodic breathing, and intermittent hypoxemia events rose from day 3 of life then fell to near-resolution by 8-12 weeks of age. Apnea/intermittent hypoxemia were inversely correlated with gestational age, peaking at 3-4 weeks of age. Periodic breathing was positively correlated with gestational age peaking at 31-33 weeks postmenstrual age. Females had more periodic breathing but less intermittent hypoxemia/bradycardia. White infants had more apnea/periodic breathing/intermittent hypoxemia. Infants never receiving mechanical ventilation followed similar postnatal trajectories but with less apnea and intermittent hypoxemia, and more periodic breathing. CONCLUSIONS Cardioventilatory events peak during the first month of life but the actual postnatal trajectory is dependent on the type of event, race, sex and use of mechanical ventilation. IMPACT Physiologic curves of cardiorespiratory events in extremely preterm-born infants offer (1) objective measures to assess individual patient courses and (2) guides for research into control of ventilation, biomarkers and outcomes. Presented are updated maturational trajectories of apnea, periodic breathing, intermittent hypoxemia, and bradycardia in 717 infants born <29 weeks gestation from the multi-site NHLBI-funded Pre-Vent study. Cardioventilatory events peak during the first month of life but the actual postnatal trajectory is dependent on the type of event, race, sex and use of mechanical ventilation. Different time courses for apnea and periodic breathing suggest different maturational mechanisms.
Collapse
Affiliation(s)
- Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA.
| | - Juliann M Di Fiore
- Department of Pediatrics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.
- Department of Pediatrics, Division of Neonatology, UH Rainbow Babies & Children's Hospital, Cleveland, OH, USA.
| | - Douglas E Lake
- Division of Cardiovascular Medicine, Center for Advanced Medical Analytics and Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anna Maria Hibbs
- Department of Pediatrics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Pediatrics, Division of Neonatology, UH Rainbow Babies & Children's Hospital, Cleveland, OH, USA
| | - Nelson Claure
- Division of Neonatology, Department of Pediatrics, Holtz Children's Hospital - Jackson Memorial Medical Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jiaxing Qiu
- Division of Cardiovascular Medicine, Center for Advanced Medical Analytics and Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Eduardo Bancalari
- Division of Neonatology, Department of Pediatrics, Holtz Children's Hospital - Jackson Memorial Medical Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James S Kemp
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Amanda M Zimmet
- Division of Cardiovascular Medicine, Center for Advanced Medical Analytics and Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - John L Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Richard J Martin
- Department of Pediatrics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Pediatrics, Division of Neonatology, UH Rainbow Babies & Children's Hospital, Cleveland, OH, USA
| | - Katy N Krahn
- Division of Cardiovascular Medicine, Center for Advanced Medical Analytics and Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Aaron Hamvas
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Neonatology, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA
| | - Sarah J Ratcliffe
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Narayanan Krishnamurthi
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA
| | - Premananda Indic
- Department of Electrical Engineering, University of Texas Tyler, Tyler, TX, USA
| | - Alaleh Dormishian
- Division of Neonatology, Department of Pediatrics, Holtz Children's Hospital - Jackson Memorial Medical Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Phyllis A Dennery
- Hasbro Children's Hospital, Brown University, Warren Alpert School of Medicine, Providence, RI, USA
| | - J Randall Moorman
- Division of Cardiovascular Medicine, Center for Advanced Medical Analytics and Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
6
|
Harer MW, Griffin R, Askenazi DJ, Fuloria M, Guillet R, Hanna M, Schuh MP, Slagle C, Woroniecki R, Charlton JR. Caffeine and kidney function at two years in former extremely low gestational age neonates. Pediatr Res 2024; 95:257-266. [PMID: 37660176 PMCID: PMC11293578 DOI: 10.1038/s41390-023-02792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Extremely low gestational age neonates (ELGANs) are at risk for chronic kidney disease. The long-term kidney effects of neonatal caffeine are unknown. We hypothesize that prolonged caffeine exposure will improve kidney function at 22-26 months. METHODS Secondary analysis of the Preterm Erythropoietin Neuroprotection Trial of neonates <28 weeks' gestation. Participants included if any kidney outcomes were collected at 22-26 months corrected age. Exposure was post-menstrual age of caffeine discontinuation. PRIMARY OUTCOMES 'reduced eGFR' <90 ml/min/1.73 m2, 'albuminuria' (>30 mg albumin/g creatinine), or 'elevated blood pressure' (BP) >95th %tile. A general estimating equation logistic regression model stratified by bronchopulmonary dysplasia (BPD) status was used. RESULTS 598 participants had at least one kidney metric at follow up. Within the whole cohort, postmenstrual age of caffeine discontinuation was not associated with any abnormal measures of kidney function at 2 years. In the stratified analysis, for each additional week of caffeine, the no BPD group had a 21% decreased adjusted odds of eGFR <90 ml/min/1.73m2 (aOR 0.78; CI 0.62-0.99) and the BPD group had a 15% increased adjusted odds of elevated BP (aOR 1.15; CI: 1.05-1.25). CONCLUSIONS Longer caffeine exposure during the neonatal period is associated with differential kidney outcomes at 22-26 months dependent on BPD status. IMPACT In participants born <28 weeks' gestation, discontinuation of caffeine at a later post menstrual age was not associated with abnormal kidney outcomes at 22-26 months corrected age. When assessed at 2 years of age, later discontinuation of caffeine in children born <28 weeks' gestation was associated with a greater risk of reduced eGFR in those without a history of BPD and an increased odds of hypertension in those with a history of BPD. More work is necessary to understand the long-term impact of caffeine on the developing kidney.
Collapse
Affiliation(s)
- Matthew W Harer
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Russell Griffin
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David J Askenazi
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mamta Fuloria
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ronnie Guillet
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Mina Hanna
- Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Meredith P Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cara Slagle
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert Woroniecki
- Department of Pediatrics, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
7
|
Kim F, Bateman DA, Garey D, Goldshtrom N, Isler JR, Sahni R, Wallman-Stokes A. Association between intermittent hypoxemia and neurodevelopmental outcomes in extremely premature infants: A single-center experience. Early Hum Dev 2024; 188:105919. [PMID: 38118389 DOI: 10.1016/j.earlhumdev.2023.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVE To describe the association between intermittent hypoxemic events (IHEs) and severe neurodevelopmental impairment (SNDI) or death in extremely premature infants. STUDY DESIGN Retrospective study of extremely premature infants 230/7-276/7 weeks gestational age (GA) and birthweight (BW) ≤1250 grams (g) admitted to a level IV neonatal intensive care unit (NICU) from 2013 to 2017. IHEs, defined as events with SpO2 ≤ 80 % lasting 10 s to 5 min, were algorithmically identified using data extracted from bedside monitors at 2 s intervals (0.5 Hz). The primary outcome was SNDI at 18-24 months corrected age (CA), defined as a Bayley-III motor, language or cognitive composite score ≤69, or death before discharge while the secondary outcome was SNDI alone. We used mixed-effects regression models to evaluate the relationship between mean daily IHE rate per postnatal week of life for the first 12 weeks and the outcomes, and logistic regression models to assess the association between outcomes and summary measures of hypoxic burden for the entire NICU hospitalization. RESULTS The mortality rate was 7 % (18/249) during NICU hospitalization. Of 249 infants born during this time period, IHE and neurodevelopmental outcome data were fully available for 65 infants (mean GA 26 ± 1.4 weeks, mean birth weight (BW) 738 ± 199 g. The outcome of SNDI alone occurred in 34 % (22/65) with a majority demonstrating motor or language delay on the Bayley-III. Although mean daily IHE rate/week was not associated with SNDI or death, total IHE duration was associated with increased odds of SNDI (OR (95 % CI) 1.03 (1.01, 1.05), p = 0.008) in models adjusted for GA. CONCLUSIONS In a cohort of extremely premature infants 23-27 weeks GA, each hour of total IHE duration (SpO2 ≤ 80 %) was associated with a 2.7 % (0.7 %, 4.8 %) increase in the odds of SNDI at 18-24 months CA.
Collapse
Affiliation(s)
- Faith Kim
- Department of Pediatrics, NewYork Presbyterian Morgan Stanley Children's Hospital/Columbia University Irving Medical Center, New York, NY, United States of America.
| | - David A Bateman
- Department of Pediatrics, NewYork Presbyterian Morgan Stanley Children's Hospital/Columbia University Irving Medical Center, New York, NY, United States of America
| | - Donna Garey
- Department of Pediatrics, Phoenix Children's Medical Group, Phoenix, AZ, United States of America
| | - Nimrod Goldshtrom
- Department of Pediatrics, NewYork Presbyterian Morgan Stanley Children's Hospital/Columbia University Irving Medical Center, New York, NY, United States of America
| | - Joseph R Isler
- Department of Pediatrics, NewYork Presbyterian Morgan Stanley Children's Hospital/Columbia University Irving Medical Center, New York, NY, United States of America
| | - Rakesh Sahni
- Department of Pediatrics, NewYork Presbyterian Morgan Stanley Children's Hospital/Columbia University Irving Medical Center, New York, NY, United States of America
| | - Aaron Wallman-Stokes
- Department of Pediatrics, University of Vermont Children's Hospital, Burlington, VT, United States of America
| |
Collapse
|
8
|
Alarcon-Martinez T, Latremouille S, Kovacs L, Kearney RE, Sant'Anna GM, Shalish W. Clinical usefulness of reintubation criteria in extremely preterm infants: a cohort study. Arch Dis Child Fetal Neonatal Ed 2023; 108:643-648. [PMID: 37193586 DOI: 10.1136/archdischild-2022-325245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE To describe the thresholds of instability used by clinicians at reintubation and evaluate the accuracy of different combinations of criteria in predicting reintubation decisions. DESIGN Secondary analysis using data obtained from the prospective observational Automated Prediction of Extubation Readiness study (NCT01909947) between 2013 and 2018. SETTING Multicentre (three neonatal intensive care units). PATIENTS Infants with birth weight ≤1250 g, mechanically ventilated and undergoing their first planned extubation were included. INTERVENTIONS After extubation, hourly O2 requirements, blood gas values and occurrence of cardiorespiratory events requiring intervention were recorded for 14 days or until reintubation, whichever came first. MAIN OUTCOME MEASURES Thresholds at reintubation were described and grouped into four categories: increased O2, respiratory acidosis, frequent cardiorespiratory events and severe cardiorespiratory events (requiring positive pressure ventilation). An automated algorithm was used to generate multiple combinations of criteria from the four categories and compute their accuracies in capturing reintubated infants (sensitivity) without including non-reintubated infants (specificity). RESULTS 55 infants were reintubated (median gestational age 25.2 weeks (IQR 24.5-26.1 weeks), birth weight 750 g (IQR 640-880 g)), with highly variable thresholds at reintubation. After extubation, reintubated infants had significantly greater O2 needs, lower pH, higher pCO2 and more frequent and severe cardiorespiratory events compared with non-reintubated infants. After evaluating 123 374 combinations of reintubation criteria, Youden indices ranged from 0 to 0.46, suggesting low accuracy. This was primarily attributable to the poor agreement between clinicians on the number of cardiorespiratory events at which to reintubate. CONCLUSIONS Criteria used for reintubation in clinical practice are highly variable, with no combination accurately predicting the decision to reintubate.
Collapse
Affiliation(s)
- Tugba Alarcon-Martinez
- Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
- Neonatal Services, The Royal Women's Hospital, Melbourne, VIC, Australia
| | | | - Lajos Kovacs
- Department of Neonatology, Jewish General Hospital, Montreal, Quebec, Canada
| | - Robert E Kearney
- Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | | | - Wissam Shalish
- Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Bachman TE, Iyer NP, Newth CJL, LeMoyne R. Determining an Optimal Oxygen Saturation Target Range Based on Neonatal Maturity: Demonstration of a Decision Tree Analytic. Diagnostics (Basel) 2023; 13:3312. [PMID: 37958208 PMCID: PMC10648394 DOI: 10.3390/diagnostics13213312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The utility of decision tree machine learning in exploring the interactions among the SpO2 target range, neonatal maturity, and oxemic-risk is demonstrated. METHODS This observational study used 3 years of paired age-SpO2-PaO2 data from a neonatal ICU. The CHAID decision tree method was used to explore the interaction of postmenstrual age (PMA) on the risk of extreme arterial oxygen levels at six different potential SpO2 target ranges (88-92%, 89-93%, 90-94%, 91-95%, 92-96% and 93-97%). Risk was calculated using a severity-weighted average of arterial oxygen outside the normal range for neonates (50-80 mmHg). RESULTS In total, 7500 paired data points within the potential target range envelope were analyzed. The two lowest target ranges were associated with the highest risk, and the ranges of 91-95% and 92-96% were associated with the lowest risk. There were shifts in the risk associated with PMA. All the target ranges showed the lowest risk at ≥42 weeks PMA. The lowest risk for preterm infants was within a target range of 92-96% with a PMA of ≤34 weeks. CONCLUSIONS This study demonstrates the utility of decision tree analytics. These results suggest that SpO2 target ranges that are different from typical range might reduce morbidity and mortality. Further research, including prospective randomized trials, is warranted.
Collapse
Affiliation(s)
- Thomas E. Bachman
- Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic;
| | - Narayan P. Iyer
- Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA; (N.P.I.); (C.J.L.N.)
| | - Christopher J. L. Newth
- Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA; (N.P.I.); (C.J.L.N.)
| | - Robert LeMoyne
- Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic;
| |
Collapse
|
10
|
Raffay TM, Di Fiore JM, Chen Z, Sánchez-Illana Á, Vento M, Piñeiro-Ramos JD, Kuligowski J, Martin RJ, Tatsuoka C, Minich NM, MacFarlane PM, Hibbs AM. Hypoxemia events in preterm neonates are associated with urine oxidative biomarkers. Pediatr Res 2023; 94:1444-1450. [PMID: 37188801 PMCID: PMC11459675 DOI: 10.1038/s41390-023-02646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Intermittent hypoxemia (IH) events are common in preterm neonates and are associated with adverse outcomes. Animal IH models can induce oxidative stress. We hypothesized that an association exists between IH and elevated peroxidation products in preterm neonates. METHODS Time in hypoxemia, frequency of IH, and duration of IH events were assessed from a prospective cohort of 170 neonates (<31 weeks gestation). Urine was collected at 1 week and 1 month. Samples were analyzed for lipid, protein, and DNA oxidation biomarkers. RESULTS At 1 week, adjusted multiple quantile regression showed positive associations between several hypoxemia parameters with various individual quantiles of isofurans, neurofurans, dihomo-isoprostanes, dihomo-isofurans, and ortho-tyrosine and a negative correlation with dihomo-isoprostanes and meta-tyrosine. At 1 month, positive associations were found between several hypoxemia parameters with quantiles of isoprostanes, dihomo-isoprostanes and dihomo-isofurans and a negative correlation with isoprostanes, isofurans, neuroprostanes, and meta-tyrosine. CONCLUSIONS Preterm neonates experience oxidative damage to lipids, proteins, and DNA that can be analyzed from urine samples. Our single-center data suggest that specific markers of oxidative stress may be related to IH exposure. Future studies are needed to better understand mechanisms and relationships to morbidities of prematurity. IMPACT Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. The mechanisms by which hypoxemia events result in adverse neural and respiratory outcomes may include oxidative stress to lipids, proteins, and DNA. This study begins to explore associations between hypoxemia parameters and products of oxidative stress in preterm infants. Oxidative stress biomarkers may assist in identifying high-risk neonates.
Collapse
Affiliation(s)
- Thomas M Raffay
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
| | - Juliann M Di Fiore
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengyi Chen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ángel Sánchez-Illana
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Department of Analytical Chemistry, Universtitat de València, Burjassot, Spain
| | - Maximo Vento
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Division of Neonatology, University & Polytechnic Hospital La Fe (HULAFE), Valencia, Spain
| | | | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | | | - Nori M Minich
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Peter M MacFarlane
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Anna Maria Hibbs
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
MacFarlane PM, Martin RJ, Di Fiore JM, Raffay TM, Tatsuoka C, Chen Z, Minich N, Quintas G, Sánchez-Illana Á, Kuligowski J, Piñeiro-Ramos JD, Vento M, Hibbs AM. Plasma serotonergic biomarkers are associated with hypoxemia events in preterm neonates. Pediatr Res 2023; 94:1436-1443. [PMID: 37188799 PMCID: PMC11414210 DOI: 10.1038/s41390-023-02620-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Hypoxemia is a physiological manifestation of immature respiratory control in preterm neonates, which is likely impacted by neurotransmitter imbalances. We investigated relationships between plasma levels of the neurotransmitter serotonin (5-HT), metabolites of tryptophan (TRP), and parameters of hypoxemia in preterm neonates. METHODS TRP, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), and kynurenic acid (KA) were analyzed in platelet-poor plasma at ~1 week and ~1 month of life from a prospective cohort of 168 preterm neonates <31 weeks gestational age (GA). Frequency of intermittent hypoxemia (IH) events and percent time hypoxemic (<80%) were analyzed in a 6 h window after the blood draw. RESULTS At 1 week, infants with detectable plasma 5-HT had fewer IH events (OR (95% CI) = 0.52 (0.29, 0.31)) and less percent time <80% (OR (95% CI) = 0.54 (0.31, 0.95)) compared to infants with undetectable 5-HT. A similar relationship occurred at 1 month. At 1 week, infants with higher KA showed greater percent time <80% (OR (95% CI) = 1.90 (1.03, 3.50)). TRP, 5-HIAA or KA were not associated with IH frequency at either postnatal age. IH frequency and percent time <80% were positively associated with GA < 29 weeks. CONCLUSIONS Circulating neuromodulators 5-HT and KA might represent biomarkers of immature respiratory control contributing to hypoxemia in preterm neonates. IMPACT Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. Mechanisms driving hypoxemia such as immature respiratory control may include central and peripheral imbalances in modulatory neurotransmitters. This study found associations between the plasma neuromodulators serotonin and kynurenic acid and parameters of hypoxemia in preterm neonates. Imbalances in plasma biomarkers affecting respiratory control may help identify neonates at risk of short- and long-term adverse outcomes.
Collapse
Affiliation(s)
- Peter Mathew MacFarlane
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
| | - Richard John Martin
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Juliann Marie Di Fiore
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas Michael Raffay
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengyi Chen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nori Minich
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Guillermo Quintas
- Health and Biomedicine, Leitat Technological Center, Carrer de la Innovació, 2, 08225, Terrassa, Spain
- Analytical Unit, Health Research Institute La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Ángel Sánchez-Illana
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
- Department of Analytical Chemistry, Chemistry Faculty, Universtitat de València, Burjassot, Spain
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - José David Piñeiro-Ramos
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - Maximo Vento
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - Anna Maria Hibbs
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Liu X, Mohtasebi M, Safavi P, Fathi F, Haratbar SR, Chen L, Chen J, Bada HS, Chen L, Abu Jawdeh EG, Yu G. A Wearable Fiber-Free Optical Sensor for Continuous Monitoring of Neonatal Cerebral Blood Flow and Oxygenation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295914. [PMID: 37790418 PMCID: PMC10543216 DOI: 10.1101/2023.09.21.23295914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Impact The innovative DSCFO technology may serve as a low-cost wearable sensor for continuous bedside monitoring of multiple cerebral hemodynamic parameters in neonatal intensive care units.Concurrent DSCFO and DCS measurements of CBF variations in neonatal piglet models generated consistent results.No consistent correlation patterns were observed among peripheral and cerebral monitoring parameters in preterm neonates, suggesting the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations during IH events.Integrating and correlating multiple cerebral functional parameters with clinical outcomes may identify biomarkers for prediction and management of IH associated brain injury. Background Unstable cerebral hemodynamics places preterm infants at high risk of brain injury. We adapted an innovative, fiber-free, wearable diffuse speckle contrast flow-oximetry (DSCFO) device for continuous monitoring of both cerebral blood flow (CBF) and oxygenation in neonatal piglets and preterm infants. Methods DSCFO uses two small laser diodes as focused-point and a tiny CMOS camera as a high-density two-dimensional detector to detect spontaneous spatial fluctuation of diffuse laser speckles for CBF measurement, and light intensity attenuations for cerebral oxygenation measurement. The DSCFO was first validated against the established diffuse correlation spectroscopy (DCS) in neonatal piglets and then utilized for continuous CBF and oxygenation monitoring in preterm infants during intermittent hypoxemia (IH) events. Results Consistent results between the DSCFO and DCS measurements of CBF variations in neonatal piglets were observed. IH events induced fluctuations in CBF, cerebral oxygenation, and peripheral cardiorespiratory vitals in preterm infants. However, no consistent correlation patterns were observed among peripheral and cerebral monitoring parameters. Conclusions This pilot study demonstrated the feasibility of DSCFO technology to serve as a low-cost wearable sensor for continuous monitoring of multiple cerebral hemodynamic parameters. The results suggested the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations.
Collapse
|
13
|
Abstract
Retinopathy of prematurity (ROP) is a complex disease involving development of the neural retina, ocular circulations, and other organ systems of the premature infant. The external stresses of the ex utero environment also influence the pathophysiology of ROP through interactions among retinal neural, vascular, and glial cells. There is variability among individual infants and presentations of the disease throughout the world, making ROP challenging to study. The methods used include representative animal models, cell culture, and clinical studies. This article describes the impact of maternal-fetal interactions; stresses that the preterm infant experiences; and biologic pathways of interest, including growth factor effects and cell-cell interactions, on the complex pathophysiology of ROP phenotypes in developed and emerging countries.
Collapse
|
14
|
Mandala VK, Bollaboina SKY, Changala B, Kotha R, Kasula L. Intermittent Hypoxia in Preterm Neonates and Its Effect on Neonatal Morbidity and Mortality: A Systematic Review. Cureus 2023; 15:e45561. [PMID: 37868466 PMCID: PMC10586711 DOI: 10.7759/cureus.45561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The goal of the present systematic review was to investigate the occurrence patterns of intermittent hypoxemia in newborns throughout the early postnatal period as well as the link between neonatal intermittent hypoxemia exposure and harmful consequences such as neonatal morbidity and death. We collected data from 2014 to 2023 using several abstracting, referencing, and indexing database libraries in the field of medical sciences. A total of 715 papers were evaluated by both authors, and only seven articles met the specified review criteria after a thorough analysis. In preterm neonates with intermittent hypoxia (IH), severe morbidities such as bronchopulmonary dysplasia (BPD), retinopathy of prematurity (ROP), motor impairment, and cognitive delay were found. Only one study that extended to 18 months noted mortality. The length and occurrence of intermittent hypoxemia and the stage of premature neonates at the time of delivery are all closely associated with these morbidities. Therefore, it becomes important to continuously measure the patterns of occurrence of intermittent hypoxemia during early postnatal life to avoid its long-term morbidity and mortality impact.
Collapse
Affiliation(s)
| | | | | | - Rakesh Kotha
- Neonatology, Osmania Medical College, Hyderabad, IND
| | | |
Collapse
|
15
|
Baldassarre ME, Marazzato M, Pensa M, Loverro MT, Quercia M, Lombardi F, Schettini F, Laforgia N. SLAB51 Multi-Strain Probiotic Formula Increases Oxygenation in Oxygen-Treated Preterm Infants. Nutrients 2023; 15:3685. [PMID: 37686717 PMCID: PMC10490200 DOI: 10.3390/nu15173685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Preterm infants are at risk of hypoxia and hyperoxia because of the immaturity of their respiratory and antioxidant systems, linked to increased morbidity and mortality. This study aimed to evaluate the efficacy of a single administration of the SLAB51 probiotic formula in improving oxygenation in respiratory distress syndrome (RDS)-affected premature babies, thus reducing their need for oxygen administration. Additionally, the capability of SLAB51 in activating the factor-erythroid 2-related factor (Nrf2) responsible for antioxidant responses was evaluated in vitro. In two groups of oxygen-treated preterm infants with similar SaO2 values, SLAB51 or a placebo was given. After two hours, the SLAB51-treated group showed a significant increase in SaO2 levels and the SaO2/FiO2 ratio, while the control group showed no changes. Significantly increased Nrf2 activation was observed in intestinal epithelial cells (IECs) exposed to SLAB51 lysates. In preterm infants, we confirmed the previously observed SLAB51's "oxygen-sparing effect", permitting an improvement in SaO2 levels. We also provided evidence of SLAB51's potential to enhance antioxidant responses, thus counteracting the detrimental effects of hyperoxia. Although further studies are needed to support our data, SLAB51 represents a promising approach to managing preterm infants requiring oxygen supplementation.
Collapse
Affiliation(s)
- Maria Elisabetta Baldassarre
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70121 Bari, Italy; (M.E.B.)
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy
| | - Marta Pensa
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70121 Bari, Italy; (M.E.B.)
| | - Maria Teresa Loverro
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70121 Bari, Italy; (M.E.B.)
| | - Michele Quercia
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70121 Bari, Italy; (M.E.B.)
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Federico Schettini
- Neonatology and Neonatal Intensive Care, SS. Annunziata Hospital, 80058 Taranto, Italy
| | - Nicola Laforgia
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70121 Bari, Italy; (M.E.B.)
| |
Collapse
|
16
|
Yazdanyar A, Cai CL, Aranda JV, Shrier E, Beharry KD. Comparison of Bevacizumab and Aflibercept for Suppression of Angiogenesis in Human Retinal Microvascular Endothelial Cells. Pharmaceuticals (Basel) 2023; 16:939. [PMID: 37513851 PMCID: PMC10383229 DOI: 10.3390/ph16070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bevacizumab (Avastin) is a vascular endothelial growth factor (VEGF) inhibitor that is widely used for aggressive posterior retinopathy of prematurity (APROP). Its use is associated with multiple adverse effects. Aflibercept (Eylea) is a VEGFR-1 analogue that is approved for ocular use, but its efficacy for APROP is less studied. We tested the hypothesis that Eylea is as effective as Avastin for suppression of intermittent hypoxia (IH)-induced angiogenesis. Human retinal microvascular endothelial cells (HRECs) were treated with Avastin and low- or high-dose Eylea and exposed to normoxia, hyperoxia (50% O2), or neonatal IH for 24, 48, or 72 h. Cells were assessed for migration and tube formation capacities, as well as biomarkers of angiogenesis and oxidative stress. Both doses of Eylea suppressed migration and tube formation in all oxygen environments, although the effect was not as robust as Avastin. Furthermore, the lower dose of Eylea appeared to be more effective than the higher dose. Eylea induced soluble VEGFR-1 (sVEGFR-1) coincident with high IGF-I levels and decreased Notch/Jagged-1, demonstrating a functional association. Given the role of VEGFR-1 and Notch as guidance cues for vascular sprouting, these data suggest that Eylea may promote normal vascular patterning in a dose-dependent manner.
Collapse
Affiliation(s)
- Amirfarbod Yazdanyar
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Retina Group of New England, Waterford, CT 06385, USA
| | - Charles L Cai
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jacob V Aranda
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Pediatrics/Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Eric Shrier
- Department of Pediatrics/Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Kay D Beharry
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Pediatrics/Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
17
|
Coelho-Santos V, Cruz AJN, Shih AY. Does Perinatal Intermittent Hypoxia Affect Cerebrovascular Network Development? Dev Neurosci 2023; 46:44-54. [PMID: 37231864 DOI: 10.1159/000530957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Perinatal hypoxia is an inadequate delivery of oxygen to the fetus in the period immediately before, during, or after the birth process. The most frequent form of hypoxia occurring in human development is chronic intermittent hypoxia (CIH) due to sleep-disordered breathing (apnea) or bradycardia events. CIH incidence is particularly high with premature infants. During CIH, repetitive cycles of hypoxia and reoxygenation initiate oxidative stress and inflammatory cascades in the brain. A dense microvascular network of arterioles, capillaries, and venules is required to support the constant metabolic demands of the adult brain. The development and refinement of this microvasculature is orchestrated throughout gestation and in the initial weeks after birth, at a critical juncture when CIH can occur. There is little knowledge on how CIH affects the development of the cerebrovasculature. However, since CIH (and its treatments) can cause profound abnormalities in tissue oxygen content and neural activity, there is reason to believe that it can induce lasting abnormalities in vascular structure and function at the microvascular level contributing to neurodevelopmental disorders. This mini-review discusses the hypothesis that CIH induces a positive feedback loop to perpetuate metabolic insufficiency through derailment of normal cerebrovascular development, leading to long-term deficiencies in cerebrovascular function.
Collapse
Affiliation(s)
- Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Anne-Jolene N Cruz
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Gentle SJ, Travers CP, Nakhmani A, Indic P, Carlo WA, Ambalavanan N. Intermittent Hypoxemia and Bronchopulmonary Dysplasia with Pulmonary Hypertension in Preterm Infants. Am J Respir Crit Care Med 2023; 207:899-907. [PMID: 36449386 PMCID: PMC10111996 DOI: 10.1164/rccm.202203-0580oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Rationale: Bedside biomarkers that allow early identification of infants with bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH) are critically important, given the higher risk of death in these infants. Objectives: We hypothesized that infants with BPD-PH have patterns of intermittent hypoxemia (IH) that differ from infants with BPD without PH. Methods: We conducted a matched case-control study of extremely preterm infants from 22 weeks 0 days to 28 weeks 6 days born between 2018 and 2020 at the University of Alabama at Birmingham. BPD-PH status was determined using echocardiographic data performed after postnatal Day 28. Physiologic data were compared between infants with BPD-PH (cases) and BPD alone (control subjects). Receiver operating characteristic (ROC) analysis estimated the predictive ability of cumulative hypoxemia, desaturation frequency, and duration of intermittent hypoxemic events in the week preceding echocardiography to discriminate between cases and control subjects. Measurements and Main Results: Forty infants with BPD-PH were compared with 40 infants with BPD alone. Infants with and without PH had a similar frequency of IH events, but infants with PH had more prolonged hypoxemic events for desaturations below 80% (7 s vs. 6 s; P = 0.03) and 70% (105 s vs. 58 s; P = 0.008). Among infants with BPD-PH, infants who died had longer hypoxemic events below 70% (145 s vs. 72 s; P = 0.01). Using the duration of hypoxemic events below 70%, the areas under the ROC curves for diagnosis of BPD-PH and death in BPD-PH infants were 0.71 and 0.77, respectively. Conclusions: Longer duration of intermittent hypoxemic events was associated both with a diagnosis of BPD-PH and with death among infants with BPD-PH.
Collapse
Affiliation(s)
| | | | - Arie Nakhmani
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Premananda Indic
- Department of Electrical Engineering, The University of Texas at Tyler, Tyler, Texas
| | | | | |
Collapse
|
19
|
Storti M, Faietti ML, Murgia X, Catozzi C, Minato I, Tatoni D, Cantarella S, Ravanetti F, Ragionieri L, Ciccimarra R, Zoboli M, Vilanova M, Sánchez-Jiménez E, Gay M, Vilaseca M, Villetti G, Pioselli B, Salomone F, Ottonello S, Montanini B, Ricci F. Time-resolved transcriptomic profiling of the developing rabbit's lungs: impact of premature birth and implications for modelling bronchopulmonary dysplasia. Respir Res 2023; 24:80. [PMID: 36922832 PMCID: PMC10015812 DOI: 10.1186/s12931-023-02380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Premature birth, perinatal inflammation, and life-saving therapies such as postnatal oxygen and mechanical ventilation are strongly associated with the development of bronchopulmonary dysplasia (BPD); these risk factors, alone or combined, cause lung inflammation and alter programmed molecular patterns of normal lung development. The current knowledge on the molecular regulation of lung development mainly derives from mechanistic studies conducted in newborn rodents exposed to postnatal hyperoxia, which have been proven useful but have some limitations. METHODS Here, we used the rabbit model of BPD as a cost-effective alternative model that mirrors human lung development and, in addition, enables investigating the impact of premature birth per se on the pathophysiology of BPD without further perinatal insults (e.g., hyperoxia, LPS-induced inflammation). First, we characterized the rabbit's normal lung development along the distinct stages (i.e., pseudoglandular, canalicular, saccular, and alveolar phases) using histological, transcriptomic and proteomic analyses. Then, the impact of premature birth was investigated, comparing the sequential transcriptomic profiles of preterm rabbits obtained at different time intervals during their first week of postnatal life with those from age-matched term pups. RESULTS Histological findings showed stage-specific morphological features of the developing rabbit's lung and validated the selected time intervals for the transcriptomic profiling. Cell cycle and embryo development, oxidative phosphorylation, and WNT signaling, among others, showed high gene expression in the pseudoglandular phase. Autophagy, epithelial morphogenesis, response to transforming growth factor β, angiogenesis, epithelium/endothelial cells development, and epithelium/endothelial cells migration pathways appeared upregulated from the 28th day of gestation (early saccular phase), which represents the starting point of the premature rabbit model. Premature birth caused a significant dysregulation of the inflammatory response. TNF-responsive, NF-κB regulated genes were significantly upregulated at premature delivery and triggered downstream inflammatory pathways such as leukocyte activation and cytokine signaling, which persisted upregulated during the first week of life. Preterm birth also dysregulated relevant pathways for normal lung development, such as blood vessel morphogenesis and epithelial-mesenchymal transition. CONCLUSION These findings establish the 28-day gestation premature rabbit as a suitable model for mechanistic and pharmacological studies in the context of BPD.
Collapse
Affiliation(s)
- Matteo Storti
- Department of Experimental Pharmacology and Translational Science, R&D, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy
| | - Maria Laura Faietti
- Department of Analytic and Early Formulations, Chiesi Farmaceutici S.P.A., R&D, 43122, Parma, Italy
| | | | - Chiara Catozzi
- Department of Experimental Pharmacology and Translational Science, R&D, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy
| | - Ilaria Minato
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.,Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124, Parma, Italy
| | - Danilo Tatoni
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.,Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Simona Cantarella
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.,Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | - Luisa Ragionieri
- Department of Veterinary Sciences, University of Parma, 43124, Parma, Italy
| | - Roberta Ciccimarra
- Department of Veterinary Sciences, University of Parma, 43124, Parma, Italy
| | - Matteo Zoboli
- Department of Veterinary Sciences, University of Parma, 43124, Parma, Italy
| | - Mar Vilanova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Ester Sánchez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Gino Villetti
- Department of Experimental Pharmacology and Translational Science, R&D, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy
| | - Barbara Pioselli
- Department of Analytic and Early Formulations, Chiesi Farmaceutici S.P.A., R&D, 43122, Parma, Italy
| | - Fabrizio Salomone
- Department of Experimental Pharmacology and Translational Science, R&D, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy
| | - Simone Ottonello
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.,Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124, Parma, Italy
| | - Barbara Montanini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy. .,Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124, Parma, Italy.
| | - Francesca Ricci
- Department of Experimental Pharmacology and Translational Science, R&D, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy. .,Head of Neonatology and Pulmonary Rare Disease, Preclinical Pharmacology, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy.
| |
Collapse
|
20
|
Ramanand P, Indic P, Travers CP, Ambalavanan N. Comparison of oxygen supplementation in very preterm infants: Variations of oxygen saturation features and their application to hypoxemic episode based risk stratification. Front Pediatr 2023; 11:1016197. [PMID: 36923272 PMCID: PMC10009221 DOI: 10.3389/fped.2023.1016197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/20/2023] [Indexed: 03/02/2023] Open
Abstract
Background Oxygen supplementation is commonly used to maintain oxygen saturation (SpO2) levels in preterm infants within target ranges to reduce intermittent hypoxemic (IH) events, which are associated with short- and long-term morbidities. There is not much information available about differences in oxygenation patterns in infants undergoing such supplementations nor their relation to observed IH events. This study aimed to describe oxygenation characteristics during two types of supplementation by studying SpO2 signal features and assess their performance in hypoxemia risk screening during NICU monitoring. Subjects and methods SpO2 data from 25 infants with gestational age <32 weeks and birthweight <2,000 g who underwent a cross over trial of low-flow nasal cannula (NC) and digitally-set servo-controlled oxygen environment (OE) supplementations was considered in this secondary analysis. Features pertaining to signal distribution, variability and complexity were estimated and analyzed for differences between the supplementations. Univariate and regularized multivariate logistic regression was applied to identify relevant features and develop screening models for infants likely to experience a critically high number of IH per day of observation. Their performance was assessed using area under receiver operating curves (AUROC), accuracy, sensitivity, specificity and F1 scores. Results While most SpO2 measures remained comparable during both supplementations, signal irregularity and complexity were elevated while on OE, pointing to more volatility in oxygen saturation during this supplementation mode. In addition, SpO2 variability measures exhibited early prognostic value in discriminating infants at higher risk of critically many IH events. Poincare plot variability at lag 1 had AUROC of 0.82, 0.86, 0.89 compared to 0.63, 0.75, 0.81 for the IH number, a clinical parameter at observation times of 30 min, 1 and 2 h, respectively. Multivariate models with two features exhibited validation AUROC > 0.80, F1 score > 0.60 and specificity >0.85 at observation times ≥ 1 h. Finally, we proposed a framework for risk stratification of infants using a cumulative risk score for continuous monitoring. Conclusion Analysis of oxygen saturation signal routinely collected in the NICU, may have extensive applications in inferring subtle changes to cardiorespiratory dynamics under various conditions as well as in informing clinical decisions about infant care.
Collapse
Affiliation(s)
- Pravitha Ramanand
- Department of Electrical Engineering, University of Texas at Tyler, Tyler, TX, United States
| | - Premananda Indic
- Department of Electrical Engineering, University of Texas at Tyler, Tyler, TX, United States
| | - Colm P Travers
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Namasivayam Ambalavanan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
House M, Klein S, Parham D, Hysinger EB, Brady JM. Frequent hypoxemia found in infants with bronchopulmonary dysplasia after weaning home oxygen. Pediatr Pulmonol 2022; 57:2638-2645. [PMID: 35832023 DOI: 10.1002/ppul.26076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Parental reports and brief clinical examinations are the primary information used to assist clinicians in weaning home supplemental oxygen in infants with bronchopulmonary dysplasia (BPD). Recorded nocturnal oximetry provides an objective assessment of hypoxemia; however, it is unknown if it identifies clinically undetected hypoxemia in the home setting. Our objective was to determine if nocturnal oximetry can identify unreported hypoxemia in infants with BPD who appear ready to wean from supplemental oxygen. STUDY DESIGN We conducted a retrospective chart review of infants born <32 weeks gestation with BPD who were discharged to home receiving supplemental oxygen and completed recorded nocturnal oximetry in room air during an 18-month period. Abnormal oximetry was defined as >5 min with SpO2 < 90% and/or an oxyhemoglobin desaturation index (ODI4) >5. Comparative analysis of patients with normal and abnormal overnight oximetry was performed using Fisher Exact and Wilcoxon signed-rank test. RESULTS Thirty-five former premature infants completed nocturnal oximetry at 5.8 (3.4-8.3) months corrected age. Nocturnal oximetry was abnormal as defined in 67% of the cohort (n = 21). Five percent of patients were hypoxemic, 52% had frequent desaturation events, and 43% had both. No significant differences existed in neonatal characteristics between patients with normal and abnormal studies. CONCLUSIONS Nocturnal oximetry was abnormal in the majority of infants with BPD who were otherwise clinically ready to wean from oxygen support, suggesting that recorded home oximetry could be a feasible and useful tool to evaluate for otherwise clinically unapparent nocturnal hypoxemia in patients with BPD.
Collapse
Affiliation(s)
- Melissa House
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sarah Klein
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Danielle Parham
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erik B Hysinger
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jennifer M Brady
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Ran Y, Chen R, Huang D, Qin Y, Liu Z, He J, Mei Y, Zhou Y, Yin N, Qi H. The landscape of circular RNA in preterm birth. Front Immunol 2022; 13:879487. [PMID: 36072601 PMCID: PMC9441874 DOI: 10.3389/fimmu.2022.879487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background Preterm birth (PTB) is a multifactorial syndrome that seriously threatens the health of pregnant women and babies worldwide. Recently, circular RNAs (circRNAs) have been understood as important regulators of various physiological and pathological processes. However, the expression pattern and potential roles of circRNAs in PTB are largely unclear. Methods In this study, we extracted and analyzed the circRNA expression profiles in maternal and fetal samples of preterm and term pregnancies, including maternal plasma, maternal monocytes, myometrium, chorion, placenta, and cord blood. We identified the circRNAs which is associated with PTB in different tissues and explored their relationships from the perspective of the overall maternal-fetal system. Furthermore, co-expression analysis of circRNAs and mRNAs, target microRNAs (miRNAs), and RNA-binding proteins (RBPs), provided new clues about possible mechanisms of circRNA function in PTB. In the end, we investigated the potential special biofunctions of circRNAs in different tissues and their common features and communication in PTB. Results Significant differences in circRNA types and expression levels between preterm and term groups have been proved, as well as between tissues. Nevertheless, there were still some PTB-related differentially expressed circRNAs (DECs) shared by these tissues. The functional enrichment analysis showed that the DECs putatively have important tissue-specific biofunctions through their target miRNA and co-expressed mRNAs, which contribute to the signature pathologic changes of each tissue within the maternal-fetal system in PTB (e.g., the contraction of the myometrium). Moreover, DECs in different tissues might have some common biological activities, which are mainly the activation of immune-inflammatory processes (e.g., interleukin1/6/8/17, chemokine, TLRs, and complement). Conclusions In summary, our data provide a preliminary blueprint for the expression and possible roles of circRNAs in PTB, which lays the foundation for future research on the mechanisms of circRNAs in PTB.
Collapse
Affiliation(s)
- Yuxin Ran
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dongni Huang
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Qin
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Liu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie He
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youwen Mei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunqian Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nanlin Yin
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Nanlin Yin, ; Hongbo Qi,
| | - Hongbo Qi
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Nanlin Yin, ; Hongbo Qi,
| |
Collapse
|
23
|
Sindelar R, Nakanishi H, Stanford AH, Colaizy TT, Klein JM. Respiratory management for extremely premature infants born at 22 to 23 weeks of gestation in proactive centers in Sweden, Japan, and USA. Semin Perinatol 2022; 46:151540. [PMID: 34872750 DOI: 10.1016/j.semperi.2021.151540] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Survival of preterm newborn infants have increased steadily since the introduction of surfactant treatment and antenatal steroids. In the absence of randomized controlled trials on ventilatory strategies in extremely preterm infants, we present ventilatory strategies applied during the initial phase and the continued ventilatory care as applied in three centers with proactive prenatal and postnatal management and well documented good outcomes in terms of mortality and morbidity in this cohort of infants.
Collapse
Affiliation(s)
- Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Hidehiko Nakanishi
- Research and Development Center for New Medical Frontiers, Division of Neonatal Intensive Care Medicine, Kitasato University School of Medicine, Kanagawa, Japan
| | - Amy H Stanford
- Division of Neonatology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Tarah T Colaizy
- Division of Neonatology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Jonathan M Klein
- Division of Neonatology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
24
|
Pergolizzi JV, Fort P, Miller TL, LeQuang JA, Raffa RB. The epidemiology of apnoea of prematurity. J Clin Pharm Ther 2022; 47:685-693. [PMID: 35018653 DOI: 10.1111/jcpt.13587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Many premature infants less than 37 weeks gestational age (GA), and almost all infants less than 28 weeks GA, will experience apnoea of prematurity (AOP)-a cessation of respiration for 20 or more seconds (or less than 20 s if accompanied by other signs). Because the treatment options for AOP are so limited, we explore its epidemiology, with the ultimate hope of learning how to decrease its incidence. COMMENT Although AOP usually resolves with maturation of the respiratory system, many short- and long-term negative effects are correlated statistically with AOP (although direct causality has not been established). The primary risk factor for AOP is preterm birth, but delivery technique, genetics, socioeconomic status, racial disparities and other influences are suspected to be involved. Anaemia, asthma and gastric reflux have also been associated with preterm birth, but the relationship with AOP is unclear. The postulated associations and the strength of the evidence are briefly reviewed and discussed. WHAT IS NEW AND CONCLUSION Attempts to elucidate the epidemiology of apnoea of prematurity have been challenging. Studies of AOP are hampered in part by challenges in monitoring the condition, the interplay of multiple comorbidities in preterm neonates and lack of expert consensus definitions. However, since the primary risk factor is preterm birth, efforts to decrease the prevalence of preterm birth would have a positive secondary effect on the prevalence of AOP. Until then, better pharmacotherapeutic options are needed.
Collapse
Affiliation(s)
- Joseph V Pergolizzi
- NEMA Research Inc., Naples, Florida, USA.,Neumentum Inc., Summit, New Jersey, USA.,Enalare Therapeutics Inc., Princeton, New Jersey, USA
| | - Prem Fort
- Neonatology, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas L Miller
- Enalare Therapeutics Inc., Princeton, New Jersey, USA.,Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Robert B Raffa
- Neumentum Inc., Summit, New Jersey, USA.,Enalare Therapeutics Inc., Princeton, New Jersey, USA.,College of Pharmacy (Adjunct), University of Arizona, Tucson, Arizona, USA.,Temple University School of Pharmacy (Prof. Emer.), Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Seppä-Moilanen M, Andersson S, Kirjavainen T. Supplemental Oxygen Treats Periodic Breathing without Effects on Sleep in Late-Preterm Infants. Neonatology 2022; 119:567-574. [PMID: 36088903 PMCID: PMC9677840 DOI: 10.1159/000525196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The effect of supplemental oxygen on sleep has not been studied in preterm infants. METHODS We studied 18 stable late-preterm infants with observed periodic breathing at a median gestational age of 36 weeks. Polysomnography was performed on room air and on 25% oxygen-enriched ambient air. RESULTS Supplemental oxygen did not affect sleep stage distribution, sleep efficiency, the frequency of sleep stage transitions, the appearance of rapid-eye movement (REM) sleep periods, or the high number of spontaneous arousals. The percentage in periodic breathing out of total sleep time decreased from 10% (interquartile range [IQR] 5-9%) on room air to 1% (IQR 0-3%) (p < 0.001) on supplemental oxygen. Also, the number of central apneas decreased from 48 (IQR 32-68) to 23 (IRQ 15-32) per hour (p < 0.001), and the number of oxygen desaturations of a minimum 3% from 38 (IQR 29-74) to 10 (IQR 5-24) per hour (p < 0.001). On room air in non-REM sleep, the median end-tidal carbon dioxide values were systematically lower during periodic breathing at 5.1 (IQR 4.6-6.4) kPa than during stable breathing at 5.5 (4.9-5.9) kPa (p < 0.0001). CONCLUSIONS In late-preterm infants, supplemental oxygen effectively reduces periodic breathing and the number of oxygen desaturations while having no significant effect on sleep. The results support the importance of carotid body over-reactivity on the genesis of periodic breathing in preterm infants.
Collapse
Affiliation(s)
- Maija Seppä-Moilanen
- Children's Hospital, and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Turkka Kirjavainen
- Children's Hospital, and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
26
|
Oda A, Parikka V, Lehtonen L, Azimi S, Porres I, Soukka H. Neurally adjusted ventilatory assist in ventilated very preterm infants: A crossover study. Pediatr Pulmonol 2021; 56:3857-3862. [PMID: 34437773 DOI: 10.1002/ppul.25639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To assess the effects of neurally adjusted ventilatory assist (NAVA) ventilation on oxygenation and respiratory parameters in preterm infants. STUDY DESIGN An observational crossover study with a convenience sample of 19 infants born before 30 gestational weeks. Study parameters were recorded during 3-h periods of both NAVA and conventional ventilation. The proportion of time peripheral oxygen saturation (SpO2 ) and cerebral regional oxygen saturation (cRSO2 ) were within their target ranges, plus the number and severity of desaturation episodes were analyzed. In addition, electrical activity of the diaphragm (Edi), neural respiratory rates, and peak inspiratory pressures (PIPs) were recorded. RESULTS Infants were born at a median age of 264/7 gestational weeks (range: 230/7 -293/7 ); the study was performed at a median age of 20 days (range: 1-82). The proportion of time SpO2 was within the target range, the number of peripheral desaturations or cRSO2 did not differ between the modes. However, the desaturation severity index was lower (131 vs. 152; p = .03) and fewer manual supplemental oxygen adjustments (1.3 vs. 2.2/h; p = .006) were needed during the period of NAVA ventilation following conventional ventilation. The mean Edi (8.1 vs. 11.4 µV; p < .006) and PIP values (14.9 vs. 19.1; p < .001) were lower during the NAVA mode. CONCLUSIONS Although NAVA ventilation did not increase the proportion of time with optimal saturation, it was associated with decreased diaphragmatic activity, lower PIPs, less severe hypoxemic events, and fewer manual oxygen adjustments in very preterm infants.
Collapse
Affiliation(s)
- Arata Oda
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Vilhelmiina Parikka
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.,Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Liisa Lehtonen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.,Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Sepinoud Azimi
- Department of Information Technology, Faculty of Natural Sciences and Technology, Åbo Akademi University, Turku, Finland
| | - Ivan Porres
- Department of Information Technology, Faculty of Natural Sciences and Technology, Åbo Akademi University, Turku, Finland
| | - Hanna Soukka
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.,Department of Clinical Medicine, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Jensen EA, Whyte RK, Schmidt B, Bassler D, Vain NE, Roberts RS. Association between Intermittent Hypoxemia and Severe Bronchopulmonary Dysplasia in Preterm Infants. Am J Respir Crit Care Med 2021; 204:1192-1199. [PMID: 34428130 PMCID: PMC8759313 DOI: 10.1164/rccm.202105-1150oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Bronchopulmonary dysplasia increases the risk of disability in extremely preterm infants. Although the pathophysiology remains uncertain, prior exposure to intermittent hypoxemia may play a role in this relationship. Objectives: To determine the association between prolonged episodes of intermittent hypoxemia and severe bronchopulmonary dysplasia. Methods: A post hoc analysis of extremely preterm infants in the Canadian Oxygen Trial who survived to 36 weeks' postmenstrual age was performed. Oxygen saturations <80% for ⩾1 minute and the proportion of time per day with hypoxemia were quantified using continuous pulse oximetry data that had been sampled every 10 seconds from within 24 hours of birth until 36 weeks' postmenstrual age. The study outcome was severe bronchopulmonary dysplasia as defined in the 2001 NIH Workshop Summary. Measurements and Main Results: Of 1,018 infants, 332 (32.6%) developed severe bronchopulmonary dysplasia. The median number of hypoxemic episodes ranged from 0.8/day (interquartile range, 0.2-1.1) to 60.2/day (interquartile range, 51.4-70.3) among the least and most affected 10% of infants. Compared with the lowest decile of exposure to hypoxemic episodes, the adjusted relative risk of severe bronchopulmonary dysplasia increased progressively from 1.72 (95% confidence interval, 1.55-1.90) at the 2nd decile to 20.40 (95% confidence interval, 12.88-32.32) at the 10th decile. Similar risk gradients were observed for time in hypoxemia. Significant differences in the rates of hypoxemia between infants with and without severe bronchopulmonary dysplasia emerged within the first week after birth. Conclusions: Prolonged intermittent hypoxemia beginning in the first week after birth was associated with an increased risk of developing severe bronchopulmonary dysplasia among extremely preterm infants. Clinical trial registered with www.isrctn.com (ISRCTN62491227) and www.clinicaltrials.gov (NCT00637169).
Collapse
Affiliation(s)
- Erik A. Jensen
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robin K. Whyte
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Barbara Schmidt
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nestor E. Vain
- School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
- Division of Newborn Medicine, Department of Pediatrics, Hospital Sanatorio Trinidad, Buenos Aires, Argentina
| | - Robin S. Roberts
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Diaphragm Activity Pre and Post Extubation in Ventilated Critically Ill Infants and Children Measured With Transcutaneous Electromyography. Pediatr Crit Care Med 2021; 22:950-959. [PMID: 34534162 DOI: 10.1097/pcc.0000000000002828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Swift extubation is important to prevent detrimental effects of invasive mechanical ventilation but carries the risk of extubation failure. Accurate tools to assess extubation readiness are lacking. This study aimed to describe the effect of extubation on diaphragm activity in ventilated infants and children. Our secondary aim was to compare diaphragm activity between failed and successfully extubated patients. DESIGN Prospective, observational study. SETTING Single-center tertiary neonatal ICU and PICU. PATIENTS Infants and children receiving invasive mechanical ventilation longer than 24 hours. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Diaphragm activity was measured with transcutaneous electromyography, from 15 minutes before extubation till 180 minutes thereafter. Peak and tonic activity, inspiratory amplitude, inspiratory area under the curve, and respiratory rate were calculated from the diaphragm activity waveform. One hundred forty-seven infants and children were included (median postnatal age, 1.9; interquartile range, 0.9-6.7 wk). Twenty patients (13.6%) failed extubation within 72 hours. Diaphragm activity increased rapidly after extubation and remained higher throughout the measurement period. Pre extubation, peak (end-inspiratory) diaphragm activity and tonic (end-inspiratory) diaphragm activity were significantly higher in failure, compared with success cases (5.6 vs 7.0 μV; p = 0.04 and 2.8 vs 4.1 μV; p = 0.04, respectively). Receiver operator curve analysis showed the highest area under the curve for tonic (end-inspiratory) diaphragm activity (0.65), with a tonic (end-inspiratory) diaphragm activity greater than 3.4 μV having a combined sensitivity and specificity of 55% and 77%, respectively, to predict extubation outcome. After extubation, diaphragm activity remained higher in patients failing extubation. CONCLUSIONS Diaphragm activity rapidly increased after extubation. Patients failing extubation had a higher level of diaphragm activity, both pre and post extubation. The predictive value of the diaphragm activity variables alone was limited. Future studies are warranted to assess the additional value of electromyography of the diaphragm in combined extubation readiness assessment.
Collapse
|
29
|
Zangaladze A, Cai CL, Marcelino M, Aranda JV, Beharry KD. Renal biomarkers of acute kidney injury in response to increasing intermittent hypoxia episodes in the neonatal rat. BMC Nephrol 2021; 22:299. [PMID: 34481475 PMCID: PMC8418040 DOI: 10.1186/s12882-021-02507-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We tested the hypotheses that: 1) early exposure to increasing episodes of clinically relevant intermittent hypoxia (IH) is detrimental to the developing kidneys; and 2) there is a critical number of daily IH episodes which will result in irreparable renal damage that may involve angiotensin (Ang) II and endothelin (ET)-1. METHODS At birth (P0), neonatal rat pups were exposed to brief IH episodes from the first day of life (P0) to P7 or from P0-P14. Pups were either euthanized immediately or placed in room air (RA) until P21. RA littermates served as controls. Kidneys were harvested at P7, P14, and P21 for histopathology; angiotensin converting enzyme (ACE), ACE-2, ET-1, big ET-1, and malondialdehyde (MDA) levels; immunoreactivity of ACE, ACE-2, ET-1, ET-2, ET receptors (ETAR, ETBR), and hypoxia inducible factor (HIF)1α; and apoptosis (TUNEL stain). RESULTS Histopathology showed increased renal damage with 8-12 IH episodes/day, and was associated with Ang II, ACE, HIF1α, and apoptosis. ACE-2 was not expressed at P7, and minimally increased at P14. However, a robust ACE-2 response was seen during recovery with maximum levels noted in the groups recovering from 8 IH episodes/day. ET-1, big ET-1, ETAR, ETBR, and MDA increased with increasing levels of neonatal IH. CONCLUSIONS Chronic neonatal IH causes severe damage to the developing kidney with associated elevations in vasoconstrictors, suggesting hypertension, particularly with 8 neonatal IH episodes. ACE-2 is not activated in early postnatal life, and this may contribute to IH-induced vasoconstriction. Therapeutic targeting of ACE and ET-1 may help decrease the risk for kidney injury in the developing neonate to prevent and/or treat neonatal acute kidney injury and/or chronic kidney disease.
Collapse
Affiliation(s)
- Anano Zangaladze
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew Marcelino
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- SUNY Eye Institute, New York, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
- SUNY Eye Institute, New York, NY, USA.
- Department of Pediatrics & Ophthalmology, Neonatal-Perinatal Medicine Clinical & Translational Research Labs, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Box 49, Brooklyn, NY, 11203, USA.
| |
Collapse
|
30
|
Erickson G, Dobson NR, Hunt CE. Immature control of breathing and apnea of prematurity: the known and unknown. J Perinatol 2021; 41:2111-2123. [PMID: 33712716 PMCID: PMC7952819 DOI: 10.1038/s41372-021-01010-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023]
Abstract
This narrative review provides a broad perspective on immature control of breathing, which is universal in infants born premature. The degree of immaturity and severity of clinical symptoms are inversely correlated with gestational age. This immaturity presents as prolonged apneas with associated bradycardia or desaturation, or brief respiratory pauses, periodic breathing, and intermittent hypoxia. These manifestations are encompassed within the clinical diagnosis of apnea of prematurity, but there is no consensus on minimum criteria required for diagnosis. Common treatment strategies include caffeine and noninvasive respiratory support, but other therapies have also been advocated with varying effectiveness. There is considerable variability in when and how to initiate and discontinue treatment. There are significant knowledge gaps regarding effective strategies to quantify the severity of clinical manifestations of immature breathing, which prevent us from better understanding the long-term potential adverse outcomes, including neurodevelopment and sudden unexpected infant death.
Collapse
Affiliation(s)
- Grant Erickson
- National Capital Consortium Neonatal-Perinatal Medicine Fellowship, Uniformed Services University, Bethesda, MD, USA
| | - Nicole R Dobson
- Department of Pediatrics, Uniformed Services University, Bethesda, MD, USA.
| | - Carl E Hunt
- Department of Pediatrics, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
31
|
Duenas-Meza E, Escamilla-Gil MI, Bazurto-Zapata MA, Caparo E, Suarez Cuartas M, Rincón Martínez L, Pernett Buenaver L, Rojas Ortega A, Torres J, Restrepo-Gualteros S, Parra Buitrago A, Gonzalez-Garcia M. Intermittent Hypoxia and Respiratory Patterns During Sleep of Preterm Infants Aged 3 to 18 Months Residing at High Altitudes. Sleep 2021; 45:6354695. [PMID: 34409457 DOI: 10.1093/sleep/zsab208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/05/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES the aim of this study was to determine the impact of apneas on oxygen saturation and the presence of intermittent hypoxia, during sleep of preterm infants (PTIs) born at high altitudes and compare with full-term infants (FTIs) at the same altitude. METHODS PTIs and FTIs from 3 to 18 months were included. They were divided into three age groups: 3-4 months (Group 1); 6-7 months (Group 2) and 10-18 months (Group 3). Polysomnography parameters and oxygenation indices were evaluated. Intermittent hypoxia was defined as brief, repetitive cycles of decreased oxygen saturation. Kruskal-Wallis test for multiple comparisons, t-test or Mann-Whitney U test were used. RESULTS 127 PTI and 175 FTI were included. Total apnea-hypopnea index (AHI) was higher in PTI that FTI in all age groups (Group 1: 33.5/h vs. 12.8/h, p=0.042; Group 2: 27.0/h vs. 7.4/h, p<0.001 and Group 3: 11.6/h vs. 3.1/h, p<0.001). In Group 3, central-AHI (8.0/h vs. 2.3/h, p<0.001) and obstructive-AHI (1.8/h vs. 0.6/h, p<0.008) were higher in PTI than FTI. T90 (7.0% vs. 0.5, p<0.001), oxygen desaturation index (39.8/h vs. 11.3, p<0.001) were higher in PTI than FTI, nadir SpO2 (70.0% vs. 80.0, p<0.001) was lower in PTI . CONCLUSION At high altitude, compared to FTI, PTI have a higher rate of respiratory events, greater desaturation and a delayed resolution of these conditions, suggesting the persistence of intermittent hypoxia during the first 18 months of life. This indicates the need for follow-up of these infants for timely diagnosis and treatment of respiratory disturbances during sleep.
Collapse
Affiliation(s)
- Elida Duenas-Meza
- Fundación Neumológica Colombiana.,Universidad de La Sabana.,Fundación Cardioinfantil-Instituto de Cardiología
| | | | | | | | - Miguel Suarez Cuartas
- Fundación Neumológica Colombiana.,Universidad de La Sabana.,Fundación Cardioinfantil-Instituto de Cardiología
| | | | - Lisbeth Pernett Buenaver
- Fundación Neumológica Colombiana.,Universidad de La Sabana.,Fundación Cardioinfantil-Instituto de Cardiología
| | | | | | | | - Andrea Parra Buitrago
- Fundación Neumológica Colombiana.,Universidad de La Sabana.,Fundación Cardioinfantil-Instituto de Cardiología
| | | |
Collapse
|
32
|
Raffay TM, Brasher M, Place BC, Patwardhan A, Giannone PJ, Bada H, Westgate PM, Abu Jawdeh EG. Response to first dose of inhaled albuterol in mechanically ventilated preterm infants. J Perinatol 2021; 41:1704-1710. [PMID: 34035457 PMCID: PMC8147907 DOI: 10.1038/s41372-021-01071-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Bronchodilator responses among preterm infants are heterogeneous. Bedside measurements may identify responders. STUDY DESIGN Respiratory measurements (Resistance, Compliance, FiO2) and pulse oximetry (SpO2) patterns were downloaded from infants <30 weeks gestational age during the first 2 months of life. Mechanically ventilated infants who received albuterol were included (n = 33). Measurements were compared before and after first albuterol. Secondary analyses assessed subsequent doses. RESULTS Median gestation and birthweight were 25 3/7 weeks and 730 g, respectively. Mean Resistance decreased post-albuterol (p = 0.007). Sixty-eight percent of infants were responders based on decreased Resistance. Compliance and FiO2 did not significantly differ. Percent time in hypoxemia (SpO2 < 85%) decreased post albuterol (p < 0.02). In responders, Resistance changes diminished with subsequent administration (all p = 0.01). CONCLUSIONS Ventilator resistance decreased in two-thirds of preterm infants, consistent with studies that utilized formal pulmonary function testing. Albuterol had a variable effect on delivered FiO2; however, hypoxemia may be useful in evaluating albuterol response.
Collapse
Affiliation(s)
- Thomas M Raffay
- Pediatrics/Neonatology, UH Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Mandy Brasher
- Pediatrics/Neonatology, University of Kentucky, Lexington, KY, USA
| | - Brooke C Place
- Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | | | - Peter J Giannone
- Pediatrics/Neonatology, University of Kentucky, Lexington, KY, USA
| | - Henrietta Bada
- Pediatrics/Neonatology, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
33
|
Di Fiore JM, Raffay TM. The relationship between intermittent hypoxemia events and neural outcomes in neonates. Exp Neurol 2021; 342:113753. [PMID: 33984336 DOI: 10.1016/j.expneurol.2021.113753] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
This brief review examines 1) patterns of intermittent hypoxemia in extremely preterm infants during early postnatal life, 2) the relationship between neonatal intermittent hypoxemia exposure and outcomes in both human and animal models, 3) potential mechanistic pathways, and 4) future alterations in clinical care that may reduce morbidity. Intermittent hypoxemia events are pervasive in extremely preterm infants (<28 weeks gestation at birth) during early postnatal life. An increased frequency of intermittent hypoxemia events has been associated with a range of poor neural outcomes including language and cognitive delays, motor impairment, retinopathy of prematurity, impaired control of breathing, and intraventricular hemorrhage. Neonatal rodent models have shown that exposure to short repetitive cycles of hypoxia induce a pathophysiological cascade. However, not all patterns of intermittent hypoxia are deleterious and some may even improve neurodevelopmental outcomes. Therapeutic interventions include supplemental oxygen, pressure support and pharmacologic drugs but prolonged hyperoxia and pressure exposure have been associated with cardiopulmonary morbidity. Therefore, it becomes imperative to distinguish high risk from neutral and/or even beneficial patterns of intermittent hypoxemia during early postnatal life. Identification of such patterns could improve clinical care with targeted interventions for high-risk patterns and minimal or no exposure to treatment modalities for low-risk patterns.
Collapse
Affiliation(s)
- Juliann M Di Fiore
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Thomas M Raffay
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
34
|
Zuzarte I, Paydarfar D, Sternad D. Effect of spontaneous movement on respiration in preterm infants. Exp Physiol 2021; 106:1285-1302. [PMID: 33675125 PMCID: PMC8087648 DOI: 10.1113/ep089143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/03/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The respiratory centres in the brainstem that control respiration receive inputs from various sources, including proprioceptors in muscles and joints and suprapontine centres, which all affect limb movements. What is the effect of spontaneous movement on respiration in preterm infants? What is the main finding and its importance? Apnoeic events tend to be preceded by movements. These activity bursts can cause respiratory instability that leads to an apnoeic event. These findings show promise that infant movements might serve as potential predictors of life-threatening apnoeic episodes, but more research is required. ABSTRACT A common condition in preterm infants (<37 weeks' gestational age) is apnoea resulting from immaturity and instability of the respiratory system. As apnoeas are implicated in several acute and long-term complications, prediction of apnoeas may preempt their onset and subsequent complications. This study tests the hypothesis that infant movements are a predictive marker for apnoeic episodes and examines the relation between movement and respiration. Movement was detected using a wavelet algorithm applied to the photoplethysmographic signal. Respiratory activity was measured in nine infants using respiratory inductance plethysmography; in an additional eight infants, respiration and partial pressure of airway carbon dioxide ( P C O 2 ) were measured by a nasal cannula with side-stream capnometry. In the first cohort, the distribution of movements before and after the onset of 370 apnoeic events was compared. Results showed that apnoeic events were associated with longer movement duration occurring before apnoea onsets compared to after. In the second cohort, respiration was analysed in relation to movement, comparing standard deviation of inter-breath intervals (IBI) before and after apnoeas. Poincaré maps of the respiratory activity quantified variability of airway P C O 2 in phase space. Movement significantly increased the variability of IBI and P C O 2 . Moreover, destabilization of respiration was dependent on the duration of movement. These findings support that bodily movements of the infants precede respiratory instability. Further research is warranted to explore the predictive value of movement for life-threatening events, useful for clinical management and risk stratification.
Collapse
Affiliation(s)
- Ian Zuzarte
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - David Paydarfar
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Sciences and Engineering, University of Texas at Austin, Austin, TX, USA
| | - Dagmar Sternad
- Departments of Biology, Electrical and Computer Engineering & Physics, Northeastern University, Boston, MA, USA
| |
Collapse
|
35
|
Zhou D, Stobdan T, Visk D, Xue J, Haddad GG. Genetic interactions regulate hypoxia tolerance conferred by activating Notch in excitatory amino acid transporter 1-positive glial cells in Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:jkab038. [PMID: 33576765 PMCID: PMC8022968 DOI: 10.1093/g3journal/jkab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Hypoxia is a critical pathological element in many human diseases, including ischemic stroke, myocardial infarction, and solid tumors. Of particular significance and interest of ours are the cellular and molecular mechanisms that underlie susceptibility or tolerance to low O2. Previous studies have demonstrated that Notch signaling pathway regulates hypoxia tolerance in both Drosophila melanogaster and humans. However, the mechanisms mediating Notch-conferred hypoxia tolerance are largely unknown. In this study, we delineate the evolutionarily conserved mechanisms underlying this hypoxia tolerant phenotype. We determined the role of a group of conserved genes that were obtained from a comparative genomic analysis of hypoxia-tolerant D.melanogaster populations and human highlanders living at the high-altitude regions of the world (Tibetans, Ethiopians, and Andeans). We developed a novel dual-UAS/Gal4 system that allows us to activate Notch signaling in the Eaat1-positive glial cells, which remarkably enhances hypoxia tolerance in D.melanogaster, and, simultaneously, knock down a candidate gene in the same set of glial cells. Using this system, we discovered that the interactions between Notch signaling and bnl (fibroblast growth factor), croc (forkhead transcription factor C), or Mkk4 (mitogen-activated protein kinase kinase 4) are important for hypoxia tolerance, at least in part, through regulating neuronal development and survival under hypoxic conditions. Becausethese genetic mechanisms are evolutionarily conserved, this group of genes may serve as novel targets for developing therapeutic strategies and have a strong potential to be translated to humans to treat/prevent hypoxia-related diseases.
Collapse
Affiliation(s)
- Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Tsering Stobdan
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - DeeAnn Visk
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jin Xue
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gabriel G Haddad
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
36
|
Niatsetskaya Z, Sosunov S, Stepanova A, Goldman J, Galkin A, Neginskaya M, Pavlov E, Ten V. Cyclophilin D-dependent oligodendrocyte mitochondrial ion leak contributes to neonatal white matter injury. J Clin Invest 2020; 130:5536-5550. [PMID: 32925170 PMCID: PMC7524474 DOI: 10.1172/jci133082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
Postnatal failure of oligodendrocyte maturation has been proposed as a cellular mechanism of diffuse white matter injury (WMI) in premature infants. However, the molecular mechanisms for oligodendrocyte maturational failure remain unclear. In neonatal mice and cultured differentiating oligodendrocytes, sublethal intermittent hypoxic (IH) stress activated cyclophilin D-dependent mitochondrial proton leak and uncoupled mitochondrial respiration, leading to transient bioenergetic stress. This was associated with development of diffuse WMI: poor oligodendrocyte maturation, diffuse axonal hypomyelination, and permanent sensorimotor deficit. In normoxic mice and oligodendrocytes, exposure to a mitochondrial uncoupler recapitulated the phenotype of WMI, supporting the detrimental role of mitochondrial uncoupling in the pathogenesis of WMI. Compared with WT mice, cyclophilin D-knockout littermates did not develop bioenergetic stress in response to IH challenge and fully preserved oligodendrocyte maturation, axonal myelination, and neurofunction. Our study identified the cyclophilin D-dependent mitochondrial proton leak and uncoupling as a potentially novel subcellular mechanism for the maturational failure of oligodendrocytes and offers a potential therapeutic target for prevention of diffuse WMI in premature infants experiencing chronic IH stress.
Collapse
Affiliation(s)
| | | | | | - James Goldman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | - Maria Neginskaya
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | | |
Collapse
|
37
|
Martini S, Frabboni G, Rucci P, Czosnyka M, Smielewski P, Galletti S, Cimatti AG, Faldella G, Corvaglia L, Austin T. Cardiovascular and cerebrovascular responses to cardio-respiratory events in preterm infants during the transitional period. J Physiol 2020; 598:4107-4119. [PMID: 32592405 DOI: 10.1113/jp279730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS Non-invasive simultaneous multiparametric monitoring allows the in vivo evaluation of cerebral and cardiovascular haemodynamic responses to different types of recurrent episodes of intermittent hypoxia and/or bradycardia, also defined as cardio-respiratory events (CRE), in preterm neonates during postnatal transition. By decreasing left cardiac output, bradycardia further contributes to cerebral hypoxia during CRE. The presence of a haemodynamically significant patent ductus arteriosus results in a deeper impairment of cerebral oxygen status in response to CRE, whereas the brain-sparing remodelling of the fetal circulation resulting from placental insufficiency is associated with more favourable haemodynamic responses to intermittent hypoxia. During transition, the haemodynamic impact of CRE is influenced not only by the event type, but also by specific clinical features; this highlights the importance of developing individualized approaches to reduce the hypoxic burden in this delicate phase. ABSTRACT The present observational prospective study aimed to investigate cerebral and cardiovascular haemodynamic responses to different types of cardio-respiratory events (CRE) in preterm infants during postnatal transition, as well as evaluate the impact of relevant clinical characteristics. Infants with gestational age (GA) <32 weeks and/or birth weight <1500 g were enrolled after birth. Cerebral oxygenation index (cTOI), fractional oxygen extraction (cFTOE), cardiac output (CO), cardiac contractility (iCON) and systemic vascular resistances (sVR) were simultaneously monitored over the first 72 h by near-infrared spectroscopy and electrical velocimetry. CRE were clustered into isolated bradycardia (IB), isolated desaturation (ID) and combined desaturation/bradycardia (DB). For each parameter, percentage changes from baseline (%Δ) were calculated. The impact of different CRE types and clinical variables on %Δ was evaluated with generalized estimating equations. In total, 1426 events were analysed. %ΔcTOI significantly differed among ID, IB and DB (P < 0.001), with the latter showing the greatest drop. %ΔcFTOE decreased significantly during DB (P < 0.001) and ID (P < 0.001) compared to IB. DB and IB were associated with more negative %ΔCO (P < 0.001) and more positive %ΔsVR (P < 0.001) compared to ID. A slight iCON reduction was observed during DB compared to ID (P = 0.043). Antenatal umbilical Doppler impairment, GA and the presence of a haemodynamically significant patent ductus arteriosus had a significant independent impact on %ΔcTOI, %ΔcFTOE and %ΔCO. During the transitional period, the haemodynamic responses to CRE are influenced by the event type and by specific neonatal characteristics, suggesting the importance of targeted individualized approaches for minimizing the risk of cerebral injury in the preterm population.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giulia Frabboni
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy
| | - Paola Rucci
- Department of Biomedical and Neuromotor Sciences, Division of Hygiene and Biostatistics, University of Bologna, Bologna, Italy
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrookes Hospital, Cambridge, UK.,Institute of Electronic Systems, Warsaw University of Technology, Poland
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Silvia Galletti
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Anna Giulia Cimatti
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy
| | - Giacomo Faldella
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Topun Austin
- Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
38
|
Martini S, Frabboni G, Rucci P, Czosnyka M, Smielewski P, Galletti S, Vitali F, Faldella G, Austin T, Corvaglia L. Cardiorespiratory Events in Infants Born Preterm during the Transitional Period. J Pediatr 2020; 221:32-38.e2. [PMID: 32446489 DOI: 10.1016/j.jpeds.2020.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To investigate the features of cardiorespiratory events in infants born preterm during the transitional period, and to evaluate whether different neonatal characteristics may correlate with event type, duration, and severity. STUDY DESIGN Infants with gestational age (GA) <32 weeks and/or birth weight <1500 g were enrolled in this observational prospective study. Heart rate (HR) and peripheral oxygen saturation (SpO2) were recorded continuously over the first 72 hours. Cardiorespiratory events of ≥10 seconds were clustered into isolated desaturation (SpO2 <85%), isolated bradycardia (HR <100 bpm or <70% of baseline), or combined desaturation/bradycardia and classified as mild, moderate, or severe. The daily incidences of isolated desaturation, isolated bradycardia, and combined desaturation and bradycardia were analyzed. The effects of relevant clinical variables on cardiorespiratory event type and severity were assessed using generalized estimating equations. RESULTS Among the 1050 events analyzed, isolated desaturations were the most frequent (n = 625) and isolated bradycardias the least common (n = 171). The number of cardiorespiratory events increased significantly from day 1 to day 2 (P = .028). One in 5 events had severe characteristics; event severity was highest for combined desaturation and bradycardia (P < .001). Compared with other event types, the incidence of combined desaturation and bradycardia was inversely correlated with GA (P = .029) and was higher with the use of continuous positive airway pressure (P = .002). The presence of a hemodynamically significant patent ductus arteriosus was associated with the occurrence of isolated desaturations (P = .001) and with a longer duration of cardiorespiratory events (P = .003). CONCLUSIONS Cardiorespiratory events during transition exhibit distinct types, duration, and severity. Neonatal characteristics are associated with the clinical features of these events, indicating that a tailored clinical approach may reduce the hypoxic burden in preterm infants aged 0-72 hours.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC).
| | - Giulia Frabboni
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy
| | - Paola Rucci
- Division of Hygiene and Biostatistics, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Silvia Galletti
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC)
| | - Francesca Vitali
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy
| | - Giacomo Faldella
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC)
| | - Topun Austin
- Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Luigi Corvaglia
- Neonatal Intensive Care Unit, St Orsola-Malpighi University Hospital, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC)
| |
Collapse
|
39
|
Blood and urine biomarkers associated with long-term respiratory dysfunction following neonatal hyperoxia exposure: Implications for prematurity and risk of SIDS. Respir Physiol Neurobiol 2020; 279:103465. [PMID: 32450147 DOI: 10.1016/j.resp.2020.103465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Former preterm infants, many of whom required supplemental O2 support, exhibit sleep disordered breathing and attenuated ventilatory responses to acute hypoxia (HVR) beyond their NICU stay. There is an increasing awareness that early detection of biomarkers in biological fluids may be useful predictors/identifiers of short- and long-term morbidities. In the present study, we identified serotonin (5-HT), dopamine (DA) and hyaluronan (HA) as three potential biomarkers that may be increased by neonatal hyperoxia and tested whether they would be associated with an impaired HVR in a rat model of supplemental O2 exposure. Neonatal rats (postnatal age (P) 6 days, P6) exposed to hyperoxia (40% FIO2, 24 h/day between P1-P5 days of age) exhibited an attenuated early (1 min), but not the late (4-5 min) phase of the HVR compared to normoxia control rats; the attenuated early phase HVR was associated with increased levels of DA (urine and serum), 5-HT (platelet poor plasma only, PPP), and HA (serum only). At P21, both the early and late phases of the HVR were attenuated, but serum and urine levels of all 3 biomarkers were similar to age-matched control rats. These data indicate that changes in several serum and/or urine biomarkers (5-HT, DA, and HA) following short-term (days) neonatal hyperoxia can signify long-term (weeks) respiratory control dysfunction. Further studies are needed to determine whether early detection of similar biomarkers could be convenient predictors of increased risk of abnormalities in respiratory control including sleep disordered breathing in former preterm infants who had received prior supplemental O2 and who might also be at increased risk of SIDS.
Collapse
|