1
|
Li M, Huang J, Du S, Sun K, Chen J, Guo F. Long-term effect of eating duration on all-cause mortality under different energy intake and physical activity levels. Br J Nutr 2024; 132:1513-1521. [PMID: 39523845 DOI: 10.1017/s0007114524001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The long-term impact of eating duration on the risk of all-cause mortality remains unclear, with limited exploration of how different levels of energy intake and physical activity might influence this impact. To investigate, 24 484 American adults from the National Health and Nutrition Examination Survey spanning 1999-2018 were included. Eating duration was assessed via 24-h dietary recall, and all-cause mortality data were sourced from the National Death Index. The relationship between eating duration and all-cause mortality was analysed using Cox proportional hazards regression models, restricted cubic splines and stratification analysis with complex weighted designs. The median (IQR) of eating duration for participants was 12·5 (11·0, 14·0) h. In this study, 2896 death events were observed, and the median follow-up time (IQR) was 125 (77, 177) months. After multivariable adjustment, compared with Q1, Q2, Q3 and Q4 had reduced risks of all-cause mortality by 17, 15 and 13 %, respectively. Furthermore, each additional hour of eating duration was correlated with a 2 % decrease in the risk of all-cause mortality. Additionally, a non-linear dose-response relationship was observed between eating duration and the risk of all-cause mortality, showing a U-shaped relationship from 8·9 h to 15·3 h (P for non-linearity < 0·05). Interestingly, the non-linear dose-response relationship was observed exclusively among individuals with high energy intake or a lightly active physical activity level. These findings suggest potential health benefits from adjusting eating duration, though further prospective studies are needed for validation.
Collapse
Affiliation(s)
- Minli Li
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou 350122, People's Republic of China
| | - Jialing Huang
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou 350122, People's Republic of China
| | - Shanshan Du
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, FuZhou 350122, People's Republic of China
| | - Ke Sun
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou 350122, People's Republic of China
| | - Jiedong Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, People's Republic of China
| | - Fuchuan Guo
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou 350122, People's Republic of China
| |
Collapse
|
2
|
Yeh CY, Chini LCS, Davidson JW, Garcia GG, Gallagher MS, Freichels IT, Calubag MF, Rodgers AC, Green CL, Babygirija R, Sonsalla MM, Pak HH, Trautman ME, Hacker TA, Miller RA, Simcox JA, Lamming DW. Late-life protein or isoleucine restriction impacts physiological and molecular signatures of aging. NATURE AGING 2024; 4:1760-1771. [PMID: 39604703 DOI: 10.1038/s43587-024-00744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024]
Abstract
Restricting the intake of protein or the branched-chain amino acid isoleucine promotes healthspan and extends lifespan in young or adult mice. However, their effects when initiated in aged animals are unknown. Here we investigate the consequences of consuming a diet with 67% reduction of all amino acids (low AA) or of isoleucine alone (low Ile), in male and female C57BL/6J.Nia mice starting at 20 months of age. Both dietary regimens effectively promote overall metabolic health without reducing calorie intake. Both low AA and low Ile diets improve aspects of frailty and slow multiple molecular indicators of aging rate; however, the low Ile diet reduces grip strength in both sexes and has mixed, sexually dimorphic effects on the heart. These results demonstrate that low AA and low Ile diets can promote aspects of healthy aging in aged mice and suggest that similar interventions might promote healthy aging in older adults.
Collapse
Affiliation(s)
- Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Lucas C S Chini
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Jessica W Davidson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Meredith S Gallagher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac T Freichels
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Allison C Rodgers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Comparative Biomedical Sciences Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin-Madison Comprehensive Diabetes Center, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
3
|
Ruocco C, Ragni M, Nisoli E. The heat of longevity: sex differences in lifespan and body temperature. Front Pharmacol 2024; 15:1512526. [PMID: 39654619 PMCID: PMC11625557 DOI: 10.3389/fphar.2024.1512526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Dietary restriction (DR) has long been recognized as a powerful intervention for extending lifespan and improving metabolic health across species. In laboratory animals, DR-typically a 30%-40% reduction in caloric intake-delays aging and enhances mitochondrial function, oxidative defense, and anti-inflammatory pathways. In humans, findings from the CALERIE™ trial confirm DR's potential benefits, with a 25% caloric reduction over 2 years resulting in reduced visceral fat, improved cardiometabolic health, and favorable gene expression changes linked to proteostasis, DNA repair, and inflammation. However, recent research in genetically diverse mouse populations reveals that the impact of DR on lifespan is substantially modulated by genetic background, underscoring the importance of individual variability. Additionally, emerging evidence challenges previous assumptions that lower body temperature universally benefits lifespan extension, with data indicating complex relationships between thermoregulation, sex, and longevity. These findings underscore the need for nuanced approaches to DR in both research and potential therapeutic applications, with considerations for genetic and sex-specific factors to maximize healthspan and lifespan outcomes.
Collapse
Affiliation(s)
| | | | - Enzo Nisoli
- Center of Study and Research on Obesity, Department of Medical Technologies and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Selman C. The dietary exposome: a brief history of diet, longevity, and age-related health in rodents. Clin Sci (Lond) 2024; 138:1343-1356. [PMID: 39444221 DOI: 10.1042/cs20241248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
It has been recognized for over a century that feeding animals less food than they would normally eat increases lifespan and leads to broad-spectrum improvements in age-related health. A significant number of studies have subsequently shown that restricting total protein, branched chain amino acids or individual amino acids in the diet, as well as ketogenic diets, can elicit similar effects. In addition, it is becoming clear that fasting protocols, such as time-restricted-feeding or every-other-day feeding, without changes in overall energy intake can also profoundly affect rodent longevity and late-life health. In this review, I will provide a historical perspective on various dietary interventions that modulate ageing in rodents and discuss how this understanding of the dietary exposome may help identify future strategies to maintain late-life health and wellbeing in humans.
Collapse
Affiliation(s)
- Colin Selman
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom, G12 8QQ
| |
Collapse
|
5
|
Obata F, Miura M. Regulatory Mechanisms of Aging Through the Nutritional and Metabolic Control of Amino Acid Signaling in Model Organisms. Annu Rev Genet 2024; 58:19-41. [PMID: 38857535 DOI: 10.1146/annurev-genet-111523-102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Life activities are supported by the intricate metabolic network that is fueled by nutrients. Nutritional and genetic studies in model organisms have determined that dietary restriction and certain mutations in the insulin signaling pathway lead to lifespan extension. Subsequently, the detailed mechanisms of aging as well as various nutrient signaling pathways and their relationships have been investigated in a wide range of organisms, from yeast to mammals. This review summarizes the roles of nutritional and metabolic signaling in aging and lifespan with a focus on amino acids, the building blocks of organisms. We discuss how lifespan is affected by the sensing, transduction, and metabolism of specific amino acids and consider the influences of life stage, sex, and genetic background on the nutritional control of aging. Our goal is to enhance our understanding of how nutrients affect aging and thus contribute to the biology of aging and lifespan.
Collapse
Affiliation(s)
- Fumiaki Obata
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan;
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan;
| |
Collapse
|
6
|
Tan Y, Li M, Li H, Guo Y, Zhang B, Wu G, Li J, Zhang Q, Sun Y, Gao F, Yi W, Zhang X. Cardiac Urea Cycle Activation by Time-Restricted Feeding Protects Against Pressure Overload-Induced Heart Failure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407677. [PMID: 39467073 DOI: 10.1002/advs.202407677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/14/2024] [Indexed: 10/30/2024]
Abstract
Heart failure is a leading cause of mortality worldwide, necessitating the development of novel therapeutic and lifestyle interventions. Recent studies highlight a potential role of time-restricted feeding (TRF) in the prevention and treatment of cardiac diseases. Here, it is found that TRF protected against heart failure at different stages in mice. Metabolomic profiling revealed that TRF upregulated most circulating amino acids, and amino acid supplementation protected against heart failure. In contrast, TRF showed a mild effect on cardiac amino acid profile, but increased cardiac amino acid utilization and activated the cardiac urea cycle through upregulating argininosuccinate lyase (ASL) expression. Cardiac-specific ASL knockout abolished the cardioprotective effects afforded by TRF. Circulating amino acids also protected against heart failure through activation of the urea cycle. Additionally, TRF upregulated cardiac ASL expression through transcription factor Yin Yang 1, and urea cycle-derived NO contributes to TRF-afforded cardioprotection. Furthermore, arteriovenous gradients of circulating metabolites across the human hearts were measured, and found that amino acid utilization and urea cycle activity were impaired in patients with decreased cardiac function. These results suggest that TRF is a promising intervention for heart failure, and highlight the importance of urea cycle in regulation of cardiac function.
Collapse
Affiliation(s)
- Yanzhen Tan
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital, Cardiovascular Disease Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guiling Wu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Rehabilitation, Air Force Medical Center, Beijing, 100142, China
| |
Collapse
|
7
|
Yu J, Gao M, Wang L, Guo X, Liu X, Sheng M, Cheng S, Guo Y, Wang J, Zhao C, Guo W, Zhang Z, Liu Y, Hu C, Ma X, Xie C, Zhang Q, Xu L. An insoluble cellulose nanofiber with robust expansion capacity protects against obesity. Int J Biol Macromol 2024; 277:134401. [PMID: 39097049 DOI: 10.1016/j.ijbiomac.2024.134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
An imbalance between energy intake and energy expenditure predisposes obesity and its related metabolic diseases. Soluble dietary fiber has been shown to improve metabolic homeostasis mainly via microbiota reshaping. However, the application and metabolic effects of insoluble fiber are less understood. Herein, we employed nanotechnology to design citric acid-crosslinked carboxymethyl cellulose nanofibers (CL-CNF) with a robust capacity of expansion upon swelling. Supplementation with CL-CNF reduced food intake and delayed digestion rate in mice by occupying stomach. Besides, CL-CNF treatment mitigated diet-induced obesity and insulin resistance in mice with enhanced energy expenditure, as well as ameliorated inflammation in adipose tissue, intestine and liver and reduced hepatic steatosis, without any discernible signs of toxicity. Additionally, CL-CNF supplementation resulted in enrichment of probiotics such as Bifidobacterium and decreased in the relative abundances of deleterious microbiota expressing bile salt hydrolase, which led to increased levels of conjugated bile acids and inhibited intestinal FXR signaling to stimulate the release of GLP-1. Taken together, our findings demonstrate that CL-CNF administration protects mice from diet-induced obesity and metabolic dysfunction by reducing food intake, enhancing energy expenditure and remodeling gut microbiota, making it a potential therapeutic strategy against metabolic diseases.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaodi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shimiao Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yingying Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cheng Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xinran Ma
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
8
|
Lamming DW. Quantification of healthspan in aging mice: introducing FAMY and GRAIL. GeroScience 2024; 46:4203-4215. [PMID: 38755467 PMCID: PMC11336093 DOI: 10.1007/s11357-024-01200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
The population around the world is graying, and as many of these individuals will spend years suffering from the burdens of age associated diseases, understanding how to increase healthspan, defined as the period of life free from disease and disability, is an urgent priority of geroscience research. The lack of agreed-upon quantitative metrics for measuring healthspan in aging mice has slowed progress in identifying interventions that do not simply increase lifespan, but also healthspan. Here, we define FAMY (Frailty-Adjusted Mouse Years) and GRAIL (Gauging Robust Aging when Increasing Lifespan) as new summary statistics for quantifying healthspan in mice. FAMY integrates lifespan data with longitudinal measurements of a widely utilized clinical frailty index, while GRAIL incorporates these measures and also adds information from widely utilized healthspan assays and the hallmarks of aging. Both metrics are conceptually similar to quality-adjusted life years (QALY), a widely utilized measure of disease burden in humans, and can be readily calculated from data acquired during longitudinal and cross-sectional studies of mouse aging. We find that interventions generally thought to promote health, including calorie restriction, robustly improve healthspan as measured by FAMY and GRAIL. Finally, we show that the use of GRAIL provides new insights, and identify dietary restriction of protein or isoleucine as interventions that robustly promote healthspan but not longevity in female HET3 mice. We suggest that the routine integration of these measures into studies of aging in mice will allow the identification and development of interventions that promote healthy aging even in the absence of increased lifespan.
Collapse
Affiliation(s)
- Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA.
| |
Collapse
|
9
|
Lambert DC, Kane J, Newberry C. Lifestyle Therapy for Obesity. Gastrointest Endosc Clin N Am 2024; 34:577-589. [PMID: 39277292 DOI: 10.1016/j.giec.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Lifestyle management of obesity includes nutritional therapy, physical activity, and several intermittent fasting therapies. Effective nutrition therapies include optimized low-fat diets, high-quality ketogenic diets, and energy-restricted diets. Adherence to dietary change remains the most substantial barrier to success; therefore, patients engaging in lifestyle changes require intensive support and resources. Physical activity is shown to have benefits to body composition and disease risk beyond the effects on weight loss. Patients should be guided toward a regimen that is appropriate for their capacity for movement. Multiple intermittent fasting strategies have now been shown to cause substantial weight loss and metabolic health improvement.
Collapse
Affiliation(s)
- Douglas C Lambert
- Department of General Internal Medicine, Section of Obesity Medicine, Northwell Health, Northwell Center for Weight Management, 865 Northern Boulevard, Suite 102, Great Neck, NY 11021, USA.
| | - Jamie Kane
- Department of General Internal Medicine, Section of Obesity Medicine, Northwell Health, Northwell Center for Weight Management, 865 Northern Boulevard, Suite 102, Great Neck, NY 11021, USA
| | - Carolyn Newberry
- Division of Gastroenterology and Hepatology, Innovative Center for Health and Nutrition in Gastroenterology (ICHANGE), Weill Cornell Medicine, 420 East 70th Street, #442, New York, NY 10021, USA
| |
Collapse
|
10
|
Andrews RR, Anderson KR, Fry JL. Sex-Specific Variation in Metabolic Responses to Diet. Nutrients 2024; 16:2921. [PMID: 39275236 PMCID: PMC11397081 DOI: 10.3390/nu16172921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Suboptimal nutrition is a leading cause of cardiometabolic disease and mortality. Biological sex is a variable that influences individual responses to dietary components and may modulate the impact of diet on metabolic health and disease risk. This review describes findings of studies reporting how biological sex may associate with or affect metabolic outcomes or disease risk in response to varying dietary macronutrient content, Mediterranean diet, Western diet, and medical very low-calorie diet. Although few dietary interventions have been specifically designed to identify sex-diet interactions, future studies improving understanding how sex influences dietary responses could inform precision nutrition interventions for disease prevention and management.
Collapse
Affiliation(s)
- Reya R Andrews
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Kayla R Anderson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Jean L Fry
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
11
|
Huang Q, Pan K, Zhang Y, Li S, Li J. Effects of calorie-restricted diet on health state and intestinal flora in Hashimoto's thyroiditis patients: Study protocol for a randomized controlled trial. Asia Pac J Clin Nutr 2024; 33:397-404. [PMID: 38965727 PMCID: PMC11397562 DOI: 10.6133/apjcn.202409_33(3).0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND OBJECTIVES Hashimoto's thyroiditis (HT) is an autoimmune disease, characterized by abnormal elevation in thyroid peroxidase antibody and/or thyroglobulin antibody. In recent decades, HT disease has become more and more widespread. Patients always report multiple symptoms, even though their thyroid hormone levels are kept in normal ranges. However, no treatment exists to effectively reduce the levels of thyroid antibodies. Our study aims to determine whether calorie-restricted diet is helpful in improving health of HT patients. METHODS AND STUDY DESIGN This is a 3-month randomized controlled trial. HT patients will be randomized into a calorie-restricted (CR) group or a calorie-unrestricted control group. All the participants will be instructed to consume a diet that includes a combination of 45-55% calories from carbohydrates, 20-30% from fats, and 15-25% from proteins, according to current Chinese Dietary Guidelines. Participants in CR group need to limit their calories intake equal to their basal energy expenditure, which means that their daily caloric intake will be limited by about 20-30%. RESULTS The study population is planned to be 66 HT patients aged 18 to 65 years. The primary outcome is change of thyroid antibody levels from baseline. Secondary outcomes include the changes of non-hypothyroid symptoms scores, thyroid function indexes, morphology of thyroid, T lymphocyte subpopulations, inflammatory biomarkers and lipids from baseline to 12 weeks. CONCLUSIONS This trial will have implications for nutrition treatment policy in regard to thyroid antibodies control, immune dysfunction and related non-hypothyroid symptoms improvement among HT patients.
Collapse
Affiliation(s)
- Qingling Huang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaixin Pan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxuan Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaomei Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
12
|
Koppold DA, Breinlinger C, Hanslian E, Kessler C, Cramer H, Khokhar AR, Peterson CM, Tinsley G, Vernieri C, Bloomer RJ, Boschmann M, Bragazzi NL, Brandhorst S, Gabel K, Goldhamer AC, Grajower MM, Harvie M, Heilbronn L, Horne BD, Karras SN, Langhorst J, Lischka E, Madeo F, Mitchell SJ, Papagiannopoulos-Vatopaidinos IE, Papagiannopoulou M, Pijl H, Ravussin E, Ritzmann-Widderich M, Varady K, Adamidou L, Chihaoui M, de Cabo R, Hassanein M, Lessan N, Longo V, Manoogian ENC, Mattson MP, Muhlestein JB, Panda S, Papadopoulou SK, Rodopaios NE, Stange R, Michalsen A. International consensus on fasting terminology. Cell Metab 2024; 36:1779-1794.e4. [PMID: 39059384 PMCID: PMC11504329 DOI: 10.1016/j.cmet.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Although fasting is increasingly applied for disease prevention and treatment, consensus on terminology is lacking. Using Delphi methodology, an international, multidisciplinary panel of researchers and clinicians standardized definitions of various fasting approaches in humans. Five online surveys and a live online conference were conducted with 38 experts, 25 of whom completed all 5 surveys. Consensus was achieved for the following terms: "fasting" (voluntary abstinence from some or all foods or foods and beverages), "modified fasting" (restriction of energy intake to max. 25% of energy needs), "fluid-only fasting," "alternate-day fasting," "short-term fasting" (lasting 2-3 days), "prolonged fasting" (≥4 consecutive days), and "religious fasting." "Intermittent fasting" (repetitive fasting periods lasting ≤48 h), "time-restricted eating," and "fasting-mimicking diet" were discussed most. This study provides expert recommendations on fasting terminology for future research and clinical applications, facilitating communication and cross-referencing in the field.
Collapse
Affiliation(s)
- Daniela A Koppold
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Internal Medicine and Nature-Based Therapies, Immanuel Hospital Berlin, 14109 Berlin, Germany; Charité Competence Center for Traditional and Integrative Medicine (CCCTIM), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Carolin Breinlinger
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| | - Etienne Hanslian
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Christian Kessler
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Internal Medicine and Nature-Based Therapies, Immanuel Hospital Berlin, 14109 Berlin, Germany
| | - Holger Cramer
- Institute for General Practice and Interprofessional Care, University Hospital Tübingen, Tübingen, Germany; Robert Bosch Center for Integrative Medicine and Health, Bosch Health Campus, Stuttgart, Germany
| | - Anika Rajput Khokhar
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Courtney M Peterson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Grant Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Richard J Bloomer
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, USA
| | - Michael Boschmann
- Experimental & Clinical Research Center - A joint co-operation between Charité Universitätsmedizin und Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Clinical Research Unit, Berlin, Germany
| | - Nicola L Bragazzi
- Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, ON, Canada
| | - Sebastian Brandhorst
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612, USA
| | - Alan C Goldhamer
- TrueNorth Health Foundation, Santa Rosa, CA 95404, USA; TrueNorth Health Center, Santa Rosa, CA 95404, USA
| | - Martin M Grajower
- Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Michelle Harvie
- Prevent Breast Cancer Research Unit, The Nightingale Centre, Manchester University NHS Foundation Trust, Manchester, England; Division of Cancer Sciences, The University of Manchester, Manchester, England
| | - Leonie Heilbronn
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Nutrition, Metabolism & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Benjamin D Horne
- Intermountain Medical Center Heart Institute, Salt Lake City, UT, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Spyridon N Karras
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54636 Thessaloniki, Greece
| | - Jost Langhorst
- Department for Internal and Integrative Medicine, Sozialstiftung Bamberg Hospital, Bamberg, Germany; Department for Integrative Medicine, University of Duisburg-Essen, Medical Faculty, Bamberg, Germany
| | - Eva Lischka
- Klinik Buchinger Wilhelmi, Überlingen, Germany
| | - Frank Madeo
- BioTechMed Graz, Graz, Austria; Institute of Molecular Biosciences, University of Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sarah J Mitchell
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | | | | | - Hanno Pijl
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Martha Ritzmann-Widderich
- Praxis für Ernährungsmedizin und Prävention in Rottweil, Hochbrücktorstraße 22, 78628 Rottweil, Germany
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612, USA
| | - Lilian Adamidou
- Department of Dietetics and Nutrition, AHEPA University Hospital, Thessaloniki, Greece
| | - Melika Chihaoui
- Department of Endocrinology, University Hospital La Rabta, Faculty of medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mohamed Hassanein
- Department of Endocrinology and Diabetes, Dubai Hospital, Dubai Academic Health Cooperation, United Arab Emirates
| | - Nader Lessan
- The Research Institute, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Valter Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Emily N C Manoogian
- Regulatory Biology Department, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Satchidananda Panda
- Regulatory Biology Department, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sousana K Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57001 Thessaloniki, Greece
| | - Nikolaos E Rodopaios
- Department of Social Medicine, Preventive Medicine and Nutrition Clinic, School of Medicine, University of Crete, Voutes, 71003 Iraklion, Greece
| | - Rainer Stange
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Internal Medicine and Nature-Based Therapies, Immanuel Hospital Berlin, 14109 Berlin, Germany
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Internal Medicine and Nature-Based Therapies, Immanuel Hospital Berlin, 14109 Berlin, Germany
| |
Collapse
|
13
|
Chiem E, Zhao K, Dell’Angelica D, Ghiani CA, Paul KN, Colwell CS. Scheduled feeding improves sleep in a mouse model of Huntington's disease. Front Neurosci 2024; 18:1427125. [PMID: 39161652 PMCID: PMC11330895 DOI: 10.3389/fnins.2024.1427125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Sleep disturbances are common features of neurodegenerative disorders including Huntington's disease (HD). Sleep and circadian disruptions are recapitulated in animal models, providing the opportunity to evaluate the effectiveness of circadian interventions as countermeasures for neurodegenerative disease. For instance, time restricted feeding (TRF) successfully improved activity rhythms, sleep behavior and motor performance in mouse models of HD. Seeking to determine if these benefits extend to physiological measures of sleep, electroencephalography (EEG) was used to measure sleep/wake states and polysomnographic patterns in male and female wild-type (WT) and bacterial artificial chromosome transgenic (BACHD) adult mice, under TRF and ad lib feeding (ALF). Our findings show that male, but not female, BACHD mice exhibited significant changes in the temporal patterning of wake and non-rapid eye movement (NREM) sleep. The TRF intervention reduced the inappropriate early morning activity by increasing NREM sleep in the male BACHD mice. In addition, the scheduled feeding reduced sleep fragmentation (# bouts) in the male BACHD mice. The phase of the rhythm in rapid-eye movement (REM) sleep was significantly altered by the scheduled feeding in a sex-dependent manner. The treatment did impact the power spectral curves during the day in male but not female mice regardless of the genotype. Sleep homeostasis, as measured by the response to six hours of gentle handling, was not altered by the diet. Thus, TRF improves the temporal patterning and fragmentation of NREM sleep without impacting sleep homeostasis. This work adds critical support to the view that sleep is a modifiable risk factor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emily Chiem
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
- Molecular, Cellular, Integrative Physiology Program, University of California Los Angeles, Los Angeles, CA, United States
| | - Kevin Zhao
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Derek Dell’Angelica
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Ketema N. Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Bejarano E, Domenech-Bendaña A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A. Glycative stress as a cause of macular degeneration. Prog Retin Eye Res 2024; 101:101260. [PMID: 38521386 DOI: 10.1016/j.preteyeres.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alicia Domenech-Bendaña
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Sheldon Rowan
- JM USDA Human Nutrition Research Center on Aging at Tufts University, United States
| | - Sachini Edirisinghe
- Tufts University Friedman School of Nutrition Science and Policy, United States
| | - Allen Taylor
- Tufts University Friedman School of Nutrition Science and Policy, United States.
| |
Collapse
|
15
|
Babygirija R, Sonsalla MM, Mill J, James I, Han JH, Green CL, Calubag MF, Wade G, Tobon A, Michael J, Trautman MM, Matoska R, Yeh CY, Grunow I, Pak HH, Rigby MJ, Baldwin DA, Niemi NM, Denu JM, Puglielli L, Simcox J, Lamming DW. Protein restriction slows the development and progression of pathology in a mouse model of Alzheimer's disease. Nat Commun 2024; 15:5217. [PMID: 38890307 PMCID: PMC11189507 DOI: 10.1038/s41467-024-49589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and dietary protein restriction extends the lifespan and healthspan of mice. In this study, we examined the effect of protein restriction (PR) on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. Here, we show that PR promotes leanness and glycemic control in 3xTg mice, specifically rescuing the glucose intolerance of 3xTg females. PR induces sex-specific alterations in circulating and brain metabolites, downregulating sphingolipid subclasses in 3xTg females. PR also reduces AD pathology and mTORC1 activity, increases autophagy, and improves the cognition of 3xTg mice. Finally, PR improves the survival of 3xTg mice. Our results suggest that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jessica H Han
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Anna Tobon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - John Michael
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michaela M Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Matoska
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Rigby
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dominique A Baldwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Natalie M Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Judith Simcox
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
16
|
Trautman ME, Green CL, MacArthur MR, Chaiyakul K, Alam YH, Yeh CY, Babygirija R, James I, Gilpin M, Zelenovskiy E, Green M, Marshall RN, Sonsalla MM, Flores V, Simcox JA, Ong IM, Malecki KC, Jang C, Lamming DW. Dietary isoleucine content defines the metabolic and molecular response to a Western diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596340. [PMID: 38895446 PMCID: PMC11185563 DOI: 10.1101/2024.05.30.596340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The amino acid composition of the diet has recently emerged as a critical regulator of metabolic health. Consumption of the branched-chain amino acid isoleucine is positively correlated with body mass index in humans, and reducing dietary levels of isoleucine rapidly improves the metabolic health of diet-induced obese male C57BL/6J mice. However, it is unknown how sex, strain, and dietary isoleucine intake may interact to impact the response to a Western Diet (WD). Here, we find that although the magnitude of the effect varies by sex and strain, reducing dietary levels of isoleucine protects C57BL/6J and DBA/2J mice of both sexes from the deleterious metabolic effects of a WD, while increasing dietary levels of isoleucine impairs aspects of metabolic health. Despite broadly positive responses across all sexes and strains to reduced isoleucine, the molecular response of each sex and strain is highly distinctive. Using a multi-omics approach, we identify a core sex- and strain- independent molecular response to dietary isoleucine, and identify mega-clusters of differentially expressed hepatic genes, metabolites, and lipids associated with each phenotype. Intriguingly, the metabolic effects of reduced isoleucine in mice are not associated with FGF21 - and we find that in humans plasma FGF21 levels are likewise not associated with dietary levels of isoleucine. Finally, we find that foods contain a range of isoleucine levels, and that consumption of dietary isoleucine is lower in humans with healthy eating habits. Our results demonstrate that the dietary level of isoleucine is critical in the metabolic and molecular response to a WD, and suggest that lowering dietary levels of isoleucine may be an innovative and translatable strategy to protect from the negative metabolic consequences of a WD.
Collapse
Affiliation(s)
- Michaela E. Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Cara L. Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Michael R. MacArthur
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Krittisak Chaiyakul
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53705, USA
| | - Yasmine H. Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Gilpin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Esther Zelenovskiy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Madelyn Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Ryan N. Marshall
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Michelle M. Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Victoria Flores
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irene M. Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53705, USA
| | - Kristen C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
17
|
Mishra M, Wu J, Kane AE, Howlett SE. The intersection of frailty and metabolism. Cell Metab 2024; 36:893-911. [PMID: 38614092 PMCID: PMC11123589 DOI: 10.1016/j.cmet.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
On average, aging is associated with unfavorable changes in cellular metabolism, which are the processes involved in the storage and expenditure of energy. However, metabolic dysregulation may not occur to the same extent in all older individuals as people age at different rates. Those who are aging rapidly are at increased risk of adverse health outcomes and are said to be "frail." Here, we explore the links between frailty and metabolism, including metabolic contributors and consequences of frailty. We examine how metabolic diseases may modify the degree of frailty in old age and suggest that frailty may predispose toward metabolic disease. Metabolic interventions that can mitigate the degree of frailty in people are reviewed. New treatment strategies developed in animal models that are poised for translation to humans are also considered. We suggest that maintaining a youthful metabolism into older age may be protective against frailty.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Judy Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Alice E Kane
- Institute for Systems Biology, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
18
|
Chiem E, Zhao K, Dell’Angelica D, Ghiani CA, Paul KN, Colwell CS. Scheduled feeding improves sleep in a mouse model of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592428. [PMID: 38766112 PMCID: PMC11100594 DOI: 10.1101/2024.05.04.592428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Sleep disturbances are common features of neurodegenerative disorders including Huntington's disease (HD). The sleep and circadian disruptions are recapitulated in animal models, and these models provide the opportunity to evaluate whether circadian interventions can be effective countermeasures for neurodegenerative disease. Time restricted feeding (TRF) interventions successfully improve activity rhythms, sleep behavior and motor performance in mouse models of HD. Seeking to determine if these benefits of scheduled feeding extend to physiological measures of sleep, electroencephalography (EEG) was used to measure sleep/wake states and polysomnographic patterns in adult mice (six mo-old) under TRF and ad lib feeding (ALF). With each diet, both male and female wild-type (WT) and bacterial artificial chromosome transgenic (BACHD) mice were evaluated. Our findings show that male, but not female, BACHD mice exhibited significant changes in the temporal patterning of wake and nonrapid eye movement (NREM) sleep. The TRF intervention reduced the inappropriate early morning activity by increasing NREM sleep in the male BACHD mice. In addition, the scheduled feeding reduced sleep fragmentation (# bouts) in the male BACHD mice. The phase of the rhythm in rapid-eye movement (REM) sleep was significantly altered by the scheduled feeding. The treatment did impact the power spectral curves during the day in male but not female mice. Sleep homeostasis, as measured by the response to six hours of gentle handling, was not altered by the diet. Thus, TRF improves the temporal patterning and fragmentation of NREM sleep without impacting sleep homeostasis. This work adds critical support to the view that sleep is a modifiable risk factor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emily Chiem
- Department of Integrative Biology and Physiology, University of California Los Angeles
- Molecular, Cellular, Integrative Physiology program, University of California Los Angeles
| | - Kevin Zhao
- Department of Integrative Biology and Physiology, University of California Los Angeles
| | - Derek Dell’Angelica
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Cristina A. Ghiani
- Department of Pathology and Laboratory Medicine, University of California Los Angeles
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Ketema N. Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | | |
Collapse
|
19
|
Babygirija R, Sonsalla MM, Mill J, James I, Han JH, Green CL, Calubag MF, Wade G, Tobon A, Michael J, Trautman MM, Matoska R, Yeh CY, Grunow I, Pak HH, Rigby MJ, Baldwin DA, Niemi NM, Denu JM, Puglielli L, Simcox J, Lamming DW. Protein restriction slows the development and progression of Alzheimer's disease in mice. RESEARCH SQUARE 2024:rs.3.rs-3342413. [PMID: 37790423 PMCID: PMC10543316 DOI: 10.21203/rs.3.rs-3342413/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and many independent groups of researchers have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice and rescuing the glucose intolerance of 3xTg females. We found that PR induces sex-specific alterations in circulating metabolites and in the brain metabolome and lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Michelle M. Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jessica H. Han
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cara L. Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F. Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Tobon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - John Michael
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michaela M. Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Matoska
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heidi H. Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J. Rigby
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dominique A. Baldwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Natalie M. Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Judith Simcox
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Babygirija R, Sonsalla MM, Mill J, James I, Han JH, Green CL, Calubag MF, Wade G, Tobon A, Michael J, Trautman MM, Matoska R, Yeh CY, Grunow I, Pak HH, Rigby MJ, Baldwin DA, Niemi NM, Denu JM, Puglielli L, Simcox J, Lamming DW. Protein restriction slows the development and progression of Alzheimer's disease in mice. RESEARCH SQUARE 2024:rs.3.rs-3342413. [PMID: 37790423 PMCID: PMC10543316 DOI: 10.21203/rs.3.rs-3342413/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and many independent groups of researchers have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice and rescuing the glucose intolerance of 3xTg females. We found that PR induces sex-specific alterations in circulating metabolites and in the brain metabolome and lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Michelle M. Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jessica H. Han
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cara L. Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F. Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Tobon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - John Michael
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michaela M. Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Matoska
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heidi H. Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J. Rigby
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dominique A. Baldwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Natalie M. Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Judith Simcox
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
Heymsfield SB, Shapses SA. Guidance on Energy and Macronutrients across the Life Span. N Engl J Med 2024; 390:1299-1310. [PMID: 38598796 DOI: 10.1056/nejmra2214275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Steven B Heymsfield
- From the Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge (S.B.H.); and the Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition, and Health, Rutgers University, and the Department of Medicine, Rutgers-Robert Wood Johnson School of Medicine - both in New Brunswick (S.A.S.)
| | - Sue A Shapses
- From the Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge (S.B.H.); and the Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition, and Health, Rutgers University, and the Department of Medicine, Rutgers-Robert Wood Johnson School of Medicine - both in New Brunswick (S.A.S.)
| |
Collapse
|
22
|
Hu FB. Diet strategies for promoting healthy aging and longevity: An epidemiological perspective. J Intern Med 2024; 295:508-531. [PMID: 37867396 PMCID: PMC10939982 DOI: 10.1111/joim.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
In recent decades, global life expectancies have risen significantly, accompanied by a marked increase in chronic diseases and population aging. This narrative review aims to summarize recent findings on the dietary factors influencing chronic diseases and longevity, primarily from large cohort studies. First, maintaining a healthy weight throughout life is pivotal for healthy aging and longevity, mirroring the benefits of lifelong, moderate calorie restriction in today's obesogenic food environment. Second, the specific types or food sources of dietary fat, protein, and carbohydrates are more important in influencing chronic disease risk and mortality than their quantity. Third, some traditional diets (e.g., the Mediterranean, Nordic, and Okinawa) and contemporary dietary patterns, such as healthy plant-based diet index, the DASH (dietary approaches to stop hypertension) diet, and alternate healthy eating index, have been associated with lower mortality and healthy longevity. These patterns share many common components (e.g., a predominance of nutrient-rich plant foods; limited red and processed meats; culinary herbs and spices prevalent in global cuisines) while embracing distinct elements from different cultures. Fourth, combining a healthy diet with other lifestyle factors could extend disease-free life expectancies by 8-10 years. While adhering to core principles of healthy diets, it is crucial to adapt dietary recommendations to individual preferences and cultures as well as nutritional needs of aging populations. Public health strategies should aim to create a healthier food environment where nutritious options are readily accessible, especially in public institutions and care facilities for the elderly. Although further mechanistic studies and human trials are needed to better understand molecular effects of diet on aging, there is a pressing need to establish and maintain long-term cohorts studying diet and aging in culturally diverse populations.
Collapse
Affiliation(s)
- Frank B. Hu
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115. USA
| |
Collapse
|
23
|
Lamming DW. Quantification of healthspan in aging mice: Introducing FAMY and GRAIL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566044. [PMID: 37986745 PMCID: PMC10659332 DOI: 10.1101/2023.11.07.566044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The population around the world is graying, and as many of these individuals will spend years suffering from the burdens of age associated diseases, understanding how to increase healthspan, defined as the period of life free from disease and disability, is an urgent priority of geroscience research. The lack of agreed-upon quantitative metrics for measuring healthspan in aging mice has slowed progress in identifying interventions that do not simply increase lifespan, but also healthspan. Here, we define FAMY (Frailty-Adjusted Mouse Years) and GRAIL (Gauging Robust Aging when Increasing Lifespan) as new summary statistics for quantifying healthspan in mice. FAMY integrates lifespan data with longitudinal measurements of a widely utilized clinical frailty index, while GRAIL incorporates these measures and also adds information from widely utilized healthspan assays and the hallmarks of aging. Both metrics are conceptually similar to quality-adjusted life years (QALY), a widely-utilized measure of disease burden in humans, and can be readily calculated from data acquired during longitudinal and cross-sectional studies of mouse aging. We find that interventions generally thought to promote health, including calorie restriction, robustly improve healthspan as measured by FAMY and GRAIL. Finally, we show that the use of GRAIL provides new insights, and identify dietary restriction of protein or isoleucine as interventions that robustly promote healthspan but not longevity in female HET3 mice. We suggest that the routine integration of these measures into studies of aging in mice will allow the identification and development of interventions that promote healthy aging even in the absence of increased lifespan.
Collapse
Affiliation(s)
- Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
24
|
Bisht S, Mao Y, Easwaran H. Epigenetic dynamics of aging and cancer development: current concepts from studies mapping aging and cancer epigenomes. Curr Opin Oncol 2024; 36:82-92. [PMID: 38441107 PMCID: PMC10939788 DOI: 10.1097/cco.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW This review emphasizes the role of epigenetic processes as incidental changes occurring during aging, which, in turn, promote the development of cancer. RECENT FINDINGS Aging is a complex biological process associated with the progressive deterioration of normal physiological functions, making age a significant risk factor for various disorders, including cancer. The increasing longevity of the population has made cancer a global burden, as the risk of developing most cancers increases with age due to the cumulative effect of exposure to environmental carcinogens and DNA replication errors. The classical 'somatic mutation theory' of cancer cause is being challenged by the observation that multiple normal cells harbor cancer driver mutations without resulting in cancer. In this review, we discuss the role of age-associated epigenetic alterations, including DNA methylation, which occur across all cell types and tissues with advancing age. There is an increasing body of evidence linking these changes with cancer risk and prognosis. SUMMARY A better understanding about the epigenetic changes acquired during aging is critical for comprehending the mechanisms leading to the age-associated increase in cancer and for developing novel therapeutic strategies for cancer treatment and prevention.
Collapse
Affiliation(s)
- Shilpa Bisht
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiqing Mao
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Williams AS, Crown SB, Lyons SP, Koves TR, Wilson RJ, Johnson JM, Slentz DH, Kelly DP, Grimsrud PA, Zhang GF, Muoio DM. Ketone flux through BDH1 supports metabolic remodeling of skeletal and cardiac muscles in response to intermittent time-restricted feeding. Cell Metab 2024; 36:422-437.e8. [PMID: 38325337 PMCID: PMC10961007 DOI: 10.1016/j.cmet.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Time-restricted feeding (TRF) has gained attention as a dietary regimen that promotes metabolic health. This study questioned if the health benefits of an intermittent TRF (iTRF) schedule require ketone flux specifically in skeletal and cardiac muscles. Notably, we found that the ketolytic enzyme beta-hydroxybutyrate dehydrogenase 1 (BDH1) is uniquely enriched in isolated mitochondria derived from heart and red/oxidative skeletal muscles, which also have high capacity for fatty acid oxidation (FAO). Using mice with BDH1 deficiency in striated muscles, we discover that this enzyme optimizes FAO efficiency and exercise tolerance during acute fasting. Additionally, iTRF leads to robust molecular remodeling of muscle tissues, and muscle BDH1 flux does indeed play an essential role in conferring the full adaptive benefits of this regimen, including increased lean mass, mitochondrial hormesis, and metabolic rerouting of pyruvate. In sum, ketone flux enhances mitochondrial bioenergetics and supports iTRF-induced remodeling of skeletal muscle and heart.
Collapse
Affiliation(s)
- Ashley S Williams
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Scott B Crown
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Scott P Lyons
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Geriatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca J Wilson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Jordan M Johnson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Dorothy H Slentz
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
26
|
Fang G, Chen Q, Li J, Lian X, Shi D. The Diurnal Transcriptome Reveals the Reprogramming of Lung Adenocarcinoma Cells Under a Time-Restricted Feeding-Mimicking Regimen. J Nutr 2024; 154:354-368. [PMID: 38065409 DOI: 10.1016/j.tjnut.2023.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND The processes of tumor growth and circadian rhythm are intimately intertwined; thus, rewiring circadian metabolism by time-restricted feeding (TRF) may contribute to delaying carcinogenesis. However, research on the effect of a TRF cellular regimen on cancer is lacking. OBJECTIVE Investigate the circadian signatures of TRF in lung cancer in vitro. METHODS We first developed a cellular paradigm mimicking in vivo TRF and collected cells for transcriptome analysis. We further confirmed the effect on tumor cells upon 6-h TRF-mimicking (6-h TRFM) by real-time PCR, Lumicycle experiments, CCK-8, and flow cytometry assays. RESULTS We found that A549 lung adenocarcinoma cells treated with 6-h TRFM conditions displayed robust diurnal rhythms of transcriptomes, as well as modulation of the core clock genes relative to other different cellular regimens used in this study, including the fasting-mimicking conditions (ie, short-term starvation) and the serum-free regime. Notably, pathway analysis of oscillating genes exclusively in 6-h TRFM showed that some circadian genes were enriched in tumor-related pathways, such as the oxytocin signaling pathway, HIF-1 signaling pathway, and pentose and glucuronate interconversions. Moreover, in line with the circadian pathway enrichment results, 6-h TRFM robustly inhibited cell proliferation and induced cell apoptosis and cell cycle arrest in lung adenocarcinoma A549 cells, lung adenocarcinoma H460 cells, esophageal carcinoma Eca-109 cells, and breast adenocarcinoma MCF-7 cells. CONCLUSIONS Our findings provide the first in vitro mimicking medium for TRF intervention and indicate that 6-h TRFM is sufficient to reprogram the circadian signatures of lung adenocarcinoma cells and inhibit the progression of multiple tumors.
Collapse
Affiliation(s)
- Gaofeng Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qianyao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Jianling Li
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xuemei Lian
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China.
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China; Research Center for Environment and Population Health, School of Public Health, Chongqing Medical University, Chongqing, P.R. China.
| |
Collapse
|
27
|
Trautman ME, Braucher LN, Elliehausen C, Zhu WG, Zelenovskiy E, Green M, Sonsalla MM, Yeh CY, Hornberger TA, Konopka AR, Lamming DW. Resistance exercise protects mice from protein-induced fat accretion. eLife 2023; 12:RP91007. [PMID: 38019262 PMCID: PMC10686620 DOI: 10.7554/elife.91007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Low-protein (LP) diets extend the lifespan of diverse species and are associated with improved metabolic health in both rodents and humans. Paradoxically, many athletes and bodybuilders consume high-protein (HP) diets and protein supplements, yet are both fit and metabolically healthy. Here, we examine this paradox using weight pulling, a validated progressive resistance exercise training regimen, in mice fed either an LP diet or an isocaloric HP diet. We find that despite having lower food consumption than the LP group, HP-fed mice gain significantly more fat mass than LP-fed mice when not exercising, while weight pulling protected HP-fed mice from this excess fat accretion. The HP diet augmented exercise-induced hypertrophy of the forearm flexor complex, and weight pulling ability increased more rapidly in the exercised HP-fed mice. Surprisingly, exercise did not protect from HP-induced changes in glycemic control. Our results confirm that HP diets can augment muscle hypertrophy and accelerate strength gain induced by resistance exercise without negative effects on fat mass, and also demonstrate that LP diets may be advantageous in the sedentary. Our results highlight the need to consider both dietary composition and activity, not simply calories, when taking a precision nutrition approach to health.
Collapse
Affiliation(s)
- Michaela E Trautman
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Nutrition and Metabolism Graduate Program, University of Wisconsin- MadisonMadisonUnited States
| | - Leah N Braucher
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
| | - Christian Elliehausen
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Wenyuan G Zhu
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Esther Zelenovskiy
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
| | - Madelyn Green
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
| | - Troy A Hornberger
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-MadisonMadisonUnited States
- School of Veterinary Medicine, University of Wisconsin-MadisonMadisonUnited States
| | - Adam R Konopka
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Nutrition and Metabolism Graduate Program, University of Wisconsin- MadisonMadisonUnited States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-MadisonMadisonUnited States
- University of Wisconsin Carbone Cancer CenterMadisonUnited States
| |
Collapse
|
28
|
Groisman EA, Han W, Krypotou E. Advancing the fitness of gut commensal bacteria. Science 2023; 382:766-768. [PMID: 37972163 PMCID: PMC10838159 DOI: 10.1126/science.adh9165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nutrient starvation of beneficial bacteria helps them colonize the human gut.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine; New Haven, CT, USA
| | - Weiwei Han
- Department of Microbial Pathogenesis, Yale School of Medicine; New Haven, CT, USA
| | - Emilia Krypotou
- Department of Microbial Pathogenesis, Yale School of Medicine; New Haven, CT, USA
| |
Collapse
|
29
|
Alassaf M, Rajan A. Diet-induced glial insulin resistance impairs the clearance of neuronal debris in Drosophila brain. PLoS Biol 2023; 21:e3002359. [PMID: 37934726 PMCID: PMC10629620 DOI: 10.1371/journal.pbio.3002359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure down-regulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial Draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and Draper expression. Significantly, we show that genetically stimulating phosphoinositide 3-kinase (Pi3k), a downstream effector of insulin receptor (IR) signaling, rescues high-sugar diet (HSD)-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.
Collapse
Affiliation(s)
- Mroj Alassaf
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| |
Collapse
|
30
|
Nüsken KD, Nüsken E. Molecular effects of dietary interventions-A clinical perspective. Acta Physiol (Oxf) 2023; 239:e14050. [PMID: 37755122 DOI: 10.1111/apha.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Affiliation(s)
- Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
31
|
Dung NT, Susukida T, Ucche S, He K, Sasaki SI, Hayashi R, Hayakawa Y. Calorie Restriction Impairs Anti-Tumor Immune Responses in an Immunogenic Preclinical Cancer Model. Nutrients 2023; 15:3638. [PMID: 37630828 PMCID: PMC10458233 DOI: 10.3390/nu15163638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Although the important role of dietary energy intake in regulating both cancer progression and host immunity has been widely recognized, it remains unclear whether dietary calorie restriction (CR) has any impact on anti-tumor immune responses. (2) Methods: Using an immunogenic B16 melanoma cell expressing ovalbumin (B16-OVA), we examined the effect of the CR diet on B16-OVA tumor growth and host immune responses. To further test whether the CR diet affects the efficacy of cancer immunotherapy, we examined the effect of CR against anti-PD-1 monoclonal antibody (anti-PD-1 Ab) treatment. (3) Results: The CR diet significantly slowed down the tumor growth of B16-OVA without affecting both CD4+ and CD8+ T cell infiltration into the tumor. Although in vivo depletion of CD8+ T cells facilitated B16-OVA tumor growth in the control diet group, there was no significant change in the tumor growth in the CR diet group with or without CD8+ T cell-depletion. Anti-PD-1 Ab treatment lost its efficacy to suppress tumor growth along with the activation and metabolic shift of CD8+ T cells under CR condition. (4) Conclusions: Our present results suggest that a physical condition restricted in energy intake in cancer patients may impair CD8+ T cell immune surveillance and the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Nguyen Tien Dung
- Department of Medical Oncology, Toyama University Hospital, University of Toyama, Toyama 930-0194, Japan; (N.T.D.); (R.H.)
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan; (T.S.); (S.U.); (K.H.); (S.-i.S.)
| | - Takeshi Susukida
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan; (T.S.); (S.U.); (K.H.); (S.-i.S.)
| | - Sisca Ucche
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan; (T.S.); (S.U.); (K.H.); (S.-i.S.)
| | - Ka He
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan; (T.S.); (S.U.); (K.H.); (S.-i.S.)
| | - So-ichiro Sasaki
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan; (T.S.); (S.U.); (K.H.); (S.-i.S.)
| | - Ryuji Hayashi
- Department of Medical Oncology, Toyama University Hospital, University of Toyama, Toyama 930-0194, Japan; (N.T.D.); (R.H.)
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan; (T.S.); (S.U.); (K.H.); (S.-i.S.)
| |
Collapse
|