1
|
Mabry CJ, Weindel CG, Stranahan LW, Martinez EL, VanPortfliet JJ, West AP, Patrick KL, Watson RO. Necrosis drives susceptibility to Mycobacterium tuberculosis in POLG mtDNA mutator mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603991. [PMID: 39091776 PMCID: PMC11291070 DOI: 10.1101/2024.07.17.603991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The genetic and molecular determinants that underlie the heterogeneity of Mycobacterium tuberculosis (Mtb) infection outcomes in humans are poorly understood. Multiple lines of evidence demonstrate that mitochondrial dysfunction can exacerbate mycobacterial disease severity and mutations in some mitochondrial genes confer susceptibility to mycobacterial infection in humans. Here, we report that mutations in mitochondria DNA (mtDNA) polymerase gamma (POLG) potentiate susceptibility to Mtb infection in mice. POLG mutator mtDNA mice fail to mount a protective innate immune response at an early infection timepoint, evidenced by high bacterial burdens, reduced M1 macrophages, and excessive neutrophil infiltration in the lungs. Immunohistochemistry reveals signs of enhanced necrosis in the lungs of Mtb-infected POLG mice and POLG mutator macrophages are hyper-susceptible to extrinsic triggers of necroptosis ex vivo. By assigning a role for mtDNA mutations in driving necrosis during Mtb infection, this work further highlights the requirement for mitochondrial homeostasis in mounting balanced immune responses to Mtb.
Collapse
Affiliation(s)
- CJ Mabry
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - CG Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - LW Stranahan
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA
| | - EL Martinez
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232
| | - JJ VanPortfliet
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - AP West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - KL Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - RO Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
2
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
3
|
Fragkoulis G, Hangas A, Fekete Z, Michell C, Moraes C, Willcox S, Griffith JD, Goffart S, Pohjoismäki JO. Linear DNA-driven recombination in mammalian mitochondria. Nucleic Acids Res 2024; 52:3088-3105. [PMID: 38300793 PMCID: PMC11014290 DOI: 10.1093/nar/gkae040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Mitochondrial DNA (mtDNA) recombination in animals has remained enigmatic due to its uniparental inheritance and subsequent homoplasmic state, which excludes the biological need for genetic recombination, as well as limits tools to study it. However, molecular recombination is an important genome maintenance mechanism for all organisms, most notably being required for double-strand break repair. To demonstrate the existence of mtDNA recombination, we took advantage of a cell model with two different types of mitochondrial genomes and impaired its ability to degrade broken mtDNA. The resulting excess of linear DNA fragments caused increased formation of cruciform mtDNA, appearance of heterodimeric mtDNA complexes and recombinant mtDNA genomes, detectable by Southern blot and by long range PacBio® HiFi sequencing approach. Besides utilizing different electrophoretic methods, we also directly observed molecular complexes between different mtDNA haplotypes and recombination intermediates using transmission electron microscopy. We propose that the known copy-choice recombination by mitochondrial replisome could be sufficient for the needs of the small genome, thus removing the requirement for a specialized mitochondrial recombinase. The error-proneness of this system is likely to contribute to the formation of pathological mtDNA rearrangements.
Collapse
Affiliation(s)
- Georgios Fragkoulis
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Anu Hangas
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Zsófia Fekete
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Doctoral School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Craig Michell
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami,FL, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
4
|
Gonzalez CD, Nissanka N, Van Booven D, Griswold AJ, Moraes CT. Absence of both MGME1 and POLG EXO abolishes mtDNA whereas absence of either creates unique mtDNA duplications. J Biol Chem 2024; 300:107128. [PMID: 38432635 PMCID: PMC11002302 DOI: 10.1016/j.jbc.2024.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Both POLG and MGME1 are needed for mitochondrial DNA (mtDNA) maintenance in animal cells. POLG, the primary replicative polymerase of the mitochondria, has an exonuclease activity (3'→5') that corrects for the misincorporation of bases. MGME1 serves as an exonuclease (5'→3'), producing ligatable DNA ends. Although both have a critical role in mtDNA replication and elimination of linear fragments, these mechanisms are still not fully understood. Using digital PCR to evaluate and compare mtDNA integrity, we show that Mgme1 knock out (Mgme1 KK) tissue mtDNA is more fragmented than POLG exonuclease-deficient "Mutator" (Polg MM) or WT tissue. In addition, next generation sequencing of mutant hearts showed abundant duplications in/nearby the D-loop region and unique 100 bp duplications evenly spaced throughout the genome only in Mgme1 KK hearts. However, despite these unique mtDNA features at steady-state, we observed a similar delay in the degradation of mtDNA after an induced double strand DNA break in both Mgme1 KK and Polg MM models. Lastly, we characterized double mutant (Polg MM/Mgme1 KK) cells and show that mtDNA cannot be maintained without at least one of these enzymatic activities. We propose a model for the generation of these genomic abnormalities which suggests a role for MGME1 outside of nascent mtDNA end ligation. Our results highlight the role of MGME1 in and outside of the D-loop region during replication, support the involvement of MGME1 in dsDNA degradation, and demonstrate that POLG EXO and MGME1 can partially compensate for each other in maintaining mtDNA.
Collapse
Affiliation(s)
- Christian D Gonzalez
- MSTP and MCDB Programs, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nadee Nissanka
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
5
|
Ikonen L, Pirnes-Karhu S, Pradhan S, Jacobs HT, Szibor M, Suomalainen A. Alternative oxidase causes cell type- and tissue-specific responses in mutator mice. Life Sci Alliance 2023; 6:e202302036. [PMID: 37657934 PMCID: PMC10474302 DOI: 10.26508/lsa.202302036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
Energetic insufficiency, excess production of reactive oxygen species (ROS), and aberrant signaling partially account for the diverse pathology of mitochondrial diseases. Whether interventions affecting ROS, a regulator of stem cell pools, could modify somatic stem cell homeostasis remains unknown. Previous data from mitochondrial DNA mutator mice showed that increased ROS leads to oxidative damage in erythroid progenitors, causing lifespan-limiting anemia. Also unclear is how ROS-targeted interventions affect terminally differentiated tissues. Here, we set out to test in mitochondrial DNA mutator mice how ubiquitous expression of the Ciona intestinalis alternative oxidase (AOX), which attenuates ROS production, affects murine stem cell pools. We found that AOX does not affect neural stem cells but delays the progression of mutator-driven anemia. Furthermore, when combined with the mutator, AOX potentiates mitochondrial stress and inflammatory responses in skeletal muscle. These differential cell type-specific findings demonstrate that AOX expression is not a global panacea for curing mitochondrial dysfunction. ROS attenuation must be carefully studied regarding specific underlying defects before AOX can be safely used in therapy.
Collapse
Affiliation(s)
- Lilli Ikonen
- https://ror.org/040af2s02 Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sini Pirnes-Karhu
- https://ror.org/040af2s02 Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Swagat Pradhan
- https://ror.org/040af2s02 Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marten Szibor
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care, Jena University Hospital, Friedrich-Schiller University of Jena, Jena, Germany
| | - Anu Suomalainen
- https://ror.org/040af2s02 Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
6
|
Bayazit MB, Francois A, McGrail E, Accornero F, Stratton MS. mt-tRNAs in the polymerase gamma mutant heart. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:41. [PMID: 38235059 PMCID: PMC10793997 DOI: 10.20517/jca.2023.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Introduction Mice harboring a D257A mutation in the proofreading domain of the mitochondrial DNA polymerase, Polymerase Gamma (POLG), experience severe metabolic dysfunction and display hallmarks of accelerated aging. We previously reported a mitochondrial unfolded protein response (UPTmt) - like (UPRmt-like) gene and protein expression pattern in the right ventricular tissue of POLG mutant mice. Aim We sought to determine if POLG mutation altered the expression of genes encoded by the mitochondria in a way that might also reduce proteotoxic stress. Methods and Results The expression of genes encoded by the mitochondrial DNA was interrogated via RNA-seq and northern blot analysis. A striking, location-dependent effect was seen in the expression of mitochondrial-encoded tRNAs in the POLG mutant as assayed by RNA-seq. These expression changes were negatively correlated with the tRNA partner amino acid's amyloidogenic potential. Direct measurement by northern blot was conducted on candidate mt-tRNAs identified from the RNA-seq. This analysis confirmed reduced expression of MT-TY in the POLG mutant but failed to show increased expression of MT-TP, which was dramatically increased in the RNA-seq data. Conclusion We conclude that reduced expression of amyloid-associated mt-tRNAs is another indication of adaptive response to severe mitochondrial dysfunction in the POLG mutant. Incongruence between RNA-seq and northern blot measurement of MT-TP expression points towards the existence of mt-tRNA post-transcriptional modification regulation in the POLG mutant that alters either polyA capture or cDNA synthesis in RNA-seq library generation. Together, these data suggest that 1) evolution has distributed mt-tRNAs across the circular mitochondrial genome to allow chromosomal location-dependent mt-tRNA regulation (either by expression or PTM) and 2) this regulation is cognizant of the tRNA partner amino acid's amyloidogenic properties.
Collapse
Affiliation(s)
- M. Bilal Bayazit
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ashley Francois
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Erin McGrail
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Federica Accornero
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew S. Stratton
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Lichter EZ, Trease AJ, Cooper K, Stauch KL, Fox HS. Effects of Parkin on the Mitochondrial Genome in the Heart and Brain of Mitochondrial Mutator Mice. Adv Biol (Weinh) 2023; 7:e2300154. [PMID: 37376822 DOI: 10.1002/adbi.202300154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 06/29/2023]
Abstract
Mitochondrial dysfunction has been implicated in neurodegenerative diseases like Parkinson's disease (PD). This study investigates the role of Parkin, a protein involved in mitochondrial quality control, and strongly linked to PD, in the context of mitochondrial DNA (mtDNA) mutations. Mitochondrial mutator mice (PolgD257A/D257A ) (Polg) are used and bred with Parkin knockout (PKO) mice or mice with disinhibited Parkin (W402A). In the brain, mtDNA mutations are analyzed in synaptosomes, presynaptic neuronal terminals, which are far from neuronal soma, which likely renders mitochondria there more vulnerable compared with brain homogenate. Surprisingly, PKO results in reduced mtDNA mutations in the brain but increased control region multimer (CRM) in synaptosomes. In the heart, both PKO and W402A lead to increased mutations, with W402A showing more mutations in the heart than PKO. Computational analysis reveals many of these mutations are deleterious. These findings suggest that Parkin plays a tissue-dependent role in regulating mtDNA damage response, with differential effects in the brain and heart. Understanding the specific role of Parkin in different tissues may provide insights into the underlying mechanisms of PD and potential therapeutic strategies. Further investigation into these pathways can enhance the understanding of neurodegenerative diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Eliezer Z Lichter
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andrew J Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kathryn Cooper
- School of Interdisciplinary Informatics, University of Nebraska Omaha, Omaha, NE, 68182, USA
| | - Kelly L Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
8
|
Zheng Y, Zhang J, Zhu X, Wei Y, Zhao W, Si S, Li Y. A Mitochondrial Perspective on Noncommunicable Diseases. Biomedicines 2023; 11:biomedicines11030647. [PMID: 36979626 PMCID: PMC10045938 DOI: 10.3390/biomedicines11030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria are the center of energy metabolism in eukaryotic cells and play a central role in the metabolism of living organisms. Mitochondrial diseases characterized by defects in oxidative phosphorylation are the most common congenital diseases. Meanwhile, mitochondrial dysfunction caused by secondary factors such as non-inherited genetic mutations can affect normal physiological functions of human cells, induce apoptosis, and lead to the development of various diseases. This paper reviewed several major factors and mechanisms that contribute to mitochondrial dysfunction and discussed the development of diseases closely related to mitochondrial dysfunction and drug treatment strategies discovered in recent years.
Collapse
Affiliation(s)
- Yifan Zheng
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Zhang
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaohong Zhu
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuanjuan Wei
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (W.Z.); (S.S.); (Y.L.)
| | - Shuyi Si
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (W.Z.); (S.S.); (Y.L.)
| | - Yan Li
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (W.Z.); (S.S.); (Y.L.)
| |
Collapse
|
9
|
Zhu Y, Li Y, Wang Y, Wang L, Shi P, Du X, Zhang Y, Song Y, Zhu Z. Mitochondrial DNA polymorphisms in COX1 affect the lifespan of Caenorhabditis elegans through nuclear gene dct-15. Gene 2022; 845:146776. [PMID: 36063972 DOI: 10.1016/j.gene.2022.146776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Mutations in the mitochondrial DNA (mtDNA) are closely related to age and age-related complex diseases, but the exact regulatory mechanism of mtDNA natural variation or polymorphism and ageing remains unclear. Recently, nuclear genes that regulate mitochondrial functions and thereby influence ageing have been widely studied. In this study, the relationship between the retrograde communication from the mitochondria to the nucleus and its ultimate effect on ageing has been elucidated. This study found that the natural variations in COX1 of the mitochondria in the Caenorhabditis elegans population do not correlate with multiple phenotypes, except for a mild correlation with lifespan. After excluding the differences in the nuclear genome, the correlation between natural mitochondrial variation and lifespan increased significantly. Moreover, mtDNA variation downregulated the nuclear dct-15 gene expression, which consequently reduced the lifespan, development rate and motility of C. elegans. dct-15 mutations decreased mitochondria copy number but increased ATP content and mitochondrial ultrastructure. Thus, the results indicated that dct-15 interacted with the mitochondrial DNA polymorphisms in COX1 and is associated with ageing. Finally, bioinformatic analyses revealed that mtDNA variation regulated the structural constituent of the cuticle via dct-15 and suggested that the structural constituent of the cuticle could have an important role in the development and ageing processes. These results provide insights into the mtDNA mechanism that can alter the nuclear gene and thereby regulate ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Yao Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | | | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Peng Shi
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xinze Du
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Yingchun Zhang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Yuanjian Song
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China.
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
10
|
Mito-SiPE is a sequence-independent and PCR-free mtDNA enrichment method for accurate ultra-deep mitochondrial sequencing. Commun Biol 2022; 5:1269. [PMID: 36402890 PMCID: PMC9675811 DOI: 10.1038/s42003-022-04182-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
The analysis of somatic variation in the mitochondrial genome requires deep sequencing of mitochondrial DNA. This is ordinarily achieved by selective enrichment methods, such as PCR amplification or probe hybridization. These methods can introduce bias and are prone to contamination by nuclear-mitochondrial sequences (NUMTs), elements that can introduce artefacts into heteroplasmy analysis. We isolated intact mitochondria using differential centrifugation and alkaline lysis and subjected purified mitochondrial DNA to a sequence-independent and PCR-free method to obtain ultra-deep (>80,000X) sequencing coverage of the mitochondrial genome. This methodology avoids false-heteroplasmy calls that occur when long-range PCR amplification is used for mitochondrial DNA enrichment. Previously published methods employing mitochondrial DNA purification did not measure mitochondrial DNA enrichment or utilise high coverage short-read sequencing. Here, we describe a protocol that yields mitochondrial DNA and have quantified the increased level of mitochondrial DNA post-enrichment in 7 different mouse tissues. This method will enable researchers to identify changes in low frequency heteroplasmy without introducing PCR biases or NUMT contamination that are incorrectly identified as heteroplasmy when long-range PCR is used.
Collapse
|
11
|
Yu T, Slone J, Liu W, Barnes R, Opresko PL, Wark L, Mai S, Horvath S, Huang T. Premature aging is associated with higher levels of 8-oxoguanine and increased DNA damage in the Polg mutator mouse. Aging Cell 2022; 21:e13669. [PMID: 35993394 PMCID: PMC9470903 DOI: 10.1111/acel.13669] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the aging process. However, the mechanism by which this dysfunction causes aging is not fully understood. The accumulation of mutations in the mitochondrial genome (or "mtDNA") has been proposed as a contributor. One compelling piece of evidence in support of this hypothesis comes from the PolgD257A/D257A mutator mouse (Polgmut/mut ). These mice express an error-prone mitochondrial DNA polymerase that results in the accumulation of mtDNA mutations, accelerated aging, and premature death. In this paper, we have used the Polgmut/mut model to investigate whether the age-related biological effects observed in these mice are triggered by oxidative damage to the DNA that compromises the integrity of the genome. Our results show that mutator mouse has significantly higher levels of 8-oxoguanine (8-oxoGua) that are correlated with increased nuclear DNA (nDNA) strand breakage and oxidative nDNA damage, shorter average telomere length, and reduced mtDNA integrity. Based on these results, we propose a model whereby the increased level of reactive oxygen species (ROS) associated with the accumulation of mtDNA mutations in Polgmut/mut mice results in higher levels of 8-oxoGua, which in turn lead to compromised DNA integrity and accelerated aging via increased DNA fragmentation and telomere shortening. These results suggest that mitochondrial play a central role in aging and may guide future research to develop potential therapeutics for mitigating aging process.
Collapse
Affiliation(s)
- Tenghui Yu
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Human Aging Research Institute, School of Life ScienceNanchang UniversityNanchangChina,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jesse Slone
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Wensheng Liu
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA
| | - Ryan Barnes
- Department of Environmental and Occupational HealthUniversity of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Patricia L. Opresko
- Department of Environmental and Occupational HealthUniversity of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Landon Wark
- CancerCare Manitoba Research Institute, The Genomic Center for Cancer Research & DiagnosisUniversity of ManitobaWinnipegManitobaCanada
| | - Sabine Mai
- CancerCare Manitoba Research Institute, The Genomic Center for Cancer Research & DiagnosisUniversity of ManitobaWinnipegManitobaCanada
| | - Steve Horvath
- Human Genetics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Taosheng Huang
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
12
|
Coelho P, Fão L, Mota S, Rego AC. Mitochondrial function and dynamics in neural stem cells and neurogenesis: Implications for neurodegenerative diseases. Ageing Res Rev 2022; 80:101667. [PMID: 35714855 DOI: 10.1016/j.arr.2022.101667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Mitochondria have been largely described as the powerhouse of the cell and recent findings demonstrate that this organelle is fundamental for neurogenesis. The mechanisms underlying neural stem cells (NSCs) maintenance and differentiation are highly regulated by both intrinsic and extrinsic factors. Mitochondrial-mediated switch from glycolysis to oxidative phosphorylation, accompanied by mitochondrial remodeling and dynamics are vital to NSCs fate. Deregulation of mitochondrial proteins, mitochondrial DNA, function, fission/fusion and metabolism underly several neurodegenerative diseases; data show that these impairments are already present in early developmental stages and NSC fate decisions. However, little is known about mitochondrial role in neurogenesis. In this Review, we describe the recent evidence covering mitochondrial role in neurogenesis, its impact in selected neurodegenerative diseases, for which aging is the major risk factor, and the recent advances in stem cell-based therapies that may alleviate neurodegenerative disorders-related neuronal deregulation through improvement of mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Patrícia Coelho
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal.
| | - Lígia Fão
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; FMUC- Faculty of Medicine, University of Coimbra Polo 3, Coimbra, Portugal.
| | - Sandra Mota
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; III, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - A Cristina Rego
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; FMUC- Faculty of Medicine, University of Coimbra Polo 3, Coimbra, Portugal.
| |
Collapse
|
13
|
Gorr MW, Francois A, Marcho LM, Saldana T, McGrail E, Sun N, Stratton MS. Molecular signature of cardiac remodeling associated with Polymerase Gamma mutation. Life Sci 2022; 298:120469. [PMID: 35283176 PMCID: PMC9158136 DOI: 10.1016/j.lfs.2022.120469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/28/2022]
Abstract
AIMS Metabolic function/dysfunction is central to aging biology. This is well illustrated by the Polymerase Gamma (POLG) mutant mouse where a key residue of the mitochondrial DNA polymerase is mutated (D257A), causing loss of mitochondrial DNA stability and dramatically accelerated aging processes. Given known cardiac phenotypes in the POLG mutant, we sought to characterize the course of cardiac dysfunction in the POLG mutant to guide future intervention studies. MATERIALS AND METHODS Cardiac echocardiography and terminal hemodynamic analyses were used to define the course of dysfunction in the right and left cardiac ventricles in the POLG mutant. We also conducted RNA-seq analysis on cardiac right ventricles to identify mechanisms engaged by severe metabolic dysfunction and compared this analysis to several publically available datasets. KEY FINDINGS Interesting sex differences were noted as female POLG mutants died earlier than male POLG mutants and LV chamber diameters were impacted earlier in females than males. Moreover, male mutants showed LV wall thinning while female mutant LV walls were thicker. Both males and females displayed significant RV hypertrophy. POLG mutants displayed a gene expression pattern associated with inflammation, fibrosis, and heart failure. Finally, comparative omics analyses of publically available data provide additional mechanistic and therapeutic insights. SIGNIFICANCE Aging-associated cardiac dysfunction is a growing clinical problem. This work uncovers sex-specific cardiac responses to severe metabolic dysfunction that are reminiscent of patterns seen in human heart failure and provides insights to the molecular mechanisms engaged downstream of severe metabolic dysfunction that warrant further investigation.
Collapse
Affiliation(s)
- Matthew W. Gorr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA,College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Ashley Francois
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lynn M. Marcho
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ty Saldana
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Erin McGrail
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Nuo Sun
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew S. Stratton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
14
|
Luo S, Yang M, Zhao H, Han Y, Liu Y, Xiong X, Chen W, Li C, Sun L. Mitochondrial DNA-dependent inflammation in kidney diseases. Int Immunopharmacol 2022; 107:108637. [DOI: 10.1016/j.intimp.2022.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022]
|
15
|
The Mitochondrial Genome in Aging and Disease and the Future of Mitochondrial Therapeutics. Biomedicines 2022; 10:biomedicines10020490. [PMID: 35203698 PMCID: PMC8962324 DOI: 10.3390/biomedicines10020490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are intracellular organelles that utilize nutrients to generate energy in the form of ATP by oxidative phosphorylation. Mitochondrial DNA (mtDNA) in humans is a 16,569 base pair double-stranded circular DNA that encodes for 13 vital proteins of the electron transport chain. Our understanding of the mitochondrial genome’s transcription, translation, and maintenance is still emerging, and human pathologies caused by mtDNA dysfunction are widely observed. Additionally, a correlation between declining mitochondrial DNA quality and copy number with organelle dysfunction in aging is well-documented in the literature. Despite tremendous advancements in nuclear gene-editing technologies and their value in translational avenues, our ability to edit mitochondrial DNA is still limited. In this review, we discuss the current therapeutic landscape in addressing the various pathologies that result from mtDNA mutations. We further evaluate existing gene therapy efforts, particularly allotopic expression and its potential to become an indispensable tool for restoring mitochondrial health in disease and aging.
Collapse
|
16
|
Wang P, Wu B, You S, Lu S, Xiong S, Zou Y, Jia P, Guo X, Zhang Y, Cao L, Sun Y, Zhang N. DNA Polymerase Gamma Recovers Mitochondrial Function and Inhibits Vascular Calcification by Interacted with p53. Int J Biol Sci 2022; 18:409-425. [PMID: 34975341 PMCID: PMC8692132 DOI: 10.7150/ijbs.65030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase gamma (PolG) is the major polymerase of mitochondrial DNA (mtDNA) and essential for stabilizing mitochondrial function. Vascular calcification (VC) is common senescence related degenerative pathology phenomenon in the end-stage of multiple chronic diseases. Mitochondrial dysfunction was often observed in calcified vessels, but the function and mechanism of PolG in the calcification process was still unknown. The present study found PolGD257A/D257A mice presented more severe calcification of aortas than wild type (WT) mice with vitamin D3 (Vit D3) treatment, and this phenomenon was also confirmed in vitro. Mechanistically, PolG could enhance the recruitment and interaction of p53 in calcification condition to recover mitochondrial function and eventually to resist calcification. Meanwhile, we found the mutant PolG (D257A) failed to achieve the same rescue effects, suggesting the 3'-5' exonuclease activity guarantee the enhanced interaction of p53 and PolG in response to calcification stimulation. Thus, we believed that it was PolG, not mutant PolG, could maintain mitochondrial function and attenuate calcification in vitro and in vivo. And PolG could be a novel potential therapeutic target against calcification, providing a novel insight to clinical treatment.
Collapse
Affiliation(s)
- Pengbo Wang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Shilong You
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Saien Lu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Shengjun Xiong
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Xiaofan Guo
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, 110122, Liaoning Province, People Republic of China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| |
Collapse
|
17
|
Maclaine KD, Stebbings KA, Llano DA, Havird JC. The mtDNA mutation spectrum in the PolG mutator mouse reveals germline and somatic selection. BMC Genom Data 2021; 22:52. [PMID: 34823474 PMCID: PMC8620558 DOI: 10.1186/s12863-021-01005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) codes for products necessary for electron transport and mitochondrial gene translation. mtDNA mutations can lead to human disease and influence organismal fitness. The PolG mutator mouse lacks mtDNA proofreading function and rapidly accumulates mtDNA mutations, making it a model for examining the causes and consequences of mitochondrial mutations. Premature aging in PolG mice and their physiology have been examined in depth, but the location, frequency, and diversity of their mtDNA mutations remain understudied. Identifying the locations and spectra of mtDNA mutations in PolG mice can shed light on how selection shapes mtDNA, both within and across organisms. RESULTS Here, we characterized somatic and germline mtDNA mutations in brain and liver tissue of PolG mice to quantify mutation count (number of unique mutations) and frequency (mutation prevalence). Overall, mtDNA mutation count and frequency were the lowest in the D-loop, where an mtDNA origin of replication is located, but otherwise uniform across the mitochondrial genome. Somatic mtDNA mutations have a higher mutation count than germline mutations. However, germline mutations maintain a higher frequency and were also more likely to be silent. Cytosine to thymine mutations characteristic of replication errors were the plurality of basepair changes, and missense C to T mutations primarily resulted in increased protein hydrophobicity. Unlike wild type mice, PolG mice do not appear to show strand asymmetry in mtDNA mutations. Indel mutations had a lower count and frequency than point mutations and tended to be short, frameshift deletions. CONCLUSIONS Our results provide strong evidence that purifying selection plays a major role in the mtDNA of PolG mice. Missense mutations were less likely to be passed down in the germline, and they were less likely to spread to high frequencies. The D-loop appears to have resistance to mutations, either through selection or as a by-product of replication processes. Missense mutations that decrease hydrophobicity also tend to be selected against, reflecting the membrane-bound nature of mtDNA-encoded proteins. The abundance of mutations from polymerase errors compared with reactive oxygen species (ROS) damage supports previous studies suggesting ROS plays a minimal role in exacerbating the PolG phenotype, but our findings on strand asymmetry provide discussion for the role of polymerase errors in wild type organisms. Our results provide further insight on how selection shapes mtDNA mutations and on the aging mechanisms in PolG mice.
Collapse
Affiliation(s)
- Kendra D Maclaine
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX, 78712, USA.
| | - Kevin A Stebbings
- Neuroscience Program, The University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| | - Daniel A Llano
- Neuroscience Program, The University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, IL, 61801, USA
- Department of Molecular an Integrative Physiology, 524 Burrill Hall, MC-114, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX, 78712, USA
| |
Collapse
|
18
|
Sanchez-Contreras M, Sweetwyne MT, Kohrn BF, Tsantilas KA, Hipp MJ, Schmidt EK, Fredrickson J, Whitson JA, Campbell MD, Rabinovitch PS, Marcinek DJ, Kennedy SR. A replication-linked mutational gradient drives somatic mutation accumulation and influences germline polymorphisms and genome composition in mitochondrial DNA. Nucleic Acids Res 2021; 49:11103-11118. [PMID: 34614167 PMCID: PMC8565317 DOI: 10.1093/nar/gkab901] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause maternally inherited diseases, while somatic mutations are linked to common diseases of aging. Although mtDNA mutations impact health, the processes that give rise to them are under considerable debate. To investigate the mechanism by which de novo mutations arise, we analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing. We observe distinct mutational gradients in G→A and T→C transitions delimited by the light-strand origin and the mitochondrial Control Region (mCR). The gradient increases unequally across the mtDNA with age and is lost in the absence of DNA polymerase γ proofreading activity. In addition, high-resolution analysis of the mCR shows that important regulatory elements exhibit considerable variability in mutation frequency, consistent with them being mutational ‘hot-spots’ or ‘cold-spots’. Collectively, these patterns support genome replication via a deamination prone asymmetric strand-displacement mechanism as the fundamental driver of mutagenesis in mammalian DNA. Moreover, the distribution of mtDNA single nucleotide polymorphisms in humans and the distribution of bases in the mtDNA across vertebrate species mirror this gradient, indicating that replication-linked mutations are likely the primary source of inherited polymorphisms that, over evolutionary timescales, influences genome composition during speciation.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth K Schmidt
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeremy A Whitson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew D Campbell
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
López-Díez R, Egaña-Gorroño L, Senatus L, Shekhtman A, Ramasamy R, Schmidt AM. Diabetes and Cardiovascular Complications: The Epidemics Continue. Curr Cardiol Rep 2021; 23:74. [PMID: 34081211 PMCID: PMC8173334 DOI: 10.1007/s11886-021-01504-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The cardiovascular complications of type 1 and 2 diabetes are major causes of morbidity and mortality. Extensive efforts have been made to maximize glycemic control; this strategy reduces certain manifestations of cardiovascular complications. There are drawbacks, however, as intensive glycemic control does not impart perennial protective benefits, and these efforts are not without potential adverse sequelae, such as hypoglycemic events. RECENT FINDINGS Here, the authors have focused on updates into key areas under study for mechanisms driving these cardiovascular disorders in diabetes, including roles for epigenetics and gene expression, interferon networks, and mitochondrial dysfunction. Updates on the cardioprotective roles of the new classes of hyperglycemia-targeting therapies, the sodium glucose transport protein 2 inhibitors and the agonists of the glucagon-like peptide 1 receptor system, are reviewed. In summary, insights from ongoing research and the cardioprotective benefits of the newer type 2 diabetes therapies are providing novel areas for therapeutic opportunities in diabetes and CVD.
Collapse
Affiliation(s)
- Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, Science Building, Room 615, New York, NY 10016 USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, Science Building, Room 615, New York, NY 10016 USA
| | - Laura Senatus
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, Science Building, Room 615, New York, NY 10016 USA
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, Science Building, Room 615, New York, NY 10016 USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, Science Building, Room 615, New York, NY 10016 USA
| |
Collapse
|
20
|
Lei Y, Guerra Martinez C, Torres-Odio S, Bell SL, Birdwell CE, Bryant JD, Tong CW, Watson RO, West LC, West AP. Elevated type I interferon responses potentiate metabolic dysfunction, inflammation, and accelerated aging in mtDNA mutator mice. SCIENCE ADVANCES 2021; 7:eabe7548. [PMID: 34039599 PMCID: PMC8153723 DOI: 10.1126/sciadv.abe7548] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/08/2021] [Indexed: 05/30/2023]
Abstract
Mitochondrial dysfunction is a key driver of inflammatory responses in human disease. However, it remains unclear whether alterations in mitochondria-innate immune cross-talk contribute to the pathobiology of mitochondrial disorders and aging. Using the polymerase gamma (POLG) mutator model of mitochondrial DNA instability, we report that aberrant activation of the type I interferon (IFN-I) innate immune axis potentiates immunometabolic dysfunction, reduces health span, and accelerates aging in mutator mice. Mechanistically, elevated IFN-I signaling suppresses activation of nuclear factor erythroid 2-related factor 2 (NRF2), which increases oxidative stress, enhances proinflammatory cytokine responses, and accelerates metabolic dysfunction. Ablation of IFN-I signaling attenuates hyperinflammatory phenotypes by restoring NRF2 activity and reducing aerobic glycolysis, which combine to lessen cardiovascular and myeloid dysfunction in aged mutator mice. These findings further advance our knowledge of how mitochondrial dysfunction shapes innate immune responses and provide a framework for understanding mitochondria-driven immunopathology in POLG-related disorders and aging.
Collapse
Affiliation(s)
- Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Christine E Birdwell
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Joshua D Bryant
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Carl W Tong
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Laura Ciaccia West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
21
|
Macken WL, Vandrovcova J, Hanna MG, Pitceathly RDS. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat Rev Neurol 2021; 17:215-230. [PMID: 33623159 DOI: 10.1038/s41582-021-00455-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has increased our understanding of the molecular basis of many primary mitochondrial diseases (PMDs). Despite this progress, many patients with suspected PMD remain without a genetic diagnosis, which restricts their access to in-depth genetic counselling, reproductive options and clinical trials, in addition to hampering efforts to understand the underlying disease mechanisms. Although they represent a considerable improvement over their predecessors, current methods for sequencing the mitochondrial and nuclear genomes have important limitations, and molecular diagnostic techniques are often manual and time consuming. However, recent advances in genomics and transcriptomics offer realistic solutions to these challenges. In this Review, we discuss the current genetic testing approach for PMDs and the opportunities that exist for increased use of whole-genome NGS of nuclear and mitochondrial DNA (mtDNA) in the clinical environment. We consider the possible role for long-read approaches in sequencing of mtDNA and in the identification of novel nuclear genomic causes of PMDs. We examine the expanding applications of RNA sequencing, including the detection of cryptic variants that affect splicing and gene expression and the interpretation of rare and novel mitochondrial transfer RNA variants.
Collapse
Affiliation(s)
- William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
22
|
Stewart JB. Current progress with mammalian models of mitochondrial DNA disease. J Inherit Metab Dis 2021; 44:325-342. [PMID: 33099782 DOI: 10.1002/jimd.12324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Mitochondrial disorders make up a large class of heritable diseases that cause a broad array of different human pathologies. They can affect many different organ systems, or display very specific tissue presentation, and can lead to illness either in childhood or later in life. While the over 1200 genes encoded in the nuclear DNA play an important role in human mitochondrial disease, it has been known for over 30 years that mutations of the mitochondria's own small, multicopy DNA chromosome (mtDNA) can lead to heritable human diseases. Unfortunately, animal mtDNA has resisted transgenic and directed genome editing technologies until quite recently. As such, animal models to aid in our understanding of these diseases, and to explore preclinical therapeutic research have been quite rare. This review will discuss the unusual properties of animal mitochondria that have hindered the generation of animal models. It will also discuss the existing mammalian models of human mtDNA disease, describe the methods employed in their generation, and will discuss recent advances in the targeting of DNA-manipulating enzymes to the mitochondria and how these may be employed to generate new models.
Collapse
Affiliation(s)
- James Bruce Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int J Mol Sci 2021; 22:ijms22042007. [PMID: 33670490 PMCID: PMC7922866 DOI: 10.3390/ijms22042007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial respiratory chain is the main site of reactive oxygen species (ROS) production in the cell. Although mitochondria possess a powerful antioxidant system, an excess of ROS cannot be completely neutralized and cumulative oxidative damage may lead to decreasing mitochondrial efficiency in energy production, as well as an increasing ROS excess, which is known to cause a critical imbalance in antioxidant/oxidant mechanisms and a "vicious circle" in mitochondrial injury. Due to insufficient energy production, chronic exposure to ROS overproduction consequently leads to the oxidative damage of life-important biomolecules, including nucleic acids, proteins, lipids, and amino acids, among others. Different forms of mitochondrial dysfunction (mitochondriopathies) may affect the brain, heart, peripheral nervous and endocrine systems, eyes, ears, gut, and kidney, among other organs. Consequently, mitochondriopathies have been proposed as an attractive diagnostic target to be investigated in any patient with unexplained progressive multisystem disorder. This review article highlights the pathomechanisms of mitochondriopathies, details advanced analytical tools, and suggests predictive approaches, targeted prevention and personalization of medical services as instrumental for the overall management of mitochondriopathy-related cascading pathologies.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Correspondence: (P.K.); (O.G.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
- Correspondence: (P.K.); (O.G.)
| |
Collapse
|
24
|
Accurate mapping of mitochondrial DNA deletions and duplications using deep sequencing. PLoS Genet 2020; 16:e1009242. [PMID: 33315859 PMCID: PMC7769605 DOI: 10.1371/journal.pgen.1009242] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/28/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Deletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy. Application to mouse models of mtDNA maintenance disease demonstrated the ability to detect deletions and duplications even at low levels of heteroplasmy.
Collapse
|
25
|
Moore TM, Zhou Z, Strumwasser AR, Cohn W, Lin AJ, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Hoang AN, Widjaja K, Abrishami AD, Charugundla S, Stiles L, Whitelegge JP, Turcotte LP, Wanagat J, Hevener AL. Age-induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge. Aging Cell 2020; 19:e13166. [PMID: 33049094 PMCID: PMC7681042 DOI: 10.1111/acel.13166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/10/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A "mutator" mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut ) because it accumulates mtDNA point mutations ~ 500-fold > wild-type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24-hr starvation, and following high-fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12-month-old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress-related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice.
Collapse
Affiliation(s)
- Timothy M. Moore
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Whitaker Cohn
- Department of Psychiatry and Biobehavioral Sciences & The Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCAUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kevin Cory
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kate Whitney
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Theodore Ho
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Timothy Ho
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Joseph L. Lee
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Daniel H. Rucker
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Austin N. Hoang
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kevin Widjaja
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Aaron D. Abrishami
- Division of CardiologyDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Sarada Charugundla
- Division of CardiologyDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Julian P. Whitelegge
- Department of Psychiatry and Biobehavioral Sciences & The Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCAUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jonathan Wanagat
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Andrea L. Hevener
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Iris Cantor‐UCLA Women's Health CenterUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
26
|
Bagge EK, Fujimori-Tonou N, Kubota-Sakashita M, Kasahara T, Kato T. Unbiased PCR-free spatio-temporal mapping of the mtDNA mutation spectrum reveals brain region-specific responses to replication instability. BMC Biol 2020; 18:150. [PMID: 33097039 PMCID: PMC7585204 DOI: 10.1186/s12915-020-00890-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Background The accumulation of mtDNA mutations in different tissues from various mouse models has been widely studied especially in the context of mtDNA mutation-driven ageing but has been confounded by the inherent limitations of the most widely used approaches. By implementing a method to sequence mtDNA without PCR amplification prior to library preparation, we map the full unbiased mtDNA mutation spectrum across six distinct brain regions from mice. Results We demonstrate that ageing-induced levels of mtDNA mutations (single nucleotide variants and deletions) reach stable levels at 50 weeks of age but can be further elevated specifically in the cortex, nucleus accumbens (NAc), and paraventricular thalamic nucleus (PVT) by expression of a proof-reading-deficient mitochondrial DNA polymerase, PolgD181A. The increase in single nucleotide variants increases the fraction of shared SNVs as well as their frequency, while characteristics of deletions remain largely unaffected. In addition, PolgD181A also induces an ageing-dependent accumulation of non-coding control-region multimers in NAc and PVT, a feature that appears almost non-existent in wild-type mice. Conclusions Our data provide a novel view of the spatio-temporal accumulation of mtDNA mutations using very limited tissue input. The differential response of brain regions to a state of replication instability provides insight into a possible heterogenic mitochondrial landscape across the brain that may be involved in the ageing phenotype and mitochondria-associated disorders.
Collapse
Affiliation(s)
- Emilie Kristine Bagge
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Noriko Fujimori-Tonou
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan.,Current address: Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mie Kubota-Sakashita
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan.,Current address: Career Development Program, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan. .,Department of Psychiatry and Behavioral Science, Juntendo University, Graduate School of Medicine, Hongo 2-1-1, Bunkyo, Tokyo 113-8421, Japan.
| |
Collapse
|
27
|
Abstract
Vascular calcification (VC) was defined as the ectopic deposition of calcium-phosphorus complexes on the blood vessel walls. It was a process involving multiple factors and mechanisms, covering the phenotype transition of vascular smooth muscle cells (VSMCs) and release of microvesicles. It was a common end-stage alteration of chronic diseases such as cardiovascular disease and chronic kidney disease. Increasing evidence indicates that mitochondria were involved in the development of VC. Mitochondria provided energy to cells, maintained the stability of cell functions, and participated in a variety of biological behavior. Oxidative stress, autophagy, apoptosis, and mitochondrial DNA (mtDNA) damage could affect the development of VSMCs calcification by alteration of mitochondrial function. This article reviewed the mechanism of calcification and the role of mitochondria in VC, aiming to raise a novel insight into drug development and clinical treatment.
Collapse
|
28
|
Piantadosi CA. Mitochondrial DNA, oxidants, and innate immunity. Free Radic Biol Med 2020; 152:455-461. [PMID: 31958498 DOI: 10.1016/j.freeradbiomed.2020.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial oxidant damage, including damage to mitochondrial DNA (mtDNA) is a feature of both severe microbial infections and inflammation arising from sterile (non-infectious) sources such as tissue trauma. Damaged mitochondria release intact or oxidized fragments of mtDNA into the cytoplasm, which represent oxidant injury, and the fragments promote a spontaneous innate immune response, exemplifying a modern frontier of immunological research. MtDNA and mitochondrial-derived oxidants are central factors in activating at least three innate immune pathways involving the TLR9 (Toll-like receptor 9), the NLRP3 (NACHT, LRR and PYD domains-containing protein-3) inflammasome, and the cGAS (cyclic AMP-GMP synthase) pathway. The events that allow mtDNA to escape from damaged mitochondria and from damaged cells are incompletely known, but the presence of cytoplasmic mtDNA and cell-free mtDNA as immune regulators are important for understanding the cell's capacity for protecting mitochondrial quality control (MQC) and cell viability during inflammatory states.
Collapse
|
29
|
Arauna D, Furrianca M, Espinosa-Parrilla Y, Fuentes E, Alarcón M, Palomo I. Natural Bioactive Compounds As Protectors Of Mitochondrial Dysfunction In Cardiovascular Diseases And Aging. Molecules 2019; 24:molecules24234259. [PMID: 31766727 PMCID: PMC6930637 DOI: 10.3390/molecules24234259] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/04/2023] Open
Abstract
Diet, particularly the Mediterranean diet, has been considered as a protective factor against the development of cardiovascular diseases, the main cause of death in the world. Aging is one of the major risk factors for cardiovascular diseases, which have an oxidative pathophysiological component, being the mitochondria one of the key organelles in the regulation of oxidative stress. Certain natural bioactive compounds have the ability to regulate oxidative phosphorylation, the production of reactive oxygen species and the expression of mitochondrial proteins; but their efficacy within the mitochondrial physiopathology of cardiovascular diseases has not been clarified yet. The following review has the purpose of evaluating several natural compounds with evidence of mitochondrial effect in cardiovascular disease models, ascertaining the main cellular mechanisms and their potential use as functional foods for prevention of cardiovascular disease and healthy aging.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
| | - María Furrianca
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Departamento de enfermería, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Yolanda Espinosa-Parrilla
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Laboratory of Molecular Medicine —LMM, Center for Education, Healthcare and Investigation—CADI, Universidad de Magallanes, Punta Arenas 6200000, Chile
- School of Medicine, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| | - Marcelo Alarcón
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| |
Collapse
|
30
|
Folgueras AR, Freitas-Rodríguez S, Velasco G, López-Otín C. Mouse Models to Disentangle the Hallmarks of Human Aging. Circ Res 2019; 123:905-924. [PMID: 30355076 DOI: 10.1161/circresaha.118.312204] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Model organisms have provided fundamental evidence that aging can be delayed and longevity extended. These findings gave rise to a new era in aging research aimed at elucidating the pathways and networks controlling this complex biological process. The identification of 9 hallmarks of aging has established a framework to evaluate the relative contribution of each hallmark and the interconnections among them. In this review, we revisit these hallmarks with the information obtained exclusively through the generation of genetically modified mouse models that have a significant impact on the aging process. We discuss within each hallmark those interventions that accelerate aging or that have been successful at increasing lifespan, with the final goal of identifying the most promising antiaging avenues based on the current knowledge provided by in vivo models.
Collapse
Affiliation(s)
- Alicia R Folgueras
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Sandra Freitas-Rodríguez
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Gloria Velasco
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Carlos López-Otín
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| |
Collapse
|
31
|
Bigland MJ, Brichta AM, Smith DW. Effects of Ageing on the Mitochondrial Genome in Rat Vestibular Organs. Curr Aging Sci 2019; 11:108-117. [PMID: 30777575 PMCID: PMC6388513 DOI: 10.2174/1874609811666180830143358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/21/2018] [Accepted: 08/01/2018] [Indexed: 01/07/2023]
Abstract
Background: Deterioration in vestibular function occurs with ageing and is linked to age-related falls. Sensory hair cells located in the inner ear vestibular labyrinth are critical to vestibular function. Vestibular hair cells rely predominantly on oxidative phosphorylation (OXPHOS) for ener-gy production and contain numerous mitochondria. Mitochondrial DNA (mtDNA) mutations and perturbed energy production are associated with the ageing process. Objective: We investigated the effects of ageing on mtDNA in vestibular hair and support cells, and vestibular organ gene expression, to better understand mechanisms of age-related vestibular deficits. Methods: Vestibular hair and supporting cell layers were microdissected from young and old rats, and mtDNA was quantified by qPCR. Additionally, vestibular organ gene expression was analysed by microarray and gene set enrichment analyses. Results: In contrast to most other studies, we found no evidence of age-related mtDNA deletion mu-tations. However, we found an increase in abundance of major arc genes near the mtDNA control re-gion. There was also a marked age-related reduction in mtDNA copy number in both cell types. Ves-tibular organ gene expression, gene set enrichment analysis showed the OXPHOS pathway was down regulated in old animals. Conclusion: Given the importance of mtDNA to mitochondrial OXPHOS and hair cell function, our findings suggest the vestibular organs are potentially on the brink of an energy crisis in old animals
Collapse
Affiliation(s)
- Mark J Bigland
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alan M Brichta
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Doug W Smith
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
32
|
Abstract
Replication stalling has been associated with the formation of pathological mitochondrial DNA (mtDNA) rearrangements. Yet, almost nothing is known about the fate of stalled replication intermediates in mitochondria. We show here that replication stalling in mitochondria leads to replication fork regression and mtDNA double-strand breaks. The resulting mtDNA fragments are normally degraded by a mechanism involving the mitochondrial exonuclease MGME1, and the loss of this enzyme results in accumulation of linear and recombining mtDNA species. Additionally, replication stress promotes the initiation of alternative replication origins as an apparent means of rescue by fork convergence. Besides demonstrating an interplay between two major mechanisms rescuing stalled replication forks – mtDNA degradation and homology-dependent repair – our data provide evidence that mitochondria employ similar mechanisms to cope with replication stress as known from other genetic systems.
Collapse
|
33
|
Murtha LA, Morten M, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Ngo DT, Sverdlov AL, Knight DA, Boyle AJ. The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis. Aging Dis 2019; 10:419-428. [PMID: 31011486 PMCID: PMC6457057 DOI: 10.14336/ad.2018.0601] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Aging promotes a range of degenerative pathologies characterized by progressive losses of tissue and/or cellular function. Fibrosis is the hardening, overgrowth and scarring of various tissues characterized by the accumulation of extracellular matrix components. Aging is an important predisposing factor common for fibrotic heart and respiratory disease. Age-related processes such as senescence, inflammaging, autophagy and mitochondrial dysfunction are interconnected biological processes that diminish the regenerative capacity of the aged heart and lung and have been shown to play a crucial role in cardiac fibrosis and idiopathic pulmonary fibrosis. This review focuses on these four processes of aging in relation to their role in fibrosis. It has long been established that the heart and lung are linked both functionally and anatomically when it comes to health and disease, with an ever-expanding aging population, the incidence of fibrotic disease and therefore the number of fibrosis-related deaths will continue to rise. There are currently no feasible therapies to treat the effects of chronic fibrosis therefore highlighting the importance of exploring the processes of aging and its role in inducing and exacerbating fibrosis of each organ. The focus of this review may help to highlight potential avenues of therapeutic exploration
Collapse
Affiliation(s)
- Lucy A Murtha
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew Morten
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael J Schuliga
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nishani S Mabotuwana
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Sean A Hardy
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David W Waters
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Janette K Burgess
- 4University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen and W. J. Kolff Research Institute, The Netherlands.,5Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia.,6Discipline of Pharmacology, The University of Sydney, NSW 2006, Australia
| | - Doan Tm Ngo
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Aaron L Sverdlov
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,7Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada.,8Adjunct Professor, Department of Medicine, University of Western Australia, Australia.,9Research and Innovation Conjoint, Hunter New England Health District, Australia
| | - Andrew J Boyle
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
34
|
Ishikawa K, Kobayashi K, Yamada A, Umehara M, Oka T, Nakada K. Concentration of mitochondrial DNA mutations by cytoplasmic transfer from platelets to cultured mouse cells. PLoS One 2019; 14:e0213283. [PMID: 30830936 PMCID: PMC6398856 DOI: 10.1371/journal.pone.0213283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/18/2019] [Indexed: 01/11/2023] Open
Abstract
Accumulation of mutations in mitochondrial DNA (mtDNA) is thought to be responsible for mitochondrial, and other, diseases and biological phenomena, such as diabetes, cancer, neurodegenerative diseases, and aging. Mouse models may elucidate the relationship between mutations in mtDNA and these abnormalities. However, because of the difficulty of mtDNA manipulation, generation of mouse models has not sufficiently progressed to enable such studies. To overcome this difficulty and to establish a source of diverse mtDNA mutations, we here generated cultured mouse cells containing mtDNA derived from an mtDNA mutator mouse that accumulates random mtDNA mutations with age. Mutation analysis of the obtained transmitochondrial cytoplasmic hybrid cells (cybrids) revealed that the cells harbored diverse mtDNA mutations occurring at a higher frequency than in mouse tissues, and exhibited severe respiration defects that would be lethal in tissues or organs. Abnormal respiratory complex formation and high stress on the mitochondrial protein quality control system appeared to be involved in these severe respiration defects. The mutation rates of the majority of highly accumulated mutations converged to either approximately 5%, 10%, or 40%, suggesting that these mutations are linked on the respective mtDNA molecules, and mtDNA in cybrid cells likely consisted of mtDNA molecules clonally expanded from the small population of introduced mtDNAs. Thus, the linked mutations in these cybrid cells cannot be evaluated individually. In addition, mtDNA mutations homologous to confirmed pathogenic mutations in human were rarely observed in our generated cybrids. However, the transmitochondrial cybrids constitute a useful tool for concentrating pathogenic mtDNA mutations and as a source of diverse mtDNA mutations to elucidate the relationship between mtDNA mutations and diseases.
Collapse
Affiliation(s)
- Kaori Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- * E-mail: (KI); (KN)
| | - Kohei Kobayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Akihito Yamada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Moe Umehara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- * E-mail: (KI); (KN)
| |
Collapse
|
35
|
Lakshmanan LN, Yee Z, Ng LF, Gunawan R, Halliwell B, Gruber J. Clonal expansion of mitochondrial DNA deletions is a private mechanism of aging in long-lived animals. Aging Cell 2018; 17:e12814. [PMID: 30043489 PMCID: PMC6156498 DOI: 10.1111/acel.12814] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/25/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
Disruption of mitochondrial metabolism and loss of mitochondrial DNA (mtDNA) integrity are widely considered as evolutionarily conserved (public) mechanisms of aging (López-Otín et al., Cell, 153, 2013 and 1194). Human aging is associated with loss in skeletal muscle mass and function (Sarcopenia), contributing significantly to morbidity and mortality. Muscle aging is associated with loss of mtDNA integrity. In humans, clonally expanded mtDNA deletions colocalize with sites of fiber breakage and atrophy in skeletal muscle. mtDNA deletions may therefore play an important, possibly causal role in sarcopenia. The nematode Caenorhabditis elegans also exhibits age-dependent decline in mitochondrial function and a form of sarcopenia. However, it is unclear if mtDNA deletions play a role in C. elegans aging. Here, we report identification of 266 novel mtDNA deletions in aging nematodes. Analysis of the mtDNA mutation spectrum and quantification of mutation burden indicates that (a) mtDNA deletions in nematode are extremely rare, (b) there is no significant age-dependent increase in mtDNA deletions, and (c) there is little evidence for clonal expansion driving mtDNA deletion dynamics. Thus, mtDNA deletions are unlikely to drive the age-dependent functional decline commonly observed in C. elegans. Computational modeling of mtDNA dynamics in C. elegans indicates that the lifespan of short-lived animals such as C. elegans is likely too short to allow for significant clonal expansion of mtDNA deletions. Together, these findings suggest that clonal expansion of mtDNA deletions is likely a private mechanism of aging predominantly relevant in long-lived animals such as humans and rhesus monkey and possibly in rodents.
Collapse
Affiliation(s)
- Lakshmi Narayanan Lakshmanan
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment GenopodeLausanneSwitzerland
| | - Zhuangli Yee
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Li Fang Ng
- Ageing Research Laboratory, Science DivisionYale‐NUS CollegeSingaporeSingapore
| | - Rudiyanto Gunawan
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment GenopodeLausanneSwitzerland
| | - Barry Halliwell
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Jan Gruber
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Ageing Research Laboratory, Science DivisionYale‐NUS CollegeSingaporeSingapore
| |
Collapse
|
36
|
Peralta S, Goffart S, Williams SL, Diaz F, Garcia S, Nissanka N, Area-Gomez E, Pohjoismäki J, Moraes CT. ATAD3 controls mitochondrial cristae structure in mouse muscle, influencing mtDNA replication and cholesterol levels. J Cell Sci 2018; 131:jcs217075. [PMID: 29898916 PMCID: PMC6051345 DOI: 10.1242/jcs.217075] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Mutations in the mitochondrial inner membrane ATPase ATAD3A result in neurological syndromes in humans. In mice, the ubiquitous disruption of Atad3 (also known as Atad3a) was embryonic lethal, but a skeletal muscle-specific conditional knockout (KO) was viable. At birth, ATAD3 muscle KO mice had normal weight, but from 2 months onwards they showed progressive motor-impaired coordination and weakness. Loss of ATAD3 caused early and severe mitochondrial structural abnormalities, mitochondrial proliferation and muscle atrophy. There was dramatic reduction in mitochondrial cristae junctions and overall cristae morphology. The lack of mitochondrial cristae was accompanied by a reduction in high molecular weight mitochondrial contact site and cristae organizing system (MICOS) complexes, and to a lesser extent in OPA1. Moreover, muscles lacking ATAD3 showed altered cholesterol metabolism, accumulation of mitochondrial DNA (mtDNA) replication intermediates, progressive mtDNA depletion and deletions. Unexpectedly, decreases in the levels of some OXPHOS components occurred after cristae destabilization, indicating that ATAD3 is not crucial for mitochondrial translation, as previously suggested. Our results show a critical early role of ATAD3 in regulating mitochondrial inner membrane structure, leading to secondary defects in mtDNA replication and complex V and cholesterol levels in postmitotic tissue.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Susana Peralta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu 80101, Finland
| | - Sion L Williams
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sofia Garcia
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nadee Nissanka
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaakko Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu 80101, Finland
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
37
|
Garcia S, Nissanka N, Mareco EA, Rossi S, Peralta S, Diaz F, Rotundo RL, Carvalho RF, Moraes CT. Overexpression of PGC-1α in aging muscle enhances a subset of young-like molecular patterns. Aging Cell 2018; 17:e12707. [PMID: 29427317 PMCID: PMC5847875 DOI: 10.1111/acel.12707] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 12/31/2022] Open
Abstract
PGC-1α is a transcriptional co-activator known as the master regulator of mitochondrial biogenesis. Its control of metabolism has been suggested to exert critical influence in the aging process. We have aged mice overexpressing PGC-1α in skeletal muscle to determine whether the transcriptional changes reflected a pattern of expression observed in younger muscle. Analyses of muscle proteins showed that Pax7 and several autophagy markers were increased. In general, the steady-state levels of several muscle proteins resembled that of muscle from young mice. Age-related mtDNA deletion levels were not increased by the PGC-1α-associated increase in mitochondrial biogenesis. Accordingly, age-related changes in the neuromuscular junction were minimized by PGC-1α overexpression. RNA-Seq showed that several genes overexpressed in the aged PGC-1α transgenic are expressed at higher levels in young when compared to aged skeletal muscle. As expected, there was increased expression of genes associated with energy metabolism but also of pathways associated with muscle integrity and regeneration. We also found that PGC-1α overexpression had a mild but significant effect on longevity. Taken together, overexpression of PGC-1α in aged muscle led to molecular changes that resemble the patterns observed in skeletal muscle from younger mice.
Collapse
Affiliation(s)
- Sofia Garcia
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Nadee Nissanka
- Neuroscience Graduate ProgramUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Edson A. Mareco
- Graduate Program in Environment and Regional DevelopmentUniversity of Western São PauloPresidente PrudenteBrazil
| | - Susana Rossi
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Susana Peralta
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Francisca Diaz
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Richard L. Rotundo
- Neuroscience Graduate ProgramUniversity of Miami Miller School of MedicineMiamiFLUSA
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Robson F. Carvalho
- Institute of BiosciencesSão Paulo State University (UNESP)BotucatuBrazil
| | - Carlos T. Moraes
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
- Neuroscience Graduate ProgramUniversity of Miami Miller School of MedicineMiamiFLUSA
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
38
|
Abstract
Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS) and Ca(2+) handling to stress responses, cell survival and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular, cancer, premature aging and cardiovascular diseases (CVD), including myocardial ischemia, cardiomyopathy and heart failure (HF). Mitochondria contain their own genome organized into DNA-protein complexes, called "mitochondrial nucleoids," along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription and repair. Although the mammalian organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to various types of mtDNA damage. These include accumulation of mtDNA point mutations and/or deletions and decreased mtDNA copy number, which will impair mitochondrial function and finally, may lead to CVD including HF.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA.
| |
Collapse
|
39
|
Theurey P, Pizzo P. The Aging Mitochondria. Genes (Basel) 2018; 9:genes9010022. [PMID: 29315229 PMCID: PMC5793175 DOI: 10.3390/genes9010022] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/15/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is a central event in many pathologies and contributes as well to age-related processes. However, distinguishing between primary mitochondrial dysfunction driving aging and a secondary mitochondrial impairment resulting from other cell alterations remains challenging. Indeed, even though mitochondria undeniably play a crucial role in aging pathways at the cellular and organismal level, the original hypothesis in which mitochondrial dysfunction and production of free radicals represent the main driving force of cell degeneration has been strongly challenged. In this review, we will first describe mitochondrial dysfunctions observed in aged tissue, and how these features have been linked to mitochondrial reactive oxygen species (ROS)–mediated cell damage and mitochondrial DNA (mtDNA) mutations. We will also discuss the clues that led to consider mitochondria as the starting point in the aging process, and how recent research has showed that the mitochondria aging axis represents instead a more complex and multifactorial signaling pathway. New working hypothesis will be also presented in which mitochondria are considered at the center of a complex web of cell dysfunctions that eventually leads to cell senescence and death.
Collapse
Affiliation(s)
- Pierre Theurey
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy.
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy.
- Neuroscience Institute, National Research Council (CNR), Padova 35121, Italy.
| |
Collapse
|
40
|
Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett 2018; 592:728-742. [PMID: 29281123 DOI: 10.1002/1873-3468.12956] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are essential organelles within the cell where most ATP is produced through oxidative phosphorylation (OXPHOS). A subset of the genes needed for this process are encoded by the mitochondrial DNA (mtDNA). One consequence of OXPHOS is the production of mitochondrial reactive oxygen species (ROS), whose role in mediating cellular damage, particularly in damaging mtDNA during ageing, has been controversial. There are subsets of neurons that appear to be more sensitive to ROS-induced damage, and mitochondrial dysfunction has been associated with several neurodegenerative disorders. In this review, we will discuss the current knowledge in the field of mtDNA and neurodegeneration, the debate about ROS as a pathological or beneficial contributor to neuronal function, bona fide mtDNA diseases, and insights from mouse models of mtDNA defects affecting the central nervous system.
Collapse
Affiliation(s)
- Nadee Nissanka
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, FL, USA
| | - Carlos T Moraes
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
41
|
MitoRS, a method for high throughput, sensitive, and accurate detection of mitochondrial DNA heteroplasmy. BMC Genomics 2017; 18:326. [PMID: 28441938 PMCID: PMC5405551 DOI: 10.1186/s12864-017-3695-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/10/2017] [Indexed: 01/23/2023] Open
Abstract
Background Mitochondrial dysfunction is linked to numerous pathological states, in particular related to metabolism, brain health and ageing. Nuclear encoded gene polymorphisms implicated in mitochondrial functions can be analyzed in the context of classical genome wide association studies. By contrast, mitochondrial DNA (mtDNA) variants are more challenging to identify and analyze for several reasons. First, contrary to the diploid nuclear genome, each cell carries several hundred copies of the circular mitochondrial genome. Mutations can therefore be present in only a subset of the mtDNA molecules, resulting in a heterogeneous pool of mtDNA, a situation referred to as heteroplasmy. Consequently, detection and quantification of variants requires extremely accurate tools, especially when this proportion is small. Additionally, the mitochondrial genome has pseudogenized into numerous copies within the nuclear genome over the course of evolution. These nuclear pseudogenes, named NUMTs, must be distinguished from genuine mtDNA sequences and excluded from the analysis. Results Here we describe a novel method, named MitoRS, in which the entire mitochondrial genome is amplified in a single reaction using rolling circle amplification. This approach is easier to setup and of higher throughput when compared to classical PCR amplification. Sequencing libraries are generated at high throughput exploiting a tagmentation-based method. Fine-tuned parameters are finally applied in the analysis to allow detection of variants even of low frequency heteroplasmy. The method was thoroughly benchmarked in a set of experiments designed to demonstrate its robustness, accuracy and sensitivity. The MitoRS method requires 5 ng total DNA as starting material. More than 96 samples can be processed in less than a day of laboratory work and sequenced in a single lane of an Illumina HiSeq flow cell. The lower limit for accurate quantification of single nucleotide variants has been measured at 1% frequency. Conclusions The MitoRS method enables the robust, accurate, and sensitive analysis of a large number of samples. Because it is cost effective and simple to setup, we anticipate this method will promote the analysis of mtDNA variants in large cohorts, and may help assessing the impact of mtDNA heteroplasmy on metabolic health, brain function, cancer progression, or ageing. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3695-5) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Kõks S, Dogan S, Tuna BG, González-Navarro H, Potter P, Vandenbroucke RE. Mouse models of ageing and their relevance to disease. Mech Ageing Dev 2016; 160:41-53. [PMID: 27717883 DOI: 10.1016/j.mad.2016.10.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Abstract
Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction.
Collapse
Affiliation(s)
- Sulev Kõks
- University of Tartu, Tartu, Estonia and Estonian University of Life Sciences, Tartu, Estonia.
| | - Soner Dogan
- Yeditepe University, School of Medicine, Department of Medical Biology, Istanbul, Turkey.
| | - Bilge Guvenc Tuna
- Yeditepe University, School of Medicine, Department of Biophysics, Istanbul, Turkey.
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain and CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain.
| | - Paul Potter
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, UK.
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
43
|
Abstract
A decline in mitochondrial quality and activity has been associated with normal aging and correlated with the development of a wide range of age-related diseases. Here, we review the evidence that a decline in mitochondria function contributes to aging. In particular, we discuss how mitochondria contribute to specific aspects of the aging process, including cellular senescence, chronic inflammation, and the age-dependent decline in stem cell activity. Signaling pathways regulating the mitochondrial unfolded protein response and mitophagy are also reviewed, with particular emphasis placed on how these pathways might, in turn, regulate longevity. Taken together, these observations suggest that mitochondria influence or regulate a number of key aspects of aging and suggest that strategies directed at improving mitochondrial quality and function might have far-reaching beneficial effects.
Collapse
Affiliation(s)
- Nuo Sun
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Dimude JU, Midgley-Smith SL, Stein M, Rudolph CJ. Replication Termination: Containing Fork Fusion-Mediated Pathologies in Escherichia coli. Genes (Basel) 2016; 7:genes7080040. [PMID: 27463728 PMCID: PMC4999828 DOI: 10.3390/genes7080040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 01/18/2023] Open
Abstract
Duplication of bacterial chromosomes is initiated via the assembly of two replication forks at a single defined origin. Forks proceed bi-directionally until they fuse in a specialised termination area opposite the origin. This area is flanked by polar replication fork pause sites that allow forks to enter but not to leave. The precise function of this replication fork trap has remained enigmatic, as no obvious phenotypes have been associated with its inactivation. However, the fork trap becomes a serious problem to cells if the second fork is stalled at an impediment, as replication cannot be completed, suggesting that a significant evolutionary advantage for maintaining this chromosomal arrangement must exist. Recently, we demonstrated that head-on fusion of replication forks can trigger over-replication of the chromosome. This over-replication is normally prevented by a number of proteins including RecG helicase and 3’ exonucleases. However, even in the absence of these proteins it can be safely contained within the replication fork trap, highlighting that multiple systems might be involved in coordinating replication fork fusions. Here, we discuss whether considering the problems associated with head-on replication fork fusion events helps us to better understand the important role of the replication fork trap in cellular metabolism.
Collapse
Affiliation(s)
- Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Sarah L Midgley-Smith
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Monja Stein
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
45
|
Pickrell AM, Huang CH, Kennedy SR, Ordureau A, Sideris DP, Hoekstra JG, Harper JW, Youle RJ. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress. Neuron 2015; 87:371-81. [PMID: 26182419 DOI: 10.1016/j.neuron.2015.06.034] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/03/2015] [Accepted: 06/24/2015] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. PARK2 mutations cause early-onset forms of PD. PARK2 encodes an E3 ubiquitin ligase, Parkin, that can selectively translocate to dysfunctional mitochondria to promote their removal by autophagy. However, Parkin knockout (KO) mice do not display signs of neurodegeneration. To assess Parkin function in vivo, we utilized a mouse model that accumulates dysfunctional mitochondria caused by an accelerated generation of mtDNA mutations (Mutator mice). In the absence of Parkin, dopaminergic neurons in Mutator mice degenerated causing an L-DOPA reversible motor deficit. Other neuronal populations were unaffected. Phosphorylated ubiquitin was increased in the brains of Mutator mice, indicating PINK1-Parkin activation. Parkin loss caused mitochondrial dysfunction and affected the pathogenicity but not the levels of mtDNA somatic mutations. A systemic loss of Parkin synergizes with mitochondrial dysfunction causing dopaminergic neuron death modeling PD pathogenic processes.
Collapse
Affiliation(s)
- Alicia M Pickrell
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chiu-Hui Huang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA 98104, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dionisia P Sideris
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jake G Hoekstra
- Department of Pathology, University of Washington, Seattle, WA 98104, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Akhmedov AT, Marín-García J. Mitochondrial DNA maintenance: an appraisal. Mol Cell Biochem 2015; 409:283-305. [DOI: 10.1007/s11010-015-2532-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
|
47
|
Abstract
Mutations in mitochondrial DNA (mtDNA) can lead to a wide range of human diseases. We have developed a deep sequencing strategy, mitoRCA-seq, to detect low-frequency mtDNA point mutations starting with as little as 1 ng of total DNA. It employs rolling circle amplification, which enriches the full-length circular mtDNA by either custom mtDNA-specific primers or a commercial kit, and minimizes the contamination of nuclear encoded mitochondrial DNA (Numts). By analyzing the mutation profiles of wild-type and Polg (mitochondrial DNA polymerase γ) mutant mice, we found that mice with the proofreading deficient mtDNA polymerase have a significantly higher mutation load by expanding the number of mutation sites and to a lesser extent by elevating the mutation frequency at existing sites even before the premature aging phenotypes appear. Strikingly, cytocine (C) to thymine (T) transitions are found to be overrepresented in the mtDNA of Polg mutated mice. The C → T transition, compared to other types of mutations, tends to increase the hydrophobicity of the underlying amino acids, and may contribute to the impaired protein function of the Polg mutant mice. Taken together, our findings may provide clues to further investigate the molecular mechanism underlying premature aging phenotype in Polg mutant mice.
Collapse
|
48
|
High-fat diet and FGF21 cooperatively promote aerobic thermogenesis in mtDNA mutator mice. Proc Natl Acad Sci U S A 2015; 112:8714-9. [PMID: 26124126 DOI: 10.1073/pnas.1509930112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are highly adaptable organelles that can facilitate communication between tissues to meet the energetic demands of the organism. However, the mechanisms by which mitochondria can nonautonomously relay stress signals remain poorly understood. Here we report that mitochondrial mutations in the young, preprogeroid polymerase gamma mutator (POLG) mouse produce a metabolic state of starvation. As a result, these mice exhibit signs of metabolic imbalance including thermogenic defects in brown adipose tissue (BAT). An unexpected benefit of this adaptive response is the complete resistance to diet-induced obesity when POLG mice are placed on a high-fat diet (HFD). Paradoxically, HFD further increases oxygen consumption in part by inducing thermogenesis and mitochondrial biogenesis in BAT along with enhanced expression of fibroblast growth factor 21 (FGF21). Collectively, these findings identify a mechanistic link between FGF21, a long-known marker of mitochondrial disease, and systemic metabolic adaptation in response to mitochondrial stress.
Collapse
|
49
|
Payne BAI, Chinnery PF. Mitochondrial dysfunction in aging: Much progress but many unresolved questions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1347-53. [PMID: 26050973 PMCID: PMC4580208 DOI: 10.1016/j.bbabio.2015.05.022] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
Abstract
The free radical theory of aging is almost 60 years old. As mitochondria are the principle source of intracellular reactive oxygen species (ROS), this hypothesis suggested a central role for the mitochondrion in normal mammalian aging. In recent years, however, much work has questioned the importance of mitochondrial ROS in driving aging. Conversely new evidence points to other facets of mitochondrial dysfunction which may nevertheless suggest the mitochondrion retains a critical role at the center of a complex web of processes leading to cellular and organismal aging.
Collapse
Affiliation(s)
- Brendan A I Payne
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, UK
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, UK.
| |
Collapse
|
50
|
Peralta S, Torraco A, Iommarini L, Diaz F. Mitochondrial Diseases Part III: Therapeutic interventions in mouse models of OXPHOS deficiencies. Mitochondrion 2015; 23:71-80. [PMID: 25638392 DOI: 10.1016/j.mito.2015.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 12/19/2022]
Abstract
Mitochondrial defects are the cause of numerous disorders affecting the oxidative phosphorylation system (OXPHOS) in humans leading predominantly to neurological and muscular degeneration. The molecular origin, manifestations, and progression of mitochondrial diseases have a broad spectrum, which makes very challenging to find a globally effective therapy. The study of the molecular mechanisms underlying the mitochondrial dysfunction indicates that there is a wide range of pathways, enzymes and molecules that can be potentially targeted for therapeutic purposes. Therefore, focusing on the pathology of the disease is essential to design new treatments. In this review, we will summarize and discuss the different therapeutic interventions tested in some mouse models of mitochondrial diseases emphasizing the molecular mechanisms of action and their potential applications.
Collapse
Affiliation(s)
- Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Alessandra Torraco
- Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15 - 00146, Rome, Italy.
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|