1
|
Koh MY, Toh KZ, Loh ED, Teo YN, Joon KC, Tan QX, Sharma VK, Yeo LL, Sia CH, Loh WJ, Tan BY. Association of elevated lipoprotein(a) levels with ischemic stroke in young patients - a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 2024; 33:107960. [PMID: 39222699 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Lipoprotein(a) [Lp(a)] is an established independent causal risk factor for cardiovascular disease and atherosclerosis. However, its association with young-onset ischemic stroke is not well-established. A systematic review and meta-analysis was performed to investigate the association of elevated Lp(a) with young ischemic stroke. METHODS Four electronic databases: PubMed (MEDLINE), EMBASE, Scopus and Cochrane Library were systematically searched, profiling studies from inception till 6 Mar 2024. We included studies investigating the relationship between stratified Lp(a) levels and young ischemic stroke. We compared the odds of young stroke patients (age <65 years) having elevated Lp(a) compared to age-matched controls without stroke or transient ischemic attack. RESULTS Five case-control studies comprising a total of 1345 patients were included; 57.7 % (776/1345) were females, with a mean age of 41.5 years. Among them, 22.5 % (264/1171) were smokers. Additionally, 16.8 % (197/1171) had hypertension, 5.9 % (69/1171) had diabetes, and 29.2 % (284/971) had hyperlipidemia. Young stroke patients were more likely to have high Lp(a) level than age-matched controls (OR 1.61, 95 %CI 1.24-2.10). Four studies defined a high Lp(a) level as ≥30mg/dL, whilst one study used a Lp(a) level of >23.2mg/dL as the cut-off. A sensitivity analysis excluding this study showed that young stroke patients were still more likely to have Lp(a) ≥30mg/dL than controls (OR 1.43, 95 %CI 1.08-1.88). CONCLUSION Young stroke patients are more likely to have elevated Lp(a) compared to age-matched controls, suggesting an association between elevated Lp(a) and young stroke. Further research is warranted to evaluate the causal relationships between Lp(a) and young-onset ischemic stroke, as well as to conduct a cost-benefit analysis of Lp(a) screening in young adults as part of a primary prevention strategy.
Collapse
Affiliation(s)
| | | | | | | | - Kew Cheng Joon
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qi Xuan Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vijay K Sharma
- Division of Neurology, Department of Medicine, National University Hospital, Singapore
| | - Leonard Ll Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Medicine, National University Hospital, Singapore
| | - Ching-Hui Sia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiology, National University Heart Centre, Singapore
| | - Wann Jia Loh
- Department of Endocrinology, Changi General Hospital, Singapore
| | - Benjamin Yq Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Medicine, National University Hospital, Singapore.
| |
Collapse
|
2
|
Lara-Guzmán OJ, Arango-González Á, Rivera DA, Muñoz-Durango K, Sierra JA. The colonic polyphenol catabolite dihydroferulic acid (DHFA) regulates macrophages activated by oxidized LDL, 7-ketocholesterol, and LPS switching from pro- to anti-inflammatory mediators. Food Funct 2024; 15:10399-10413. [PMID: 39320081 DOI: 10.1039/d4fo02114b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Macrophage activation plays a central role in the development of atherosclerotic plaques. Interaction with oxidized low-density lipoprotein (oxLDL) leads to macrophage differentiation into foam cells and oxylipin production, contributing to plaque formation. 7-Ketocholesterol (7KC) is an oxidative byproduct of cholesterol found in oxLDL particles and is considered a factor contributing to plaque progression. During atherosclerotic lesion regression or stabilization, macrophages undergo a transformation from a pro-inflammatory phenotype to a reparative anti-inflammatory state. Interleukin-10 (IL-10) and PGE1 appear to be crucial in resolving both acute and chronic inflammatory processes. After coffee consumption, the gut microbiota processes non-absorbed chlorogenic acids producing various lower size phenolic acids. These colonic catabolites, including dihydroferulic acid (DHFA), may exert various local and systemic effects. We focused on DHFA's impact on inflammation and oxidative stress in THP-1 macrophages exposed to oxLDL, 7KC, and lipopolysaccharides (LPS). Our findings reveal that DHFA inhibits the release of several pro-inflammatory mediators induced by LPS in macrophages, such as CCL-2, CCL-3, CCL-5, TNF-α, IL-6, and IL-17. Furthermore, DHFA reduces IL-18 and IL-1β secretion in an inflammasome-like model. DHFA demonstrated additional benefits: it decreased oxLDL uptake and CD36 expression induced by oxLDL, regulated reactive oxygen species (ROS) and 8-isoprostane secretion (indicating oxidative stress modulation), and selectively increased IL-10 and PGE1 levels in the presence of inflammatory stimuli (LPS and 7KC). Finally, our study highlights the pivotal role of PGE1 in foam cell inhibition and inflammation regulation within activated macrophages. This study highlights DHFA's potential as an antioxidant and anti-inflammatory agent, particularly due to its ability to induce PGE1 and IL-10.
Collapse
Affiliation(s)
- Oscar J Lara-Guzmán
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Ángela Arango-González
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Diego A Rivera
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Katalina Muñoz-Durango
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Jelver A Sierra
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| |
Collapse
|
3
|
Lian PA, Zhu WQ, Zhao WX, Huang PP, Ran JL, Tang YX, Huang XS, Li R. Lipoprotein(a) in atherosclerotic cardiovascular disease and proprotein convertase subtilisin/kexin-type 9 inhibitors. Clin Chim Acta 2024; 565:119982. [PMID: 39366516 DOI: 10.1016/j.cca.2024.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
High plasma lipoprotein(a) (Lp(a)) levels increase the cardiovascular risk in populations with atherosclerotic cardiovascular disease (ASCVD). Apolipoprotein (a) [apo(a)], a unique protein component of Lp(a), plays an important role in the pathogenesis of atherosclerosis. Statins, the primary medication in managing ASCVD, lower low-density lipoprotein cholesterol (LDL-C) but concurrently elevate plasma Lp(a) levels, contributing to an increased residual cardiovascular risk. In turn, proprotein convertase subtilisin/kexin-type 9 (PCSK9) inhibitors, a novel class of LDL-C lowering drugs, effectively reduce plasma Lp(a) levels, which is believed to decrease residual cardiovascular risk. However, the mechanism by which PCSK9 inhibitors reduce Lp(a) levels remains unknown. In addition, there are some clinical limitations of PCSK9 inhibitors. Here, we systematically review the past, present, and prospects of studies pertaining to Lp(a), PCSK9 inhibitors, and ASCVD.
Collapse
Affiliation(s)
- Ping-An Lian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Qiang Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei-Xin Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Piao-Piao Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan-Li Ran
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Xin Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xian-Sheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cardiovascular Medicine, Guilin Hospital of The Second Xiangya Hospital, Central South University, Guilin, China
| | - Rong Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Stomatology, Guilin Hospital of The Second Xiangya Hospital, Central South University, Guilin, China.
| |
Collapse
|
4
|
Wu Q, Wang Y, Liu J, Guan X, Chang X, Liu Z, Liu R. Microtubules and cardiovascular diseases: insights into pathology and therapeutic strategies. Int J Biochem Cell Biol 2024; 175:106650. [PMID: 39237031 DOI: 10.1016/j.biocel.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microtubules, complex cytoskeletal structures composed of tubulin proteins in eukaryotic cells, have garnered recent attention in cardiovascular research. Investigations have focused on the post-translational modifications of tubulin, including acetylation and detyrosination. Perturbations in microtubule homeostasis have been implicated in various pathological processes associated with cardiovascular diseases such as heart failure, ischemic heart disease, and arrhythmias. Thus, elucidating the intricate interplay between microtubule dynamics and cardiovascular pathophysiology is imperative for advancing preventive and therapeutic strategies. Several natural compounds have been identified to potentially modulate microtubules, thereby exerting regulatory effects on cardiovascular diseases. This review synthesizes current literature to delineate the roles of microtubules in cardiovascular diseases and assesses the potential of natural compounds in microtubule-targeted therapies.
Collapse
Affiliation(s)
- Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Fima R, Dussaud S, Benbida C, Blanchet M, Lanthiez F, Poupel L, Brambilla C, Gélineau A, Dessena M, Blanc M, Lerévérend C, Moreau M, Boissonnas A, Gautier EL, Huby T. Loss of embryonically-derived Kupffer cells during hypercholesterolemia accelerates atherosclerosis development. Nat Commun 2024; 15:8341. [PMID: 39333539 PMCID: PMC11436809 DOI: 10.1038/s41467-024-52735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Hypercholesterolemia is a major risk factor for atherosclerosis and associated cardiovascular diseases. The liver plays a key role in the regulation of plasma cholesterol levels and hosts a large population of tissue-resident macrophages known as Kupffer cells (KCs). KCs are located in the hepatic sinusoids where they ensure key functions including blood immune surveillance. However, how KCs homeostasis is affected by the build-up of cholesterol-rich lipoproteins that occurs in the circulation during hypercholesterolemia remains unknown. Here, we show that embryo-derived KCs (EmKCs) accumulate large amounts of lipoprotein-derived cholesterol, in part through the scavenger receptor CD36, and massively expand early after the induction of hypercholesterolemia. After this rapid adaptive response, EmKCs exhibit mitochondrial oxidative stress and their numbers gradually diminish while monocyte-derived KCs (MoKCs) with reduced cholesterol-loading capacities seed the KC pool. Decreased proportion of EmKCs in the KC pool enhances liver cholesterol content and exacerbates hypercholesterolemia, leading to accelerated atherosclerotic plaque development. Together, our data reveal that KC homeostasis is perturbed during hypercholesterolemia, which in turn alters the control of plasma cholesterol levels and increases atherosclerosis.
Collapse
Affiliation(s)
- Rebecca Fima
- Sorbonne Université, INSERM, UMRS 1166, 75013, Paris, France
| | | | - Cheïma Benbida
- Sorbonne Université, INSERM, UMRS 1166, 75013, Paris, France
| | | | - François Lanthiez
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, 75013, Paris, France
| | - Lucie Poupel
- Sorbonne Université, INSERM, UMRS 1166, 75013, Paris, France
| | | | | | - Mattia Dessena
- Sorbonne Université, INSERM, UMRS 1166, 75013, Paris, France
- Department of Medicine and Surgery, University of Parma, 43125, Parma, Italy
| | - Marina Blanc
- Sorbonne Université, INSERM, UMRS 1166, 75013, Paris, France
| | | | - Martine Moreau
- Sorbonne Université, INSERM, UMRS 1166, 75013, Paris, France
| | - Alexandre Boissonnas
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, 75013, Paris, France
| | | | - Thierry Huby
- Sorbonne Université, INSERM, UMRS 1166, 75013, Paris, France.
| |
Collapse
|
6
|
Bobek JM, Stuttgen GM, Sahoo D. A comprehensive analysis of the role of native and modified HDL in ER stress in primary macrophages. Front Cardiovasc Med 2024; 11:1448607. [PMID: 39328237 PMCID: PMC11424405 DOI: 10.3389/fcvm.2024.1448607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Recent findings demonstrate that high density lipoprotein (HDL) function rather than HDL-cholesterol levels themselves may be a better indicator of cardiovascular disease risk. One mechanism by which HDL can become dysfunctional is through oxidative modification by reactive aldehydes. Previous studies from our group demonstrated that HDL modified by reactive aldehydes alters select cardioprotective functions of HDL in macrophages. To identify mechanisms by which dysfunctional HDL contributes to atherosclerosis progression, we designed experiments to test the hypothesis that HDL modified by reactive aldehydes triggers endoplasmic reticulum (ER) stress in primary murine macrophages. Methods and results Peritoneal macrophages were harvested from wild-type C57BL/6J mice and treated with thapsigargin, oxLDL, and/or HDL for up to 48 hours. Immunoblot analysis and semi-quantitative PCR were used to measure expression of BiP, p-eIF2α, ATF6, and XBP1 to assess activation of the unfolded protein response (UPR). Through an extensive set of comprehensive experiments, and contrary to some published studies, our findings led us to three novel discoveries in primary murine macrophages: (i) oxLDL alone was unable to induce ER stress; (ii) co-incubation with oxLDL or HDL in the presence of thapsigargin had an additive effect in which expression of ER stress markers were significantly increased and prolonged as compared to cells treated with thapsigargin alone; and (iii) HDL, in the presence or absence of reactive aldehydes, was unable blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Conclusions Our systematic approach to assess the role of native and modified HDL in mediating primary macrophage ER stress led to the discovery that lipoproteins on their own require the presence of thapsigargin to synergistically increase expression of ER stress markers. We further demonstrated that HDL, in the presence or absence of reactive aldehydes, was unable to blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Together, our findings suggest the need for more detailed investigations to better understand the role of native and modified lipoproteins in mediating ER stress pathways.
Collapse
Affiliation(s)
- Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gage M. Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology & Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
7
|
Qin T, Ma TY, Huang K, Lu SJ, Zhong JH, Li JJ. Lipoprotein (a)-Related Inflammatory Imbalance: A Novel Horizon for the Development of Atherosclerosis. Curr Atheroscler Rep 2024; 26:383-394. [PMID: 38878139 PMCID: PMC11236888 DOI: 10.1007/s11883-024-01215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW The primary objective of this review is to explore the pathophysiological roles and clinical implications of lipoprotein(a) [Lp(a)] in the context of atherosclerotic cardiovascular disease (ASCVD). We seek to understand how Lp(a) contributes to inflammation and arteriosclerosis, aiming to provide new insights into the mechanisms of ASCVD progression. RECENT FINDINGS Recent research highlights Lp(a) as an independent risk factor for ASCVD. Studies show that Lp(a) not only promotes the inflammatory processes but also interacts with various cellular components, leading to endothelial dysfunction and smooth muscle cell proliferation. The dual role of Lp(a) in both instigating and, under certain conditions, mitigating inflammation is particularly noteworthy. This review finds that Lp(a) plays a complex role in the development of ASCVD through its involvement in inflammatory pathways. The interplay between Lp(a) levels and inflammatory responses highlights its potential as a target for therapeutic intervention. These insights could pave the way for novel approaches in managing and preventing ASCVD, urging further investigation into Lp(a) as a therapeutic target.
Collapse
Affiliation(s)
- Ting Qin
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China
| | - Tian-Yi Ma
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China
| | - Kang Huang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China
| | - Shi-Juan Lu
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China.
| | - Jiang-Hua Zhong
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China.
| | - Jian-Jun Li
- Cadiometabolic Center, State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
8
|
Wang Y, Liu T, Wu Y, Wang L, Ding S, Hou B, Zhao H, Liu W, Li P. Lipid homeostasis in diabetic kidney disease. Int J Biol Sci 2024; 20:3710-3724. [PMID: 39113692 PMCID: PMC11302873 DOI: 10.7150/ijbs.95216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Lipid homeostasis is crucial for proper cellular and systemic functions. A growing number of studies confirm the importance of lipid homeostasis in diabetic kidney disease (DKD). Lipotoxicity caused by imbalance in renal lipid homeostasis can further exasperate renal injury. Large lipid deposits and lipid droplet accumulation are present in the kidneys of DKD patients. Autophagy plays a critical role in DKD lipid homeostasis and is involved in the regulation of lipid content. Inhibition or reduction of autophagy can lead to lipid accumulation, which in turn further affects autophagy. Lipophagy selectively recognizes and degrades lipids and helps to regulate cellular lipid metabolism and maintain intracellular lipid homeostasis. Therefore, we provide a systematic review of fatty acid, cholesterol, and sphingolipid metabolism, and discuss the responses of different renal intrinsic cells to imbalances in lipid homeostasis. Finally, we discuss the mechanism by which autophagy, especially lipophagy, maintains lipid homeostasis to support the development of new DKD drugs targeting lipid homeostasis.
Collapse
Affiliation(s)
- Ying Wang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Shaowei Ding
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baoluo Hou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
9
|
Li CX, Yue L. The Multifaceted Nature of Macrophages in Cardiovascular Disease. Biomedicines 2024; 12:1317. [PMID: 38927523 PMCID: PMC11201197 DOI: 10.3390/biomedicines12061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
As the leading cause of mortality worldwide, cardiovascular disease (CVD) represents a variety of heart diseases and vascular disorders, including atherosclerosis, aneurysm, ischemic injury in the heart and brain, arrythmias, and heart failure. Macrophages, a diverse population of immune cells that can promote or suppress inflammation, have been increasingly recognized as a key regulator in various processes in both healthy and disease states. In healthy conditions, these cells promote the proper clearance of cellular debris, dead and dying cells, and provide a strong innate immune barrier to foreign pathogens. However, macrophages can play a detrimental role in the progression of disease as well, particularly those inflammatory in nature. This review will focus on the current knowledge regarding the role of macrophages in cardiovascular diseases.
Collapse
Affiliation(s)
- Cindy X. Li
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Lixia Yue
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
10
|
Khan TG, Cunha JB, Raut C, Burroughs M, Goonewardena SN, Smrcka AV, Speliotes EK, Emmer BT. Functional interrogation of cellular Lp(a) uptake by genome-scale CRISPR screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593568. [PMID: 38766193 PMCID: PMC11100788 DOI: 10.1101/2024.05.11.593568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
An elevated level of lipoprotein(a), or Lp(a), in the bloodstream has been causally linked to the development of atherosclerotic cardiovascular disease and calcific aortic valve stenosis. Steady state levels of circulating lipoproteins are modulated by their rate of clearance, but the identity of the Lp(a) uptake receptor(s) has been controversial. In this study, we performed a genome-scale CRISPR screen to functionally interrogate all potential Lp(a) uptake regulators in HuH7 cells. Strikingly, the top positive and negative regulators of Lp(a) uptake in our screen were LDLR and MYLIP, encoding the LDL receptor and its ubiquitin ligase IDOL, respectively. We also found a significant correlation for other genes with established roles in LDLR regulation. No other gene products, including those previously proposed as Lp(a) receptors, exhibited a significant effect on Lp(a) uptake in our screen. We validated the functional influence of LDLR expression on HuH7 Lp(a) uptake, confirmed in vitro binding between the LDLR extracellular domain and purified Lp(a), and detected an association between loss-of-function LDLR variants and increased circulating Lp(a) levels in the UK Biobank cohort. Together, our findings support a central role for the LDL receptor in mediating Lp(a) uptake by hepatocytes.
Collapse
Affiliation(s)
- Taslima G. Khan
- Program in Chemical Biology, University of Michigan, Ann Arbor MI
| | - Juliana Bragazzi Cunha
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor MI
| | - Chinmay Raut
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor MI
| | | | - Sascha N. Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Frankel Cardiovascular Center, University of Michigan, Ann Arbor MI
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor MI
| | - Elizabeth K. Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor MI
| | - Brian T. Emmer
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Frankel Cardiovascular Center, University of Michigan, Ann Arbor MI
| |
Collapse
|
11
|
Bhatia HS, Becker RC, Leibundgut G, Patel M, Lacaze P, Tonkin A, Narula J, Tsimikas S. Lipoprotein(a), platelet function and cardiovascular disease. Nat Rev Cardiol 2024; 21:299-311. [PMID: 37938756 PMCID: PMC11216952 DOI: 10.1038/s41569-023-00947-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Lipoprotein(a) (Lp(a)) is associated with atherothrombosis through several mechanisms, including putative antifibrinolytic properties. However, genetic association studies have not demonstrated an association between high plasma levels of Lp(a) and the risk of venous thromboembolism, and studies in patients with highly elevated Lp(a) levels have shown that Lp(a) lowering does not modify the clotting properties of plasma ex vivo. Lp(a) can interact with several platelet receptors, providing biological plausibility for a pro-aggregatory effect. Observational clinical studies suggest that elevated plasma Lp(a) concentrations are associated with worse long-term outcomes in patients undergoing revascularization. Furthermore, in these patients, those with elevated plasma Lp(a) levels derive more benefit from prolonged dual antiplatelet therapy than those with normal Lp(a) levels. The ASPREE trial in healthy older individuals treated with aspirin showed a reduction in ischaemic events in those who had a single-nucleotide polymorphism in LPA that is associated with elevated Lp(a) levels in plasma, without an increase in bleeding events. In this Review, we re-examine the role of Lp(a) in the regulation of platelet function and suggest areas of research to define further the clinical relevance to cardiovascular disease of the observed associations between Lp(a) and platelet function.
Collapse
Affiliation(s)
- Harpreet S Bhatia
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregor Leibundgut
- Division of Cardiology, University Hospital of Basel, Basel, Switzerland
| | - Mitul Patel
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Andrew Tonkin
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Bianco V, Svecla M, Vingiani GB, Kolb D, Schwarz B, Buerger M, Beretta G, Norata GD, Kratky D. Regional Differences in the Small Intestinal Proteome of Control Mice and of Mice Lacking Lysosomal Acid Lipase. J Proteome Res 2024; 23:1506-1518. [PMID: 38422518 PMCID: PMC7615810 DOI: 10.1021/acs.jproteome.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The metabolic contribution of the small intestine (SI) is still unclear despite recent studies investigating the involvement of single cells in regional differences. Using untargeted proteomics, we identified regional characteristics of the three intestinal tracts of C57BL/6J mice and found that proteins abundant in the mouse ileum correlated with the high ileal expression of the corresponding genes in humans. In the SI of C57BL/6J mice, we also detected an increasing abundance of lysosomal acid lipase (LAL), which is responsible for degrading triacylglycerols and cholesteryl esters within the lysosome. LAL deficiency in patients and mice leads to lipid accumulation, gastrointestinal disturbances, and malabsorption. We previously demonstrated that macrophages massively infiltrated the SI of Lal-deficient (KO) mice, especially in the duodenum. Using untargeted proteomics (ProteomeXchange repository, data identifier PXD048378), we revealed a general inflammatory response and a common lipid-associated macrophage phenotype in all three intestinal segments of Lal KO mice, accompanied by a higher expression of GPNMB and concentrations of circulating sTREM2. However, only duodenal macrophages activated a metabolic switch from lipids to other pathways, which were downregulated in the jejunum and ileum of Lal KO mice. Our results provide new insights into the process of absorption in control mice and possible novel markers of LAL-D and/or systemic inflammation in LAL-D.
Collapse
Affiliation(s)
- Valentina Bianco
- Gottfried
Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010 Graz, Austria
| | - Monika Svecla
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Giovanni Battista Vingiani
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Dagmar Kolb
- Core
Facility Ultrastructural Analysis, Medical
University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Gottfried
Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Birgit Schwarz
- Gottfried
Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010 Graz, Austria
| | - Martin Buerger
- Gottfried
Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010 Graz, Austria
| | - Giangiacomo Beretta
- Department
of Environmental Science and Policy, Università
degli Studi di Milano, 20133 Milan, Italy
| | - Giuseppe Danilo Norata
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
- Centro
SISA per lo studio dell’Aterosclerosi, Ospedale Bassini, 20092 Cinisello Balsamo, Italy
| | - Dagmar Kratky
- Gottfried
Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
13
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
14
|
Kotsovilis S, Salagianni M, Varela A, Davos CH, Galani IE, Andreakos E. Comprehensive Analysis of 1-Year-Old Female Apolipoprotein E-Deficient Mice Reveals Advanced Atherosclerosis with Vulnerable Plaque Characteristics. Int J Mol Sci 2024; 25:1355. [PMID: 38279355 PMCID: PMC10816800 DOI: 10.3390/ijms25021355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Apolipoprotein E-knockout (Apoe-/-) mice constitute the most widely employed animal model of atherosclerosis. Deletion of Apoe induces profound hypercholesterolemia and promotes the development of atherosclerosis. However, despite its widespread use, the Apoe-/- mouse model remains incompletely characterized, especially at late time points and advanced disease stages. Thus, it is unclear how late atherosclerotic plaques compare to earlier ones in terms of lipid deposition, calcification, macrophage accumulation, smooth muscle cell presence, or plaque necrosis. Additionally, it is unknown how cardiac function and hemodynamic parameters are affected at late disease stages. Here, we used a comprehensive analysis based on histology, fluorescence microscopy, and Doppler ultrasonography to show that in normal chow diet-fed Apoe-/- mice, atherosclerotic lesions at the level of the aortic valve evolve from a more cellular macrophage-rich phenotype at 26 weeks to an acellular, lipid-rich, and more necrotic phenotype at 52 weeks of age, also marked by enhanced lipid deposition and calcification. Coronary artery atherosclerotic lesions are sparse at 26 weeks but ubiquitous and extensive at 52 weeks; yet, left ventricular function was not significantly affected. These findings demonstrate that atherosclerosis in Apoe-/- mice is a highly dynamic process, with atherosclerotic plaques evolving over time. At late disease stages, histopathological characteristics of increased plaque vulnerability predominate in combination with frequent and extensive coronary artery lesions, which nevertheless may not necessarily result in impaired cardiac function.
Collapse
Affiliation(s)
- Sotirios Kotsovilis
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| | - Maria Salagianni
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| | - Aimilia Varela
- Cardiovascular Research Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (A.V.); (C.H.D.)
| | - Constantinos H. Davos
- Cardiovascular Research Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (A.V.); (C.H.D.)
| | - Ioanna E. Galani
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| |
Collapse
|
15
|
González-Garrido JA, Gómez-García JA, Hernández-Abreu OI, Olivares-Corichi IM, Pereyra-Vergara F, García-Sánchez JR. Anticancer Activity of Sargassum fluitans Extracts in Different Cancer Cells. Anticancer Agents Med Chem 2024; 24:745-754. [PMID: 38385488 DOI: 10.2174/0118715206282983240215050314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The arrival of large quantities of Sargassum in the Mexican Caribbean Sea has generated major environmental, health and economic problems. Although Sargassum has been used in the generation of some commercial products, few studies have described its possible applications as a source of compounds with anticancer activity. OBJECTIVE This study aimed to evaluate the antiproliferative effects of different Sargassum extracts on various cancer cell lines. Furthermore, LC/QTOF-MS was used to identify the compounds related to the antiproliferative effect. METHODS First, determination of the seaweed was performed, and dichloromethane, chloroform and methanol extracts were obtained. The extracts were evaluated for their antiproliferative effects by MTT in breast (MDAMB- 231 and MCF-7), prostate (DU-145), lung (A549) and cervical (SiHa) cancer cell lines. Finally, LC/QTOFMS identified the compounds related to the antiproliferative effect. RESULTS The authentication showed Sargassum fluitans as the predominant species. The extracts of dichloromethane and chloroform showed an antiproliferative effect. Interestingly, the fractionation of the chloroform extract showed two fractions (FC1 and FC2) with antiproliferative activity in MDA-MB-231, SiHa and A549 cancer cell lines. On the other hand, three fractions of dichloromethane extract (FD1, FD4 and FD5) also showed antiproliferative effects in the MDA-MB-231, MCF-7, SiHa and DU-145 cancer cell lines. Furthermore, LC/QTOF-MS revealed the presence of eight major compounds in FC2. Three compounds with evidence of anticancer activity were identified (D-linalool-3-glucoside, (3R,4S,6E,10Z)-3,4,7,11-tetramethyl-6,10-tridecadienal and alpha-tocotrienol). CONCLUSION These findings showed that Sargassum fluitans extracts are a possible source of therapeutic agents against cancer and could act as scaffolds for new drug discovery.
Collapse
Affiliation(s)
- José Arnold González-Garrido
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas. Laboratorio de Bioquímica y Biología molecular, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa KM. 1 Colonia la Esmeralda, Tabasco, C.P. 86690, México
| | - Javier Alejandro Gómez-García
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas. Laboratorio de Bioquímica y Biología molecular, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa KM. 1 Colonia la Esmeralda, Tabasco, C.P. 86690, México
| | - Oswaldo Ignacio Hernández-Abreu
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas. Laboratorio de Bioquímica y Biología molecular, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa KM. 1 Colonia la Esmeralda, Tabasco, C.P. 86690, México
| | - Ivonne María Olivares-Corichi
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Laboratorio de Oncología Molecular y Estrés Oxidativo, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, C.P. 11340, CDMX, México
| | - Fernando Pereyra-Vergara
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Laboratorio de Oncología Molecular y Estrés Oxidativo, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, C.P. 11340, CDMX, México
| | - José Rubén García-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Laboratorio de Oncología Molecular y Estrés Oxidativo, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, C.P. 11340, CDMX, México
| |
Collapse
|
16
|
Liu YW, Dong CL, Jiang X, Liu DY. Association of the LPA gene polymorphisms with coronary artery disease risk in the Xinjiang population of China: A case-control study. Medicine (Baltimore) 2023; 102:e36181. [PMID: 38050271 PMCID: PMC10695570 DOI: 10.1097/md.0000000000036181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023] Open
Abstract
Lipoprotein(a) is a well-known independent risk factor for coronary artery disease (CAD) and primarily determined by variation in the LPA gene coding for the apolipoprotein(a) moiety. Our study purpose was to evaluate the association between the human LPA gene polymorphisms and CAD in Han and Uyghur populations in Xinjiang, China. A case-control study was conducted with 831 Han people (392 CAD patients and 439 control subjects) and 829 Uygur people (513 CAD patients and 316 control subjects). All participants were genotyped for the same 3 single nucleotide polymorphisms (rs1801693, rs6923877, and rs9364559) of the LPA gene by a Real-time PCR instrument. In CAD patients, the levels of lipoprotein(a) were significantly higher in the Han population with the C/C genotype at the rs1801693 (P = .018) and the A/A genotype at the rs9364559 (P = .029) than in the Uyghur population. The polymorphisms rs1801693, rs6923877, and rs9364559 were found to be associated with CAD in the Han population. For men, the distribution of rs1801693 in genotypes, alleles and recessive model (CC vs CT + TT) showed a significant difference (all P < .05), and the difference in recessive model was retained after adjustment for covariates (odds ratio [OR]: 0.557, 95% confidence interval [CI]: 0.355-0.874, P = .011). But the distribution of rs6923877 in genotypes and dominant model (GG vs AG + AA) showed a significant difference (both P < .05) in both men and women, and the difference was kept in dominant model after adjustment (OR: 1.473, 95% CI:1.009-2.148, P = .045). For women, a significant difference was found in the distribution of rs9364559 in the alleles and dominant model (AA vs AG + GG) (for alleles: P = .021, for dominant model: P = .025, OR: 0.560, 95% CI:0.350-0.898, P = .016) after adjustment. Polymorphisms rs1801693, rs6923877, and rs9364559 of the LPA gene are associated with CAD in the Han population in Xinjiang Uygur Autonomous Region of China.
Collapse
Affiliation(s)
- Yi-Wen Liu
- Oncology-Cardiology Department, Xinjiang Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chun-Lan Dong
- Oncology-Cardiology Department, Xinjiang Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xue Jiang
- Pain Medicine Department, Xinjiang Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Deng-Yao Liu
- Interventional Consulting Department, Xinjiang Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
17
|
Yang W, Jiang W, Guo S. Regulation of Macronutrients in Insulin Resistance and Glucose Homeostasis during Type 2 Diabetes Mellitus. Nutrients 2023; 15:4671. [PMID: 37960324 PMCID: PMC10647592 DOI: 10.3390/nu15214671] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Insulin resistance is an important feature of metabolic syndrome and a precursor of type 2 diabetes mellitus (T2DM). Overnutrition-induced obesity is a major risk factor for the development of insulin resistance and T2DM. The intake of macronutrients plays a key role in maintaining energy balance. The components of macronutrients distinctly regulate insulin sensitivity and glucose homeostasis. Precisely adjusting the beneficial food compound intake is important for the prevention of insulin resistance and T2DM. Here, we reviewed the effects of different components of macronutrients on insulin sensitivity and their underlying mechanisms, including fructose, dietary fiber, saturated and unsaturated fatty acids, and amino acids. Understanding the diet-gene interaction will help us to better uncover the molecular mechanisms of T2DM and promote the application of precision nutrition in practice by integrating multi-omics analysis.
Collapse
Affiliation(s)
| | | | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA; (W.Y.); (W.J.)
| |
Collapse
|
18
|
Assini JM, Clark JR, Youssef A, Xing C, Doerfler AM, Park SH, Saxena L, Yaseen AB, Børen J, Gros R, Bao G, Lagor WR, Boffa MB, Koschinsky ML. High levels of lipoprotein(a) in transgenic mice exacerbate atherosclerosis and promote vulnerable plaque features in a sex-specific manner. Atherosclerosis 2023; 384:117150. [PMID: 37290980 DOI: 10.1016/j.atherosclerosis.2023.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Despite increased clinical interest in lipoprotein(a) (Lp(a)), many questions remain about the molecular mechanisms by which it contributes to atherosclerotic cardiovascular disease. Existing murine transgenic (Tg) Lp(a) models are limited by low plasma levels of Lp(a) and have not consistently shown a pro-atherosclerotic effect of Lp(a). METHODS We generated Tg mice expressing both human apolipoprotein(a) (apo(a)) and human apoB-100, with pathogenic levels of plasma Lp(a) (range 87-250 mg/dL). Female and male Lp(a) Tg mice (Tg(LPA+/0;APOB+/0)) and human apoB-100-only controls (Tg(APOB+/0)) (n = 10-13/group) were fed a high-fat, high-cholesterol diet for 12 weeks, with Ldlr knocked down using an antisense oligonucleotide. FPLC was used to characterize plasma lipoprotein profiles. Plaque area and necrotic core size were quantified and immunohistochemical assessment of lesions using a variety of cellular and protein markers was performed. RESULTS Male and female Tg(LPA+/0;APOB+/0) and Tg(APOB+/0) mice exhibited proatherogenic lipoprotein profiles with increased cholesterol-rich VLDL and LDL-sized particles and no difference in plasma total cholesterol between genotypes. Complex lesions developed in the aortic sinus of all mice. Plaque area (+22%), necrotic core size (+25%), and calcified area (+65%) were all significantly increased in female Tg(LPA+/0;APOB+/0) mice compared to female Tg(APOB+/0) mice. Immunohistochemistry of lesions demonstrated that apo(a) deposited in a similar pattern as apoB-100 in Tg(LPA+/0;APOB+/0) mice. Furthermore, female Tg(LPA+/0;APOB+/0) mice exhibited less organized collagen deposition as well as 42% higher staining for oxidized phospholipids (OxPL) compared to female Tg(APOB+/0) mice. Tg(LPA+/0;APOB+/0) mice had dramatically higher levels of plasma OxPL-apo(a) and OxPL-apoB compared to Tg(APOB+/0) mice, and female Tg(LPA+/0;APOB+/0) mice had higher plasma levels of the proinflammatory cytokine MCP-1 (+3.1-fold) compared to female Tg(APOB+/0) mice. CONCLUSIONS These data suggest a pro-inflammatory phenotype exhibited by female Tg mice expressing Lp(a) that appears to contribute to the development of more severe lesions with greater vulnerable features.
Collapse
Affiliation(s)
- Julia M Assini
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Justin R Clark
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Amer Youssef
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Chuce Xing
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Alexandria M Doerfler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, Houston, USA
| | - Lavanya Saxena
- Department of Bioengineering, Rice University, Houston, USA
| | - Adam B Yaseen
- Department of Bioengineering, Rice University, Houston, USA
| | - Jan Børen
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert Gros
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Gang Bao
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, USA
| | - Michael B Boffa
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada.
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
19
|
Siddiqui H, Deo N, Rutledge MT, Williams MJ, Redpath GM, McCormick SP. Plasminogen Receptors Promote Lipoprotein(a) Uptake by Enhancing Surface Binding and Facilitating Macropinocytosis. Arterioscler Thromb Vasc Biol 2023; 43:1851-1866. [PMID: 37589135 PMCID: PMC10521804 DOI: 10.1161/atvbaha.123.319344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND High levels of Lp(a) (lipoprotein(a)) are associated with multiple forms of cardiovascular disease. Lp(a) consists of an apoB100-containing particle attached to the plasminogen homologue apo(a). The pathways for Lp(a) clearance are not well understood. We previously discovered that the plasminogen receptor PlgRKT (plasminogen receptor with a C-terminal lysine) promoted Lp(a) uptake in liver cells. Here, we aimed to further define the role of PlgRKT and to investigate the role of 2 other plasminogen receptors, annexin A2 and S100A10 (S100 calcium-binding protein A10) in the endocytosis of Lp(a). METHODS Human hepatocellular carcinoma (HepG2) cells and haploid human fibroblast-like (HAP1) cells were used for overexpression and knockout of plasminogen receptors. The uptake of Lp(a), LDL (low-density lipoprotein), apo(a), and endocytic cargos was visualized and quantified by confocal microscopy and Western blotting. RESULTS The uptake of both Lp(a) and apo(a), but not LDL, was significantly increased in HepG2 and HAP1 cells overexpressing PlgRKT, annexin A2, or S100A10. Conversely, Lp(a) and apo(a), but not LDL, uptake was significantly reduced in HAP1 cells in which PlgRKT and S100A10 were knocked out. Surface binding studies in HepG2 cells showed that overexpression of PlgRKT, but not annexin A2 or S100A10, increased Lp(a) and apo(a) plasma membrane binding. Annexin A2 and S100A10, on the other hand, appeared to regulate macropinocytosis with both proteins significantly increasing the uptake of the macropinocytosis marker dextran when overexpressed in HepG2 and HAP1 cells and knockout of S100A10 significantly reducing dextran uptake. Bringing these observations together, we tested the effect of a PI3K (phosphoinositide-3-kinase) inhibitor, known to inhibit macropinocytosis, on Lp(a) uptake. Results showed a concentration-dependent reduction confirming that Lp(a) uptake was indeed mediated by macropinocytosis. CONCLUSIONS These findings uncover a novel pathway for Lp(a) endocytosis involving multiple plasminogen receptors that enhance surface binding and stimulate macropinocytosis of Lp(a). Although the findings were produced in cell culture models that have limitations, they could have clinical relevance since drugs that inhibit macropinocytosis are in clinical use, that is, the PI3K inhibitors for cancer therapy and some antidepressant compounds.
Collapse
Affiliation(s)
- Halima Siddiqui
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Nikita Deo
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Malcolm T. Rutledge
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Michael J.A. Williams
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- Department of Medicine (M.J.A.W.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Gregory M.I. Redpath
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Sally P.A. McCormick
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| |
Collapse
|
20
|
Liu F, Wang Y, Yu J. Role of inflammation and immune response in atherosclerosis: Mechanisms, modulations, and therapeutic targets. Hum Immunol 2023; 84:439-449. [PMID: 37353446 DOI: 10.1016/j.humimm.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Cardiovascular diseases (CVDs) have emerged as the leading cause of mortality globally, with atherosclerosis being a prominent focus of investigation among medical researchers worldwide. Atherosclerosis is characterized as a disease of the large and medium-sized arteries that is multifocal, accumulative, and immunoinflammatory in nature, resulting from the deposition of lipids. Accumulating evidence suggests that inflammatory responses and immunoregulation play a vital role in the occurrence and development of atherosclerosis. While existing treatments for atherosclerosis can assist in symptom management and slowing disease progression, a complete cure remains elusive. Consequently, there is significant interest in research and development of potential new drugs for this condition. Therefore, this review aims to consolidate the current understanding of the pathogenesis of atherosclerosis with an emphasis on inflammation, immune response and infection. Besides, it examines the effects and mechanisms of immunological modulations in atherosclerosis, and the potential therapeutic targets and drugs for intervening in the inflammatory responses and immunoregulation associated with atherosclerosis. Additionally, novel drug options for treating atherosclerosis are explored within the context of this review.
Collapse
Affiliation(s)
- Fang Liu
- Department of Vascular Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| | - Yijun Wang
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Jiayin Yu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
21
|
Xue S, Su Z, Liu D. Immunometabolism and immune response regulate macrophage function in atherosclerosis. Ageing Res Rev 2023; 90:101993. [PMID: 37379970 DOI: 10.1016/j.arr.2023.101993] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Macrophages are crucial in the progression of atherosclerotic cardiovascular disease (ASCVD). In the atherosclerotic lesions, macrophages play a central role in maintaining inflammatory response, promoting plaque development, and facilitating thrombosis. Increasing studies indicate that metabolic reprogramming and immune response mediate macrophage functional changes in all stages of atherosclerosis. In this review article, we explain how metabolic changes in glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, fatty acid synthesis, fatty acid oxidation, and cholesterol metabolism regulate macrophage function in atherosclerosis. We discuss how immune response to oxidized lipids regulate macrophage function in atherosclerosis. Additionally, we explore how abnormal metabolism leads to macrophage mitochondrial dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Sheng Xue
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China.
| | - Zhe Su
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| | - Dacheng Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| |
Collapse
|
22
|
Koschinsky ML, Stroes ESG, Kronenberg F. Daring to dream: Targeting lipoprotein(a) as a causal and risk-enhancing factor. Pharmacol Res 2023; 194:106843. [PMID: 37406784 DOI: 10.1016/j.phrs.2023.106843] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Lipoprotein(a) [Lp(a)], a distinct lipoprotein class, has become a major focus for cardiovascular research. This review is written in light of the recent guideline and consensus statements on Lp(a) and focuses on 1) the causal association between Lp(a) and cardiovascular outcomes, 2) the potential mechanisms by which elevated Lp(a) contributes to cardiovascular diseases, 3) the metabolic insights on the production and clearance of Lp(a) and 4) the current and future therapeutic approaches to lower Lp(a) concentrations. The concentrations of Lp(a) are under strict genetic control. There exists a continuous relationship between the Lp(a) concentrations and risk for various endpoints of atherosclerotic cardiovascular disease (ASCVD). One in five people in the Caucasian population is considered to have increased Lp(a) concentrations; the prevalence of elevated Lp(a) is even higher in black populations. This makes Lp(a) a cardiovascular risk factor of major public health relevance. Besides the association between Lp(a) and myocardial infarction, the relationship with aortic valve stenosis has become a major focus of research during the last decade. Genetic studies provided strong support for a causal association between Lp(a) and cardiovascular outcomes: carriers of genetic variants associated with lifelong increased Lp(a) concentration are significantly more frequent in patients with ASCVD. This has triggered the development of drugs that can specifically lower Lp(a) concentrations: mRNA-targeting therapies such as anti-sense oligonucleotide (ASO) therapies and short interfering RNA (siRNA) therapies have opened new avenues to lower Lp(a) concentrations more than 95%. Ongoing Phase II and III clinical trials of these compounds are discussed in this review.
Collapse
Affiliation(s)
- Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
23
|
Dib L, Koneva LA, Edsfeldt A, Zurke YX, Sun J, Nitulescu M, Attar M, Lutgens E, Schmidt S, Lindholm MW, Choudhury RP, Cassimjee I, Lee R, Handa A, Goncalves I, Sansom SN, Monaco C. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis increasing the risk of cerebrovascular complications. NATURE CARDIOVASCULAR RESEARCH 2023; 2:656-672. [PMID: 38362263 PMCID: PMC7615632 DOI: 10.1038/s44161-023-00295-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/31/2023] [Indexed: 02/17/2024]
Abstract
The immune system is integral to cardiovascular health and disease. Targeting inflammation ameliorates adverse cardiovascular outcomes. Atherosclerosis, a major underlying cause of cardiovascular disease (CVD), is conceptualised as a lipid-driven inflammation where macrophages play a non-redundant role. However, evidence emerging so far from single cell atlases suggests a dichotomy between lipid associated and inflammatory macrophage states. Here, we present an inclusive reference atlas of human intraplaque immune cell communities. Combining scRNASeq of human surgical carotid endarterectomies in a discovery cohort with bulk RNASeq and immunohistochemistry in a validation cohort (the Carotid Plaque Imaging Project-CPIP), we reveal the existence of PLIN2hi/TREM1hi macrophages as a toll-like receptor-dependent inflammatory lipid-associated macrophage state linked to cerebrovascular events. Our study shifts the current paradigm of lipid-driven inflammation by providing biological evidence for a pathogenic macrophage transition to an inflammatory lipid-associated phenotype and for its targeting as a new treatment strategy for CVD.
Collapse
Grants
- FS/18/63/34184 British Heart Foundation
- Novo Nordisk Fonden (Novo Nordisk Foundation)
- British Heart Foundation (BHF)
- Fondation Leducq
- European Commission (EC)
- Kennedy Trust for Rheumatology Research (KENN161701, KENN202101, KENN192004), Oxford NIHR Biomedical Research Centre.
- Vetenskapsrådet (Swedish Research Council)
- The Swedish Society for Medical Research, Crafoord foundation; The Swedish Society of Medicine, the Swedish Heart and Lung Foundation, Diabetes foundation, SUS foundation, Lund University Diabetes Center, The Knut and Alice Wallenberg foundation, the Medical Faculty at Lund University and Region Skåne.
- Kennedy Trust for Rheumatology Research (KENN161701, KENN202101, KENN192004)
- Netcare-Physicians-Partnership trust
- Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
Collapse
Affiliation(s)
- Lea Dib
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lada A. Koneva
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yasemin-Xiomara Zurke
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jiangming Sun
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Mihaela Nitulescu
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN USA
| | - Steffen Schmidt
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Marie W. Lindholm
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | | | - Ismail Cassimjee
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Stephen N. Sansom
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Lorey MB, Youssef A, Äikäs L, Borrelli M, Hermansson M, Assini JM, Kemppainen A, Ruhanen H, Ruuth M, Matikainen S, Kovanen PT, Käkelä R, Boffa MB, Koschinsky ML, Öörni K. Lipoprotein(a) induces caspase-1 activation and IL-1 signaling in human macrophages. Front Cardiovasc Med 2023; 10:1130162. [PMID: 37293282 PMCID: PMC10244518 DOI: 10.3389/fcvm.2023.1130162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Lipoprotein(a) (Lp(a)) is an LDL-like particle with an additional apolipoprotein (apo)(a) covalently attached. Elevated levels of circulating Lp(a) are a risk factor for atherosclerosis. A proinflammatory role for Lp(a) has been proposed, but its molecular details are incompletely defined. Methods and results To explore the effect of Lp(a) on human macrophages we performed RNA sequencing on THP-1 macrophages treated with Lp(a) or recombinant apo(a), which showed that especially Lp(a) induces potent inflammatory responses. Thus, we stimulated THP-1 macrophages with serum containing various Lp(a) levels to investigate their correlations with cytokines highlighted by the RNAseq, showing significant correlations with caspase-1 activity and secretion of IL-1β and IL-18. We further isolated both Lp(a) and LDL particles from three donors and then compared their atheroinflammatory potentials together with recombinant apo(a) in primary and THP-1 derived macrophages. Compared with LDL, Lp(a) induced a robust and dose-dependent caspase-1 activation and release of IL-1β and IL-18 in both macrophage types. Recombinant apo(a) strongly induced caspase-1 activation and IL-1β release in THP-1 macrophages but yielded weak responses in primary macrophages. Structural analysis of these particles revealed that the Lp(a) proteome was enriched in proteins associated with complement activation and coagulation, and its lipidome was relatively deficient in polyunsaturated fatty acids and had a high n-6/n-3 ratio promoting inflammation. Discussion Our data show that Lp(a) particles induce the expression of inflammatory genes, and Lp(a) and to a lesser extent apo(a) induce caspase-1 activation and IL-1 signaling. Major differences in the molecular profiles between Lp(a) and LDL contribute to Lp(a) being more atheroinflammatory.
Collapse
Affiliation(s)
- Martina B. Lorey
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Amer Youssef
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Lauri Äikäs
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Matthew Borrelli
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Martin Hermansson
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Julia M. Assini
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aapeli Kemppainen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Maija Ruuth
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Sampsa Matikainen
- Helsinki Rheumatic Disease and Inflammation Research Group, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Michael B. Boffa
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Marlys L. Koschinsky
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Mechanism of oxidized phospholipid-related inflammatory response in vascular ageing. Ageing Res Rev 2023; 86:101888. [PMID: 36806379 DOI: 10.1016/j.arr.2023.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Vascular ageing is an important factor in the morbidity and mortality of the elderly. Atherosclerosis is a characteristic disease of vascular ageing, which is closely related to the enhancement of vascular inflammation. Phospholipid oxidation products are important factors in inducing cellular inflammation. Through interactions with vascular cells and immune cells, they regulate intracellular signaling pathways, activate the expression of various cytokines, and affect cell behavior, such as metabolic level, proliferation, apoptosis, etc. Intervention in lipid metabolism and anti-inflammation are the two key pathways of drugs for the treatment of atherosclerosis. This review aims to sort out the signaling pathway of oxidized phospholipids-induced inflammatory factors in vascular cells and immune cells and the mechanism leading to changes in cell behavior, and summarize the therapeutic targets in the inflammatory signaling pathway for the development of atherosclerosis drugs.
Collapse
|
26
|
Huang W, Li R, Zhang J, Cheng Y, Ramakrishnan DP, Silverstein RL. A CD36 transmembrane domain peptide interrupts CD36 interactions with membrane partners on macrophages and inhibits atherogenic functions. Transl Res 2023; 254:68-76. [PMID: 36377115 PMCID: PMC10863465 DOI: 10.1016/j.trsl.2022.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/14/2022]
Abstract
CD36 is a transmembrane glycoprotein receptor for oxidized low density lipoprotein (LDL) and other endogenous danger signals and promotes athero-thrombotic processes. CD36 has been shown to associate physically with other transmembrane proteins, including integrins, tetraspanins, and toll-like receptors, which modulate CD36-mediated cell signaling. The CD36 N-terminal transmembrane domain (nTMD) contains a GXXXG sequence motif that mediates protein-protein interactions in many membrane proteins. We thus hypothesized that the nTMD is involved in CD36 interactions with other membrane proteins. CD36 interactions with partner cell surface proteins on murine peritoneal macrophages were detected with an immunofluorescence-based proximity ligation cross linking assay (PLA) and confirmed by immunoprecipitation/immunoblot. Prior to performing these assays, cells were incubated with a synthetic 29 amino acid peptide containing the 22 amino acid of CD36 nTMD or a control peptide in which the glycine residues in GXXXG motif were replaced by valines. In functional experiments, macrophages were preincubated with peptides and then treated with oxLDL to assess LDL uptake, foam cell formation, ROS formation and cell migration. CD36 nTMD peptide treated cells compared to untreated or control peptide treated cells showed decreased CD36 surface associations with tetraspanin CD9 and ameliorated pathologically important CD36 mediated responses to oxLDL, including uptake of DiI-labeled oxLDL, foam cell formation, ROS generation, and inhibition of migration.
Collapse
Affiliation(s)
- Wenxin Huang
- Laboratory of Vascular Pathobiology, Versiti Blood Center of Wisconsin, Blood Research Institute, Milwaukee, Wisconsin
| | - Renhao Li
- Department of Pediatrics, Division of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Jue Zhang
- Laboratory of Vascular Pathobiology, Versiti Blood Center of Wisconsin, Blood Research Institute, Milwaukee, Wisconsin
| | - Yiliang Cheng
- Laboratory of Vascular Pathobiology, Versiti Blood Center of Wisconsin, Blood Research Institute, Milwaukee, Wisconsin; Department of Medicine, Medical Colleges of Wisconsin, Milwaukee, Wisconsin; Department of Biochemistry, Medical Colleges of Wisconsin, Milwaukee, Wisconsin
| | - Devi P Ramakrishnan
- Laboratory of Vascular Pathobiology, Versiti Blood Center of Wisconsin, Blood Research Institute, Milwaukee, Wisconsin
| | - Roy L Silverstein
- Laboratory of Vascular Pathobiology, Versiti Blood Center of Wisconsin, Blood Research Institute, Milwaukee, Wisconsin; Department of Medicine, Medical Colleges of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
27
|
Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules 2023; 28:molecules28030969. [PMID: 36770634 PMCID: PMC9918959 DOI: 10.3390/molecules28030969] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) cholesterol-like particle bound to apolipoprotein(a). Increased Lp(a) levels are an independent, heritable causal risk factor for atherosclerotic cardiovascular disease (ASCVD) as they are largely determined by variations in the Lp(a) gene (LPA) locus encoding apo(a). Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), and its role adversely affects vascular inflammation, atherosclerotic lesions, endothelial function and thrombogenicity, which pathophysiologically leads to cardiovascular (CV) events. Despite this crucial role of Lp(a), its measurement lacks a globally unified method, and, between different laboratories, results need standardization. Standard antilipidemic therapies, such as statins, fibrates and ezetimibe, have a mediocre effect on Lp(a) levels, although it is not yet clear whether such treatments can affect CV events and prognosis. This narrative review aims to summarize knowledge regarding the mechanisms mediating the effect of Lp(a) on inflammation, atherosclerosis and thrombosis and discuss current diagnostic and therapeutic potentials.
Collapse
|
28
|
Compartmentalized regulation of lipid signaling in oxidative stress and inflammation: Plasmalogens, oxidized lipids and ferroptosis as new paradigms of bioactive lipid research. Prog Lipid Res 2023; 89:101207. [PMID: 36464139 DOI: 10.1016/j.plipres.2022.101207] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Perturbations in lipid homeostasis combined with conditions favoring oxidative stress constitute a hallmark of the inflammatory response. In this review we focus on the most recent results concerning lipid signaling in various oxidative stress-mediated responses and inflammation. These include phagocytosis and ferroptosis. The best characterized event, common to these responses, is the synthesis of oxygenated metabolites of arachidonic acid and other polyunsaturated fatty acids. Major developments in this area have highlighted the importance of compartmentalization of the enzymes and lipid substrates in shaping the appropriate response. In parallel, other relevant lipid metabolic pathways are also activated and, until recently, there has been a general lack of knowledge on the enzyme regulation and molecular mechanisms operating in these pathways. Specifically, data accumulated in recent years on the regulation and biological significance of plasmalogens and oxidized phospholipids have expanded our knowledge on the involvement of lipid metabolism in the progression of disease and the return to homeostasis. These recent major developments have helped to establish the concept of membrane phospholipids as cellular repositories for the compartmentalized production of bioactive lipids involved in cellular regulation. Importantly, an enzyme classically described as being involved in regulating the homeostatic turnover of phospholipids, namely the group VIA Ca2+-independent phospholipase A2 (iPLA2β), has taken center stage in oxidative stress and inflammation research owing to its key involvement in regulating metabolic and ferroptotic signals arising from membrane phospholipids. Understanding the role of iPLA2β in ferroptosis and metabolism not only broadens our knowledge of disease but also opens possible new horizons for this enzyme as a target for therapeutic intervention.
Collapse
|
29
|
Simantiris S, Antonopoulos AS, Papastamos C, Benetos G, Koumallos N, Tsioufis K, Tousoulis D. Lipoprotein(a) and inflammation- pathophysiological links and clinical implications for cardiovascular disease. J Clin Lipidol 2023; 17:55-63. [PMID: 36333256 DOI: 10.1016/j.jacl.2022.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
The role of lipoprotein(a) (Lp[a]) as a significant and possibly causal cardiovascular disease (CVD) risk factor has been well established. Many studies, mostly experimental, have supported inflammation as a mediator of Lp(a)-induced increase in CVD risk. Lp(a), mainly through oxidized phospholipids bound to its apolipoprotein(a) part, leads to monocyte activation and endothelial dysfunction. The relationship between Lp(a) and inflammation is bidirectional as Lp(a) levels, besides being associated with inflammatory properties, are regulated by inflammatory stimuli or anti-inflammatory treatment. Reduction of Lp(a) concentration, especially by potent siRNA agents, contributes to partial reversion of the Lp(a) related inflammatory profile. This review aims to present the current pathophysiological and clinical evidence of the relationship between Lp(a) and inflammation.
Collapse
Affiliation(s)
- Spyridon Simantiris
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis)
| | - Alexios S Antonopoulos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis)
| | - Charalampos Papastamos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis)
| | - Georgios Benetos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis)
| | - Nikolaos Koumallos
- Department of Cardiothoracic Surgery, Hippokration Hospital, Athens, Greece (Dr Koumallos)
| | - Konstantinos Tsioufis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis)
| | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis).
| |
Collapse
|
30
|
Yang R, Liu Q, Zhang M. The Past and Present Lives of the Intraocular Transmembrane Protein CD36. Cells 2022; 12:cells12010171. [PMID: 36611964 PMCID: PMC9818597 DOI: 10.3390/cells12010171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cluster of differentiation 36 (CD36) belongs to the B2 receptors of the scavenger receptor class B family, which is comprised of single-chain secondary transmembrane glycoproteins. It is present in a variety of cell types, including monocytes, macrophages, microvascular endothelial cells, adipocytes, hepatocytes, platelets, skeletal muscle cells, kidney cells, cardiomyocytes, taste bud cells, and a variety of other cell types. CD36 can be localized on the cell surface, mitochondria, endoplasmic reticulum, and endosomes, playing a role in lipid accumulation, oxidative stress injury, apoptosis, and inflammatory signaling. Recent studies have found that CD36 is expressed in a variety of ocular cells, including retinal pigment epithelium (RPE), retinal microvascular endothelial cells, retinal ganglion cells (RGC), Müller cells, and photoreceptor cells, playing an important role in eye diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Therefore, a comprehensive understanding of CD36 function and downstream signaling pathways is of great significance for the prevention and treatment of eye diseases. This article reviews the molecular characteristics, distribution, and function of scavenger receptor CD36 and its role in ophthalmology in order to deepen the understanding of CD36 in eye diseases and provide new ideas for treatment strategies.
Collapse
Affiliation(s)
- Rucui Yang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology, Shantou University Medical College, Shantou University, Shantou 515041, China
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| |
Collapse
|
31
|
Liao M, Li Y, Xiao A, Lu Q, Zeng H, Qin H, Zheng E, Luo X, Chen L, Ruan XZ, Yang P, Chen Y. HIF-2α-induced upregulation of CD36 promotes the development of ccRCC. Exp Cell Res 2022; 421:113389. [PMID: 36252650 DOI: 10.1016/j.yexcr.2022.113389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by the abundance of lipid droplets and the activation of the hypoxia-inducible factor (HIF) signaling pathway. However, the lipid reprogramming induced by HIF signaling in ccRCC is not fully understood. In this study, we found that the fatty acid receptor CD36 was highly expressed in human ccRCC tissues and ccRCC cell lines. CD36 overexpression increased fatty acid uptake and lipid droplet formation, and enhanced the proliferation and migration of ccRCC cells in a DGAT1-dependent manner. In contrast, the disruption of endogenous CD36 showed the opposite effects. The upregulated expression of CD36 in ccRCC was associated with hypoxia and HIF-2α activation. Furthermore, we identified CD36 as a new target of the transcription factor HIF-2α. The knockdown of CD36 in ccRCC cells reduced lipid accumulation and also blocked the tumor-promoting effects induced by HIF-2α under hypoxia. Our findings suggest that hypoxia-dependent HIF-2α promotes the remodeling of lipid metabolism and the malignant phenotype of ccRCC via CD36, providing a certain theoretical basis for clarifying the mechanism of ccRCC.
Collapse
Affiliation(s)
- Meng Liao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yiyu Li
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Anhua Xiao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Qianlan Lu
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Han Zeng
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Hong Qin
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Enze Zheng
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xiaoqing Luo
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Lin Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, NW3 2PF, United Kingdom
| | - Ping Yang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
32
|
Zhan J, Jin K, Ding N, Zhou Y, Hu G, Yuan S, Xie R, Wen Z, Chen C, Li H, Wang DW. Positive feedback loop of miR-320 and CD36 regulates the hyperglycemic memory-induced diabetic diastolic cardiac dysfunction. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:122-138. [PMID: 36618264 PMCID: PMC9813582 DOI: 10.1016/j.omtn.2022.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Intensive glycemic control is insufficient for reducing the risk of heart failure among patients with diabetes mellitus (DM). While the "hyperglycemic memory" phenomenon is well documented, little is known about its underlying mechanisms. In this study, a type 1 DM model was established in C57BL/6 mice using streptozotocin (STZ). Leptin receptor-deficient (db/db) mice were used as a model of type 2 DM. A type 9 adeno-associated virus was used to overexpress or knock down miR-320 in vivo. Diastolic dysfunction was observed in the type 1 DM mice with elevated miR-320 expression. However, glycemic control using insulin failed to reverse diastolic dysfunction. miR-320 knockdown protected against STZ-induced diastolic dysfunction. Similar results were observed in the type 2 DM mice. In vitro, we found that miR-320 promoted CD36 expression, which in turn induced further miR-320 expression. CD36 was rapidly induced by hyperglycemia at protein level compared with the much slower induction of miR-320, suggesting a positive feedback loop of CD36/miR-320 with CD36 protein induction as the initial triggering event. In conclusion, in DM-induced cardiac injury, miR-320 and CD36 mutually enhance each other's expression, leading to a positive feedback loop and a sustained hyperlipidemic state in the heart.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Nan Ding
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yufei Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Guo Hu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China,Corresponding author: Chen Chen, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095# Jiefang Ave., Wuhan 430030, China.
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China,Corresponding author: Huaping Li, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China,Corresponding author: Dao Wen Wang, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China.
| |
Collapse
|
33
|
Vistain L, Van Phan H, Keisham B, Jordi C, Chen M, Reddy ST, Tay S. Quantification of extracellular proteins, protein complexes and mRNAs in single cells by proximity sequencing. Nat Methods 2022; 19:1578-1589. [PMID: 36456784 PMCID: PMC11289786 DOI: 10.1038/s41592-022-01684-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022]
Abstract
We present proximity sequencing (Prox-seq) for simultaneous measurement of proteins, protein complexes and mRNAs in thousands of single cells. Prox-seq combines proximity ligation assay with single-cell sequencing to measure proteins and their complexes from all pairwise combinations of targeted proteins, providing quadratically scaled multiplexing. We validate Prox-seq and analyze a mixture of T cells and B cells to show that it accurately identifies these cell types and detects well-known protein complexes. Next, by studying human peripheral blood mononuclear cells, we discover that naïve CD8+ T cells display the protein complex CD8-CD9. Finally, we study protein interactions during Toll-like receptor (TLR) signaling in human macrophages. We observe the formation of signal-specific protein complexes, find CD36 co-receptor activity and additive signal integration under lipopolysaccharide (TLR4) and Pam2CSK4 (TLR2) stimulation, and show that quantification of protein complexes identifies signaling inputs received by macrophages. Prox-seq provides access to an untapped measurement modality for single-cell phenotyping and can discover uncharacterized protein interactions in different cell types.
Collapse
Affiliation(s)
- Luke Vistain
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Hoang Van Phan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Christian Jordi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Mengjie Chen
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
34
|
Allen RM, Michell DL, Cavnar AB, Zhu W, Makhijani N, Contreras DM, Raby CA, Semler EM, DeJulius C, Castleberry M, Zhang Y, Ramirez-Solano M, Zhao S, Duvall C, Doran AC, Sheng Q, Linton MF, Vickers KC. LDL delivery of microbial small RNAs drives atherosclerosis through macrophage TLR8. Nat Cell Biol 2022; 24:1701-1713. [PMID: 36474072 PMCID: PMC10609361 DOI: 10.1038/s41556-022-01030-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/18/2022] [Indexed: 12/12/2022]
Abstract
Macrophages present a spectrum of phenotypes that mediate both the pathogenesis and resolution of atherosclerotic lesions. Inflammatory macrophage phenotypes are pro-atherogenic, but the stimulatory factors that promote these phenotypes remain incompletely defined. Here we demonstrate that microbial small RNAs (msRNA) are enriched on low-density lipoprotein (LDL) and drive pro-inflammatory macrophage polarization and cytokine secretion via activation of the RNA sensor toll-like receptor 8 (TLR8). Removal of msRNA cargo during LDL re-constitution yields particles that readily promote sterol loading but fail to stimulate inflammatory activation. Competitive antagonism of TLR8 with non-targeting locked nucleic acids was found to prevent native LDL-induced macrophage polarization in vitro, and re-organize lesion macrophage phenotypes in vivo, as determined by single-cell RNA sequencing. Critically, this was associated with reduced disease burden in distinct mouse models of atherosclerosis. These results identify LDL-msRNA as instigators of atherosclerosis-associated inflammation and support alternative functions of LDL beyond cholesterol transport.
Collapse
Affiliation(s)
- Ryan M Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Danielle L Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashley B Cavnar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wanying Zhu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil Makhijani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danielle M Contreras
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chase A Raby
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M Semler
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Carlisle DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Mark Castleberry
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Youmin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Amanda C Doran
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - MacRae F Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
35
|
The Role of Hydrogen Sulfide in Plaque Stability. Antioxidants (Basel) 2022; 11:antiox11122356. [PMID: 36552564 PMCID: PMC9774534 DOI: 10.3390/antiox11122356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis is the greatest contributor to cardiovascular events and is involved in the majority of deaths worldwide. Plaque rapture or erosion precipitates life-threatening thrombi, resulting in the obstruction blood flow to the heart (acute coronary syndrome), brain (ischemic stroke) or low extremities (peripheral vascular diseases). Among these events, major causation dues to the plaque rupture. Although the initiation, procession, and precise time of controlling plaque rupture are unclear, foam cell formation and apoptosis, cell death, extracellular matrix components, protease expression and activity, local inflammation, intraplaque hemorrhage, and calcification contribute to the plaque instability. These alterations tightly associate with the function regulation of intraplaque various cell populations. Hydrogen sulfide (H2S) is gasotransmitter derived from methionine metabolism and exerts a protective role in the genesis of atherosclerosis. Recent progress also showed H2S mediated the plaque stability. In this review, we discuss the progress of endogenous H2S modulation on functions of vascular smooth muscle cells, monocytes/macrophages, and T cells, and the molecular mechanism in plaque stability.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To highlight recent conceptual and technological advances that have positioned the field to interrogate the cellular and molecular mechanisms contributing to the initiation of atherosclerosis, including intimal lipid accumulation, inflammation, and lesion growth. RECENT FINDINGS Advances in the understanding of endothelial LDL transcytosis and rapid lipid uptake by intimal macrophages provide mechanistic insights into intimal LDL accumulation and the initiation of atherogenesis. Recent studies have used unbiased single-cell approaches, such as single-cell RNA sequencing and CyTOF, to characterize the cellular components of the normal intima and atherosclerotic lesions. In-vitro studies and high-resolution transcriptomic analysis of aortic intimal lipid-loaded versus lipid-poor myeloid populations in vivo suggest that lipid-loaded macrophages may not be the primary drivers of inflammation in atherosclerotic lesions. SUMMARY A new perspective on the complex cellular landscape of the aorta, specifically the atherosclerosis-prone regions, confirm that intimal accumulation of lipid, monocyte recruitment, and macrophage accumulation are key events in atherogenesis triggered by hypercholesterolemia. Targeting these early events may prove to be a promising strategy for the attenuation of lesion development; however, the specific details of how hypercholesterolemia acts to initiate early inflammatory events remain to be fully elucidated.
Collapse
Affiliation(s)
- Corey A. Scipione
- Toronto General Hospital Research Institute, University Health Network
- Department of Laboratory Medicine and Pathobiology
- Department of Immunology, University of Toronto
| | - Myron I. Cybulsky
- Toronto General Hospital Research Institute, University Health Network
- Department of Laboratory Medicine and Pathobiology
- Department of Immunology, University of Toronto
- Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
| |
Collapse
|
37
|
The Impaired Mechanism and Facilitated Therapies of Efferocytosis in Atherosclerosis. J Cardiovasc Pharmacol 2022; 80:407-416. [PMID: 35853202 DOI: 10.1097/fjc.0000000000001311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/21/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Cardiovascular disease is responsible for the largest number of deaths worldwide, and atherosclerosis is the primary cause. Apoptotic cell accumulation in atherosclerotic plaques leads to necrotic core formation and plaque rupture. Emerging findings show that the progression of atherosclerosis appears to suppress the elimination of apoptotic cells. Mechanistically, the reduced edibility of apoptotic cells, insufficient phagocytic capacity of phagocytes, downregulation of bridging molecules, and dysfunction in the polarization of macrophages lead to impaired efferocytosis in atherosclerotic plaques. This review focuses on the characteristics of efferocytosis in plaques and the therapeutic strategies aimed at promoting efferocytosis in atherosclerosis, which would provide novel insights for the development of antiatherosclerotic drugs based on efferocytosis.
Collapse
|
38
|
Kawai K, Vozenilek AE, Kawakami R, Sato Y, Ghosh SKB, Virmani R, Finn AV. Understanding the role of alternative macrophage phenotypes in human atherosclerosis. Expert Rev Cardiovasc Ther 2022; 20:689-705. [PMID: 35942866 DOI: 10.1080/14779072.2022.2111301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Atherosclerosis-based ischemic heart disease is still the primary cause of death throughout the world. Over the past decades there has been no significant changes in the therapeutic approaches to atherosclerosis, which are mainly based on lipid lowering therapies and management of comorbid conditions such as diabetes and hypertension. The involvement of macrophages in atherosclerosis has been recognized for decades. More recently, a more detailed and sophisticated understanding of their various phenotypes and roles in the atherosclerotic process has been recognized. This new data is revealing how specific subtypes of macrophage-induced inflammation may have distinct effects on atherosclerosis progression and may provide new approaches for treatment, based upon targeting of specific macrophage subtypes. AREAS COVERED We will comprehensively review the spectrum of macrophage phenotypes and how they contribute to atherosclerotic plaque development and progression. EXPERT OPINION Various signals derived from atherosclerotic lesions drive macrophages into complex subsets with different gene expression profiles, phenotypes, and functions, not all of which are understood. Macrophage phenotypes include those that enhance, heal, and regress the atherosclerotic lesions though various mechanisms. Targeting of specific macrophage phenotypes may provide a promising and novel approach to prevent atherosclerosis progression.
Collapse
Affiliation(s)
- Kenji Kawai
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Aimee E Vozenilek
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Rika Kawakami
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Yu Sato
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | | | - Renu Virmani
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Aloke V Finn
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA.,University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
40
|
Jarr KU, Kojima Y, Weissman IL, Leeper NJ. 2021 Jeffrey M. Hoeg Award Lecture: Defining the Role of Efferocytosis in Cardiovascular Disease: A Focus on the CD47 (Cluster of Differentiation 47) Axis. Arterioscler Thromb Vasc Biol 2022; 42:e145-e154. [PMID: 35387480 PMCID: PMC9183217 DOI: 10.1161/atvbaha.122.317049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/21/2022] [Indexed: 01/09/2023]
Abstract
A key feature of atherogenesis is the accumulation of diseased and dying cells within the lesional necrotic core. While the burden of intraplaque apoptotic cells may be driven in part by an increase in programmed cell death, mounting evidence suggests that their presence may primarily be dictated by a defect in programmed cell removal, or efferocytosis. In this brief review, we will summarize the evidence suggesting that inflammation-dependent changes within the plaque render target cells inedible and reduce the appetite of lesional phagocytes. We will present the genetic causation studies, which indicate these phenomena promote lesion expansion and plaque vulnerability, and the interventional data which suggest that these processes can be reversed. Particular emphasis is provided related to the antiphagocytic CD47 (cluster of differentiation 47) do not eat me axis, which has emerged as a novel antiatherosclerotic translational target that is predicted to provide benefit independent of traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Kai-Uwe Jarr
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yoko Kojima
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Irving L. Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
41
|
Chemello K, Chan DC, Lambert G, Watts GF. Recent advances in demystifying the metabolism of lipoprotein(a). Atherosclerosis 2022; 349:82-91. [DOI: 10.1016/j.atherosclerosis.2022.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
|
42
|
Koschinsky ML, Boffa MB. Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry and pathophysiology. Atherosclerosis 2022; 349:92-100. [DOI: 10.1016/j.atherosclerosis.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023]
|
43
|
The Traditional Chinese Medicine Hua Tuo Zai Zao Wan Alleviates Atherosclerosis by Deactivation of Inflammatory Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2200662. [PMID: 35388302 PMCID: PMC8979684 DOI: 10.1155/2022/2200662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022]
Abstract
Introduction Positive effects have been observed when the traditional Chinese medicine Hua Tuo Zai Zao Wan (HTZZW) has been used for the treatment of atherosclerosis (AS), although with an unclear mechanism. Methods ApoE-/- C57/BALB mice were used to determine the efficacy of HTZZW by blood lipid biochemical analysis and histopathology H&E staining. qPCR and western blot were used to determine the expression of METTL3/14 and NF-κB. Results High-fat diet-fed ApoE-/- mice that consumed HTZZW exhibited significantly smaller plaque areas and significantly decreased unstable collagen areas in the aortic arch as well as significantly lower blood levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol compared with the control group. Consumption of HTZZW significantly decreased the proportion of Mφ1 in the peripheral blood. HTZZW not only inhibited the expression of m6A methyltransferases METTL14, METTL3, and overall RNA methylation level, but it also decreased the m6A modification level on specific sites of NF-κB mRNA. Conclusion HTZZW significantly alleviated the progression of AS by regulating the expression of the m6A methyltransferases METTL14 and METTL3 in macrophages, eliminating m6A modifications of NF-κB mRNA, influencing the stability of NF-κB mRNA, and ultimately resulting in the deactivation of inflammatory macrophages.
Collapse
|
44
|
Zhang M, Xie Z, Long H, Ren K, Hou L, Wang Y, Xu X, Lei W, Yang Z, Ahmed S, Zhang H, Zhao G. Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles. Mater Today Bio 2022; 14:100236. [PMID: 35341094 PMCID: PMC8943324 DOI: 10.1016/j.mtbio.2022.100236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 01/29/2023]
Abstract
Vulnerable atherosclerotic plaques of the artery wall that pose a significant risk of cardio-cerebral vascular accidents remain the global leading cause of morbidity and mortality. Thus, early delineation of vulnerable atherosclerotic plaques is of clinical importance for prevention and treatment. The currently available imaging technologies mainly focus on the structural assessment of the vascular wall. Unfortunately, several disadvantages in these strategies limit the improvement in imaging effect. Nanoparticle technology is a novel diagnostic strategy for targeting and imaging pathological biomarkers. New functionalized nanoparticles that detect hallmarks of vulnerable plaques are promising for advance further control of this critical illness. The review aims to address the current opportunities and challenges for the use of nanoparticle technology in imagining vulnerable plaques.
Collapse
|
45
|
Yildirim Z, Baboo S, Hamid SM, Dogan AE, Tufanli O, Robichaud S, Emerton C, Diedrich JK, Vatandaslar H, Nikolos F, Gu Y, Iwawaki T, Tarling E, Ouimet M, Nelson DL, Yates JR, Walter P, Erbay E. Intercepting IRE1 kinase-FMRP signaling prevents atherosclerosis progression. EMBO Mol Med 2022; 14:e15344. [PMID: 35191199 PMCID: PMC8988208 DOI: 10.15252/emmm.202115344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Fragile X Mental Retardation protein (FMRP), widely known for its role in hereditary intellectual disability, is an RNA‐binding protein (RBP) that controls translation of select mRNAs. We discovered that endoplasmic reticulum (ER) stress induces phosphorylation of FMRP on a site that is known to enhance translation inhibition of FMRP‐bound mRNAs. We show ER stress‐induced activation of Inositol requiring enzyme‐1 (IRE1), an ER‐resident stress‐sensing kinase/endoribonuclease, leads to FMRP phosphorylation and to suppression of macrophage cholesterol efflux and apoptotic cell clearance (efferocytosis). Conversely, FMRP deficiency and pharmacological inhibition of IRE1 kinase activity enhances cholesterol efflux and efferocytosis, reducing atherosclerosis in mice. Our results provide mechanistic insights into how ER stress‐induced IRE1 kinase activity contributes to macrophage cholesterol homeostasis and suggests IRE1 inhibition as a promising new way to counteract atherosclerosis.
Collapse
Affiliation(s)
- Zehra Yildirim
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Syed M Hamid
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Asli E Dogan
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Ozlem Tufanli
- Lagone Medical Center, New York University, New York, NY, USA
| | - Sabrina Robichaud
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Christina Emerton
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Fotis Nikolos
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yanghong Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Takao Iwawaki
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Elizabeth Tarling
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Ebru Erbay
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
46
|
Hoebinger C, Rajcic D, Hendrikx T. Oxidized Lipids: Common Immunogenic Drivers of Non-Alcoholic Fatty Liver Disease and Atherosclerosis. Front Cardiovasc Med 2022; 8:824481. [PMID: 35083304 PMCID: PMC8784685 DOI: 10.3389/fcvm.2021.824481] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to inflammatory steatohepatitis (NASH) and cirrhosis, continues to rise, making it one of the major chronic liver diseases and indications for liver transplantation worldwide. The pathological processes underlying NAFLD not only affect the liver but are also likely to have systemic effects. In fact, growing evidence indicates that patients with NAFLD are at increased risk for developing atherosclerosis. Indeed, cardiovascular complications are the leading cause of mortality in NAFLD patients. Here, we aim to address common pathophysiological molecular pathways involved in chronic fatty liver disease and atherosclerosis. In particular, we focus on the role of oxidized lipids and the formation of oxidation-specific epitopes, which are important targets of host immunity. Acting as metabolic danger signals, they drive pro-inflammatory processes and thus contribute to disease progression. Finally, we summarize encouraging studies indicating that oxidized lipids are promising immunological targets to improve intervention strategies for NAFLD and potentially limit the risk of developing atherosclerosis.
Collapse
Affiliation(s)
- Constanze Hoebinger
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria
| | - Tim Hendrikx
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria.,Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
47
|
Kaiser Y, Daghem M, Tzolos E, Meah MN, Doris MK, Moss AJ, Kwiecinski J, Kroon J, Nurmohamed NS, van der Harst P, Adamson PD, Williams MC, Dey D, Newby DE, Stroes ESG, Zheng KH, Dweck MR. Association of Lipoprotein(a) With Atherosclerotic Plaque Progression. J Am Coll Cardiol 2022; 79:223-233. [PMID: 35057907 PMCID: PMC8784819 DOI: 10.1016/j.jacc.2021.10.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lipoprotein(a) [Lp(a)] is associated with increased risk of myocardial infarction, although the mechanism for this observation remains uncertain. OBJECTIVES This study aims to investigate whether Lp(a) is associated with adverse plaque progression. METHODS Lp(a) was measured in patients with advanced stable coronary artery disease undergoing coronary computed tomography angiography at baseline and 12 months to assess progression of total, calcific, noncalcific, and low-attenuation plaque (necrotic core) in particular. High Lp(a) was defined as Lp(a) ≥ 70 mg/dL. The relationship of Lp(a) with plaque progression was assessed using linear regression analysis, adjusting for body mass index, segment involvement score, and ASSIGN score (a Scottish cardiovascular risk score comprised of age, sex, smoking, blood pressure, total and high-density lipoprotein [HDL]-cholesterol, diabetes, rheumatoid arthritis, and deprivation index). RESULTS A total of 191 patients (65.9 ± 8.3 years of age; 152 [80%] male) were included in the analysis, with median Lp(a) values of 100 (range: 82 to 115) mg/dL and 10 (range: 5 to 24) mg/dL in the high and low Lp(a) groups, respectively. At baseline, there was no difference in coronary artery disease severity or plaque burden. Patients with high Lp(a) showed accelerated progression of low-attenuation plaque compared with low Lp(a) patients (26.2 ± 88.4 mm3 vs -0.7 ± 50.1 mm3; P = 0.020). Multivariable linear regression analysis confirmed the relation between Lp(a) and low-attenuation plaque volume progression (β = 10.5% increase for each 50 mg/dL Lp(a), 95% CI: 0.7%-20.3%). There was no difference in total, calcific, and noncalcific plaque volume progression. CONCLUSIONS Among patients with advanced stable coronary artery disease, Lp(a) is associated with accelerated progression of coronary low-attenuation plaque (necrotic core). This may explain the association between Lp(a) and the high residual risk of myocardial infarction, providing support for Lp(a) as a treatment target in atherosclerosis.
Collapse
Affiliation(s)
- Yannick Kaiser
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marwa Daghem
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Evangelos Tzolos
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Mohammed N Meah
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Mhairi K Doris
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Alistair J Moss
- Department of Cardiovascular Science, National Institute of Health Research Biomedical Research Centre Leicester, University of Leicester, Leicester, United Kingdom
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Philip D Adamson
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom; Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Michelle C Williams
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kang H Zheng
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands. https://twitter.com/Zheng_KH
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom.
| |
Collapse
|
48
|
Punch E, Klein J, Diaba-Nuhoho P, Morawietz H, Garelnabi M. Effects of PCSK9 Targeting: Alleviating Oxidation, Inflammation, and Atherosclerosis. J Am Heart Assoc 2022; 11:e023328. [PMID: 35048716 PMCID: PMC9238481 DOI: 10.1161/jaha.121.023328] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Characterized as a chronic inflammatory disease of the large arteries, atherosclerosis is the primary cause of cardiovascular disease, the leading contributor of morbidity and mortality worldwide. Elevated plasma cholesterol levels and chronic inflammation within the arterial plaque are major mediators of plaque initiation, progression, and instability. In 2003, the protein PCSK9 (proprotein convertase subtilisin/kexin 9) was discovered to play a critical role in cholesterol regulation, thus becoming a key player in the mechanisms behind atherosclerotic plaque development. Emerging evidence suggests that PCSK9 could potentially have effects on atherosclerosis that are independent of cholesterol levels. The objective of this review was to discuss the role on PCSK9 in oxidation, inflammation, and atherosclerosis. This function activates proinflammatory cytokine production and affects oxidative modifications within atherosclerotic lesions, revealing its more significant role in atherosclerosis. Although a variety of evidence demonstrates that PCSK9 plays a role in atherosclerotic inflammation, the direct mechanism of involvement is still unknown, driving a gap in knowledge to such a predominant player in cardiovascular disease. Investigation of proteins structurally related to PCSK9 may interestingly be the link in unveiling the mechanistic role of this protein’s involvement in oxidation and inflammation. Importantly, the unique structure of PCSK9 bears structural homology to a one‐of‐a‐kind domain found in the metabolic protein resistin, which is responsible for many of the same inflammatory outcomes as PCSK9. Closing this gap in knowledge of PCSK9`s role in atherosclerotic oxidation and inflammation will provide fundamental information for understanding, preventing, and treating cardiovascular disease.
Collapse
Affiliation(s)
- Emily Punch
- Department of Chemistry University of Massachusetts Lowell MA
| | - Justus Klein
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Mahdi Garelnabi
- Biomedical and Nutritional Sciences University of Massachusetts Lowell MA
| |
Collapse
|
49
|
Hanschkow M, Boulet N, Kempf E, Bouloumié A, Kiess W, Stein R, Körner A, Landgraf K. Expression of the Adipocyte Progenitor Markers MSCA1 and CD36 is Associated With Adipose Tissue Function in Children. J Clin Endocrinol Metab 2022; 107:e836-e851. [PMID: 34448000 PMCID: PMC8764220 DOI: 10.1210/clinem/dgab630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/05/2022]
Abstract
CONTEXT MSCA1 (mesenchymal stem cell antigen 1) and CD36 (cluster of differentiation 36) have been described as novel adipocyte progenitor markers in adults with a potential relevance for obesity and adipocyte progenitor function. OBJECTIVE With the early manifestation of obesity in children and formation of adipose tissue (AT) dysfunction, children provide the opportunity to characterize the function of MSCA1 and CD36 during physiological AT accumulation and with obesity and related disease. METHODS We investigated MSCA1 and CD36 expression in adipocytes and stroma vascular fraction (SVF) cells from 133 children of the Leipzig AT Childhood cohort with regard to AT accumulation and biology. In a subsample we analyzed how MSCA1 and CD36 expression is related to adipose progenitor capacities in vitro (ie, proliferation, differentiation and mitochondrial function). RESULTS Both MSCA1 and CD36 are differentially expressed in adipocytes and SVF cells of children. MSCA1 expression is positively correlated to obesity-associated AT dysfunction (ie, adipocyte hypertrophy and serum high-sensitivity C-reactive protein), and high SVF MSCA1 expression is associated with increased mitochondrial respiration in vitro. CD36 expression is not associated with AT dysfunction but SVF CD36 expression is downregulated in children with overweight and obesity and shows a positive association with the differentiation capacity of SVF cells ex vivo and in vitro. CONCLUSION Both MSCA1 and CD36 are associated with obesity-related alterations in AT of children. In particular, CD36 expression predicts adipogenic potential of SVF cells, indicating a potential role in the regulation of adipocyte hyperplasia and hypertrophy with obesity development in children.
Collapse
Affiliation(s)
- Martha Hanschkow
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Nathalie Boulet
- University of Toulouse, Institute of Metabolic and Cardiovascular Diseases, Inserm, Toulouse, France
| | - Elena Kempf
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Anne Bouloumié
- University of Toulouse, Institute of Metabolic and Cardiovascular Diseases, Inserm, Toulouse, France
| | - Wieland Kiess
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Robert Stein
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Antje Körner
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Kathrin Landgraf
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
- Correspondence: Kathrin Landgraf, PhD, Center for Pediatric Research Leipzig (CPL), Liebigstr. 19-21, 04103 Leipzig, Germany. E-mail:
| |
Collapse
|
50
|
Choi HY, Ruel I, Choi S, Genest J. New Strategies to Promote Macrophage Cholesterol Efflux. Front Cardiovasc Med 2022; 8:795868. [PMID: 35004908 PMCID: PMC8733154 DOI: 10.3389/fcvm.2021.795868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
The capacity of macrophages to dispose of cholesterol deposited in the atherosclerotic plaque depends on their ability to activate cholesterol efflux pathways. To develop athero-protective therapies aimed at promoting macrophage cholesterol efflux, cholesterol metabolism in THP-1 monocyte-derived macrophages has been extensively studied, but the intrinsic sensitivity of monocytes and the lack of a standardized procedure to differentiate THP-1 monocytes into macrophages have made it difficult to utilize THP-1 macrophages in the same or similar degree of differentiation across studies. The variability has resulted in lack of understanding of how the differentiation affects cholesterol metabolism, and here we review and investigate the effects of THP-1 differentiation on cholesterol efflux. The degree of THP-1 differentiation was inversely associated with ATP binding cassette A1 (ABCA1) transporter-mediated cholesterol efflux. The differentiation-associated decrease in ABCA1-mediated cholesterol efflux occurred despite an increase in ABCA1 expression. In contrast, DSC1 expression decreased during the differentiation. DSC1 is a negative regulator of the ABCA1-mediated efflux pathway and a DSC1-targeting agent, docetaxel showed high potency and efficacy in promoting ABCA1-mediated cholesterol efflux in THP-1 macrophages. These data suggest that pharmacological targeting of DSC1 may be more effective than increasing ABCA1 expression in promoting macrophage cholesterol efflux. In summary, the comparison of THP-1 macrophage subtypes in varying degrees of differentiation provided new insights into cholesterol metabolism in macrophages and allowed us to identify a viable target DSC1 for the promotion of cholesterol efflux in differentiated macrophages. Docetaxel and other pharmacological strategies targeting DSC1 may hold significant potential for reducing atherogenic cholesterol deposition.
Collapse
Affiliation(s)
- Hong Y Choi
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Isabelle Ruel
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Shiwon Choi
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Jacques Genest
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|