1
|
Guo MX, Wan L, Sun X, Zhou XH, Fang WT, Sun ZZ, Hu ZQ, Xue LL. Metabolomics Analysis Using Chromatography-Mass Spectrometry to Investigate the Mechanism of Cyclosporine in the Treatment of Aplastic Anemia. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9968. [PMID: 39757531 DOI: 10.1002/rcm.9968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE The aim of this study was to use metabolomics techniques to detect differential metabolites in the plasma of patients with aplastic anemia (AA). We explore important biomarkers and potential pathways in cyclosporine A (CsA) in the treatment of AA. METHODS Plasma samples from five patients with AA before and after treatment and plasma samples from five healthy people were collected and analyzed by liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. Multivariate statistical methods were employed to screen for differential compounds, followed by enrichment analysis of the differentially metabolites. RESULTS The experimental samples showed good stability and reproducibility. A total of 167 differential metabolites, including phospholipids, amino acids, and saturated or unsaturated fatty acids, were identified between AA patients and healthy individuals. Enrichment analysis of differential metabolites revealed the involvement of pathways such as pyrimidine metabolism, galactose metabolism, pantothenate and CoA biosynthesis, and forkhead box transcription factors signaling. A total of 26 differential metabolites were identified between AA patients and stable patients after treatment. Enrichment analysis of these metabolites showed the involvement of pathways such as pyrimidine metabolism, linoleic acid/α-linoleic acid metabolism, pantothenate and CoA biosynthesis, and beta-alanine metabolism. CONCLUSION Significant differences in metabolites were observed between AA patients and healthy individuals, suggesting that immune-related and energy metabolism pathways may be key targets in AA treatment. CsA intervention in AA may be achieved through the regulation of immune-related metabolic pathways.
Collapse
Affiliation(s)
- Ming-Xin Guo
- Department of Pharmacy, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
| | - Lin Wan
- Department of Pharmacy, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
| | - Xiang Sun
- Department of Pharmacy, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
| | - Xi-Han Zhou
- College of Medicine, Nantong University, Nantong, China
| | - Wen-Tong Fang
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhang-Zhang Sun
- Department of Pharmacy, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
| | - Zhi-Qiang Hu
- Department of Pharmacy, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
| | - Li-Li Xue
- Department of Pharmacy, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
| |
Collapse
|
2
|
Yao ZY, Ma X, Cui YZ, Liu J, Han ZX, Song J. Impact of triglyceride-glucose index on the long-term prognosis of advanced gastric cancer patients receiving immunotherapy combined with chemotherapy. World J Gastroenterol 2025; 31:102249. [DOI: 10.3748/wjg.v31.i5.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common malignancy and the third leading cause of death worldwide. Despite advancements in immunotherapies, patient prognosis remains poor, necessitating the identification of key prognostic factors to optimize the treatment approaches. Insulin resistance, as indicated by the triglyceride glucose (TyG) index, is increasingly recognized for its impact on cancer progression and immune modulation, and its potential role in GC prognosis is of particular interest.
AIM To investigate whether the TyG index, a surrogate marker of insulin resistance, can predict the prognosis of patients with advanced GC receiving immunotherapy combined with chemotherapy.
METHODS This retrospective study included 300 patients with advanced GC who received sintilimab combined with chemotherapy. The patients were categorized into two groups according to high or low TyG index, and independent prognostic factors for overall survival (OS) were determined using Cox proportional hazards regression analysis, which led to the development of a nomogram model.
RESULTS Of the included patients, 136 had a high TyG index and 164 had a low TyG index. The median progression-free survival of the high TyG index group was significantly longer than that of the low TyG index group. Similarly, the median OS of the high TyG index group was significantly longer than that of the low TyG index group. The objective response and disease control rates in the two groups were 18.38% vs 9.15% and 58.82% vs 46.95%, respectively. No significant difference was noted in the incidence of adverse reactions at any level between the two groups (P > 0.05). In multivariate analysis, the Eastern Cooperative Oncology Group score, programmed cell death ligand 1 expression, and TyG index acted as independent prognostic factors for OS. Of these factors, the hazard ratio of the TyG index was 0.36 (95% confidence interval: 0.36-0.55, P < 0.001), and the nomogram model re-emphasized its importance as the main predictor of patient prognosis, followed by programmed cell death ligand 1 expression and the Eastern Cooperative Oncology Group score.
CONCLUSION The TyG index is a long-term predictor of the efficacy of immunotherapy combined with chemotherapy, and patients with a high index have a better prognosis.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
| | - Xiao Ma
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Yong-Zheng Cui
- Department of Radiotherapy, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
| | - Jie Liu
- Department of Radiotherapy, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
| | - Zheng-Xiang Han
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
| | - Jun Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
3
|
Qiu Y, Su Y, Xie E, Cheng H, Du J, Xu Y, Pan X, Wang Z, Chen DG, Zhu H, Greenberg PD, Li G. Mannose metabolism reshapes T cell differentiation to enhance anti-tumor immunity. Cancer Cell 2025; 43:103-121.e8. [PMID: 39642888 DOI: 10.1016/j.ccell.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Cellular metabolic status profoundly influences T cell differentiation, persistence, and anti-tumor efficacy. Our single-cell metabolic analyses of T cells reveal that diminished mannose metabolism is a prominent feature of T cell dysfunction. Conversely, experimental augmentation/restoration of mannose metabolism in adoptively transferred T cells via D-mannose supplementation enhances anti-tumor activity and restricts exhaustion differentiation both in vitro and in vivo. Mechanistically, D-mannose treatment induces intracellular metabolic programming and increases the O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation of β-catenin, which preserves Tcf7 expression and epigenetic stemness, thereby promoting stem-like programs in T cells. Furthermore, in vitro expansion with D-mannose supplementation yields T cell products for adoptive therapy with stemness characteristics, even after extensive long-term expansion, that exhibits enhanced anti-tumor efficacy. These findings reveal cell-intrinsic mannose metabolism as a physiological regulator of CD8+ T cell fate, decoupling proliferation/expansion from differentiation, and underscoring the therapeutic potential of mannose modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yapeng Su
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA; Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Jing Du
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yue Xu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Xiaoli Pan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Zhe Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Daniel G Chen
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA; Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hong Zhu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215123, Jiangsu, China
| | - Philip D Greenberg
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
4
|
Rumiano L, Manzo T. Lipids guide T cell antitumor immunity by shaping their metabolic and functional fitness. Trends Endocrinol Metab 2024:S1043-2760(24)00321-7. [PMID: 39743401 DOI: 10.1016/j.tem.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
Lipids are metabolic messengers essential for energy production, membrane structure, and signal transduction. Beyond their recognized role, lipids have emerged as metabolic rheostats of T cell responses, with distinct species differentially modulating CD8+ T cell (CTL) fate and function. Indeed, lipids can influence T cell signaling by altering their membrane composition; in addition, they can affect the differentiation path of T cells through cellular metabolism. This Review discusses the ability of lipids to shape T cell phenotypes and functions. Based on this link between lipid metabolism, metabolic fitness and immunosurveillance, we suggest that lipid could be rationally integrated in the context of immunotherapies to fine-tune fitness and function of adoptive T cell therapy (ACT) products.
Collapse
Affiliation(s)
- Letizia Rumiano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Teresa Manzo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
5
|
Chen H, Qin A, Xu F, Guo S, Zhang G, Zhang A, Li W, Tian F, Zheng Q. HDAC3 inhibitors induce drug resistance by promoting IL-17 A production by T cells. Sci Rep 2024; 14:31937. [PMID: 39738540 DOI: 10.1038/s41598-024-83447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
HDAC3 has been demonstrated to play a crucial role in the progression of various tumors and the differentiation and development of T cells. However, its impact on peripheral T cells in the development of murine lung cancer remains unclear. In this experiment, a subcutaneous lung tumor model was established in C57BL/6 mice, and tumor-bearing mice were treated with the specific inhibitor of HDAC3, RGFP966, at different doses to observe changes in tumor size. Additionally, a lung tumor model was established using hdac3fl/flcd4cre+/+ mice to investigate its mechanism. Mice injected with 10 mg/kg RGFP966 had the smallest tumor volume, while those injected with 30 mg/kg RGFP966 had the largest tumors. Flow cytometry analysis revealed that the expression of HDAC3 in splenic T cells was reduced in all groups of mice, while IFN-γ and IL-17 A were increased. Moreover, the expression of granzyme B and perforin in splenic CD8+ T cells was increased in all groups of mice. Compared to the use of 30 mg/kg RGFP966 alone, the combination with anti-IL-17 A mAb reduced the infiltration of Neutrophils and exhausted T cells in mouse tumors, thereby impeding tumor development. These findings demonstrate that the use of RGFP966 or T cell-specific loss of hdac3 promotes the expression of IL-17 A in splenic T cells, leading to tumor resistance and providing insights for clinical treatment.
Collapse
Affiliation(s)
- Hao Chen
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Anqi Qin
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Fan Xu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Shuai Guo
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Ge Zhang
- School of Basic Medical, Xingtai Medical College, Xingtai, 054000, China
| | - Aihong Zhang
- Department of ICU, The Affiliated Hospital of North China University of Science and Technology, Tangshan, 063000, China
| | - WenTing Li
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100083, China
| | - Feng Tian
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100083, China
| | - Quanhui Zheng
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
6
|
Liang X, Zhu Y, Bu Y, Dong M, Zhang G, Chen C, Tang H, Wang L, Wang P, Wang Y, Ma R, Chen X, Wang J, Yu G, Zhong N, Li L, Li Z. Microbiome and metabolome analysis in smoking and non-smoking pancreatic ductal adenocarcinoma patients. BMC Microbiol 2024; 24:541. [PMID: 39731043 DOI: 10.1186/s12866-024-03688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Smoking is a significant risk factor for pancreatic ductal adenocarcinoma (PDAC). This study aimed to investigate the effects of smoking on the pancreatic microbiome and metabolome in resectable and unresectable male PDAC patients. METHODS The pancreatic tissue samples were collected from resectable PDACs via surgery and unresectable PDACs via endoscopic ultrasound fine needle aspiration (EUS-FNA). Surgical samples obtained from 10 smoking and 6 non-smoking PDACs were measured by 16S ribosomal RNA (16S rRNA) gene sequencing and liquid chromatography-mass spectrometry (LC/MS). Fine needle aspiration (FNA) samples obtained from 20 smoking and 14 non-smoking PDACs were measured by 16S rRNA gene sequencing. RESULTS From resectable to unresectable patients, the dominant genus in the pancreas changed from Achromobacter to Delftia. Smoking further altered the abundance of specific bacteria, mainly manifested as an increase of Slackia in surgical tumor tissue of the smoking group, and an enrichment of Aggregatibacter and Peptococcus in FNA samples of the smoking group. In tumor tissue, smoking caused an enrichment of the cancer-promoting cAMP signaling pathway and L-lactic acid. In paracancerous tissue, smoking also induced a detrimental disturbance in the pancreatic microbiome and metabolome, including an enrichment of Veillonella, Novosphingobium, Deinococcus, and 3-hydroxybutanoic acid, and a reduction of linoleic acid. Besides, the cancer-promoting L-lactic acid was negatively correlated with Faecalibacterium in tumor tissue based on the correlation analysis. CONCLUSION There were differences in the pancreatic microbiome of PDAC patients at different stages, and smoking can further disrupt the pancreatic microbiome and metabolism in PDAC.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yiqing Zhu
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yongqi Bu
- School of Software, Shandong University, Jinan, 250100, China
- SDU-NTU Joint Centre for AI Research, Shandong University, Jinan, 250100, China
| | - Min Dong
- PKUCare Luzhong Hospital, Shandong University, Zibo, 250100, China
| | - Guoming Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Changxu Chen
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haoyun Tang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Limei Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yifan Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruiguang Ma
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyu Chen
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Wang
- School of Software, Shandong University, Jinan, 250100, China
- SDU-NTU Joint Centre for AI Research, Shandong University, Jinan, 250100, China
| | - Guoxian Yu
- School of Software, Shandong University, Jinan, 250100, China
- SDU-NTU Joint Centre for AI Research, Shandong University, Jinan, 250100, China
| | - Ning Zhong
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China.
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China.
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China.
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Yao W, Huo J, Ji J, Liu K, Tao P. Elucidating the role of gut microbiota metabolites in diabetes by employing network pharmacology. Mol Med 2024; 30:263. [PMID: 39707185 DOI: 10.1186/s10020-024-01033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Extensive research has underscored the criticality of preserving diversity and equilibrium within the gut microbiota for optimal human health. However, the precise mechanisms by which the metabolites and targets of the gut microbiota exert their effects remain largely unexplored. This study utilizes a network pharmacology methodology to elucidate the intricate interplay between the microbiota, metabolites, and targets in the context of DM, thereby facilitating a more comprehensive comprehension of this multifaceted disease. METHODS In this study, we initially extracted metabolite information of gut microbiota metabolites from the gutMGene database. Subsequently, we employed the SEA and STP databases to discern targets that are intricately associated with these metabolites. Furthermore, we leveraged prominent databases such as Genecard, DisGeNET, and OMIM to identify targets related to diabetes. A protein-protein interaction (PPI) network was established to screen core targets. Additionally, we conducted comprehensive GO and KEGG enrichment analyses utilizing the DAVID database. Moreover, a network illustrating the relationship among microbiota-substrate-metabolite-target was established. RESULTS We identified a total of 48 overlapping targets between gut microbiota metabolites and diabetes. Subsequently, we selected IL6, AKT1 and PPARG as core targets for the treatment of diabetes. Through the construction of the MSMT comprehensive network, we discovered that the three core targets exert therapeutic effects on diabetes through interactions with 8 metabolites, 3 substrates, and 5 gut microbiota. Additionally, GO analysis revealed that gut microbiota metabolites primarily regulate oxidative stress, inflammation and cell proliferation. KEGG analysis results indicated that IL-17, PI3K/AKT, HIF-1, and VEGF are the main signaling pathways involved in DM. CONCLUSION Gut microbiota metabolites primarily exert their therapeutic effects on diabetes through the IL6, AKT1, and PPARG targets. The mechanisms of gut microbiota metabolites regulating DM might involve signaling pathways such as IL-17 pathways, HIF-1 pathways and VEGF pathways.
Collapse
Affiliation(s)
- Weiguo Yao
- Department of Nephrology, Jinshan District Central Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jinlin Huo
- Institute of Precision Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jing Ji
- Department of Emergency, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Liu
- Department of Nephrology, Jinshan District Central Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Pengyu Tao
- Department of Nephrology, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Liu Z, Dai B, Bao J, Pan Y. T cell metabolism in kidney immune homeostasis. Front Immunol 2024; 15:1498808. [PMID: 39737193 PMCID: PMC11684269 DOI: 10.3389/fimmu.2024.1498808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Kidney immune homeostasis is intricately linked to T cells. Inappropriate differentiation, activation, and effector functions of T cells lead to a spectrum of kidney disease. While executing immune functions, T cells undergo a series of metabolic rewiring to meet the rapid energy demand. The key enzymes and metabolites involved in T cell metabolism metabolically and epigenetically modulate T cells' differentiation, activation, and effector functions, thereby being capable of modulating kidney immune homeostasis. In this review, we first summarize the latest advancements in T cell immunometabolism. Second, we outline the alterations in the renal microenvironment under certain kidney disease conditions. Ultimately, we highlight the metabolic modulation of T cells within kidney immune homeostasis, which may shed light on new strategies for treating kidney disease.
Collapse
Affiliation(s)
- Zikang Liu
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Binbin Dai
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jiwen Bao
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
9
|
Viel S, Vivier E, Walzer T, Marçais A. Targeting metabolic dysfunction of CD8 T cells and natural killer cells in cancer. Nat Rev Drug Discov 2024:10.1038/s41573-024-01098-w. [PMID: 39668206 DOI: 10.1038/s41573-024-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/14/2024]
Abstract
The importance of metabolic pathways in regulating immune responses is now well established, and a mapping of the bioenergetic metabolism of different immune cell types is under way. CD8 T cells and natural killer (NK) cells contribute to cancer immunosurveillance through their cytotoxic functions and secretion of cytokines and chemokines, complementing each other in target recognition mechanisms. Several immunotherapies leverage these cell types by either stimulating their activity or redirecting their specificity against tumour cells. However, the anticancer activity of CD8 T cells and NK cells is rapidly diminished in the tumour microenvironment, closely linked to a decline in their metabolic capacities. Various strategies have been developed to restore cancer immunosurveillance, including targeting bioenergetic metabolism or genetic engineering. This Review provides an overview of metabolic dysfunction in CD8 T cells and NK cells within the tumour microenvironment, highlighting current therapies aiming to overcome these issues.
Collapse
Affiliation(s)
- Sébastien Viel
- Plateforme de Biothérapie et de Production de Médicaments de Thérapie Innovante, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- APHM, Hôpital de la Timone, Marseille, France
- Paris Saclay Cancer Cluster, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Inserm, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France.
| |
Collapse
|
10
|
Li S, Liu M, Pan L, Feng Q, Lu X, Yao J, Xiao X. Integrated network pharmacology, mass cytometry and multi-omics analysis the effect of Jingfang granule on intestinal immune disorder in mice with cold-dampness syndrome. J Pharm Biomed Anal 2024; 255:116624. [PMID: 39657279 DOI: 10.1016/j.jpba.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/11/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
The pathogenesis of cold-dampness syndrome (CDS) is closely related to intestinal inflammation and immune disorders induced by cold-dampness pathogen. CDS is the root cause of a variety of chronic inflammatory and immune diseases. Jingfang granule (JF) was widely used to treat a variety of diseases closely related to CDS. JF is well known for its clinical effect of dispelling cold and eliminating dampness, but the pharmacological effect and mechanism of JF on the improvement of CDS are still unclear. This study aimed to explore the efficacy and mechanism of JF in improving CDS from the perspective of intestinal immunity. In this study, mass spectrometry (CyTOF), metabolomics, network pharmacology, proteomics and molecular biology experiments were performed to investigate the therapeutic effects and underlying mechanisms of JF on intestinal inflammation and immune disorders in CDS mice. These results showed that JF could improve the clinical symptoms and increase the thymus index of CDS mice. Most strikingly, JF ameliorated intestinal inflammation and immune disorders in CDS mice, as indicated by increased frequency of TH1, CD8 + Tem, CD8 + TEFF, gdT and iNK cells and decreased frequency of Naive B cells, M1-macrophages, DCs and eosinophils. Metabolomics results showed that JF reversed the content of docosahexaenoic acid, arachidonic acid, linoleic acid, inosine and hypoxanthine in CDS mice. Correlation analysis showed that these metabolites were strongly correlated with a variety of intestinal immune cells, indicating that there was a certain regulatory effect between them. Then, 271 JF targets, 316 metabolite targets and 18374 disease targets were integrated to obtain 75 common targets and 138 pathways (such as PI3K/AKT and MAPK pathway, etc). Furthermore, molecular docking, proteomics and western blotting demonstrated that PI3K/AKT signaling pathway might be the key molecular mechanism by which JF regulated intestinal immune disorders in CDS mice. These results suggested that JF may act on the PI3K/AKT pathways to further regulate the levels of metabolites to exert intestinal immunomodulatory effects. In summary, we confirmed the beneficial effects of JF on intestinal immune disorders in CDS mice.
Collapse
Affiliation(s)
- Shirong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Mingfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China.
| | - Qun Feng
- Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiaoyan Lu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China.
| | - Xuefeng Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Xiong F, Zhang X, Jiang Y, Meng P, Zhou Y, Ji X, Chen J, Wu T, Hou Y. An Integrated Analysis of the Role of Gut Microbiome-Associated Metabolites in the Detection of MASH-Related Cirrhosis. Metabolites 2024; 14:681. [PMID: 39728462 DOI: 10.3390/metabo14120681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND AND AIM The prevalence and adverse outcomes of metabolic dysfunction associated with steatotic liver disease (MAFLD) are increasing. The changes in the gut microbiota and metabolites associated with metabolic dysfunction-associated steatohepatitis (MASH) are regarded as an essential part of the progression of MAFLD. This study aimed to identify the gut microbiota and metabolites involved in the development of MAFLD in patients. METHOD This study enrolled 90 patients (healthy controls, HC: n = 30; MASH: n = 30; MASH-related cirrhosis, MC: n = 30), and their fecal samples were collected for 16S rRNA sequencing and non-targeted LC-MS/MS metabolomics analysis. Data preprocessing and statistical analyses were performed using QIIME2 software, Pynast, QIIME2 package, Progenesis QI, and R program. RESULTS The abundance of Prevotellaceae at the family level and Prevotella at the genus level was lower in the MASH and NC samples than in the HC samples. Both Prevotellaceae and Prevotella showed the strongest correlation with MASH progression via random forest analysis. Untargeted metabolomics was used to quantitatively screen for discrepant metabolites in the stool samples from the three groups. Linolenic acid (LA)-related metabolite levels were significantly lower in MASH and NC samples. Associations between Prevotella- or LA-related metabolites and liver function were discovered. A high abundance of Prevotella was associated with LA-related metabolites and MASH. CONCLUSION This study identified that gut microbiota and metabolites are associated with MASH-related metabolic dysfunction. LA and Prevotella are depleted during MASH progression, and additional supplementation with Prevotella may be a potential strategy for the future treatment of MAFLD.
Collapse
Affiliation(s)
- Feixiang Xiong
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Xuejie Zhang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Peipei Meng
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Yang Zhou
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Xiaomin Ji
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Jialiang Chen
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Tong Wu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Yixin Hou
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| |
Collapse
|
12
|
Wang G, Qiao Y, Zhao Y, Li M, Song Y, Jin M, Yang D, Shi D, Li H, Chen T, Zhou S, Yang Z, Li J, Liu W. Beaveria bassiana (Balsamo) Vuillemin combined with cinnamaldehyde enhances anti-hepatocellular carcinoma effects of T cells by the PGC-1α/DRP1-regulated mitochondrial biogenesis and fission. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119216. [PMID: 39643019 DOI: 10.1016/j.jep.2024.119216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Beaveria bassiana (Balsamo) Vuillemin (BEA) and cinnamaldehyde (CA), primarily derived from traditional Chinese medicine (TCM) named Bombyx batryticatus and Cinnamomum cassia, play an immunomodulatory role in different disease. AIM OF THE STUDY Hepatocellular carcinoma (HCC) is a prevalent malignant tumor characterized by immune dysfunction. In this study, we investigated BEA and CA's regulate ability on T cell mitochondrial metabolism and anti-HCC effect. MATERIALS AND METHODS We used RT-qPCR, Western blot, Enzyme-linked immune sorbent assay (ELISA), Flow CytoMetry (FCM) methods to examine BEA and CA's regulation of T cell mitochondrial function and anti-HCC ability. Furthermore, the mechanism of PGC-1α/DRP1 pathway on the morphology and function of T cell mitochondria was investigated. RESULTS Our data demonstrated that the administration of BEA and CA, either alone or in combination, effectively suppressed HCC growth and mitigated T cell apoptosis and mitochondrial dysfunction, assessed by mitochondrial reactive oxygen species (mitoROS), mitochondrial membrane potential (MMP) and ATP level. Moreover, BEA and CA could enhance the release of tumor-killing factors (Perforin (PF) and Granzyme B (Gzm B)) from T cells, inducing H22 cell apoptosis. Additionally, BEA and CA-treated T cell reinfusion into BALB/c nude HCC mice could significantly inhibited HCC growth by promoting T cell infiltration into tumor tissue. T cell mitochondrial biogenesis/fission balance and apoptosis in tumor mice were regulated by PGC-1α/DRP1 pathway. CONCLUSIONS Our findings reveal that BEA and CA enhance anti-HCC effects of T cells by regulating mitochondrial biogenesis and fission through the PGC-1α/DRP1 pathway.
Collapse
Affiliation(s)
- Gui Wang
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Yamei Qiao
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Yunyan Zhao
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Mengyang Li
- Military Medical Sciences Acadamy, Tianjin, China; School of Public Health and Management, Binzhou Medical University, Yantai, Shandong China, China.
| | | | - Min Jin
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Dong Yang
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Danyang Shi
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Haibei Li
- Military Medical Sciences Acadamy, Tianjin, China.
| | | | - Shuqing Zhou
- Military Medical Sciences Acadamy, Tianjin, China.
| | | | - Junwen Li
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Weili Liu
- Military Medical Sciences Acadamy, Tianjin, China.
| |
Collapse
|
13
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Cai ZR, Wang W, Chen D, Chen HJ, Hu Y, Luo XJ, Wang YT, Pan YQ, Mo HY, Luo SY, Liao K, Zeng ZL, Li SS, Guan XY, Fan XJ, Piao HL, Xu RH, Ju HQ. Diagnosis and prognosis prediction of gastric cancer by high-performance serum lipidome fingerprints. EMBO Mol Med 2024; 16:3089-3112. [PMID: 39543322 PMCID: PMC11628598 DOI: 10.1038/s44321-024-00169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Early detection is warranted to improve prognosis of gastric cancer (GC) but remains challenging. Liquid biopsy combined with machine learning will provide new insights into diagnostic strategies of GC. Lipid metabolism reprogramming plays a crucial role in the initiation and development of tumors. Here, we integrated the lipidomics data of three cohorts (n = 944) to develop the lipid metabolic landscape of GC. We further constructed the serum lipid metabolic signature (SLMS) by machine learning, which showed great performance in distinguishing GC patients from healthy donors. Notably, the SLMS also held high efficacy in the diagnosis of early-stage GC. Besides, by performing unsupervised consensus clustering analysis on the lipid metabolic matrix of patients with GC, we generated the gastric cancer prognostic subtypes (GCPSs) with significantly different overall survival. Furthermore, the lipid metabolic disturbance in GC tissues was demonstrated by multi-omics analysis, which showed partially consistent with that in GC serums. Collectively, this study revealed an innovative strategy of liquid biopsy for the diagnosis of GC on the basis of the serum lipid metabolic fingerprints.
Collapse
Affiliation(s)
- Ze-Rong Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Hao-Jie Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiao-Jing Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yi-Ting Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Yi-Qian Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hai-Yu Mo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shu-Yu Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kun Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shan-Shan Li
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China
| | - Xin-Juan Fan
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China.
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China.
| |
Collapse
|
15
|
An ZY, Han SZ, Li ZY, Chang SY, Zhang XL, Lu GJ, Zhang T, Quan BH, Yin XJ, Quan LH, Kang JD. Eicosatrienoic acid enhances the quality of in vitro matured porcine oocytes by reducing PRKN-mediated ubiquitination of CISD2. Theriogenology 2024; 230:285-298. [PMID: 39357167 DOI: 10.1016/j.theriogenology.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Oocytes and early embryos are exposed to many uncontrollable factors that trigger endoplasmic reticulum (ER) stress during in vitro culture. Prevention of ER stress is an effective way to improve the oocyte maturation rate and oocyte quality. Increasing evidence suggests that dietary intake of sufficient n-3 polyunsaturated fatty acids (PUFAs) is associated with health benefits, particularly in the domain of female reproductive health. We found that supplementation of eicosatrienoic acid (ETA) during in vitro maturation (IVM) of oocyte significantly downregulated ER stress-related genes. Mitochondria-associated membranes (MAMs) are communications areas between the ER and mitochondria. Inositol 1,4,5-trisphosphate receptor (IP3R) is a key calcium channels in MAMs and, participates in the regulation of many cellular functions. Notably, the MAM area was significantly decreased in ETA-treated oocytes. CDGSH iron sulfur domain 2 (CISD2) is presents in MAMs, but its role in oocytes is unknown. ETA treatment significantly increased CISD2 expression, and siRNA-mediated knockdown of CISD2 blocked the inhibitory effect of ETA on IP3R. Transcriptomic sequencing and immunoprecipitation experiments showed that ETA treatment significantly decreased expression of the E3 ubiquitin ligase PRKN. PRKN induced ubiquitination and degradation of CISD2, indicating that the PRKN-mediated ubiquitin-proteasome system regulates CISD2. In conclusion, our study reveals the mechanism by which ETA supplementation during IVM alleviates mitochondrial calcium overload under ER stress conditions by decreasing PRKN-mediated ubiquitination of CISD2 and facilitating inhibition of IP3R by CISD2/BCL-2. This improves oocyte quality and subsequent embryo developmental competence prior to implantation.
Collapse
Affiliation(s)
- Zhi-Yong An
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Zhou-Yan Li
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Xiu-Li Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Gao-Jie Lu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Tuo Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Biao-Hu Quan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| | - Xi-Jun Yin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| | - Lin-Hu Quan
- College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| |
Collapse
|
16
|
Zhang FQ, Chen J, Fan H. Eating for immunity: how diet shapes our defenses. Curr Opin Immunol 2024; 91:102486. [PMID: 39353254 PMCID: PMC11609002 DOI: 10.1016/j.coi.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Emerging studies on the diet-immune axis have uncovered novel dietary immune regulators and identified crucial targets and pathways mediating the crosstalk between specific dietary components and diverse immune cell populations. Here, we discuss the recent discovery and mechanisms by which diet-derived components, such as vitamins, amino acids, fatty acids, and antioxidants, could impact immune cell metabolism, alter signaling pathways, and reprogram the overall cellular responses. We also note crucial considerations that need to be tackled to make these findings clinically relevant, acknowledging that our current understanding often relies on simplified models that may not adequately represent the intricate network of factors influencing the diet-immune axis at the whole organism level. Overall, our growing understanding of how diet shapes our defenses underscores the importance of lifestyle choices and illuminates the potential to fine-tune immune responses through targeted nutritional strategies, thereby fortifying the immune system and bolstering our defenses against diseases.
Collapse
Affiliation(s)
- Freya Q Zhang
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jing Chen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Hao Fan
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Kim J, Lee Y, Chung Y. Control of T-cell immunity by fatty acid metabolism. Ann Pediatr Endocrinol Metab 2024; 29:356-364. [PMID: 39778404 PMCID: PMC11725633 DOI: 10.6065/apem.2448160.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Fatty acids play critical roles in maintaining the cellular functions of T cells and regulating T-cell immunity. This review synthesizes current research on the influence of fatty acids on T-cell subsets, including CD8+ T cells, TH1, TH17, Treg (regulatory T cells), and TFH (T follicular helper) cells. Fatty acids impact T cells by modulating signaling pathways, inducing metabolic changes, altering cellular structures, and regulating gene expression epigenetically. These processes affect T-cell activation, differentiation, and function, with implications for diseases such as autoimmune disease and cancer. Based on these insights, fatty acid pathways can potentially be modulated by novel therapeutics, paving the way for novel treatment approaches for immune-mediated disorders and cancer immunotherapy.
Collapse
Affiliation(s)
- Jaemin Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yoosun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
18
|
Chen Y, Chen J, Wu J, Qu X, Zhang Z. Metabolome-wide Mendelian randomization assessing the causal relationship between blood metabolites and primary ovarian insufficiency. Clin Nutr ESPEN 2024; 65:331-338. [PMID: 39615787 DOI: 10.1016/j.clnesp.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND & AIMS Primary ovarian insufficiency (POI) is a significant clinical syndrome that leads to female infertility, and its incidence continues to increase. We used metabolome-specific Mendelian randomization (MR) to identify causally associated metabolites and explore the relationship between candidate metabolites and upstream genetic variations. METHODS The primary MR analysis utilized the inverse variance weighted (IVW) method as the primary approach to assess the causal relationship between exposure and POI. Multiple sensitivity analyses included MR-Egger, weighted median, and weighted mode methods. RESULTS After using genetic variants as probes, we identified 27 metabolites of 278 that are associated with the risk of POI, including dodecanedioate (OR 0.052, 95 % CI 0.010-0.265; P < 0.001), adrenate (OR 0.113, 95 % CI 0.016-0.822; P = 0.031), indolepropionate (OR 0.174, 95 % CI 0.051-0.593; P = 0.005), homocitrulline (OR 0.194, 95 % CI 0.051-0.741; P = 0.016), and 3-methylhistidine (OR 0.404, 95 % CI 0.193-0.848; P = 0.017). Our study indicated the presence of heterogeneity; therefore, we employed the IVW random-effects model as the primary approach. KEGG pathway enrichment analysis identified six significant metabolic pathways, primarily including biosynthesis of unsaturated fatty acids, phenylalanine, tyrosine and tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, linoleic acid metabolism, valine, leucine and isoleucine biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis. CONCLUSIONS By integrating genomics and metabolomics, this study provides novel insights into the causal relationship linking circulating metabolites and the onset of POI.
Collapse
Affiliation(s)
- Yijie Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China.
| | - Jun Chen
- Department of Cardiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Zhejiang, 310000, China.
| | - Ji Wu
- The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianguo Qu
- Hangzhou First People's Hospital, Zhejiang, 310006, China.
| | - Zhifen Zhang
- Department of the Reproductive Endocrinology Division, Hangzhou Women's Hospital, Teach School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
19
|
Liu N, Zhu XR, Wu CY, Liu YY, Chen MB, Gu JH. PCK1 as a target for cancer therapy: from metabolic reprogramming to immune microenvironment remodeling. Cell Death Discov 2024; 10:478. [PMID: 39578429 PMCID: PMC11584723 DOI: 10.1038/s41420-024-02240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Recently, changes in metabolites and metabolism-related enzymes related to tumor cell proliferation, metastasis, drug resistance, and immunosuppression have become a research hotspot, and researchers have attempted to determine the clinical correlation between specific molecular lesions and metabolic phenotypes. Convincing evidence shows that metabolic reprogramming is closely related to the proliferation, invasion, metastasis, and poor prognosis of malignant tumors. Therefore, targeting metabolic reprogramming is a new direction for cancer treatment. However, how molecular alterations in tumors contribute to metabolic diversity and unique targeting dependencies remains unclear. A full understanding of the underlying mechanisms of metabolic reprogramming in cancer may lead to better identification of therapeutic targets and the development of therapeutic strategies. Evidence for the importance of PCK1, a phosphoenolpyruvate carboxykinase 1, in tumorigenesis and development is accumulating. PCK1 can regulate cell proliferation and metastasis by remodeling cell metabolism. Additionally, PCK1 has "nonclassical" nonmetabolic functions, involving the regulation of gene expression, angiogenesis, epigenetic modification, and other processes, and has an impact on cell survival, apoptosis, and other biological activities, as well as the remodeling of the tumor immune microenvironment. Herein, we provide a comprehensive overview of the functions of PCK1 under physiological and pathological conditions and suggest that PCK1 is a potential target for cancer therapy. We also propose a future exploration direction for targeting PCK1 for cancer therapy from a clinical perspective. Finally, in view of the collective data, the results of our discussion suggest the potential clinical application of targeted PCK1 therapy in combination with chemotherapy and immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Chang-Ying Wu
- Department of Intensive Care Medicine, Chongqing People's Hospital, Chongqing, China
| | - Yuan-Yuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Jin-Hua Gu
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University Kunshan, Kunshan, China.
| |
Collapse
|
20
|
Baldwin JG, Heuser-Loy C, Saha T, Schelker RC, Slavkovic-Lukic D, Strieder N, Hernandez-Lopez I, Rana N, Barden M, Mastrogiovanni F, Martín-Santos A, Raimondi A, Brohawn P, Higgs BW, Gebhard C, Kapoor V, Telford WG, Gautam S, Xydia M, Beckhove P, Frischholz S, Schober K, Kontarakis Z, Corn JE, Iannacone M, Inverso D, Rehli M, Fioravanti J, Sengupta S, Gattinoni L. Intercellular nanotube-mediated mitochondrial transfer enhances T cell metabolic fitness and antitumor efficacy. Cell 2024; 187:6614-6630.e21. [PMID: 39276774 PMCID: PMC11623344 DOI: 10.1016/j.cell.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 02/20/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.
Collapse
Affiliation(s)
- Jeremy G Baldwin
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christoph Heuser-Loy
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Tanmoy Saha
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Roland C Schelker
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Nicholas Strieder
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | | | - Nisha Rana
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; University of Regensburg, Regensburg, Germany
| | - Markus Barden
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Fabio Mastrogiovanni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Azucena Martín-Santos
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philip Brohawn
- Translational Science and Experimental Medicine, Early R&I, AstraZeneca, Gaithersburg, MD, USA
| | | | - Claudia Gebhard
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Veena Kapoor
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William G Telford
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sanjivan Gautam
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Xydia
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany; Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Philipp Beckhove
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; University of Regensburg, Regensburg, Germany; Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Sina Frischholz
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Schober
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Zacharias Kontarakis
- Genome Engineering and Measurement Laboratory (GEML), ETH Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, ETH Zürich, University of Zürich, Zürich 8057, Switzerland
| | - Jacob E Corn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Donato Inverso
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jessica Fioravanti
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shiladitya Sengupta
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; University of Regensburg, Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
21
|
Su RY, Xu CH, Guo HJ, Meng LJ, Zhuo JY, Xu N, Li HG, He CY, Zhang XY, Lian ZX, Wang S, Cao C, Zhou R, Lu D, Zheng SS, Wei XY, Xu X. Oncogenic cholesterol rewires lipid metabolism in hepatocellular carcinoma via the CSNK2A1-IGF2R Ser2484 axis. J Adv Res 2024:S2090-1232(24)00540-X. [PMID: 39547439 DOI: 10.1016/j.jare.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/02/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION Alcohol consumption and hepatitis B virus (HBV) infection are common risk factors for hepatocellular carcinoma (HCC). However, few studies have focused on elucidating the mechanisms of HCC with combined alcohol and HBV etiology. OBJECTIVES We aimed to investigate the molecular features of alcohol and HBV on HCC and to seek out potential therapeutic strategies. METHODS Two independent cohorts of HCC patients (n = 539 and n = 140) were included to investigate HCC with synergetic alcohol and HBV (AB-HCC) background. Patient-derived cell lines, organoids, and xenografts were used to validate the metabolic fragile. High-throughput drug screening (1181 FDA-approved anticancer drugs) was leveraged to explore the potential therapeutic agents. RESULTS Here, we delineated AB-HCC as a distinctive metabolic subtype, hallmarked by oncogenic cholesterol, through the integration of clinical cohorts, proteomics, phosphoproteomics, and spatial transcriptome. Mechanistically, our findings revealed that cholesterol directly binds to CSNK2A1 (Casein Kinase 2 Alpha 1), augmenting its kinase activity and leading to phosphorylation of IGF2R (Insulin-Like Growth Factor 2 Receptor) at Ser2484. This cascade rewires lipid-driven mitochondrial oxidative phosphorylation, spawns reactive oxygen species measured by malondialdehyde assay, and perpetuates a positive feedback loop for cholesterol biosynthesis, ultimately culminating in tumorigenesis. Initial transcriptional activation of CSNK2A1 is driven by upregulation of RAD21 in AB-HCC. Our cholesterol profiling exposes AB-HCC's compensatory mechanism of AB-HCC, which capitalizes on both uptake and biosynthesis of cholesterol to confer survival edge. Moreover, high-throughput drug screening coupled with in vivo validation has uncovered the susceptibilities of AB-HCC, which can be effectively addressed by a combination of dietary cholesterol restriction and oral administration of Fostamatinib. The CSNK2A1-mediated cholesterol biosynthesis pathway has been implicated in various cancers characterized by cholesterol metabolism. CONCLUSION These findings not only pinpoint the oncogenic metabolite cholesterol as a hidden culprit in AB-HCC subtype, but also enlighten a novel combination strategy to rejuvenate tumor metabolism.
Collapse
Affiliation(s)
- Ren-Yi Su
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chen-Hao Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hai-Jun Guo
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Li-Jun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Jian-Yong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Nan Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hui-Gang Li
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chi-Yu He
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xuan-Yu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Zheng-Xin Lian
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Chenhao Cao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, and College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, China.
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310022, China.
| | - Xu-Yong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
22
|
Yu W, Yu Y, Sun S, Lu C, Zhai J, Lei Y, Bai F, Wang R, Chen J. Immune Alterations with Aging: Mechanisms and Intervention Strategies. Nutrients 2024; 16:3830. [PMID: 39599617 PMCID: PMC11597283 DOI: 10.3390/nu16223830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Aging is the result of a complex interplay of physical, environmental, and social factors, leading to an increased prevalence of chronic age-related diseases that burden health and social care systems. As the global population ages, it is crucial to understand the aged immune system, which undergoes declines in both innate and adaptive immunity. This immune decline exacerbates the aging process, creating a feedback loop that accelerates the onset of diseases, including infectious diseases, autoimmune disorders, and cancer. Intervention strategies, including dietary adjustments, pharmacological treatments, and immunomodulatory therapies, represent promising approaches to counteract immunosenescence. These interventions aim to enhance immune function by improving the activity and interactions of aging-affected immune cells, or by modulating inflammatory responses through the suppression of excessive cytokine secretion and inflammatory pathway activation. Such strategies have the potential to restore immune homeostasis and mitigate age-related inflammation, thus reducing the risk of chronic diseases linked to aging. In summary, this review provides insights into the effects and underlying mechanisms of immunosenescence, as well as its potential interventions, with particular emphasis on the relationship between aging, immunity, and nutritional factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (W.Y.)
| |
Collapse
|
23
|
Liu CC, Grencewicz D, Chakravarthy K, Li L, Liepold R, Wolf M, Sangwan N, Tzeng A, Hoyd R, Jhawar SR, Grobmyer SR, Al-Hilli Z, Sciallis AP, Spakowicz D, Ni Y, Eng C. Breast tumor microbiome regulates anti-tumor immunity and T cell-associated metabolites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620864. [PMID: 39554133 PMCID: PMC11565759 DOI: 10.1101/2024.10.29.620864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Breast cancer, the most common cancer type among women, was recently found to contain a specific tumor microbiome, but its impact on host biology remains unclear. CD8+ tumor-infiltrating lymphocytes (TILs) are pivotal effectors of anti-tumor immunity that influence cancer prognosis and response to therapy. This study aims to elucidate interactions between CD8+ TILs and the breast tumor microbiome and metabolites, as well as how the breast tumor microbiome may affect the tumor metabolome. Methods We investigated the interplay among CD8+ TILs, the tumor microbiome, and the metabolome in a cohort of 46 breast cancer patients with mixed subtypes (Cohort A). We characterized the tumor metabolome by mass spectrometry and CD8+ TILs by immunohistochemistry. Microbiome composition and T cell gene transcript levels were obtained from data from our previous study, which utilized 16S rRNA gene sequencing and a targeted mRNA expression panel. To examine interactions between intratumoral Staphylococcus and specific breast cancer subtypes, we analyzed RNA sequencing data from an independent cohort of 370 breast cancer patients (Cohort B). We explored the functions of the tumor microbiome using mouse models of triple-negative breast cancer (TNBC). Results In tumors from Cohort A, the relative abundance of Staphylococcus positively correlated with the expression of T cell activation genes. The abundances of multiple metabolites exhibited significant correlations with CD8+ TILs, of which NADH, γ-glutamyltryptophan, and γ-glutamylglutamate displayed differential abundance in Staphylococcus-positive versus Staphylococcus-negative breast tumors. In a larger breast cancer cohort (Cohort B), we observed positive correlations between tumoral Staphylococcus and CD8+ TIL activity exclusively in TNBC. Preclinical experiments demonstrated that intratumoral administration of S. aureus, the predominant species of Staphylococcus in human breast tumors, resulted in a depletion of total NAD metabolites, and reduced the growth of TNBC tumors by activating CD8+ TILs. Conclusions We identified specific metabolites and microbial taxa associated with CD8+ TILs, delineated interactions between the breast tumor microbiome and metabolome, and demonstrated that intratumoral Staphylococcus influences anti-tumor immunity and TIL-associated metabolites. These findings highlight the role of low-biomass microbes in tumor tissues and provide potential biomarkers and therapeutic agents for breast cancer immunotherapy that merit further investigation.
Collapse
Affiliation(s)
- Chin-Chih Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dennis Grencewicz
- The Ohio State University College of Medicine, Columbus, OH 43201, USA
| | - Karthik Chakravarthy
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Lin Li
- Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ruth Liepold
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Matthew Wolf
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Microbiome Composition and Analytics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alice Tzeng
- Department of Medical Oncology, Dana–Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215, USA
| | - Rebecca Hoyd
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Sachin R. Jhawar
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Stephen R. Grobmyer
- Cleveland Clinic Abu Dhabi, Oncology Institute, Abu Dhabi, United Arab Emirates
| | - Zahraa Al-Hilli
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew P. Sciallis
- Department of Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Daniel Spakowicz
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Ying Ni
- Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Germline High-Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
24
|
Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer 2024; 131:1250-1262. [PMID: 38969865 PMCID: PMC11473656 DOI: 10.1038/s41416-024-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide. Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Mikel Pujana-Vaquerizo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Baracaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
25
|
Zhang H, Li Y, Huang J, Shen L, Xiong Y. Precise targeting of lipid metabolism in the era of immuno-oncology and the latest advances in nano-based drug delivery systems for cancer therapy. Acta Pharm Sin B 2024; 14:4717-4737. [PMID: 39664426 PMCID: PMC11628863 DOI: 10.1016/j.apsb.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/13/2024] Open
Abstract
Over the past decade, research has increasingly identified unique dysregulations in lipid metabolism within the tumor microenvironment (TME). Lipids, diverse biomolecules, not only constitute biological membranes but also function as signaling molecules and energy sources. Enhanced synthesis or uptake of lipids in the TME significantly promotes tumorigenesis and proliferation. Moreover, lipids secreted into the TME influence tumor-resident immune cells (TRICs), thereby aiding tumor survival against chemotherapy and immunotherapy. This review aims to highlight recent advancements in understanding lipid metabolism in both tumor cells and TRICs, with a particular emphasis on exogenous lipid uptake and endogenous lipid de novo synthesis. Targeting lipid metabolism for intervention in anticancer therapies offers a promising therapeutic avenue for cancer treatment. Nano-drug delivery systems (NDDSs) have emerged as a means to maximize anti-tumor effects by rewiring tumor metabolism. This review provides a comprehensive overview of recent literature on the development of NDDSs targeting tumor lipid metabolism, particularly in the context of tumor immunotherapy. It covers four key aspects: reprogramming lipid uptake, reprogramming lipolysis, reshaping fatty acid oxidation (FAO), and reshuffling lipid composition on the cell membrane. The review concludes with a discussion of future prospects and challenges in this burgeoning field of research.
Collapse
Affiliation(s)
- Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jingyi Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Limei Shen
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
26
|
Hwang SM, Awasthi D, Jeong J, Sandoval TA, Chae CS, Ramos Y, Tan C, Marin Falco M, Salvagno C, Emmanuelli A, McBain IT, Mishra B, Ivashkiv LB, Zamarin D, Cantillo E, Chapman-Davis E, Holcomb K, Morales DK, Yu X, Rodriguez PC, Conejo-Garcia JR, Kaczocha M, Vähärautio A, Song M, Cubillos-Ruiz JR. Transgelin 2 guards T cell lipid metabolism and antitumour function. Nature 2024; 635:1010-1018. [PMID: 39443795 DOI: 10.1038/s41586-024-08071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Mounting effective immunity against pathogens and tumours relies on the successful metabolic programming of T cells by extracellular fatty acids1-3. Fatty-acid-binding protein 5 (FABP5) has a key role in this process by coordinating the efficient import and trafficking of lipids that fuel mitochondrial respiration to sustain the bioenergetic requirements of protective CD8+ T cells4,5. However, the mechanisms that govern this immunometabolic axis remain unexplored. Here we report that the cytoskeletal organizer transgelin 2 (TAGLN2) is necessary for optimal fatty acid uptake, mitochondrial respiration and anticancer function in CD8+ T cells. TAGLN2 interacts with FABP5 to facilitate its cell surface localization and function in activated CD8+ T cells. Analyses of ovarian cancer specimens revealed that endoplasmic reticulum (ER) stress responses induced by the tumour microenvironment repress TAGLN2 in infiltrating CD8+ T cells, thereby enforcing their dysfunctional state. Restoring TAGLN2 expression in ER-stressed CD8+ T cells increased their lipid uptake, mitochondrial respiration and cytotoxic capacity. Accordingly, chimeric antigen receptor T cells overexpressing TAGLN2 bypassed the detrimental effects of tumour-induced ER stress and demonstrated therapeutic efficacy in mice with metastatic ovarian cancer. Our study establishes the role of cytoskeletal TAGLN2 in T cell lipid metabolism and highlights the potential to enhance cellular immunotherapy in solid malignancies by preserving the TAGLN2-FABP5 axis.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jieun Jeong
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tito A Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Matías Marin Falco
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Ian T McBain
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Bikash Mishra
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Lionel B Ivashkiv
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Dmitriy Zamarin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelyn Cantillo
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Eloise Chapman-Davis
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Xiaoqing Yu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jose R Conejo-Garcia
- Department of Integrated Immunobiology, Duke School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke School of Medicine, Durham, NC, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Minkyung Song
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Departments of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
27
|
Fox AC, Blazeck J. Applying metabolic control strategies to engineered T cell cancer therapies. Metab Eng 2024; 86:250-261. [PMID: 39490640 PMCID: PMC11611646 DOI: 10.1016/j.ymben.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are an engineered immunotherapy that express synthetic receptors to recognize and kill cancer cells. Despite their success in treating hematologic cancers, CAR T cells have limited efficacy against solid tumors, in part due to the altered immunometabolic profile within the tumor environment, which hinders T cell proliferation, infiltration, and anti-tumor activity. For instance, CAR T cells must compete for essential nutrients within tumors, while resisting the impacts of immunosuppressive metabolic byproducts. In this review, we will describe the altered metabolic features within solid tumors that contribute to immunosuppression of CAR T cells. We'll discuss how overexpression of key metabolic enzymes can enhance the ability of CAR T cells to resist corresponding tumoral metabolic changes or even revert the metabolic profile of a tumor to a less inhibitory state. In addition, metabolic remodeling is intrinsically linked to T cell activity, differentiation, and function, such that metabolic engineering strategies can also promote establishment of more or less efficacious CAR T cell phenotypes. Overall, we will show how applying metabolic engineering strategies holds significant promise in improving CAR T cells for the treatment of solid tumors.
Collapse
Affiliation(s)
- Andrea C Fox
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 303332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 303332, USA.
| |
Collapse
|
28
|
Tang Y, Chen Z, Zuo Q, Kang Y. Regulation of CD8+ T cells by lipid metabolism in cancer progression. Cell Mol Immunol 2024; 21:1215-1230. [PMID: 39402302 PMCID: PMC11527989 DOI: 10.1038/s41423-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Dysregulation of lipid metabolism is a key characteristic of the tumor microenvironment, where tumor cells utilize lipids for proliferation, survival, metastasis, and evasion of immune surveillance. Lipid metabolism has become a critical regulator of CD8+ T-cell-mediated antitumor immunity, with excess lipids in the tumor microenvironment impeding CD8+ T-cell activities. Considering the limited efficacy of immunotherapy in many solid tumors, targeting lipid metabolism to enhance CD8+ T-cell effector functions could significantly improve immunotherapy outcomes. In this review, we examine recent findings on how lipid metabolic processes, including lipid uptake, synthesis, and oxidation, regulate CD8+ T cells within tumors. We also assessed the impact of different lipids on CD8+ T-cell-mediated antitumor immunity, with a particular focus on how lipid metabolism affects mitochondrial function in tumor-infiltrating CD8+ T cells. Furthermore, as cancer is a systemic disease, we examined systemic factors linking lipid metabolism to CD8+ T-cell effector function. Finally, we summarize current therapeutic approaches that target lipid metabolism to increase antitumor immunity and enhance immunotherapy. Understanding the molecular and functional interplay between lipid metabolism and CD8+ T cells offers promising therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Ziqing Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
29
|
Zhu W, Fan C, Liu B, Qin J, Fan A, Yang Z, Zhang H, Zhou W. Therapeutic targets for hepatocellular carcinoma identified using proteomics and Mendelian randomization. J Gastroenterol Hepatol 2024. [DOI: 10.1111/jgh.16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 01/03/2025]
Abstract
AbstractBackground and AimHepatocellular carcinoma (HCC) emerges as a formidable malignancy marked by elevated morbidity and mortality rates, coupled with a dismal prognosis. The revelation of gene–protein associations has presented an avenue for the exploration of novel therapeutic targets.MethodsPooling plasma proteomic data (seven published GWAS) and HCC data (DeCODE cohort), we applied MR to identify potential drug targets, which were further validated in the FinnGen cohort and UK Biobank. Subsequent colocalization and summary‐data‐based Mendelian randomization analyses were performed for potential associations of this set of proteins. In addition, enrichment information pathways were investigated in depth by KEGG pathway analysis, single‐cell sequencing, PPI and DGIdb, ChEMBL, and DrugBank database analyses, specific cell types enriched for expression were identified, interacting proteins were identified, and finally, druggability was assessed.ResultsIn summary, the levels of 10 proteins are linked to HCC risk. Elevated levels of TFPI2 as well as decreased levels of ALDH1A1, KRT18, ADAMTS13, TIMD4, SCLY, HRSP12, TNFAIP6, FTCD, and DDC are associated with increased HCC risk. Notably, HRSP12 show the strongest evidence. These genes are primarily expressed in specific cell types within the HCC TME. Moreover, intricate protein–protein interactions, involving key players like ALDH1A1 and RIDA, ALDH1A1 and DDC, and ALDH1A1 and KRT18, contribute significantly to the amino acid metabolism and dopaminergic neurogenesis pathway. Proteins such as ALDH1A1, KRT18, TFPI2, and DDC are promising targets for HCC therapy and broader cancer drug development. Targeting these proteins offers substantial potential in advancing HCC treatment strategies.ConclusionsThis research delineates 10 protein biomarkers linked to HCC risk and offers novel perspectives on its etiology, as well as promising avenues for the screening of HCC protein markers and therapeutic agents.
Collapse
Affiliation(s)
- Weixiong Zhu
- The Second Hospital and Clinical Medical School Lanzhou University Lanzhou China
- Department of General Surgery The Second Hospital of Lanzhou University Lanzhou China
| | - Chuanlei Fan
- Nanchang Central Hospital Jiangxi Provincial University of Traditional Chinese Medicine nanchang 330000 China
| | - Bo Liu
- The Second Hospital and Clinical Medical School Lanzhou University Lanzhou China
- Department of General Surgery The Second Hospital of Lanzhou University Lanzhou China
| | - Jianqi Qin
- The Second Hospital and Clinical Medical School Lanzhou University Lanzhou China
- Department of General Surgery The Second Hospital of Lanzhou University Lanzhou China
| | - Aodong Fan
- The Second Hospital and Clinical Medical School Lanzhou University Lanzhou China
- Department of General Surgery The Second Hospital of Lanzhou University Lanzhou China
| | - Zengxi Yang
- The Second Hospital and Clinical Medical School Lanzhou University Lanzhou China
- Department of General Surgery The Second Hospital of Lanzhou University Lanzhou China
| | - Hui Zhang
- The Second Hospital and Clinical Medical School Lanzhou University Lanzhou China
- Department of General Surgery The Second Hospital of Lanzhou University Lanzhou China
| | - Wence Zhou
- The Second Hospital and Clinical Medical School Lanzhou University Lanzhou China
- Department of General Surgery The Second Hospital of Lanzhou University Lanzhou China
| |
Collapse
|
30
|
Sharma V, Fernando V, Zheng X, Sweef O, Choi ES, Thomas V, Furuta S. Immunogenic shift of arginine metabolism triggers systemic metabolic and immunological reprogramming to prevent HER2+ breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619827. [PMID: 39484369 PMCID: PMC11527010 DOI: 10.1101/2024.10.23.619827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Arginine metabolism in tumors is often shunted into the pathway producing pro-tumor and immune suppressive polyamines (PAs), while downmodulating the alternative nitric oxide (NO) synthesis pathway. Aiming to correct arginine metabolism in tumors, arginine deprivation therapy and inhibitors of PA synthesis have been developed. Despite some therapeutic advantages, these approaches have often yielded severe side effects, making it necessary to explore an alternative strategy. We previously reported that supplementing SEP, the endogenous precursor of BH4 (the essential NO synthase cofactor), could correct arginine metabolism in tumor cells and tumor-associated macrophages (TAMs) and induce their metabolic and phenotypic reprogramming. We saw that oral SEP treatment effectively suppressed the growth of HER2-positive mammary tumors in animals. SEP also has no reported dose-dependent toxicity in clinical trials for metabolic disorders. In the present study, we report that a long-term use of SEP in animals susceptible to HER2-positive mammary tumors effectively prevented tumor occurrence. These SEP-treated animals had undergone reprogramming of the systemic metabolism and immunity, elevating total T cell counts in the circulation and bone marrow. Given that bone marrow-resident T cells are mostly memory T cells, it is plausible that chronic SEP treatment promoted memory T cell formation, leading to a potent tumor prevention. These findings suggest the possible roles of the SEP/BH4/NO axis in promoting memory T cell formation and its potential therapeutic utility for preventing HER2-positive breast cancer.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Ave, Biological Science Building, Room 319F, Laramie, WY 82071
| | - Veani Fernando
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- Division of Rheumatology, University of Colorado, Anschutz Medical Campus Barbara Davis Center, Mail Stop B115, 1775 Aurora Court, Aurora, Colorado 80045
| | - Xunzhen Zheng
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Osama Sweef
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Eun-Seok Choi
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| | - Venetia Thomas
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| | - Saori Furuta
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| |
Collapse
|
31
|
Zhu M, Zhang T, Xu D, Zhou B, Wang K, Liao C, Cheng Z, Li P, Chen C. Impact of fermented wine lees on gut microbiota and metabolic responses in Guanling crossbred cattle. BMC Microbiol 2024; 24:421. [PMID: 39438796 PMCID: PMC11495091 DOI: 10.1186/s12866-024-03583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The addition of wine lees to diets can make up for the deficiencies caused by traditional forages in beef cattle farming. However, the effects of different wine lees ratios on average daily weight, gastrointestinal microbial community structure and metabolites in Guanling crossbred cattle have been rarely studied. This study assessed the effects of feeds containing wine lees on weight gain, gastrointestinal microbial community structure, and metabolites in Guanling crossbred cattle and elucidated the metabolic responses induced by wine lees. Eighteen cows were randomly assigned to receive fed concentrate (C group), feed containing 15% wine lees (group A), or feed containing 30% wine lees (group B) for 60 days. RESULTS The average daily weight gain of group A and group B increased by 76.75% and 57.65%, respectively, compared with group C. Microbial community analysis showed that wine lees increased the abundance of Prevotella_1 in the rumen, decreased the abundance of Ruminococcaceae UCG 011 and Lachnospiraceae_FCS020_group in the rumen, and increased the abundance of Tyzzerella_4, Family_Xlll_AD3011_group, Granulicella, and Eisenbergiella in the cecum. Metabolomics analyses showed that wine lees decreased the concentrations of indole-3-ethanol in the rumen, and complexity cecal metabolism. Notably, linoleic acid metabolism was significantly enriched in both the rumen and cecum. Mantel test analyses indicated that the adverse effects of WL were reduced by stimulating the metabolism of linoleic acid, α-linolenic acid, and tryptophan, and these changes were mediated by intestinal microorganisms. The Guanling cattle cecum was enriched for several unfavorable metabolic pathways when wine lees concentrations reached 30%, which increased the likelihood of intestinal lesions. CONCLUSION This study shows that WL supplementation alters gut microbiota and metabolic pathways, improving cattle growth and health. Moderate WL levels (15%) enhance gut health and beneficial pathways (e.g., linoleic and alpha-linolenic acid metabolism). However, higher WL inclusion (30%) may activate adverse pathways, raising the risk of intestinal damage. To maximize benefits and minimize risks, WL levels should be carefully managed.
Collapse
Affiliation(s)
- Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
32
|
Wang J, Cheng L, Li J, Wang Y, Chen S, Wang Z, Yang W. Potential Antitumor Mechanism of Propolis Against Skin Squamous Cell Carcinoma A431 Cells Based on Untargeted Metabolomics. Int J Mol Sci 2024; 25:11265. [PMID: 39457046 PMCID: PMC11509278 DOI: 10.3390/ijms252011265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Propolis is a sticky substance produced by honeybees (Apis mellifera) through the collection of plant resins, which they mix with secretions from their palate and wax glands. Propolis can inhibit tumor invasion and metastasis, thereby reducing the proliferation of tumor cells and inducing cell apoptosis. Previous research has shown that propolis has an inhibitory effect on skin squamous cell carcinoma A431 cells. Nevertheless, its inhibitory mechanism is unclear because of many significantly different Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between the ethanol extract of the propolis (EEP) group and the control group of cells. In this study, the main components of EEP and the antitumor mechanism at an IC50 of 29.04 μg/mL EEP were determined via untargeted metabolomics determined using ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS), respectively. The results revealed 43 polyphenolic components in the EEP and 1052 metabolites, with 160 significantly upregulated and 143 significantly downregulated metabolites between cells treated with EEP and solvent. The KEGG enrichment results revealed that EEP significantly inhibited A431 cell proliferation via the steroid hormone biosynthesis and linoleic acid metabolism pathways. These findings may provide valuable insights for the development of targeted therapies for the treatment of cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Jie Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
| | - Liyuan Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jingjing Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
| | - Yicong Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
| | - Siyuan Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
| | - Zhongdan Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
| | - Wenchao Yang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (J.L.); (Y.W.); (S.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
33
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
34
|
Lin J, Lai Y, Lu F, Wang W. Targeting ACSLs to modulate ferroptosis and cancer immunity. Trends Endocrinol Metab 2024:S1043-2760(24)00255-8. [PMID: 39424456 DOI: 10.1016/j.tem.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Five acyl-CoA synthetase long-chain family members (ACSLs) are responsible for catalyzing diverse long-chain fatty acids (LCFAs) into LCFA-acyl-coenzyme A (CoA) for their subsequent metabolism, including fatty acid oxidation (FAO), lipid synthesis, and protein acylation. In this review, we focus on ACSLs and their LCFA substrates and introduce their involvement in regulation of cancer proliferation, metastasis, and therapeutic resistance. Along with the recognition of the decisive role of ACSL4 in ferroptosis - an immunogenic cell death (ICD) initiated by lipid peroxidation - we review the functions of ACSLs on regulating ferroptosis sensitivity. Last, we discuss the current understanding of ACSL on the antitumor immune response. We emphasize the necessity to explore the functions of immune cells expressing ACSLs for developing novel strategies to augment immunotherapy by targeting ACSL.
Collapse
Affiliation(s)
- Junhong Lin
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfeng Lai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fujia Lu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Fu L, Zhang H, Dai Y, Zhang H, Pan X, Chen S, Tan L. Revealing metabolic alterations in brucellosis patients by targeted metabolomics. J Pharm Biomed Anal 2024; 249:116370. [PMID: 39047467 DOI: 10.1016/j.jpba.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/30/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Brucellosis, a zoonotic disease caused by brucella infection, presents metabolic profile changes in patients that have not been extensively explored. This study utilized an ultra-high performance liquid chromatography tandem mass spectrometry based targeted metabolomic approach to comprehensively investigated metabolic changes in Brucella patients. Serum samples of brucellosis 50 patients and 50 well-matched healthy controls were analyzed for 228 metabolites, revealing significant alterations in 83 metabolites in brucellosis patients. Notably, disruptions were observed in key metabolite pathways, such as amino acid metabolism, urea cycle, tricarboxylic acid cycle (TCA), and fatty acid metabolism. Patients diagnosed with Brucellosis exhibited distinct differences in the levels of aspartate, glutamate, β-alanine, and asparagine when compared to controls. Within the urea cycle, a significant downregulation of arginine was observed, whereas ornithine levels were considerably upregulated. In the TCA cycle, concentrations of 2-oxoglutarate, succinate, and malate were significantly elevated, while citrate levels demonstrated a notable decrease. Due to the interruption of the TCA cycle, glycolysis was accelerated to compensate for the resultant energy deficit in Brucella patients. Concurrently, there was a significant increase in the levels of short and medium-chain fatty acids, while long-chain fatty acids showed a marked decrease. The study systematically revealed significant metabolic alterations in Brucellosis patients and further explored the potential correlation between these changes and clinic symptoms, including fatigue, muscle soreness and prolonged fever. The results enhanced our understanding of Brucellosis, offering valuable insights potentially beneficial in formulating more effective treatment strategies and improving prognostic approaches.
Collapse
Affiliation(s)
- Lei Fu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Hao Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongfeng Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Shouyi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
36
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Collins TJC, Morgan PK, Man K, Lancaster GI, Murphy AJ. The influence of metabolic disorders on adaptive immunity. Cell Mol Immunol 2024; 21:1109-1119. [PMID: 39134802 PMCID: PMC11442657 DOI: 10.1038/s41423-024-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
The immune system plays a crucial role in protecting the body from invading pathogens and maintaining tissue homoeostasis. Maintaining homoeostatic lipid metabolism is an important aspect of efficient immune cell function and when disrupted immune cell function is impaired. There are numerous metabolic diseases whereby systemic lipid metabolism and cellular function is impaired. In the context of metabolic disorders, chronic inflammation is suggested to be a major contributor to disease progression. A major contributor to tissue dysfunction in metabolic disease is ectopic lipid deposition, which is generally caused by diet and genetic factors. Thus, we propose the idea, that similar to tissue and organ damage in metabolic disorders, excessive accumulation of lipid in immune cells promotes a dysfunctional immune system (beyond the classical foam cell) and contributes to disease pathology. Herein, we review the evidence that lipid accumulation through diet can modulate the production and function of immune cells by altering cellular lipid content. This can impact immune cell signalling, activation, migration, and death, ultimately affecting key aspects of the immune system such as neutralising pathogens, antigen presentation, effector cell activation and resolving inflammation.
Collapse
Affiliation(s)
- Thomas J C Collins
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Pooranee K Morgan
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Kevin Man
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Graeme I Lancaster
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
38
|
Manosalva C, Bahamonde C, Soto F, Leal V, Ojeda C, Cortés C, Alarcón P, Burgos RA. Linoleic Acid Induces Metabolic Reprogramming and Inhibits Oxidative and Inflammatory Effects in Keratinocytes Exposed to UVB Radiation. Int J Mol Sci 2024; 25:10385. [PMID: 39408715 PMCID: PMC11476445 DOI: 10.3390/ijms251910385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Linoleic acid (LA), the primary ω-6 polyunsaturated fatty acid (PUFA) found in the epidermis, plays a crucial role in preserving the integrity of the skin's water permeability barrier. Additionally, vegetable oils rich in LA have been shown to notably mitigate ultraviolet (UV) radiation-induced effects, including the production of reactive oxygen species (ROS), cellular damage, and skin photoaging. These beneficial effects are primarily ascribed to the LA in these oils. Nonetheless, the precise mechanisms through which LA confers protection against damage induced by exposure to UVB radiation remain unclear. This study aimed to examine whether LA can restore redox and metabolic equilibria and to assess its influence on the inflammatory response triggered by UVB radiation in keratinocytes. Flow cytometry analysis unveiled the capacity of LA to diminish UVB-induced ROS levels in HaCaT cells. GC/MS-based metabolomics highlighted significant metabolic changes, especially in carbohydrate, amino acid, and glutathione (GSH) metabolism, with LA restoring depleted GSH levels post-UVB exposure. LA also upregulated PI3K/Akt-dependent GCLC and GSS expression while downregulating COX-2 expression. These results suggest that LA induces metabolic reprogramming, protecting against UVB-induced oxidative damage by enhancing GSH biosynthesis via PI3K/Akt signaling. Moreover, it suppresses UVB-induced COX-2 expression in HaCaT cells, making LA treatment a promising strategy against UVB-induced oxidative and inflammatory damage.
Collapse
Affiliation(s)
- Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Claudio Bahamonde
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Franco Soto
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Vicente Leal
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - César Ojeda
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carmen Cortés
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile (R.A.B.)
| | - Rafael A. Burgos
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile (R.A.B.)
| |
Collapse
|
39
|
Li Z, Jin P, Xiang R, Li X, Shen J, He M, Liu X, Zhu H, Wu S, Dong F, Zhao H, Liu H, Jin Z, Li J. A CD8 + T cell related immune score predicts survival and refines the risk assessment in acute myeloid leukemia. Front Immunol 2024; 15:1408109. [PMID: 39346926 PMCID: PMC11428106 DOI: 10.3389/fimmu.2024.1408109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Although advancements in genomic and epigenetic research have deepened our understanding of acute myeloid leukemia (AML), only one-third of patients can achieve durable remission. Growing evidence suggests that the immune microenvironment in bone marrow influences prognosis and survival in AML. There is a specific association between CD8+ T cells and the prognosis of AML patients. To develop a CD8+ T cell-related immune risk score for AML, we first evaluated the accuracy of CIBERSORTx in predicting the abundance of CD8+ T cells in bulk RNA-seq and found it significantly correlated with observed single-cell RNA sequencing data and the proportions of CD8+ T cells derived from flow cytometry. Next, we constructed the CTCG15, a 15-gene prognostic signature, using univariate and LASSO regression on the differentially expressed genes between CD8+ THigh and CD8+ TLow groups. The CTCG15 was further validated across six datasets in different platforms. The CTCG15 has been shown to be independent of established prognostic markers, and can distill transcriptomic consequences of several genetic abnormalities closely related to prognosis in AML patients. Finally, integrating this model into the 2022 European LeukemiaNet contributed to a higher predictive power for prognosis prediction. Collectively, our study demonstrates that CD8+ T cell-related signature could improve the comprehensive risk stratification and prognosis prediction in AML.
Collapse
Affiliation(s)
- Zeyi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rufang Xiang
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengke He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyi Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijin Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Wuxi Branch of Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Ping Y, Shan J, Qin H, Li F, Qu J, Guo R, Han D, Jing W, Liu Y, Liu J, Liu Z, Li J, Yue D, Wang F, Wang L, Zhang B, Huang B, Zhang Y. PD-1 signaling limits expression of phospholipid phosphatase 1 and promotes intratumoral CD8 + T cell ferroptosis. Immunity 2024; 57:2122-2139.e9. [PMID: 39208806 DOI: 10.1016/j.immuni.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/23/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The tumor microenvironment (TME) promotes metabolic reprogramming and dysfunction in immune cells. Here, we examined the impact of the TME on phospholipid metabolism in CD8+ T cells. In lung cancer, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were lower in intratumoral CD8+ T cells than in circulating CD8+ T cells. Intratumoral CD8+ T cells exhibited decreased expression of phospholipid phosphatase 1 (PLPP1), which catalyzes PE and PC synthesis. T cell-specific deletion of Plpp1 impaired antitumor immunity and promoted T cell death by ferroptosis. Unsaturated fatty acids in the TME stimulated ferroptosis of Plpp1-/- CD8+ T cells. Mechanistically, programmed death-1 (PD-1) signaling in CD8+ T cells induced GATA1 binding to the promoter region Plpp1 and thereby suppressed Plpp1 expression. PD-1 blockade increased Plpp1 expression and restored CD8+ T cell antitumor function but did not rescue dysfunction of Plpp1-/- CD8+ T cells. Thus, PD-1 signaling regulates phospholipid metabolism in CD8+ T cells, with therapeutic implications for immunotherapy.
Collapse
Affiliation(s)
- Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiqi Shan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiming Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiao Qu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ru Guo
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Han
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Jing
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqing Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhangnan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongli Yue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
41
|
Ma P, Yuan L, Jia S, Zhou Z, Xu D, Huang S, Meng F, Zhang Z, Nan Y. Lonicerae Japonicae Flos with the homology of medicine and food: a review of active ingredients, anticancer mechanisms, pharmacokinetics, quality control, toxicity and applications. Front Oncol 2024; 14:1446328. [PMID: 39314630 PMCID: PMC11417411 DOI: 10.3389/fonc.2024.1446328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Lonicerae Japonicae Flos (LJF, called Jinyinhua in China), comes from the dried flower buds or flowers to be opened of Lonicera japonica Thunb. in the Lonicera family. It has a long history of medicinal use and has a wide range of application prospects. As modern research advances, an increasing number of scientific experiments have demonstrated the anticancer potential of LJF. However, there is a notable absence of systematic reports detailing the anti-tumor effects of LJF. This review integrates the principles of Traditional Chinese Medicine (TCM) with contemporary pharmacological techniques, drawing upon literature from authoritative databases such as PubMed, CNKI, and WanFang to conduct a comprehensive study of LJF. Notably, a total of 507 compounds have been isolated and characterized from the plant to date, which include volatile oils, organic acids, flavonoids, iridoids, triterpenes and triterpenoid saponins. Pharmacological studies have demonstrated that LJF extract, along with components such as chlorogenic acid, luteolin, rutin, luteoloside, hyperoside and isochlorogenic acid, exhibits potential anticancer activities. Consequently, we have conducted a comprehensive review and summary of the mechanisms of action and clinical applications of these components. Furthermore, we have detailed the pharmacokinetics, quality control, and toxicity of LJF, while also discussing its prospective applications in the fields of biomedicine and preventive healthcare. It is hoped that these studies will provide valuable reference for the clinical research, development, and application of LJF.
Collapse
Affiliation(s)
- Ping Ma
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shumin Jia
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ziying Zhou
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Duojie Xu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
42
|
Mühlgrabner V, Peters T, Velasco Cárdenas RMH, Salzer B, Göhring J, Plach A, Höhrhan M, Perez ID, Goncalves VDR, Farfán JS, Lehner M, Stockinger H, Schamel WW, Schober K, Busch DH, Hudecek M, Dushek O, Minguet S, Platzer R, Huppa JB. TCR/CD3-based synthetic antigen receptors (TCC) convey superior antigen sensitivity combined with high fidelity of activation. SCIENCE ADVANCES 2024; 10:eadj4632. [PMID: 39231214 PMCID: PMC11373591 DOI: 10.1126/sciadv.adj4632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Low antigen sensitivity and a gradual loss of effector functions limit the clinical applicability of chimeric antigen receptor (CAR)-modified T cells and call for alternative antigen receptor designs for effective T cell-based cancer immunotherapy. Here, we applied advanced microscopy to demonstrate that TCR/CD3-based synthetic constructs (TCC) outperform second-generation CAR formats with regard to conveyed antigen sensitivities by up to a thousandfold. TCC-based antigen recognition occurred without adverse nonspecific signaling, which is typically observed in CAR-T cells, and did not depend-unlike sensitized peptide/MHC detection by conventional T cells-on CD4 or CD8 coreceptor engagement. TCC-endowed signaling properties may prove critical when targeting antigens in low abundance and aiming for a durable anticancer response.
Collapse
Affiliation(s)
- Vanessa Mühlgrabner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Timo Peters
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Rubí M.-H. Velasco Cárdenas
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - Benjamin Salzer
- St. Anna Children’s Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Janett Göhring
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Angelika Plach
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Maria Höhrhan
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Iago Doel Perez
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | | | - Jesús Siller Farfán
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Manfred Lehner
- St. Anna Children’s Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Wolfgang W. Schamel
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - Kilian Schober
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - René Platzer
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Johannes B. Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| |
Collapse
|
43
|
Xia J, Wang C, Li B. Hepatocellular carcinoma cells induce γδ T cells through metabolic reprogramming into tumor-progressive subpopulation. Front Oncol 2024; 14:1451650. [PMID: 39309735 PMCID: PMC11412793 DOI: 10.3389/fonc.2024.1451650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Tumor immune microenvironment (TIME) is a tiny structure that contains multiple immune cell components around tumor cells, which plays an important role in tumorigenesis, and is also the potential core area of activated immunotherapy. How immune cells with tumor-killing capacity in TIME are hijacked by tumor cells during the progression of tumorigenesis and transformed into subpopulations that facilitate cancer advancement is a question that needs to be urgently addressed nowadays. γδ T cells (their T cell receptors are composed of γ and δ chains), a unique T cell subpopulation distinguished from conventional αβ T cells, are involved in a variety of immune response processes through direct tumor-killing effects and/or indirectly influencing the activity of other immune cells. However, the presence of γδ T cells in the tumor microenvironment (TME) has been reported to be associated with poor prognosis in some tumors, suggesting that certain γδ T cell subsets may also have pro-tumorigenic effects. Recent studies have revealed that metabolic pathways such as activation of glycolysis, increase of lipid metabolism, enhancement of mitochondrial biosynthesis, alterations of fatty acid metabolism reshape the local TME, and immune cells trigger metabolic adaptation through metabolic reprogramming to meet their own needs and play the role of anti-tumor or immunosuppression. Combining previous studies and our bioinformatics results, we hypothesize that γδT cells compete for resources with hepatocellular carcinoma (HCC) cells by means of fatty acid metabolic regulation in the TME, which results in the weakening or loss of their ability to recognize and kill HCC cells through genetic and epigenetic alterations, thus allowing γδT cells to be hijacked by HCC cells as a subpopulation that promotes HCC progression.
Collapse
|
44
|
Porte S, Audemard-Verger A, Wu C, Durand A, Level T, Giraud L, Lombès A, Germain M, Pierre R, Saintpierre B, Lambert M, Auffray C, Peyssonnaux C, Goldwasser F, Vaulont S, Alves-Guerra MC, Dentin R, Lucas B, Martin B. Iron Boosts Antitumor Type 1 T-cell Responses and Anti-PD1 Immunotherapy. Cancer Immunol Res 2024; 12:1252-1267. [PMID: 38912762 DOI: 10.1158/2326-6066.cir-23-0739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/02/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Cancers only develop if they escape immunosurveillance, and the success of cancer immunotherapies relies in most cases on their ability to restore effector T-cell functions, particularly IFNγ production. Revolutionizing the treatment of many cancers, immunotherapies targeting immune checkpoints such as PD1 can increase survival and cure patients. Unfortunately, although immunotherapy has greatly improved the prognosis of patients, not all respond to anti-PD1 immunotherapy, making it crucial to identify alternative treatments that could be combined with current immunotherapies to improve their effectiveness. Here, we show that iron supplementation significantly boosts T-cell responses in vivo and in vitro. The boost was associated with a metabolic reprogramming of T cells in favor of lipid oxidation. We also found that the "adjuvant" effect of iron led to a marked slowdown of tumor cell growth after tumor cell line transplantation in mice. Specifically, our results suggest that iron supplementation promotes antitumor responses by increasing IFNγ production by T cells. In addition, iron supplementation improved the efficacy of anti-PD1 cancer immunotherapy in mice. Finally, our study suggests that, in patients with cancer, the quality and efficacy of the antitumor response following anti-PD1 immunotherapy may be modulated by plasma ferritin levels. In summary, our results suggest the benefits of iron supplementation on the reactivation of antitumor responses and support the relevance of a fruitful association between immunotherapy and iron supplementation.
Collapse
Affiliation(s)
- Sarah Porte
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | - Christian Wu
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Aurélie Durand
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Théo Level
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Léa Giraud
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Amélie Lombès
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Mathieu Germain
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Rémi Pierre
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Benjamin Saintpierre
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Mireille Lambert
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Cédric Auffray
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Carole Peyssonnaux
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - François Goldwasser
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, Paris, France
| | - Sophie Vaulont
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Marie-Clotilde Alves-Guerra
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Renaud Dentin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Bruno Lucas
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Bruno Martin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| |
Collapse
|
45
|
Chen QY, Liu ML, Li RY, Jiang B, Liu KY, Xiao YQ, Wang Q, Wang T, Zhao LQ, Wang WT, Liu ZW, Chen LJ, Ma Y, Zhao M. Changes in lipids and medium- and long-chain fatty acids during the spontaneous fermentation of ripened pu-erh tea. Curr Res Food Sci 2024; 9:100831. [PMID: 39281340 PMCID: PMC11402406 DOI: 10.1016/j.crfs.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
During the fermentation of ripened pu-erh tea (RPT), the composition of lipids and other compounds changes significantly. In this study, we conducted industrial fermentation of RPT and observed that the levels of water extract, tea polyphenols, free amino acids, catechins, caffeine, rutin, theophylline, luteolin, and myricetin decreased, while the level of soluble sugar increased. Additionally, the levels of gallic acid, quercetin, ellagic acid, and kaempferol first increased and then decreased during fermentation. We identified a total of 731 lipids, which were classified into seven categories using a lipomics method. Among these lipids, 85 with relatively high contents decreased, while 201 lipids with low contents increased after fermentation. This led to an overall decrease in the sum contents of lipids and dominant lipids, including glycerophospholipids and saccharolipids. We also detected 33 medium- and long-chain fatty acids, with α-linolenic acid (881.202 ± 12.13-1322.263 ± 19.78 μg/g), palmitic acid (797.275 ± 19.56-955.180 ± 30.49 μg/g), and linoleic acid (539.634 ± 15.551-706.869 ± 12.14 μg/g) being the predominant ones. Coenzymes Q9 (62.76-63.57 μg/g) and Q10 (50.82-59.33 μg/g) were also identified in the fermentation process. Our findings shed light on the changes in lipids during the fermentation of RPT and highlight the potential bio-active compounds, such as α-linolenic acid, linoleic acid, Coenzymes Q9, and Q10, in ripened pu-erh tea. This contributes to a better understanding of the fermentation mechanism for RPT.
Collapse
Affiliation(s)
- Qiu-Yue Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming-Li Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Research Institute of Tea Industry, Yibi, Sichuan 644000, China
| | - Ruo-Yu Li
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Bin Jiang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- College of Wuliangye Technology and Food Engineering & College of Modern Agriculture, Yibin Vocational and Technical College, Yibin 644003, China
| | - Kun-Yi Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- College of Wuliangye Technology and Food Engineering & College of Modern Agriculture, Yibin Vocational and Technical College, Yibin 644003, China
| | - Yan-Qin Xiao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qi Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Teng Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Lian-Qin Zhao
- Xiaguan Tuocha (Group) Co., Ltd, Dali, Yunnan 671000, China
| | - Wei-Tao Wang
- Xiaguan Tuocha (Group) Co., Ltd, Dali, Yunnan 671000, China
| | - Zhi-Wei Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Li-Jiao Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yan Ma
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| |
Collapse
|
46
|
Maccagno M, Tapparo M, Saccu G, Rumiano L, Kholia S, Silengo L, Herrera Sanchez MB. Emerging Cancer Immunotherapies: Cutting-Edge Advances and Innovations in Development. Med Sci (Basel) 2024; 12:43. [PMID: 39311156 PMCID: PMC11417735 DOI: 10.3390/medsci12030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
The rise in biological therapies has revolutionized oncology, with immunotherapy leading the charge through breakthroughs such as CAR-T cell therapy for melanoma and B-ALL. Modified bispecific antibodies and CAR-T cells are being developed to enhance their effectiveness further. However, CAR-T cell therapy currently relies on a costly ex vivo manufacturing process, necessitating alternative strategies to overcome this bottleneck. Targeted in vivo viral transduction offers a promising avenue but remains under-optimized. Additionally, novel approaches are emerging, such as in vivo vaccine boosting of CAR-T cells to strengthen the immune response against tumors, and dendritic cell-based vaccines are under investigation. Beyond CAR-T cells, mRNA therapeutics represent another promising avenue. Targeted delivery of DNA/RNA using lipid nanoparticles (LNPs) shows potential, as LNPs can be directed to T cells. Moreover, CRISPR editing has demonstrated the ability to precisely edit the genome, enhancing the effector function and persistence of synthetic T cells. Enveloped delivery vehicles packaging Cas9 directed to modified T cells offer a virus-free method for safe and effective molecule release. While this platform still relies on ex vivo transduction, using cells from healthy donors or induced pluripotent stem cells can reduce costs, simplify manufacturing, and expand treatment to patients with low-quality T cells. The use of allogeneic CAR-T cells in cancer has gained attraction for its potential to lower costs and broaden accessibility. This review emphasizes critical strategies for improving the selectivity and efficacy of immunotherapies, paving the way for a more targeted and successful fight against cancer.
Collapse
Affiliation(s)
- Monica Maccagno
- Department of Molecular Biotechnology and Health Sciences, 10126 Turin, Italy;
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
| | - Marta Tapparo
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Gabriele Saccu
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Letizia Rumiano
- Department of Molecular Biotechnology and Health Sciences, 10126 Turin, Italy;
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
| | - Sharad Kholia
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
- 2i3T, Società per la Gestione dell’incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, 10126 Turin, Italy
| |
Collapse
|
47
|
Pallavicini I, Frasconi TM, Catozzi C, Ceccacci E, Tiberti S, Haas D, Samson J, Heuser-Loy C, Nava Lauson CB, Mangione M, Preto E, Bigogno A, Sala E, Iannacone M, Mercurio C, Gattinoni L, Caruana I, Kuka M, Nezi L, Minucci S, Manzo T. LSD1 inhibition improves efficacy of adoptive T cell therapy by enhancing CD8 + T cell responsiveness. Nat Commun 2024; 15:7366. [PMID: 39191730 PMCID: PMC11349769 DOI: 10.1038/s41467-024-51500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The lysine-specific histone demethylase 1 A (LSD1) is involved in antitumor immunity; however, its role in shaping CD8 + T cell (CTL) differentiation and function remains largely unexplored. Here, we show that pharmacological inhibition of LSD1 (LSD1i) in CTL in the context of adoptive T cell therapy (ACT) elicits phenotypic and functional alterations, resulting in a robust antitumor immunity in preclinical models in female mice. In addition, the combination of anti-PDL1 treatment with LSD1i-based ACT eradicates the tumor and leads to long-lasting tumor-free survival in a melanoma model, complementing the limited efficacy of the immune or epigenetic therapy alone. Collectively, these results demonstrate that LSD1 modulation improves antitumoral responses generated by ACT and anti-PDL1 therapy, providing the foundation for their clinical evaluation.
Collapse
Affiliation(s)
- Isabella Pallavicini
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Teresa Maria Frasconi
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Carlotta Catozzi
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Elena Ceccacci
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Silvia Tiberti
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Dorothee Haas
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation Unit- University Hospital of Würzburg, Würzburg, Germany
| | - Jule Samson
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation Unit- University Hospital of Würzburg, Würzburg, Germany
| | - Christoph Heuser-Loy
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Carina B Nava Lauson
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Marta Mangione
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Elisa Preto
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Alberto Bigogno
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Eleonora Sala
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Iannacone
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ciro Mercurio
- Experimental Therapeutics Program, the FIRC Institute of Molecular Oncology IFOM, Milan, Italy
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation Unit- University Hospital of Würzburg, Würzburg, Germany
| | - Mirela Kuka
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Nezi
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Saverio Minucci
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
- University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Teresa Manzo
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
48
|
Wen LP, Gao SW, Chen HX, Liu Q, Xiao GZ, Lin HC, He QL. Astragaloside IV Ameliorates Colonic Adenomatous Polyps Development by Orchestrating Gut Bifidobacterium and Serum Metabolome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1527-1554. [PMID: 39164214 DOI: 10.1142/s0192415x24500605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Astragaloside IV (AS-IV), a natural triterpenoid isolated from Astragalus membranaceus, has been used traditionally in Chinese medicine. Previous studies have highlighted its benefits against carcinoma, but its interaction with the gut microbiota and effects on adenomatous polyps are not well understood. This present study investigates the effects of AS-IV on colonic adenomatous polyp (CAP) development in high-fat-diet (HFD) fed [Formula: see text] mice. [Formula: see text] mice were fed an HFD with or without AS-IV or Naringin for 8 weeks. The study assessed CAP proliferation and employed 16S DNA-sequencing and untargeted metabolomics to explore correlations between microbiome and metabolome in CAP development. AS-IV was more effective than Naringin in reducing CAP development, inhibiting colonic proinflammatory cytokines (IL-1β, IL-6, and TNF-α), tumor associated biomarkers (c-Myc, Cyclin D1), and Wnt/β-catenin pathway proteins (Wnt3a, β-catenin). AS-IV also inhibited the proliferative capabilities of human colon cancer cells (HT29, HCT116, and SW620). Multiomics analysis revealed AS-IV increased the abundance of beneficial genera such as Bifidobacterium pseudolongum and significantly modulated serum levels of certain metabolites including linoleate and 2-trans,6-trans-farnesal, which were significantly correlated with the number of CAP. Finally, the anti-adenoma efficacy of AS-IV alone was significantly suppressed post pseudoaseptic intervention in HFD-fed [Formula: see text] mice but could be reinstated following a combined with Bifidobacterium pseudolongum transplant. AS-IV attenuates CAP development in HFD-fed [Formula: see text] mice by regulating gut microbiota and metabolomics, impacting the Wnt3a/β-catenin signaling pathway. This suggests a potential new strategy for the prevention of colorectal cancer, emphasizing the role of gut microbiota in AS-IV's antitumor effects.
Collapse
Affiliation(s)
- Lu-Ping Wen
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Department of Coloproctology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, P. R. China
| | - Shao-Wei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Hua-Xian Chen
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
| | - Qi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Guo-Zhong Xiao
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
| | - Hong-Cheng Lin
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
| | - Qiu-Lan He
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P. R. China
| |
Collapse
|
49
|
Zhang X, Shao S, Song N, Yang B, Liu F, Tong Z, Wang F, Li J. Integrated omics characterization reveals reduced cancer indicators and elevated inflammatory factors after thermal ablation in non-small cell lung cancer patients. Respir Res 2024; 25:309. [PMID: 39143582 PMCID: PMC11325606 DOI: 10.1186/s12931-024-02917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Thermal ablation is a minimally invasive treatment for non-small cell lung cancer (NSCLC). Aside from causing an immediate direct tumour cell injury, the effects of thermal ablation on the internal microenvironment are unknown. This study aimed to investigate the effects of thermal ablation on the plasma internal environment in patients with NSCLC. METHODS 128 plasma samples were collected from 48 NSCLC (pre [LC] and after thermal ablation [LC-T]) patients and 32 healthy controls (HCs). Olink proteomics and metabolomics were utilized to construct an integrated landscape of the cancer-related immune and inflammatory responses after ablation. RESULTS Compared with HCs, LC patients exhibited 58 differentially expressed proteins (DEPs) and 479 differentially expressed metabolites (DEMs), which might participate in tumour progression and metastasis. Moreover, 75 DEPs were identified among the HC, LC, and LC-T groups. Forty-eight highly expressed DEPs (eg, programmed death-ligand 1 [PD-L1]) in the LC group were found to be downregulated after thermal ablation. These DEPs had significant impacts on pathways such as angiogenesis, immune checkpoint blockade, and pro-tumour chemotaxis. Metabolites involved in tumour cell survival were associated with these proteins at the expression and functional levels. In contrast, 19 elevated proteins (eg, interleukin [IL]-6) were identified after thermal ablation. These proteins were mainly associated with inflammatory response pathways (NF-κB signalling and tumour necrosis factor signalling) and immune cell activation. CONCLUSIONS Thermal ablation-induced changes in the host plasma microenvironment contribute to anti-tumour immunity in NSCLC, offering new insights into tumour ablation combined with immunotherapy. Trial registration This study was registered on the Chinese Clinical Trial Registry ( https://www.chictr.org.cn/index.html ). ID: ChiCTR2300076517. Registration Date: 2023-10-11.
Collapse
Affiliation(s)
- Xinglu Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China
| | - Shuai Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China
| | - Nan Song
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Baolu Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China
| | - Fengjiao Liu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Feng Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, 100020, Chaoyang District, China.
| | - Jieqiong Li
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Castañeda-Corral G, Cedillo-Cortezano M, Aviles-Flores M, López-Castillo M, Acevedo-Fernández JJ, Petricevich VL. Antinociceptive and Anti-Inflammatory Activities of Acetonic Extract from Bougainvillea x buttiana (var. Rose). Pharmaceuticals (Basel) 2024; 17:1037. [PMID: 39204142 PMCID: PMC11357402 DOI: 10.3390/ph17081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Background:Bougainvillea x buttiana is an ornamental plant with antioxidant, anti-inflammatory, and cytotoxic activities, which has been traditionally used to treat respiratory diseases. This study aimed to investigate whether the acetonic extract of Bougainvillea x buttiana var. Rose (BxbRAE-100%) has analgesic and anti-inflammatory properties and its potential action mechanisms. Methods: Analgesic and anti-inflammatory activities were evaluated using three murine pain models and two acute inflammation models. In vitro, the ability of the extract to inhibit proteolytic activity and the activities of the enzymes phospholipase A2 (PLA2) and cyclooxygenase (COX) were evaluated. In silico analysis was performed to predict the physicochemical and Absorption, distribution, metabolism, and excretion (ADME) profiles of the compounds previously identified in BxbRAE-100%. Results: In vivo BxbRAE-100% decreased the nociceptive behaviors in the writhing model, the tail immersion, and the formalin test, suggesting that the extract has the potential to relieve pain at peripheral and central levels. Additionally, topical or oral BxbRAE-100% treatment reduced dose-dependent 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation and carrageenan-induced paw edema, respectively. In vitro, BxbRAE-100% significantly inhibited proteolytic activity and PLA2, COX-1 and COX-2 activities. In silico, the compounds previously identified in BxbRAE-100% met Lipinski's rule of five and showed adequate ADME properties. Conclusions: These results support the use of B. x buttiana in Traditional Mexican Medicine and highlight its potential for the development of new treatments for pain and inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Vera L. Petricevich
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Calle Iztaccihuatl Esq. Leñeros, Col. Volcanes, Cuernavaca 62350, Morelos, Mexico; (G.C.-C.); (M.C.-C.); (M.A.-F.); (M.L.-C.); (J.J.A.-F.)
| |
Collapse
|