1
|
Wali JA, Ni D, Raubenheimer D, Simpson SJ. Macronutrient interactions and models of obesity: Insights from nutritional geometry. Bioessays 2024:e2400071. [PMID: 39506509 DOI: 10.1002/bies.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
The global obesity epidemic results from a complex interplay of genetic and environmental factors, with diet being a prominent modifiable element driving weight gain and adiposity. Although excess intake of energetic macronutrients is implicated in causing obesity, ongoing debate centers on whether sugar or fat or both are driving the rising obesity rates. This has led to competing models of obesity such as the "Carbohydrate Insulin Model", the "Energy Balance Model", and the "Fructose Survival Hypothesis". Conflicting evidence from studies designed to focus on individual energetic macronutrients or energy rather than macronutrient mixtures underlies this disagreement. Recent research in humans and animals employing the nutritional geometry framework (NGF) emphasizes the importance of considering interactions among dietary components. Protein interacts with carbohydrates, fats, and dietary energy density to influence both calorie intake ("protein leverage") and, directly and indirectly, metabolic physiology and adiposity. Consideration of these interactions can help to reconcile different models of obesity, and potentially cast new light on obesity interventions.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Guha A, Si Y, Smith R, Kazamel M, Jiang N, Smith KA, Thalacker-Mercer A, Singh BK, Ho R, Andrabi SA, Pereira JDTDS, Salgado JS, Agrawal M, Velic EH, King PH. The myokine FGF21 associates with enhanced survival in ALS and mitigates stress-induced cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.611693. [PMID: 39314333 PMCID: PMC11419072 DOI: 10.1101/2024.09.11.611693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an age-related and fatal neurodegenerative disease characterized by progressive muscle weakness. There is marked heterogeneity in clinical presentation, progression, and pathophysiology with only modest treatments to slow disease progression. Molecular markers that provide insight into this heterogeneity are crucial for clinical management and identification of new therapeutic targets. In a prior muscle miRNA sequencing investigation, we identified altered FGF pathways in ALS muscle, leading us to investigate FGF21. We analyzed human ALS muscle biopsy samples and found a large increase in FGF21 expression with localization to atrophic myofibers and surrounding endomysium. A concomitant increase in FGF21 was detected in ALS spinal cords which correlated with muscle levels. FGF21 was increased in the SOD1G93A mouse beginning in presymptomatic stages. In parallel, there was dysregulation of the co-receptor, β-Klotho. Plasma FGF21 levels were increased and high levels correlated with slower disease progression, prolonged survival, and increased body mass index. In NSC-34 motor neurons and C2C12 muscle cells expressing SOD1G93A or exposed to oxidative stress, ectopic FGF21 mitigated loss of cell viability. In summary, FGF21 is a novel biomarker in ALS that correlates with slower disease progression and exerts trophic effects under conditions of cellular stress.
Collapse
Affiliation(s)
- Abhishek Guha
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ying Si
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Reed Smith
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Nan Jiang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
| | - Katherine A. Smith
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Anna Thalacker-Mercer
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brijesh K. Singh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shaida A Andrabi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joao D Tavares Da Silva Pereira
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Juliana S. Salgado
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Manasi Agrawal
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Emina Horvat Velic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
3
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
4
|
Kim SQ, Spann RA, Khan MSH, Berthoud HR, Münzberg H, Albaugh VL, He Y, McDougal DH, Soto P, Yu S, Morrison CD. FGF21 as a mediator of adaptive changes in food intake and macronutrient preference in response to protein restriction. Neuropharmacology 2024; 255:110010. [PMID: 38797244 PMCID: PMC11156534 DOI: 10.1016/j.neuropharm.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Free-feeding animals navigate complex nutritional landscapes in which food availability, cost, and nutritional value can vary markedly. Animals have thus developed neural mechanisms that enable the detection of nutrient restriction, and these mechanisms engage adaptive physiological and behavioral responses that limit or reverse this nutrient restriction. This review focuses specifically on dietary protein as an essential and independently defended nutrient. Adequate protein intake is required for life, and ample evidence exists to support an active defense of protein that involves behavioral changes in food intake, food preference, and food motivation, likely mediated by neural changes that increase the reward value of protein foods. Available evidence also suggests that the circulating hormone fibroblast growth factor 21 (FGF21) acts in the brain to coordinate these adaptive changes in food intake, making it a unique endocrine signal that drives changes in macronutrient preference in the context of protein restriction. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Sora Q Kim
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Redin A Spann
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Vance L Albaugh
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David H McDougal
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Paul Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, 70810, USA
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | |
Collapse
|
5
|
Khan MSH, Kim SQ, Ross RC, Corpodean F, Spann RA, Albarado DA, Fernandez-Kim SO, Clarke B, Berthoud HR, Münzberg H, McDougal DH, He Y, Yu S, Albaugh VL, Soto P, Morrison CD. FGF21 acts in the brain to drive macronutrient-specific changes in behavioral motivation and brain reward signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583399. [PMID: 38798313 PMCID: PMC11118293 DOI: 10.1101/2024.03.05.583399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dietary protein restriction induces adaptive changes in food preference, increasing protein consumption over carbohydrates or fat. We investigated whether motivation and reward signaling underpin these preferences. In an operant task, protein-restricted male mice responded more for liquid protein rewards, but not carbohydrate, fat, or sweet rewards compared to non-restricted mice. The protein restriction-induced increase in operant responding for protein was absent in Fgf21-KO mice and mice with neuron-specific deletion of the FGF21 co-receptor beta-Klotho (Klb Cam2ka ) mice. Fiber photometry recording of VTA dopamine neurons revealed that oral delivery of maltodextrin triggered a larger activation as compared to casein in control-fed mice, whereas casein triggered a larger activation in protein-restricted mice. This restriction-induced shift in nutrient-specific VTA dopamine signaling was lost in Fgf21-KO mice. These data strongly suggest that the increased FGF21 during protein restriction acts in the brain to induce a protein-specific appetite by specifically enhancing the reward value of protein-containing foods and the motivation to consume them.
Collapse
Affiliation(s)
| | - Sora Q. Kim
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Robert C. Ross
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Florina Corpodean
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Redin A. Spann
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | | | | | - Blaise Clarke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | | | - Yanlin He
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Vance L. Albaugh
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Paul Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70810
| | | |
Collapse
|
6
|
Soto Sauza KA, Ryan KK. FGF21 mediating the Sex-dependent Response to Dietary Macronutrients. J Clin Endocrinol Metab 2024; 109:e1689-e1696. [PMID: 38801670 PMCID: PMC11319005 DOI: 10.1210/clinem/dgae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Sex is key variable influencing body composition and substrate utilization. At rest, females maintain greater adiposity than males and resist the mobilization of fat. Males maintain greater lean muscle mass and mobilize fat readily. Determining the mechanisms that direct these sex-dependent effects is important for both reproductive and metabolic health. Here, we highlight the fundamental importance of sex in shaping metabolic physiology and assess growing evidence that the hepatokine fibroblast growth factor-21 (FGF21) plays a mechanistic role to facilitate sex-dependent responses to a changing nutritional environment. First, we examine the importance of sex in modulating body composition and substrate utilization. We summarize new data that point toward sex-biased effects of pharmacologic FGF21 administration on these endpoints. When energy is not limited, metabolic responses to FGF21 mirror broader sex differences; FGF21-treated males conserve lean mass at the expense of increased lipid catabolism, whereas FGF21-treated females conserve fat mass at the expense of reduced lean mass. Next, we examine the importance of sex in modulating the endogenous secretion of FGF21 in response to changing macronutrient and energy availability. During the resting state when energy is not limited, macronutrient imbalance increases the secretion of FGF21 more so in males than females. When energy is limited, the effect of sex on both the secretion of FGF21 and its metabolic actions may be reversed. Altogether, we argue that a growing literature supports FGF21 as a plausible mechanism contributing to the sex-dependent mobilization vs preservation of lipid storage and highlight the need for further research.
Collapse
Affiliation(s)
- Karla A Soto Sauza
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Ahmad Y, Seo DS, Jang Y. Metabolic Effects of Ketogenic Diets: Exploring Whole-Body Metabolism in Connection with Adipose Tissue and Other Metabolic Organs. Int J Mol Sci 2024; 25:7076. [PMID: 39000187 PMCID: PMC11241756 DOI: 10.3390/ijms25137076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The ketogenic diet (KD) is characterized by minimal carbohydrate, moderate protein, and high fat intake, leading to ketosis. It is recognized for its efficiency in weight loss, metabolic health improvement, and various therapeutic interventions. The KD enhances glucose and lipid metabolism, reducing triglycerides and total cholesterol while increasing high-density lipoprotein levels and alleviating dyslipidemia. It significantly influences adipose tissue hormones, key contributors to systemic metabolism. Brown adipose tissue, essential for thermogenesis and lipid combustion, encounters modified UCP1 levels due to dietary factors, including the KD. UCP1 generates heat by uncoupling electron transport during ATP synthesis. Browning of the white adipose tissue elevates UCP1 levels in both white and brown adipose tissues, a phenomenon encouraged by the KD. Ketone oxidation depletes intermediates in the Krebs cycle, requiring anaplerotic substances, including glucose, glycogen, or amino acids, for metabolic efficiency. Methylation is essential in adipogenesis and the body's dietary responses, with DNA methylation of several genes linked to weight loss and ketosis. The KD stimulates FGF21, influencing metabolic stability via the UCP1 pathways. The KD induces a reduction in muscle mass, potentially involving anti-lipolytic effects and attenuating proteolysis in skeletal muscles. Additionally, the KD contributes to neuroprotection, possesses anti-inflammatory properties, and alters epigenetics. This review encapsulates the metabolic effects and signaling induced by the KD in adipose tissue and major metabolic organs.
Collapse
Affiliation(s)
- Yusra Ahmad
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Dong Soo Seo
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
8
|
Zaman K, Mun HC, Solon-Biet SM, Senior AM, Raubenheimer D, Simpson SJ, Conigrave AD. Mice Regulate Dietary Amino Acid Balance and Energy Intake by Selecting between Complementary Protein Sources. J Nutr 2024; 154:1766-1780. [PMID: 38583524 DOI: 10.1016/j.tjnut.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND A balanced intake of protein and constituent amino acids (AAs) requires adjustments to total food intake (protein leverage [PL]) and food selection to balance deficits and excesses (complementary feeding). We provided mice with choices of casein and whey, 2 protein sources that are complementary in AA balance, across a range of protein concentrations (P%) of digestible energy (DE). OBJECTIVES We aimed to determine if: 1) PL operates similarly for casein and whey; 2) one protein source is preferred at control P%; 3) the preference changes as P% falls; and 4) AA intakes under control and low P% levels identify AAs that drive changes in protein selection. METHODS Food intake and plasma fibroblast growth factor-21 (FGF21) concentrations were measured in mice at various P% (P7.5%-P33%). For direct comparisons, defined diets were used in which the protein source was either casein or whey. In food choice studies, mice had access to foods in which both casein and whey were provided at the same P% level at the same time. RESULTS PL operated at different P% thresholds in casein (13%)- and whey (10%)-based diets, and the magnitude of PL was greater for casein. Although mice preferred casein under control conditions (P23%), a pronounced preference shift to whey occurred as P% fell to P13% and P10%. At low P%, increases in food intake were accompanied by increases in plasma FGF21, a protein hunger signal. Among AAs deficient in casein and enriched in whey, the intake of Cys was the most invariant as P% changed between P23% and P10%, appearing to drive the switch in protein preference. CONCLUSIONS Mice selected between complementary protein sources, casein and whey, achieving stable total energy intake and regulated intake of AAs as P% varied. Supplementation of low P% casein diets with one whey-enriched AA, Cys, suppressed plasma FGF21 and total food intake.
Collapse
Affiliation(s)
- Kamrul Zaman
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hee-Chang Mun
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David Raubenheimer
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Arthur D Conigrave
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Berthoud HR, Münzberg H, Morrison CD, Neuhuber WL. Hepatic interoception in health and disease. Auton Neurosci 2024; 253:103174. [PMID: 38579493 PMCID: PMC11129274 DOI: 10.1016/j.autneu.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The liver is a large organ with crucial functions in metabolism and immune defense, as well as blood homeostasis and detoxification, and it is clearly in bidirectional communication with the brain and rest of the body via both neural and humoral pathways. A host of neural sensory mechanisms have been proposed, but in contrast to the gut-brain axis, details for both the exact site and molecular signaling steps of their peripheral transduction mechanisms are generally lacking. Similarly, knowledge about function-specific sensory and motor components of both vagal and spinal access pathways to the hepatic parenchyma is missing. Lack of progress largely owes to controversies regarding selectivity of vagal access pathways and extent of hepatocyte innervation. In contrast, there is considerable evidence for glucose sensors in the wall of the hepatic portal vein and their importance for glucose handling by the liver and the brain and the systemic response to hypoglycemia. As liver diseases are on the rise globally, and there are intriguing associations between liver diseases and mental illnesses, it will be important to further dissect and identify both neural and humoral pathways that mediate hepatocyte-specific signals to relevant brain areas. The question of whether and how sensations from the liver contribute to interoceptive self-awareness has not yet been explored.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
10
|
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: An emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Dis 2024; 11:101064. [PMID: 38292170 PMCID: PMC10825286 DOI: 10.1016/j.gendis.2023.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiaming Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
11
|
Le Couteur DG, Raubenheimer D, Solon-Biet S, de Cabo R, Simpson SJ. Does diet influence aging? Evidence from animal studies. J Intern Med 2024; 295:400-415. [PMID: 35701180 DOI: 10.1111/joim.13530] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutrition profoundly influences the risk for many age-related diseases. Whether nutrition influences human aging biology directly is less clear. Studies in different animal species indicate that reducing food intake ("caloric restriction" [CR]) can increase lifespan and delay the onset of diseases and the biological hallmarks of aging. Obesity has been described as "accelerated aging" and therefore the lifespan and health benefits generated by CR in both aging and obesity may occur via similar mechanisms. Beyond calorie intake, studies based on nutritional geometry have shown that protein intake and the interaction between dietary protein and carbohydrates influence age-related health and lifespan. Studies where animals are calorically restricted by providing free access to diluted diets have had less impact on lifespan than those studies where animals are given a reduced aliquot of food each day and are fasting between meals. This has drawn attention to the role of fasting in health and aging, and exploration of the health effects of various fasting regimes. Although definitive human clinical trials of nutrition and aging would need to be unfeasibly long and unrealistically controlled, there is good evidence from animal experiments that some nutritional interventions based on CR, manipulating dietary macronutrients, and fasting can influence aging biology and lifespan.
Collapse
Affiliation(s)
- David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- ANZAC Research Institute, The Concord Hospital, Concord, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Samantha Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
12
|
Freire T, Clark X, Pulpitel T, Bell-Anderson K, Ribeiro R, Raubenheimer D, Crean AJ, Simpson SJ, Solon-Biet SM. Maternal macronutrient intake effects on offspring macronutrient targets and metabolism. Obesity (Silver Spring) 2024; 32:743-755. [PMID: 38328970 DOI: 10.1002/oby.23995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Exposure in utero to maternal diet can program offspring health and susceptibility to disease. Using C57BL6/JArc mice, we investigated how maternal dietary protein to carbohydrate balance influences male and female offspring appetite and metabolic health. METHODS Dams were placed on either a low-protein (LP) or high-protein (HP) diet. Male and female offspring were placed on a food choice experiment post weaning and were then constrained to either a standard diet or Western diet. Food intake, body weight, and composition were measured, and various metabolic tests were performed at different timepoints. RESULTS Offspring from mothers fed HP diets selected a higher protein intake and had increased body weight in early life relative to offspring from LP diet-fed dams. As predicted by protein leverage theory, higher protein intake targets led to increased food intake when offspring were placed on no-choice diets, resulting in greater body weight and fat mass. The combination of an HP maternal diet and a Western diet further exacerbated this obesity phenotype and led to long-term consequences for body composition and metabolism. CONCLUSIONS This work could help explain the association between elevated protein intake in humans during early life and increased risk of obesity in childhood and later life.
Collapse
Affiliation(s)
- Therese Freire
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Kim Bell-Anderson
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rosilene Ribeiro
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Angela J Crean
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
13
|
Baghdassarian HM, Lewis NE. Resource allocation in mammalian systems. Biotechnol Adv 2024; 71:108305. [PMID: 38215956 PMCID: PMC11182366 DOI: 10.1016/j.biotechadv.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cells execute biological functions to support phenotypes such as growth, migration, and secretion. Complementarily, each function of a cell has resource costs that constrain phenotype. Resource allocation by a cell allows it to manage these costs and optimize their phenotypes. In fact, the management of resource constraints (e.g., nutrient availability, bioenergetic capacity, and macromolecular machinery production) shape activity and ultimately impact phenotype. In mammalian systems, quantification of resource allocation provides important insights into higher-order multicellular functions; it shapes intercellular interactions and relays environmental cues for tissues to coordinate individual cells to overcome resource constraints and achieve population-level behavior. Furthermore, these constraints, objectives, and phenotypes are context-dependent, with cells adapting their behavior according to their microenvironment, resulting in distinct steady-states. This review will highlight the biological insights gained from probing resource allocation in mammalian cells and tissues.
Collapse
Affiliation(s)
- Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Richter MM, Thomsen MN, Skytte MJ, Kjeldsen SAS, Samkani A, Frystyk J, Magkos F, Holst JJ, Madsbad S, Krarup T, Haugaard SB, Wewer Albrechtsen NJ. Effect of a 6-Week Carbohydrate-Reduced High-Protein Diet on Levels of FGF21 and GDF15 in People With Type 2 Diabetes. J Endocr Soc 2024; 8:bvae008. [PMID: 38379856 PMCID: PMC10875725 DOI: 10.1210/jendso/bvae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 02/22/2024] Open
Abstract
Context Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) are increased in type 2 diabetes and are potential regulators of metabolism. The effect of changes in caloric intake and macronutrient composition on their circulating levels in patients with type 2 diabetes are unknown. Objective To explore the effects of a carbohydrate-reduced high-protein diet with and without a clinically significant weight loss on circulating levels of FGF21 and GDF15 in patients with type 2 diabetes. Methods We measured circulating FGF21 and GDF15 in patients with type 2 diabetes who completed 2 previously published diet interventions. Study 1 randomized 28 subjects to an isocaloric diet in a 6 + 6-week crossover trial consisting of, in random order, a carbohydrate-reduced high-protein (CRHP) or a conventional diabetes (CD) diet. Study 2 randomized 72 subjects to a 6-week hypocaloric diet aiming at a ∼6% weight loss induced by either a CRHP or a CD diet. Fasting plasma FGF21 and GDF15 were measured before and after the interventions in a subset of samples (n = 24 in study 1, n = 66 in study 2). Results Plasma levels of FGF21 were reduced by 54% in the isocaloric study (P < .05) and 18% in the hypocaloric study (P < .05) in CRHP-treated individuals only. Circulating GDF15 levels increased by 18% (P < .05) following weight loss in combination with a CRHP diet but only in those treated with metformin. Conclusion The CRHP diet significantly reduced FGF21 in people with type 2 diabetes independent of weight loss, supporting the role of FGF21 as a "nutrient sensor." Combining metformin treatment with carbohydrate restriction and weight loss may provide additional metabolic improvements due to the rise in circulating GDF15.
Collapse
Affiliation(s)
- Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Mads N Thomsen
- Department of Endocrinology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
| | - Mads J Skytte
- Department of Endocrinology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Amirsalar Samkani
- Department of Endocrinology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital, Odense, 5000, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital—Hvidovre, Hvidovre, 2650, Denmark
| | - Thure Krarup
- Department of Endocrinology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Steen B Haugaard
- Department of Endocrinology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
15
|
Larson KR, Jayakrishnan D, Soto Sauza KA, Goodson ML, Chaffin AT, Davidyan A, Pathak S, Fang Y, Gonzalez Magaña D, Miller BF, Ryan KK. FGF21 Induces Skeletal Muscle Atrophy and Increases Amino Acids in Female Mice: A Potential Role for Glucocorticoids. Endocrinology 2024; 165:bqae004. [PMID: 38244215 PMCID: PMC10849119 DOI: 10.1210/endocr/bqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Fibroblast growth factor-21 (FGF21) is an intercellular signaling molecule secreted by metabolic organs, including skeletal muscle, in response to intracellular stress. FGF21 crosses the blood-brain barrier and acts via the nervous system to coordinate aspects of the adaptive starvation response, including increased lipolysis, gluconeogenesis, fatty acid oxidation, and activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Given its beneficial effects for hepatic lipid metabolism, pharmaceutical FGF21 analogues are used in clinical trials treatment of fatty liver disease. We predicted pharmacologic treatment with FGF21 increases HPA axis activity and skeletal muscle glucocorticoid signaling and induces skeletal muscle atrophy in mice. Here we found a short course of systemic FGF21 treatment decreased muscle protein synthesis and reduced tibialis anterior weight; this was driven primarily by its effect in female mice. Similarly, intracerebroventricular FGF21 reduced tibialis anterior muscle fiber cross-sectional area; this was more apparent among female mice than male littermates. In agreement with the reduced muscle mass, the topmost enriched metabolic pathways in plasma collected from FGF21-treated females were related to amino acid metabolism, and the relative abundance of plasma proteinogenic amino acids was increased up to 3-fold. FGF21 treatment increased hypothalamic Crh mRNA, plasma corticosterone, and adrenal weight, and increased expression of glucocorticoid receptor target genes known to reduce muscle protein synthesis and/or promote degradation. Given the proposed use of FGF21 analogues for the treatment of metabolic disease, the study is both physiologically relevant and may have important clinical implications.
Collapse
Affiliation(s)
- Karlton R Larson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Devi Jayakrishnan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Karla A Soto Sauza
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Michael L Goodson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Aki T Chaffin
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Arik Davidyan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95819, USA
| | - Suraj Pathak
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Yanbin Fang
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Diego Gonzalez Magaña
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Benjamin F Miller
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
16
|
Na K, Park YJ. Protein Restriction in Metabolic Health: Lessons from Rodent Models. Nutrients 2024; 16:229. [PMID: 38257122 PMCID: PMC10819042 DOI: 10.3390/nu16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Consumption of protein-rich diets and supplements has been increasingly advocated by individuals seeking to optimize metabolic health and mitigate the effects of aging. Protein intake is postulated to support muscle mass retention and enhance longevity, underscoring its perceived benefits in age-related metabolic regulation. However, emerging evidence presents a paradox; while moderate protein consumption contributes to health maintenance, an excessive intake is associated with an elevated risk of chronic diseases, notably obesity and diabetes. Furthermore, recent studies suggest that reducing the ratio of protein intake to macronutrients improves metabolic parameters and extends lifespan. The aim of this study is to review the current evidence concerning the metabolic effects of protein-restricted diets and their potential mechanisms. Utilizing rodent models, investigations have revealed that protein-restricted diets exert a notable influence over food intake and energy consumption, ultimately leading to body weight loss, depending on the degree of dietary protein restriction. These phenotypic alterations are primarily mediated by the FGF21 signaling pathway, whose activation is likely regulated by ATF4 and the circadian clock. The evidence suggests that protein-restricted diets as an alternative approach to calorie-restricted regimes, particularly in overweight or obese adults. However, more research is needed to determine the optimal level of restriction, duration, and long-term effects of such interventions.
Collapse
Affiliation(s)
- Khuhee Na
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea;
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea;
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
17
|
Solon-Biet SM, Clark X, Bell-Anderson K, Rusu PM, Perks R, Freire T, Pulpitel T, Senior AM, Hoy AJ, Aung O, Le Couteur DG, Raubenheimer D, Rose AJ, Conigrave AD, Simpson SJ. Toward reconciling the roles of FGF21 in protein appetite, sweet preference, and energy expenditure. Cell Rep 2023; 42:113536. [PMID: 38060447 DOI: 10.1016/j.celrep.2023.113536] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), an endocrine signal robustly increased by protein restriction independently of an animal's energy status, exerts profound effects on feeding behavior and metabolism. Here, we demonstrate that considering the nutritional contexts within which FGF21 is elevated can help reconcile current controversies over its roles in mediating macronutrient preference, food intake, and energy expenditure. We show that FGF21 is primarily a driver of increased protein intake in mice and that the effect of FGF21 on sweet preference depends on the carbohydrate balance of the animal. Under no-choice feeding, FGF21 infusion either increased or decreased energy expenditure depending on whether the animal was fed a high- or low-energy diet, respectively. We show that while the role of FGF21 in mediating feeding behavior is complex, its role in promoting protein appetite is robust and that the effects on sweet preference and energy expenditure are macronutrient-state-dependent effects of FGF21.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; School of Medicine, The University of Notre Dame, Darlinghurst, NSW 2010, Australia.
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kim Bell-Anderson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patricia M Rusu
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ruth Perks
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Therese Freire
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J Hoy
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Okka Aung
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord, NSW 2139, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Arthur D Conigrave
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
18
|
Wu CT, Larson KR, Sims LC, Ryan KK. Dietary protein restriction modulates 'dessert' intake after a meal, via fibroblast growth factor 21 (FGF21). Physiol Behav 2023; 272:114368. [PMID: 37805134 DOI: 10.1016/j.physbeh.2023.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Pharmacological administration of fibroblast growth factor 21 (FGF21) alters food choice, including that it decreases the consumption of sucrose and other sweet tastants. Conversely, endogenous secretion of FGF21 by the liver is modulated by diet, such that plasma FGF21 is increased after eating foods that have a low dietary protein: total energy (P: E) ratio. Together, these findings suggest a strategy to promote healthy eating, in which the macronutrient content of a pre-load diet could reduce the consumption of sweet desserts in sated mice. Here, we tested the prediction that individuals maintained on a low P: E diet, and offered a highly palatable sweet 'dessert' following a pre-load meal, would eat less of the sugary snack compared to controls-due to increased FGF21 signaling. In addition to decreasing sweet intake, FGF21 increases the consumption of dietary protein. Thus, we predicted that individuals maintained on the low P: E diet, and offered a very high-protein pellet as 'dessert' or snack after a meal, would eat more of the high protein pellet compared to controls, and that this depends on FGF21. We tested this in C57Bl/6J, and liver-specific FGF21-null (FGF21ΔL) null male and female mice and littermate controls. Contrary to expectation, eating a low protein pre-load did not reduce the later consumption of a sweet solution in either males or females, despite robustly increasing plasma FGF21. Rather, eating the low protein pre-load increased later consumption of a high protein pellet. This was more apparent among males and was abrogated in the FGF21ΔL mice. We conclude that physiologic induction of hepatic FGF21 by a low protein pre-load diet is not sufficient to reduce the consumption of sweet desserts, though it effectively increases the subsequent intake of dietary protein in male mice.
Collapse
Affiliation(s)
- Chih-Ting Wu
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, One Shields Avenue, 196 Briggs Hall, Davis, CA 95616, USA
| | - Karlton R Larson
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, One Shields Avenue, 196 Briggs Hall, Davis, CA 95616, USA
| | - Landon C Sims
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, One Shields Avenue, 196 Briggs Hall, Davis, CA 95616, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, One Shields Avenue, 196 Briggs Hall, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Li Z, Huang L, Luo Y, Yu B, Tian G. Effects and possible mechanisms of intermittent fasting on health and disease: a narrative review. Nutr Rev 2023; 81:1626-1635. [PMID: 36940184 DOI: 10.1093/nutrit/nuad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The imbalance between energy intake and expenditure in an environment of continuous food availability can lead to metabolic disturbances in the body and increase the risk of obesity and a range of chronic noncommunicable diseases. Intermittent fasting (IF) is one of the most popular nonpharmacological interventions to combat obesity and chronic noncommunicable diseases. The 3 most widely studied IF regimens are alternate-day fasting, time-restricted feeding, and the 5:2 diet. In rodents, IF helps optimize energy metabolism, prevent obesity, promote brain health, improve immune and reproductive function, and delay aging. In humans, IF's benefits are relevant for the aging global population and for increasing human life expectancy. However, the optimal model of IF remains unclear. In this review, the possible mechanisms of IF are summarized and its possible drawbacks are discussed on the basis of the results of existing research, which provide a new idea for nonpharmaceutical dietary intervention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Liansu Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
20
|
Ramne S, Duizer L, Nielsen MS, Jørgensen NR, Svenningsen JS, Grarup N, Sjödin A, Raben A, Gillum MP. Meal sugar-protein balance determines postprandial FGF21 response in humans. Am J Physiol Endocrinol Metab 2023; 325:E491-E499. [PMID: 37729024 PMCID: PMC10874651 DOI: 10.1152/ajpendo.00241.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Biological mechanisms to promote dietary balance remain unclear. Fibroblast growth factor 21 (FGF21) has been suggested to contribute to such potential regulation considering that FGF21 1) is genetically associated with carbohydrate/sugar and protein intake in opposite directions, 2) is secreted after sugar ingestion and protein restriction, and 3) pharmacologically reduces sugar and increases protein intake in rodents. To gain insight of the nature of this potential regulation, we aimed to study macronutrient interactions in the secretory regulation of FGF21 in healthy humans. We conducted a randomized, double-blinded, crossover meal study (NCT05061485), wherein healthy volunteers consumed a sucrose drink, a sucrose + protein drink, and a sucrose + fat drink (matched sucrose content), and compared postprandial FGF21 responses between the three macronutrient combinations. Protein suppressed the sucrose-induced FGF21 secretion [incremental area under the curve (iAUC) for sucrose 484 ± 127 vs. sucrose + protein -35 ± 49 pg/mL × h, P < 0.001]. The same could not be demonstrated for fat (iAUC 319 ± 102 pg/mL × h, P = 203 for sucrose + fat vs. sucrose). We found no indications that regulators of glycemic homeostasis could explain this effect. This indicates that FGF21 responds to disproportionate intake of sucrose relative to protein acutely within a meal, and that protein outweighs sucrose in FGF21 regulation. Together with previous findings, our results suggests that FGF21 might act to promote macronutrient balance and sufficient protein intake.NEW & NOTEWORTHY Here we test the interactions between sugar, protein, and fat in human FGF21 regulation and demonstrate that protein, but not fat, suppresses sugar-induced FGF21 secretion. This indicates that protein outweighs the effects of sugar in the secretory regulation of FGF21, and could suggest that the nutrient-specific appetite-regulatory actions of FGF21 might prioritize ensuring sufficient protein intake over limiting sugar intake.
Collapse
Affiliation(s)
- Stina Ramne
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisanne Duizer
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens S Svenningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Clinical and Translational Research, Copenhagen University Hospital-Diabetes Center Copenhagen, Herlev, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Raubenheimer D, Simpson SJ. Protein appetite as an integrator in the obesity system: the protein leverage hypothesis. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220212. [PMID: 37661737 PMCID: PMC10475875 DOI: 10.1098/rstb.2022.0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Despite the large volume and extensive range of obesity research, there is substantial disagreement on the causes and effective preventative strategies. We suggest the field will benefit from greater emphasis on integrative approaches that examine how various potential contributors interact, rather than regarding them as competing explanations. We demonstrate the application of nutritional geometry, a multi-nutrient integrative framework developed in the ecological sciences, to obesity research. Such studies have shown that humans, like many other species, regulate protein intake more strongly than other dietary components, and consequently if dietary protein is diluted there is a compensatory increase in food intake-a process called protein leverage. The protein leverage hypothesis (PLH) proposes that the dilution of protein in modern food supplies by fat and carbohydrate-rich highly processed foods has resulted in increased energy intake through protein leverage. We present evidence for the PLH from a variety of sources (mechanistic, experimental and observational), and show that this mechanism is compatible with many other findings and theories in obesity research. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen J. Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
22
|
Vankrunkelsven W, Thiessen S, Derde S, Vervoort E, Derese I, Pintelon I, Matheussen H, Jans A, Goossens C, Langouche L, Van den Berghe G, Vanhorebeek I. Development of muscle weakness in a mouse model of critical illness: does fibroblast growth factor 21 play a role? Skelet Muscle 2023; 13:12. [PMID: 37537627 PMCID: PMC10401744 DOI: 10.1186/s13395-023-00320-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/09/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Critical illness is hallmarked by severe stress and organ damage. Fibroblast growth factor 21 (FGF21) has been shown to rise during critical illness. FGF21 is a pleiotropic hormone that mediates adaptive responses to tissue injury and repair in various chronic pathological conditions. Animal studies have suggested that the critical illness-induced rise in FGF21 may to a certain extent protect against acute lung, liver, kidney and brain injury. However, FGF21 has also been shown to mediate fasting-induced loss of muscle mass and force. Such loss of muscle mass and force is a frequent problem of critically ill patients, associated with adverse outcome. In the present study, we therefore investigated whether the critical illness-induced acute rise in FGF21 is muscle-protective or rather contributes to the pathophysiology of critical illness-induced muscle weakness. METHODS In a catheterised mouse model of critical illness induced by surgery and sepsis, we first assessed the effects of genetic FGF21 inactivation, and hence the inability to acutely increase FGF21, on survival, body weight, muscle wasting and weakness, and markers of muscle cellular stress and dysfunction in acute (30 h) and prolonged (5 days) critical illness. Secondly, we assessed whether any effects were mirrored by supplementing an FGF21 analogue (LY2405319) in prolonged critical illness. RESULTS FGF21 was not required for survival of sepsis. Genetic FGF21 inactivation aggravated the critical illness-induced body weight loss (p = 0.0003), loss of muscle force (p = 0.03) and shift to smaller myofibers. This was accompanied by a more pronounced rise in markers of endoplasmic reticulum stress in muscle, without effects on impairments in mitochondrial respiratory chain enzyme activities or autophagy activation. Supplementing critically ill mice with LY2405319 did not affect survival, muscle force or weight, or markers of muscle cellular stress/dysfunction. CONCLUSIONS Endogenous FGF21 is not required for sepsis survival, but may partially protect muscle force and may reduce cellular stress in muscle. Exogenous FGF21 supplementation failed to improve muscle force or cellular stress, not supporting the clinical applicability of FGF21 supplementation to protect against muscle weakness during critical illness.
Collapse
Affiliation(s)
- Wouter Vankrunkelsven
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Steven Thiessen
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Ellen Vervoort
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Inge Derese
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Hanne Matheussen
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Alexander Jans
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Chloë Goossens
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
23
|
Vahid F, Hajizadeghan K, Khodabakhshi A. Nutritional Metabolomics in Diet-Breast Cancer Relations: Current Research, Challenges, and Future Directions-A Review. Biomedicines 2023; 11:1845. [PMID: 37509485 PMCID: PMC10377267 DOI: 10.3390/biomedicines11071845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is one of the most common types of cancer in women worldwide, and its incidence is increasing. Diet has been identified as a modifiable risk factor for breast cancer, but the complex interplay between diet, metabolism, and cancer development is not fully understood. Nutritional metabolomics is a rapidly evolving field that can provide insights into the metabolic changes associated with dietary factors and their impact on breast cancer risk. The review's objective is to provide a comprehensive overview of the current research on the application of nutritional metabolomics in understanding the relationship between diet and breast cancer. The search strategy involved querying several electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar. The search terms included combinations of relevant keywords such as "nutritional metabolomics", "diet", "breast cancer", "metabolites", and "biomarkers". In this review, both in vivo and in vitro studies were included, and we summarize the current state of knowledge on the role of nutritional metabolomics in understanding the diet-breast cancer relationship, including identifying specific metabolites and metabolic pathways associated with breast cancer risk. We also discuss the challenges associated with nutritional metabolomics research, including standardization of analytical methods, interpretation of complex data, and integration of multiple-omics approaches. Finally, we highlight future directions for nutritional metabolomics research in studying diet-breast cancer relations, including investigating the role of gut microbiota and integrating multiple-omics approaches. The application of nutritional metabolomics in the study of diet-breast cancer relations, including 2-amino-4-cyano butanoic acid, piperine, caprate, rosten-3β,17β-diol-monosulfate, and γ-carboxyethyl hydrochroman, among others, holds great promise for advancing our understanding of the role of diet in breast cancer development and identifying personalized dietary recommendations for breast cancer prevention, control, and treatment.
Collapse
Affiliation(s)
- Farhad Vahid
- Nutrition and Health Research Group, Precision Health Department, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Kimia Hajizadeghan
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Adeleh Khodabakhshi
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| |
Collapse
|
24
|
Chu C, Li T, Yu L, Li Y, Li M, Guo M, Zhao J, Zhai Q, Tian F, Chen W. A Low-Protein, High-Carbohydrate Diet Exerts a Neuroprotective Effect on Mice with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson's Disease by Regulating the Microbiota-Metabolite-Brain Axis and Fibroblast Growth Factor 21. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267589 DOI: 10.1021/acs.jafc.2c07606] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Parkinson's disease (PD) is closely linked to lifestyle factors, particularly dietary patterns, which have attracted interest as potential disease-modifying factors. Eating a low-protein, high-carbohydrate (LPHC) diet is a promising dietary intervention against brain aging; however, its protective effect on PD remains elusive. Here, we found that an LPHC diet ameliorated 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced motor deficits, decreased dopaminergic neuronal death, and increased the levels of striatal dopamine, serotonin, and their metabolites in PD mice. Levels of fibroblast growth factor 21 (FGF-21), a member of the fibroblast growth factor family, were elevated in PD mice following LPHC treatment. Furthermore, the administration of FGF-21 exerted a protective effect on MPTP-induced PC12 cells, similar to the effect of an LPHC diet in MPTP-induced mice. Sequencing of the 16S rDNA from fecal microbiota revealed that an LPHC diet normalized the gut bacterial composition imbalance in PD mice, as evidenced by the increased abundance of the genera Bifidobacterium, Ileibacterium, Turicibacter, and Blautia and decreased abundance of Bilophila, Alistipes, and Bacteroides. PICRUSt-predicted fecal microbiome function revealed that an LPHC diet suppressed lipopolysaccharide biosynthesis and the citrate cycle (TCA cycle), biosynthesis of ubiquinone and other terpenoid-quinones, and oxidative phosphorylation pathways caused by MPTP, and enhanced the biosynthesis of amino acids, carbohydrate metabolism, and biosynthesis of other secondary metabolites. A nonmetabolomic analysis of the serum and feces showed that an LPHC diet significantly increased the levels of aromatic amino acids (AAAs), including tryptophan, tyrosine, and phenylalanine. In addition, an LPHC diet elevated the serum concentrations of bile acids (BAs), particularly tauroursodeoxycholic acid (TUDCA) and taurine. Collectively, our current findings point to the potential mechanism of administering an LPHC diet in attenuating movement impairments in MPTP-induced PD mice, with AAAs, microbial metabolites (TUDCA and taurine), and FGF-21 as key mediators along the gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Chuanqi Chu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tiantian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiwen Li
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia 30602, United States
| | - Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
25
|
Li X, Zheng K, Gu W, Hou X, Guan Y, Liu L, Hou L, Geng J, Song G. Serum Fibroblast Growth Factor 21 Level After an Oral Fat Tolerance Test is Related to Postprandial Free Fatty Acid Level. Diabetes Metab Syndr Obes 2023; 16:1567-1576. [PMID: 37283621 PMCID: PMC10241254 DOI: 10.2147/dmso.s410457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Purpose The relationship between blood lipids and fibroblast growth factor (FGF) 21 in the postprandial period remains unclear. To investigate this, we observed the changes in blood lipid levels after an oral fat tolerance test (OFTT) and examined the short-term effects on FGF21. Patients and Methods A total of 158 non-diabetic adult volunteers who underwent OFTT were randomly recruited from the Hebei General Hospital. Participants were stratified into three groups according to fasting and 4-h postprandial triglyceride levels: normal fat tolerance (NFT), impaired fat tolerance (IFT), and hypertriglyceridemia (HTG). Blood samples were collected at 2-h intervals for 6 h. Circulating total cholesterol levels, triglycerides, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, free fatty acids (FFA), and FGF21 were assessed. Results Fasting FGF21 levels increased progressively in the NFT, IFT, and HTG groups and were strongly correlated with FFA levels (r = 0.531, P < 0.001). During the OFTT, the FFA and FGF21 levels decreased and then increased after reaching a nadir at 2 and 4 h, respectively. After adjusting for potential risk factors, the FFA incremental area under the curve (iAUC) was an independent influencing factor of FGF21 iAUC (P = 0.005). Conclusion Fasting FGF21 levels showed a strong positive correlation with FFA. During OFTT, changes in FGF21 levels were closely associated with alterations in FFA exogenously changed by OFTT. Moreover, they were linearly related to each other. Therefore, the serum FGF21 level is positively correlated to the FFA level in the postprandial period.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Kunjie Zheng
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Wei Gu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yunpeng Guan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lifang Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Baoding First Central Hospital, Baoding, Hebei, People’s Republic of China
| | - Liping Hou
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
| | - Jianlin Geng
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
26
|
Mistry JN, Silvennoinen S, Zaman F, Sävendahl L, Mariniello K, Hall C, Howard SR, Dunkel L, Sankilampi U, Guasti L. The crosstalk between FGF21 and GH leads to weakened GH receptor signaling and IGF1 expression and is associated with growth failure in very preterm infants. Front Endocrinol (Lausanne) 2023; 14:1105602. [PMID: 37251684 PMCID: PMC10213667 DOI: 10.3389/fendo.2023.1105602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/28/2023] [Indexed: 05/31/2023] Open
Abstract
Background Fibroblast growth factor 21 (FGF21) is an essential metabolic regulator that adapts to changes in nutritional status. Severe childhood undernutrition induces elevated FGF21 levels, contributing to growth hormone (GH) resistance and subsequent linear growth attenuation potentially through a direct action on chondrocytes. Methods In this study, we assessed expression of the components of both GH and FGF21 pathways in rare and unique human growth plates obtained from children. Moreover, we investigated the mechanistic interplay of FGF21 on GH receptor (GHR) signaling in a heterologous system. Results Chronic FGF21 exposure increased GH-induced GHR turnover and SOCS2 expression, leading to the inhibition of STAT5 phosphorylation and IGF-1 expression. The clinical significance of FGF21 signaling through GH receptors was tested in nutritionally driven growth failure seen in very preterm (VPT) infants right after birth. VPT infants display an immediate linear growth failure after birth followed by growth catch-up. Consistent with the in vitro model data, we show that circulating FGF21 levels were elevated during deflection in linear growth compared to catch-up growth and were inversely correlated with the length velocity and circulating IGF1 levels. Conclusions This study further supports a central role of FGF21 in GH resistance and linear growth failure and suggests a direct action on the growth plate.
Collapse
Affiliation(s)
- Jayna N. Mistry
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sanna Silvennoinen
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Farasat Zaman
- Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University, Solna, Sweden
| | - Lars Sävendahl
- Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University, Solna, Sweden
| | - Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Charlotte Hall
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sasha R. Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ulla Sankilampi
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
27
|
Würfel M, Blüher M, Stumvoll M, Ebert T, Kovacs P, Tönjes A, Breitfeld J. Adipokines as Clinically Relevant Therapeutic Targets in Obesity. Biomedicines 2023; 11:biomedicines11051427. [PMID: 37239098 DOI: 10.3390/biomedicines11051427] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines provide an outstanding role in the comprehensive etiology of obesity and may link adipose tissue dysfunction to further metabolic and cardiovascular complications. Although several adipokines have been identified in terms of their physiological roles, many regulatory circuits remain unclear and translation from experimental studies to clinical applications has yet to occur. Nevertheless, due to their complex metabolic properties, adipokines offer immense potential for their use both as obesity-associated biomarkers and as relevant treatment strategies for overweight, obesity and metabolic comorbidities. To provide an overview of the current clinical use of adipokines, this review summarizes clinical studies investigating the potential of various adipokines with respect to diagnostic and therapeutic treatment strategies for obesity and linked metabolic disorders. Furthermore, an overview of adipokines, for which a potential for clinical use has been demonstrated in experimental studies to date, will be presented. In particular, promising data revealed that fibroblast growth factor (FGF)-19, FGF-21 and leptin offer great potential for future clinical application in the treatment of obesity and related comorbidities. Based on data from animal studies or other clinical applications in addition to obesity, adipokines including adiponectin, vaspin, resistin, chemerin, visfatin, bone morphogenetic protein 7 (BMP-7) and tumor necrosis factor alpha (TNF-α) provide potential for human clinical application.
Collapse
Affiliation(s)
- Marleen Würfel
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Thomas Ebert
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Peter Kovacs
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anke Tönjes
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Jana Breitfeld
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| |
Collapse
|
28
|
Morimoto J. Nutrigonometry IV: Thales' theorem to measure the rules of dietary compromise in animals. Sci Rep 2023; 13:7466. [PMID: 37156830 PMCID: PMC10167223 DOI: 10.1038/s41598-023-34722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Diet specialists and generalists face a common challenge: they must regulate the intake and balance of nutrients to achieve a target diet for optimum nutrition. When optimum nutrition is unattainable, organisms must cope with dietary imbalances and trade-off surplus and deficits of nutrients that ensue. Animals achieve this through compensatory rules that dictate how to cope with nutrient imbalances, known as 'rules of compromise'. Understanding the patterns of the rules of compromise can provide invaluable insights into animal physiology and behaviour, and shed light into the evolution of diet specialisation. However, we lack an analytical method for quantitative comparisons of the rules of compromise within and between species. Here, I present a new analytical method that uses Thales' theorem as foundation, and that enables fast comparisons of the rules of compromise within and between species. I then apply the method on three landmark datasets to show how the method enables us to gain insights into how animals with different diet specialisation cope with nutrient imbalances. The method opens new avenues of research to understand how animals cope with nutrient imbalances in comparative nutrition.
Collapse
Affiliation(s)
- Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King's College, Aberdeen, AB24 3FX, Scotland.
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen, AB24 2TZ, Scotland.
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 82590-300, Brazil.
| |
Collapse
|
29
|
Lipidized PrRP Analog Exhibits Strong Anti-Obesity and Antidiabetic Properties in Old WKY Rats with Obesity and Glucose Intolerance. Nutrients 2023; 15:nu15020280. [PMID: 36678151 PMCID: PMC9864151 DOI: 10.3390/nu15020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Prolactin-releasing peptide (PrRP) is an anorexigenic neuropeptide that has potential for the treatment of obesity and its complications. Recently, we designed a palmitoylated PrRP31 analog (palm11-PrRP31) that is more stable than the natural peptide and able to act centrally after peripheral administration. This analog acted as an anti-obesity and glucose-lowering agent, attenuating lipogenesis in rats and mice with high-fat (HF) diet-induced obesity. In Wistar Kyoto (WKY) rats fed a HF diet for 52 weeks, we explored glucose intolerance, but also prediabetes, liver steatosis and insulin resistance-related changes, as well as neuroinflammation in the brain. A potential beneficial effect of 6 weeks of treatment with palm11-PrRP31 and liraglutide as comparator was investigated. Liver lipid profiles, as well as urinary and plasma metabolomic profiles, were measured by lipidomics and metabolomics, respectively. Old obese WKY rats showed robust glucose intolerance that was attenuated by palm11-PrRP31, but not by liraglutide treatment. On the contrary, liraglutide had a beneficial effect on insulin resistance parameters. Despite obesity and prediabetes, WKY rats did not develop steatosis owing to HF diet feeding, even though liver lipogenesis was enhanced. Plasma triglycerides and cholesterol were not increased by HFD feeding, which points to unincreased lipid transport from the liver. The liver lipid profile was significantly altered by a HF diet that remained unaffected by palm11-PrRP31 or liraglutide treatment. The HF-diet-fed WKY rats revealed astrogliosis in the brain cortex and hippocampus, which was attenuated by treatment. In conclusion, this study suggested multiple beneficial anti-obesity-related effects of palm11-PrRP31 and liraglutide in both the periphery and brain.
Collapse
|
30
|
Ketogenic Diet Combined with Moderate Aerobic Exercise Training Ameliorates White Adipose Tissue Mass, Serum Biomarkers, and Hepatic Lipid Metabolism in High-Fat Diet-Induced Obese Mice. Nutrients 2023; 15:nu15010251. [PMID: 36615908 PMCID: PMC9823610 DOI: 10.3390/nu15010251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Obesity is a serious public health issue worldwide. Growing evidence demonstrates the efficacy of the ketogenic diet (KD) for weight loss, but there may be some adverse side effects such as dyslipidemia and hepatic steatosis. Aerobic exercise is a widely recognized approach for improving these metabolic markers. Here we explored the combined impacts of KD and moderate aerobic exercise for an 8-week intervention on body weight and fat loss, serum biomarkers, and hepatic lipid metabolism in a mouse model of high-fat diet-induced obesity. Both KD and KD combined with exercise significantly reduced body weight and fat mass. No significant adverse effects of KD were observed in serum biomarkers or hepatic lipid storage, except for an increase in circulating triglyceride level. However, aerobic exercise lowered serum triglyceride levels, and further ameliorated serum parameters, and hepatic steatosis in KD-fed mice. Moreover, gene and protein expression analysis indicated that KD combined with exercise was associated with increased expression of lipolysis-related genes and protein levels, and reduced expression of lipogenic genes relative to KD without exercise. Overall, our findings for mice indicate that further work on humans might reveal that KD combined with moderate aerobic exercise could be a promising therapeutic strategy for obesity.
Collapse
|
31
|
Simpson SJ, Raubenheimer D, Black KI, Conigrave AD. Weight gain during the menopause transition: Evidence for a mechanism dependent on protein leverage. BJOG 2023; 130:4-10. [PMID: 36073244 PMCID: PMC10952331 DOI: 10.1111/1471-0528.17290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Stephen J. Simpson
- Charles Perkins Centre (D17), School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - David Raubenheimer
- Charles Perkins Centre (D17), School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Kirsten I. Black
- Speciality of Obstetrics, Gynaecology and Neonatology, Central Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
- Menopause ClinicConcord Repatriation General HospitalConcordNew South WalesAustralia
| | - Arthur D. Conigrave
- Charles Perkins Centre (D17), School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
| |
Collapse
|
32
|
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 2022; 16:152-176. [PMID: 35499154 PMCID: PMC9067537 DOI: 10.1080/19336934.2022.2061834] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, endocrine factors such as hormones and cytokines regulate development and homoeostasis through communication between different organs. For understanding such interorgan communications through endocrine factors, the fruit fly Drosophila melanogaster serves as an excellent model system due to conservation of essential endocrine systems between flies and mammals and availability of powerful genetic tools. In Drosophila and other insects, functions of neuropeptides or peptide hormones from the central nervous system have been extensively studied. However, a series of recent studies conducted in Drosophila revealed that peptide hormones derived from peripheral tissues also play critical roles in regulating multiple biological processes, including growth, metabolism, reproduction, and behaviour. Here, we summarise recent advances in understanding target organs/tissues and functions of peripherally derived peptide hormones in Drosophila and describe how these hormones contribute to various biological events through interorgan communications.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Watanabe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
33
|
Hunt NJ, Wahl D, Westwood LJ, Lockwood GP, Le Couteur DG, Cogger VC. Targeting the liver in dementia and cognitive impairment: Dietary macronutrients and diabetic therapeutics. Adv Drug Deliv Rev 2022; 190:114537. [PMID: 36115494 PMCID: PMC10125004 DOI: 10.1016/j.addr.2022.114537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Many people living with dementia and cognitive impairment have dysfunctional mitochondrial and insulin-glucose metabolism resembling type 2 diabetes mellitus and old age. Evidence from human trials shows that nutritional interventions and anti-diabetic medicines that target nutrient-sensing pathways overcome these deficits in glucose and energy metabolism and can improve cognition and/or reduce symptoms of dementia. The liver is the main organ that mediates the systemic effects of diets and many diabetic medicines; therefore, it is an intermediate target for such dementia interventions. A challenge is the efficacy of these treatments in older age. Solutions include the targeted hepatic delivery of diabetic medicines using nanotechnologies and titration of macronutrients to optimize hepatic energy metabolism.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2008, Australia; Sydney Nano Institute, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Devin Wahl
- Department of Health and Exercise Science & Centre for Healthy Aging, Colorado State University, CO 80523, United States
| | - Lara J Westwood
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Glen P Lockwood
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - David G Le Couteur
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Victoria C Cogger
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia.
| |
Collapse
|
34
|
Morimoto J, Conceição P, Smoczyk K. Nutrigonometry III: curvature, area and differences between performance landscapes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221326. [PMID: 36465681 PMCID: PMC9709515 DOI: 10.1098/rsos.221326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 05/25/2023]
Abstract
Nutrition is one of the underlying factors necessary for the expression of life-histories and fitness across the tree of life. In recent decades, the geometric framework (GF) has become a powerful framework to obtain biological insights through the construction of multidimensional performance landscapes. However, to date, many properties of these multidimensional landscapes have remained inaccessible due to our lack of mathematical and statistical frameworks for GF analysis. This has limited our ability to understand, describe and estimate parameters which may contain useful biological information from GF multidimensional performance landscapes. Here, we propose a new model to investigate the curvature of GF multidimensional landscapes by calculating the parameters from differential geometry known as Gaussian and mean curvatures. We also estimate the surface area of multidimensional performance landscapes as a way to measure landscape deviations from flat. We applied the models to a landmark dataset in the field, where we also validate the assumptions required for the calculations of curvature. In particular, we showed that linear models perform as well as other models used in GF data, enabling landscapes to be approximated by quadratic polynomials. We then introduced the Hausdorff distance as a metric to compare the similarity of multidimensional landscapes.
Collapse
Affiliation(s)
- Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba 82590-300, Brazil
- Institute of Differential Geometry, Riemann Centre for Geometry and Physics, Welfengarten 1, Hannover 30167, Germany
| | - Pedro Conceição
- Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
| | - Knut Smoczyk
- Institute of Differential Geometry, Riemann Centre for Geometry and Physics, Welfengarten 1, Hannover 30167, Germany
| |
Collapse
|
35
|
Jin T. Fibroblast growth factor 21 and dietary interventions: what we know and what we need to know next. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:524-530. [PMID: 37724164 PMCID: PMC10388781 DOI: 10.1515/mr-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/10/2022] [Indexed: 09/20/2023]
Abstract
Dietary interventions include the change of dietary styles, such as fasting and dietary or nutrient restrictions; or the addition of plant-derived compounds (such as polyphenols known as curcumin, resveratrol, or anthocyanin, or other nutraceuticals) into the diet. During the past a few decades, large number of studies have demonstrated therapeutic activities of these dietary interventions on metabolic and other diseases in human subjects or various animal models. Mechanisms underlying those versatile therapeutic activities, however, remain largely unclear. Interestingly, recent studies have shown that fibroblast growth factor 21 (FGF21), a liver-derived hormone or hepatokine, mediates metabolic beneficial effects of certain dietary polyphenols as well as protein restriction. Here I have briefly summarized functions of FGF21, highlighted related dietary interventions, and presented literature discussions on role of FGF21 in mediating function of dietary polyphenol intervention and protein restriction. This is followed by presenting my perspective view, with the involvement of gut microbiota. It is anticipated that further breakthroughs in this field in the near future will facilitate conceptual merge of classical medicine and modern medicine.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, TorontoCanada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, TorontoCanada
| |
Collapse
|
36
|
Qian Z, Zhang Y, Yang N, Nie H, Yang Z, Luo P, Wei X, Guan Y, Huang Y, Yan J, Ruan L, Zhang C, Zhang L. Close association between lifestyle and circulating FGF21 levels: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:984828. [PMID: 36093108 PMCID: PMC9453313 DOI: 10.3389/fendo.2022.984828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background The impact of lifestyle factors on circulating fibroblast growth factor 21 (cFGF21) remains unclear. We conducted this systematic review and meta-analysis to evaluate the association between lifestyle factors and cFGF21 levels. Methods We included studies that evaluated the effects of different lifestyles on cFGF21 concentration in adults, which included smoking, exercise, diets, alcohol consumption and weight loss. Random effects models or fixed effects models were used for meta-analysis to calculate the standardized mean difference (SMD) and 95% confidence interval according to the heterogeneity among studies. Study quality was assessed using the Newcastle-Ottawa Scale for cohort studies, the Joanna Briggs Institution Checklist for cross-sectional studies, and the PEDro scale for experimental studies. Results A total of 50 studies with 1438 individuals were included. Overall, smoking, a hypercaloric carbohydrate-rich diet, a hypercaloric fat-rich diet, amino acid or protein restriction, excessive fructose intake and alcohol consumption significantly upregulated cFGF21 levels (p<0.05), whereas fish oil intake and calorie restriction with sufficient protein intake significantly decreased cFGF21 (p<0.05). Compared to the preexercise cFGF21 level, the cFGF21 level significantly increased within 3 hours postexercise (p<0.0001), while it significantly decreased in the blood sampled >6 h postexercise (p=0.01). Moreover, higher exercise intensity resulted in higher upregulation of cFGF21 at 1-hour post exercise (p=0.0006). Conclusion FGF21 could serve as a potential biomarker for the assessment of different lifestyle interventions. When it is used for this purpose, a standard study protocol needs to be established, especially taking into consideration the intervention types and the sampling time post-intervention. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021254758, identifier CRD42021254758.
Collapse
Affiliation(s)
- Zonghao Qian
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yucong Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Ni Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Hao Nie
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Zhen Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Pengcheng Luo
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Xiuxian Wei
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yuqi Guan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yi Huang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Jinhua Yan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Lei Ruan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Cuntai Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Le Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| |
Collapse
|
37
|
Fang H, Stone KP, Wanders D, Forney LA, Gettys TW. The Origins, Evolution, and Future of Dietary Methionine Restriction. Annu Rev Nutr 2022; 42:201-226. [PMID: 35588443 PMCID: PMC9936953 DOI: 10.1146/annurev-nutr-062320-111849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Kirsten P Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA
| | - Laura A Forney
- Department of Kinesiology, Houston Baptist University, Houston, Texas, USA
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| |
Collapse
|
38
|
Gao S, Qian X, Huang S, Deng W, Li Z, Hu Y. Association between macronutrients intake distribution and bone mineral density. Clin Nutr 2022; 41:1689-1696. [PMID: 35777108 DOI: 10.1016/j.clnu.2022.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND & AIMS Although it is well known dietary factors are closely correlated with bone health, the association between macronutrients intake distribution and bone mineral density (BMD) is still unclear. The aims of this study were to investigate how macronutrients distribution was correlated with BMD, and to evaluate how the substitution between macronutrients could be associated with BMD. METHODS We conducted a cross-sectional study based on data from National Health and Nutrition Examination Survey. Dietary recall method was used to assessed the intake of macronutrients. Macronutrient intake distribution including carbohydrate, protein and fat was calculated as percentages of energy intake from total energy. BMD was converted to T-score and low BMD was defined as T-score less than -1.0. The association between the percentages of energy intake from carbohydrate, protein and fat with T-score and risk of low BMD was evaluated using multivariate regression models. Isocaloric substitution analysis was conducted using the multivariate nutrient density method. RESULTS Data form 4447 adults aged 20 years and older who underwent BMD examination were included in this study. Higher percentage of energy intake from carbohydrate was associated with lower T-score (-0.03 [95%CI, -0.05 to -0.01]; P = 0.001) and higher risk of low BMD (1.05 [95%CI, 1.02-1.08]; P = 0.003), while higher percentage of energy intake from protein was associated with higher T-score (0.05 [95%CI, 0.01-0.08]; P = 0.009) and lower odds of low BMD (0.92 [95%CI, 0.87-0.98]; P = 0.007). The percentage of energy intake from fat seemed to be positively correlated with T-score, but the correlation became insignificant after adjusting for metabolism related confounders. Isocaloric substitution analysis showed that only the substitution between carbohydrate and protein was significantly and independently associated with T-score (-0.05 [95%CI, -0.08 to -0.01]; P = 0.01) and the risk of low BMD (1.08 [95%CI, 1.02-1.15]; P = 0.008). CONCLUSIONS Based on the results from this study, we hypothesized that a high-protein diet coupled with low carbohydrate intake would be beneficiary for prevention of bone loss in adults. However, randomized clinical trials or longitudinal studies are needed to further assessed our findings.
Collapse
Affiliation(s)
- Shihua Gao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Qian
- Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Traditional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sicong Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanxi Deng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhe Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingyu Hu
- Department of Hospital Management, Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Heurtaux T, Bouvier DS, Benani A, Helgueta Romero S, Frauenknecht KBM, Mittelbronn M, Sinkkonen L. Normal and Pathological NRF2 Signalling in the Central Nervous System. Antioxidants (Basel) 2022; 11:1426. [PMID: 35892629 PMCID: PMC9394413 DOI: 10.3390/antiox11081426] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.
Collapse
Affiliation(s)
- Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - David S. Bouvier
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Sergio Helgueta Romero
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - Katrin B. M. Frauenknecht
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
- Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
| |
Collapse
|
40
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
41
|
Kosakamoto H, Okamoto N, Aikawa H, Sugiura Y, Suematsu M, Niwa R, Miura M, Obata F. Sensing of the non-essential amino acid tyrosine governs the response to protein restriction in Drosophila. Nat Metab 2022; 4:944-959. [PMID: 35879463 DOI: 10.1038/s42255-022-00608-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
The intake of dietary protein regulates growth, metabolism, fecundity and lifespan across various species, which makes amino acid (AA)-sensing vital for adaptation to the nutritional environment. The general control nonderepressible 2 (GCN2)-activating transcription factor 4 (ATF4) pathway and the mechanistic target of rapamycin complex 1 (mTORC1) pathway are involved in AA-sensing. However, it is not fully understood which AAs regulate these two pathways in living animals and how they coordinate responses to protein restriction. Here we show in Drosophila that the non-essential AA tyrosine (Tyr) is a nutritional cue in the fat body necessary and sufficient for promoting adaptive responses to a low-protein diet, which entails reduction of protein synthesis and mTORC1 activity and increased food intake. This adaptation is regulated by dietary Tyr through GCN2-independent induction of ATF4 target genes in the fat body. This study identifies the Tyr-ATF4 axis as a regulator of the physiological response to a low-protein diet and sheds light on the essential function of a non-essential nutrient.
Collapse
Affiliation(s)
- Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- RIKEN Center for Biosystems and Dynamics Research, Kobe, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Hide Aikawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- RIKEN Center for Biosystems and Dynamics Research, Kobe, Japan.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
42
|
Xie D, Huang J, Zhang Q, Zhao S, Xue H, Yu QQ, Sun Z, Li J, Yang X, Shao M, Pang D, Jiang P. Comprehensive evaluation of caloric restriction-induced changes in the metabolome profile of mice. Nutr Metab (Lond) 2022; 19:41. [PMID: 35761356 PMCID: PMC9235101 DOI: 10.1186/s12986-022-00674-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/12/2022] [Indexed: 12/19/2022] Open
Abstract
Objects Caloric restriction (CR) is known to extend lifespan and exert a protective effect on organs, and is thus a low-cost and easily implemented approach to the health maintenance. However, there have been no studies that have systematically evaluated the metabolic changes that occur in the main tissues affected by CR. This study aimed to explore the target tissues metabolomic profile in CR mice. Methods Male C57BL/6J mice were randomly allocated to the CR group (n = 7) and control group (n = 7). A non-targeted gas chromatography–mass spectrometry approach and multivariate analysis were used to identify metabolites in the main tissues (serum, heart, liver, kidney, cortex, hippocampus, lung, muscle, and white adipose) in model of CR. Results We identified 10 metabolites in the heart that showed differential abundance between the 2 groups, along with 9 in kidney, 6 in liver, 6 in lung, 6 in white adipose, 4 in hippocampus, 4 in serum, 3 in cortex, and 2 in muscle. The most significantly altered metabolites were amino acids (AAs) (glycine, aspartic acid, l-isoleucine, l-proline, l-aspartic acid, l-serine, l-hydroxyproline, l-alanine, l-valine, l-threonine, l-glutamic acid, and l-phenylalanine) and fatty acids (FAs) (palmitic acid, 1-monopalmitin, glycerol monostearate, docosahexaenoic acid, 16-octadecenoic acid, oleic acid, stearic acid, and hexanoic acid). These metabolites were associated with 7 different functional pathways related to the metabolism of AAs, lipids, and energy. Conclusion Our results provide insight into the specific metabolic changes that are induced by CR and can serve as a reference for physiologic studies on how CR improves health and extends lifespan.
Collapse
Affiliation(s)
- Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China
| | - Jinxi Huang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Zhang
- Clinical Laboratory, Tengzhou Central People's Hospital, Tengzhou, 277500, China
| | - Shiyuan Zhao
- Jining First People's Hospital, Jining Medical University, Jiankang Road, Jining, 272000, China
| | - Hongjia Xue
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Qing-Qing Yu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Department of Oncology, Jining First People's Hospital, Jining, 272000, China
| | - Zhuohao Sun
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China
| | - Jing Li
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China
| | - Xiumei Yang
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China
| | - Minglei Shao
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China
| | - Deshui Pang
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China.
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical University, Jiankang Road, Jining, 272000, China.
| |
Collapse
|
43
|
Raubenheimer D, Senior AM, Mirth C, Cui Z, Hou R, Le Couteur DG, Solon-Biet SM, Léopold P, Simpson SJ. An integrative approach to dietary balance across the life course. iScience 2022; 25:104315. [PMID: 35602946 PMCID: PMC9117877 DOI: 10.1016/j.isci.2022.104315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animals require specific blends of nutrients that vary across the life course and with circumstances, e.g., health and activity levels. Underpinning and complicating these requirements is that individual traits may be optimized on different dietary compositions leading to nutrition-mediated trade-offs among outcomes. Additionally, the food environment may constrain which nutrient mixtures are achievable. Natural selection has equipped animals for solving such multi-dimensional, dynamic challenges of nutrition, but little is understood about the details and their theoretical and practical implications. We present an integrative framework, nutritional geometry, which models complex nutritional interactions in the context of multiple nutrients and across levels of biological organization (e.g., cellular, individual, and population) and levels of analysis (e.g., mechanistic, developmental, ecological, and evolutionary). The framework is generalizable across different situations and taxa. We illustrate this using examples spanning insects to primates and settings (laboratory, and the wild), and demonstrate its relevance for human health.
Collapse
Affiliation(s)
- David Raubenheimer
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
- Zhengzhou University, Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou, China
| | - Alistair M. Senior
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
- The University of Sydney, School of Mathematics and Statistics, Sydney, Australia
| | - Christen Mirth
- Monash University, School of Biological Science, Melbourne, Australia
| | - Zhenwei Cui
- Zhengzhou University, Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou, China
| | - Rong Hou
- Northwest University, Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Xi’an, China
| | - David G. Le Couteur
- The University of Sydney, Charles Perkins Centre and Faculty of Medicine and Health, Concord Clinical School, ANZAC Research Institute, Centre for Education and Research on Ageing, Sydney, Australia
| | - Samantha M. Solon-Biet
- The University of Sydney, Charles Perkins Centre and School of Medical Sciences, Sydney, Australia
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, Paris, France
| | - Stephen J. Simpson
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
| |
Collapse
|
44
|
She QY, Bao JF, Wang HZ, Liang H, Huang W, Wu J, Zhong Y, Ling H, Li A, Qin SL. Fibroblast growth factor 21: A "rheostat" for metabolic regulation? Metabolism 2022; 130:155166. [PMID: 35183545 DOI: 10.1016/j.metabol.2022.155166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 is an evolutionarily conserved factor that plays multiple important roles in metabolic homeostasis. During the past two decades, extensive investigations have improved our understanding of its delicate metabolic roles and identified its pharmacological potential to mitigate metabolic disorders. However, most clinical trials have failed to obtain the desired results, which raises issues regarding its clinical value. Fibroblast growth factor 21 is dynamically regulated by nutrients derived from food intake and hepatic/adipose release, which in turn act on the central nervous system, liver, and adipose tissues to influence food preference, hepatic glucose, and adipose fatty acid output. Based on this information, we propose that fibroblast growth factor 21 should not be considered merely an anti-hyperglycemia or anti-obesity factor, but rather a means of balancing of nutrient fluctuations to maintain an appropriate energy supply. Hence, the specific functions of fibroblast growth factor 21 in glycometabolism and lipometabolism depend on specific metabolic states, indicating that its pharmacological effects require further consideration.
Collapse
Affiliation(s)
- Qin-Ying She
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China; Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Hui-Zhen Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Huixin Liang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Wentao Huang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing Wu
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Yiwen Zhong
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Hanxin Ling
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China.
| | - Shu-Lan Qin
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China.
| |
Collapse
|
45
|
Ma C, Mirth CK, Hall MD, Piper MDW. Amino acid quality modifies the quantitative availability of protein for reproduction in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104050. [PMID: 32229142 DOI: 10.1016/j.jinsphys.2020.104050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 05/25/2023]
Abstract
Diet composition, especially the relative abundance of key macronutrients, is well known to affect animal wellbeing by changing reproductive output, metabolism and length of life. However, less attention has been paid to the ways the quality of these nutrients modify these macronutrient interactions. Nutritional Geometry can be used to model the effects of multiple dietary components on life-history traits and to compare these responses when diet quality is varied. Previous studies have shown that dietary protein quality can be increased for egg production in Drosophila melanogaster by matching the dietary amino acid proportions to the balance of amino acids used by the sum of proteins in the fly's in silico translated exome. Here, we show that dietary protein quality dramatically alters the effect of protein quantity on female reproduction across a broad range of diets varying in both protein and carbohydrate concentrations. These data show that when sources of ingredients vary, their relative value to the consumer can vastly differ and yield very different physiological outcomes. Such variations could be particularly important for meta analyses that look to draw generalisable conclusions from diverse studies.
Collapse
Affiliation(s)
- Carolyn Ma
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
46
|
Wu Y, Green CL, Wang G, Yang D, Li L, Li B, Wang L, Li M, Li J, Xu Y, Zhang X, Niu C, Hu S, Togo J, Mazidi M, Derous D, Douglas A, Speakman JR. Effects of dietary macronutrients on the hepatic transcriptome and serum metabolome in mice. Aging Cell 2022; 21:e13585. [PMID: 35266264 PMCID: PMC9009132 DOI: 10.1111/acel.13585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/13/2022] [Indexed: 12/18/2022] Open
Abstract
Dietary macronutrient composition influences both hepatic function and aging. Previous work suggested that longevity and hepatic gene expression levels were highly responsive to dietary protein, but almost unaffected by other macronutrients. In contrast, we found expression of 4005, 4232, and 4292 genes in the livers of mice were significantly associated with changes in dietary protein (5%–30%), fat (20%–60%), and carbohydrate (10%–75%), respectively. More genes in aging‐related pathways (notably mTOR, IGF‐1, and NF‐kappaB) had significant correlations with dietary fat intake than protein and carbohydrate intake, and the pattern of gene expression changes in relation to dietary fat intake was in the opposite direction to the effect of graded levels of caloric restriction consistent with dietary fat having a negative impact on aging. We found 732, 808, and 995 serum metabolites were significantly correlated with dietary protein (5%–30%), fat (8.3%–80%), and carbohydrate (10%–80%) contents, respectively. Metabolomics pathway analysis revealed sphingosine‐1‐phosphate signaling was the significantly affected pathway by dietary fat content which has also been identified as significant changed metabolic pathway in the previous caloric restriction study. Our results suggest dietary fat has major impact on aging‐related gene and metabolic pathways compared with other macronutrients.
Collapse
Affiliation(s)
- Yingga Wu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Cara L. Green
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Guanlin Wang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Min Li
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
| | - Jianbo Li
- University of Dali Dali Yunnan Province People’s Republic of China
| | - Yanchao Xu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
| | - Xueying Zhang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
| | - Chaoqun Niu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
| | - Sumei Hu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
| | - Jacques Togo
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Davina Derous
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - John R. Speakman
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
- CAS Center of Excellence in Animal Evolution and Genetics Kunming People’s Republic of China
| |
Collapse
|
47
|
Brain circuits for promoting homeostatic and non-homeostatic appetites. Exp Mol Med 2022; 54:349-357. [PMID: 35474340 PMCID: PMC9076862 DOI: 10.1038/s12276-022-00758-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
As the principal means of acquiring nutrients, feeding behavior is indispensable to the survival and well-being of animals. In response to energy or nutrient deficits, animals seek and consume food to maintain energy homeostasis. On the other hand, even when animals are calorically replete, non-homeostatic factors, such as the sight, smell, and taste of palatable food, or environmental cues that predict food, can stimulate feeding behavior. These homeostatic and non-homeostatic factors have traditionally been investigated separately, but a growing body of literature highlights that these factors work synergistically to promote feeding behavior. Furthermore, recent breakthroughs in cell type-specific and circuit-specific labeling, recording, and manipulation techniques have markedly accelerated the discovery of well-defined neural populations underlying homeostatic and non-homeostatic appetite control, as well as overlapping circuits that contribute to both types of appetite. This review aims to provide an update on our understanding of the neural circuit mechanisms for promoting homeostatic and non-homeostatic appetites, focusing on the function of recently identified, genetically defined cell types. Research on the neural circuit mechanisms underlying feeding behaviors is critical to identifying therapeutic targets for food-related disorders like obesity and anorexia. Sung-Yon Kim and colleagues at Seoul National University, South Korea, reviewed the current understanding of neural circuits promoting feeding behavior, which is regulated by homeostatic and non-homeostatic appetites. In response to deficits in energy (caloric) or nutrients, specific populations of neurons sensitive to hormones leptin and ghrelin generate homeostatic appetite and promote feeding. In addition, diverse neural populations stimulate non-homeostatic appetite in the absence of immediate internal needs and are thought to drive overconsumption in the modern obesogenic environment. These appetites extensively interact through overlapping neural circuits to jointly promote feeding behaviors.
Collapse
|
48
|
Kalafut KC, Mitchell SJ, MacArthur MR, Mitchell JR. Short-Term Ketogenic Diet Induces a Molecular Response That Is Distinct From Dietary Protein Restriction. Front Nutr 2022; 9:839341. [PMID: 35433789 PMCID: PMC9005751 DOI: 10.3389/fnut.2022.839341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
There is increasing interest in utilizing short-term dietary interventions in the contexts of cancer, surgical stress and metabolic disease. These short-term diets may be more feasible than extended interventions and may be designed to complement existing therapies. In particular, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used to treat epilepsy, has gained popularity as a potential strategy for weight loss and improved metabolic health. In mice, long-term KD improves insulin sensitivity and may extend lifespan and healthspan. Dietary protein restriction (PR) causes increased energy expenditure, weight loss and improved glucose homeostasis. Since KD is inherently a low-protein diet (10% of calories from protein vs. >18% in control diet), here we evaluated the potential for mechanistic overlap between PR and KD via activation of a PR response. Mice were fed control, protein-free (PF), or one of four ketogenic diets with varying protein content for 8 days. PF and KD both decreased body weight, fat mass, and liver weights, and reduced fasting glucose and insulin levels, compared to mice fed the control diet. However, PF-fed animals had significantly improved insulin tolerance compared to KD. Furthermore, contrary to the PF-fed mice, mice fed ketogenic diets containing more than 5% of energy from protein did not increase hepatic Fgf21 or brown adipose Ucp1 expression. Interestingly, mice fed KD lacking protein demonstrated greater elevations in hepatic Fgf21 than mice fed a low-fat PF diet. To further elucidate potential mechanistic differences between PF and KD and the interplay between dietary protein and carbohydrate restriction, we conducted RNA-seq analysis on livers from mice fed each of the six diets and identified distinct gene sets which respond to dietary protein content, dietary fat content, and ketogenesis. We conclude that KD with 10% of energy from protein does not induce a protein restriction response, and that the overlapping metabolic benefits of KD and PF diets may occur via distinct underlying mechanisms.
Collapse
Affiliation(s)
- Krystle C. Kalafut
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Sarah J. Mitchell
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| | - Michael R. MacArthur
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| | - James R. Mitchell
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| |
Collapse
|
49
|
Serum Fibroblast Growth Factor 21 Level Is Associated with Aortic Stiffness in Patients on Maintenance Hemodialysis. Int J Hypertens 2022; 2022:7098458. [PMID: 35186330 PMCID: PMC8856816 DOI: 10.1155/2022/7098458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Fibroblast growth factor 21 (FGF-21) is a hormone that regulates glucose and lipid metabolism. High serum FGF-21 levels are associated with carotid atherosclerosis and coronary artery disease. This cross-sectional study aimed to assess the relationship between serum FGF-21 levels and carotid-femoral pulse wave velocity (cfPWV) in patients on maintenance hemodialysis (HD). Methods. Blood samples and baseline characteristics were collected from 130 HD patients. Serum FGF-21 concentrations were measured with an enzyme-linked immunosorbent assay kit. Aortic stiffness was defined as a carotid-femoral pulse wave velocity (cfPWV) of more than 10 m/s. Results. Of the 130 HD patients, aortic stiffness was diagnosed in 54 (41.5%). Serum FGF-21 levels were significantly higher in those with aortic stiffness than those without
. The FGF-21 level was independently associated with aortic stiffness (odds ratio (OR): 1.008; 95% CI: 1.003–1.012;
) after adjusting for diabetes mellitus, age, hypertension, C-reactive protein, and body weight in multivariable logistic regression analysis. Multivariable forward stepwise linear regression analysis also confirmed that the logarithmically transformed FGF-21 level (β = 3.245, 95% CI: 1.593–4.987,
) was an independent predictor of cfPWV values. The area under the receiver operating characteristic (ROC) curve predicting aortic stiffness by the serum FGF-21 level was 0.693 (95% CI: 0.606–0.771,
). Conclusions. Serum FGF-21 level positively correlates with cfPWV and is also an independent predictor of aortic stiffness in maintenance HD patients.
Collapse
|
50
|
Can dietary patterns prevent cognitive impairment and reduce Alzheimer's disease risk: exploring the underlying mechanisms of effects. Neurosci Biobehav Rev 2022; 135:104556. [PMID: 35122783 DOI: 10.1016/j.neubiorev.2022.104556] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the fastest growing cognitive decline-related neurological diseases. To date, effective curative strategies have remained elusive. A growing body of evidence indicates that dietary patterns have significant effects on cognitive function and the risk of developing AD. Previous studies on the association between diet and AD risk have mainly focused on individual food components and specific nutrients, and the mechanisms responsible for the beneficial effects of dietary patterns on AD are not well understood. This article provides a comprehensive overview of the effects of dietary patterns, including the Mediterranean diet (MedDiet), dietary approaches to stop hypertension (DASH) diet, Mediterranean-DASH diet intervention for neurological delay (MIND), ketogenic diet, caloric restriction, intermittent fasting, methionine restriction, and low-protein and high-carbohydrate diet, on cognitive impairment and summarizes the underlying mechanisms by which dietary patterns attenuate cognitive impairment, especially highlighting the modulation of dietary patterns on cognitive impairment through gut microbiota. Furthermore, considering the variability in individual metabolic responses to dietary intake, we put forward a framework to develop personalized dietary patterns for people with cognitive disorders or AD based on individual gut microbiome compositions.
Collapse
|