1
|
Delamare H, Tarantola A, Thellier M, Calba C, Gaget O, Consigny PH, Simard F, Manguin S, Brottet E, Paty MC, Houze S, De Valk H, Noël H. Locally acquired malaria: a retrospective analysis of long-term surveillance data, European France, 1995 to 2022. Euro Surveill 2024; 29:2400133. [PMID: 39391994 PMCID: PMC11484917 DOI: 10.2807/1560-7917.es.2024.29.41.2400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 10/12/2024] Open
Abstract
BackgroundIn European France, the bulk of malaria cases are travel-related, and only locally acquired cases are notifiable to assess any risk of re-emergence.AimsWe aimed to contribute to assessing the health impact of locally acquired malaria and the potential of malaria re-emergence in European France by documenting modes of transmission of locally acquired malaria, the Plasmodium species involved and their incidence trends.MethodsWe retrospectively analysed surveillance and case investigation data on locally acquired malaria from 1995 to 2022. We classified cases by most likely mode of transmission using a classification derived from the European Centre for Disease Prevention and Control. A descriptive analysis was conducted to identify spatial and temporal patterns of cases.ResultsFrom 1995 to 2022, European France reported 117 locally acquired malaria cases, mostly due to Plasmodium falciparum (88%) and reported in Île-de-France (54%), Paris Region. Cases were classified as Odyssean malaria (n = 51), induced malaria (n = 36), cryptic malaria (n = 27) and introduced malaria (n = 3). Among the 117 patients, 102 (93%) were hospitalised, 24 (22%) had severe malaria and seven (7%) died.ConclusionLocally acquired malaria remains infrequent in European France, with four reported cases per year since 1995. However, with the recent increasing trend in Odyssean malaria and climate change, the risk of re-emergence in non-endemic countries should be monitored, particularly in areas with autochthonous competent vectors. The vital risk of delayed diagnosis should make physicians consider locally acquired malaria in all patients with unexplained fever, especially when thrombocytopenia is present, even without travel history.
Collapse
Affiliation(s)
- Hugues Delamare
- Santé publique France, Direction des maladies infectieuses, Saint-Maurice, France
| | - Arnaud Tarantola
- Santé publique France - Île-de-France, Direction des régions, Saint-Maurice, France
| | - Marc Thellier
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France
- Assistance Publique des Hôpitaux de Paris (AP-HP), Centre National de Référence du Paludisme, Paris, France
| | - Clémentine Calba
- Santé publique France - Provence-Alpes-Côte d'Azur, Direction des régions, Marseille, France
| | - Olivier Gaget
- Agence régionale de santé Auvergne-Rhône-Alpes, Lyon, France
| | | | - Frederic Simard
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Sylvie Manguin
- HSM, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Elise Brottet
- Santé publique France - Auvergne-Rhône-Alpes, Direction des régions, Lyon, France
| | - Marie-Claire Paty
- Santé publique France, Direction des maladies infectieuses, Saint-Maurice, France
| | - Sandrine Houze
- Assistance Publique des Hôpitaux de Paris (AP-HP), Laboratoire de Mycologie et Parasitologie, Hôpital Bichat Claude Bernard, Paris, France
- Assistance Publique des Hôpitaux de Paris (AP-HP), Centre National de Référence du Paludisme, Paris, France
| | - Henriette De Valk
- Santé publique France, Direction des maladies infectieuses, Saint-Maurice, France
| | - Harold Noël
- Santé publique France, Direction des maladies infectieuses, Saint-Maurice, France
| |
Collapse
|
2
|
Kronen J, Leuchner M, Küpper T. Zika and Chikungunya in Europe 2100 - A GIS based model for risk estimation. Travel Med Infect Dis 2024; 60:102737. [PMID: 38996856 DOI: 10.1016/j.tmaid.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/27/2023] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND The spread of vector-borne infectious diseases is determined, among other things, by temperature. Thus, climate change will have an influence on their global distribution. In the future, Europe will approach the temperature optimum for the transmission of ZIKV and CHIKV. Climate scenarios and climate models can be used to depict future climatic changes and to draw conclusions about future risk areas for vector-borne infectious diseases. METHODS Based on the RCP 4.5 and RCP 8.5 climate scenarios, a geospatial analysis was carried out for the future temperature suitability of ZIKV and CHIKV in Europe. The results were presented in maps and the percentage of the affected areas calculated. RESULTS Due to rising temperatures, the risk areas for transmission of ZIKV and CHIKV spread in both RCP scenarios. For CHIKV transmission, Spain, Portugal, the Mediterranean coast and areas near the Black Sea are mainly affected. Due to high temperatures, large areas throughout Europe are at risk for ZIKV and CHIKV transmission. CONCLUSION Temperature is only one of many factors influencing the spread of vector-borne infectious diseases. Nevertheless, the representation of risk areas on the basis of climate scenarios allows an assessment of future risk development. Monitoring and adaptation strategies are indispensable for coping with and containing possible future autochthonous transmissions and epidemics in Europe.
Collapse
Affiliation(s)
- J Kronen
- Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, Aachen, Germany.
| | - M Leuchner
- Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, Aachen, Germany
| | - T Küpper
- Inst. of Occupational, Social & Environmental Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Michel M, Skourtanioti E, Pierini F, Guevara EK, Mötsch A, Kocher A, Barquera R, Bianco RA, Carlhoff S, Coppola Bove L, Freilich S, Giffin K, Hermes T, Hiß A, Knolle F, Nelson EA, Neumann GU, Papac L, Penske S, Rohrlach AB, Salem N, Semerau L, Villalba-Mouco V, Abadie I, Aldenderfer M, Beckett JF, Brown M, Campus FGR, Chenghwa T, Cruz Berrocal M, Damašek L, Duffett Carlson KS, Durand R, Ernée M, Fântăneanu C, Frenzel H, García Atiénzar G, Guillén S, Hsieh E, Karwowski M, Kelvin D, Kelvin N, Khokhlov A, Kinaston RL, Korolev A, Krettek KL, Küßner M, Lai L, Look C, Majander K, Mandl K, Mazzarello V, McCormick M, de Miguel Ibáñez P, Murphy R, Németh RE, Nordqvist K, Novotny F, Obenaus M, Olmo-Enciso L, Onkamo P, Orschiedt J, Patrushev V, Peltola S, Romero A, Rubino S, Sajantila A, Salazar-García DC, Serrano E, Shaydullaev S, Sias E, Šlaus M, Stančo L, Swanston T, Teschler-Nicola M, Valentin F, Van de Vijver K, Varney TL, Vigil-Escalera Guirado A, Waters CK, Weiss-Krejci E, Winter E, Lamnidis TC, Prüfer K, Nägele K, Spyrou M, Schiffels S, Stockhammer PW, Haak W, Posth C, Warinner C, Bos KI, Herbig A, Krause J. Ancient Plasmodium genomes shed light on the history of human malaria. Nature 2024; 631:125-133. [PMID: 38867050 PMCID: PMC11222158 DOI: 10.1038/s41586-024-07546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia BCE, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.
Collapse
MESH Headings
- Female
- Humans
- Male
- Altitude
- Americas/epidemiology
- Asia/epidemiology
- Biological Evolution
- Disease Resistance/genetics
- DNA, Ancient/analysis
- Europe/epidemiology
- Genome, Mitochondrial/genetics
- Genome, Protozoan/genetics
- History, Ancient
- Malaria/parasitology
- Malaria/history
- Malaria/transmission
- Malaria/epidemiology
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/history
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/transmission
- Malaria, Vivax/epidemiology
- Malaria, Vivax/history
- Malaria, Vivax/parasitology
- Malaria, Vivax/transmission
- Plasmodium/genetics
- Plasmodium/classification
- Plasmodium falciparum/genetics
- Plasmodium falciparum/isolation & purification
- Plasmodium malariae/genetics
- Plasmodium malariae/isolation & purification
- Plasmodium vivax/genetics
- Plasmodium vivax/isolation & purification
Collapse
Affiliation(s)
- Megan Michel
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, .
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Federica Pierini
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Evelyn K Guevara
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Angela Mötsch
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Arthur Kocher
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Raffaela A Bianco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Selina Carlhoff
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lorenza Coppola Bove
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, Granada, Spain
| | - Suzanne Freilich
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Karen Giffin
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Taylor Hermes
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of Arkansas, Fayetteville, AR, USA
| | - Alina Hiß
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Florian Knolle
- Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Jena, Germany
| | - Elizabeth A Nelson
- Microbial Palaeogenomics Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Luka Papac
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sandra Penske
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia
- Adelaide Data Science Centre, University of Adelaide, Adelaide, Australia
| | - Nada Salem
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Lena Semerau
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, IUCA-Aragosaurus, Universitity of Zaragoza, Zaragoza, Spain
| | - Isabelle Abadie
- Inrap - Institut national de recherches archéologiques préventives, Paris, France
- Centre Michel de Boüard, Centre de recherches archéologiques et historiques anciennes et médiévales, Université de Caen Normandie, Caen, France
| | - Mark Aldenderfer
- Department of Anthropology and Heritage Studies, University of California, Merced, Merced, CA, USA
| | | | - Matthew Brown
- Sociology and Anthropology Department, Farmingdale State College, Farmingdale, NY, USA
| | - Franco G R Campus
- Department of History, Human Sciences, and Education, University of Sassari, Sassari, Italy
| | - Tsang Chenghwa
- Institute of Anthropology, National Tsing Hua University, Hsinchu, Taiwan
| | - María Cruz Berrocal
- Institute of Heritage Sciences (INCIPIT), Spanish National Research Council (CSIC), Santiago de Compostela, Spain
| | - Ladislav Damašek
- Institute of Classical Archaeology, Faculty of Arts, Charles University, Prague, Czech Republic
| | | | - Raphaël Durand
- Service d'archéologie préventive Bourges plus, Bourges, France
- UMR 5199 PACEA, Université de Bordeaux, Pessac Cedex, France
| | - Michal Ernée
- Department of Prehistoric Archaeology, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Hannah Frenzel
- Anatomy Institute, University of Leipzig, Leipzig, Germany
| | - Gabriel García Atiénzar
- Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico, Universidad de Alicante, San Vicente del Raspeig (Alicante), Spain
| | | | - Ellen Hsieh
- Institute of Anthropology, National Tsing Hua University, Hsinchu, Taiwan
| | - Maciej Karwowski
- Institut für Urgeschichte und Historische Archäologie, University of Vienna, Vienna, Austria
| | - David Kelvin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nikki Kelvin
- Division of Ancient Pathogens, BioForge Canada Limited, Halifax, Nove Scotia, Canada
| | - Alexander Khokhlov
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Rebecca L Kinaston
- BioArch South, Waitati, New Zealand
- Griffith Centre for Social and Cultural Studies, Griffith University, Nathan, Queensland, Australia
| | - Arkadii Korolev
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Kim-Louise Krettek
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Mario Küßner
- Thuringian State Office for Heritage Management and Archaeology, Weimar, Germany
| | - Luca Lai
- Department of Anthropology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Cory Look
- Sociology and Anthropology Department, Farmingdale State College, Farmingdale, NY, USA
| | - Kerttu Majander
- Department of Environmental Science, Integrative Prehistory and Archaeological Science, University of Basel, Basel, Switzerland
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Michael McCormick
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Initiative for the Science of the Human Past at Harvard, Department of History, Harvard University, Cambridge, MA, USA
| | - Patxuka de Miguel Ibáñez
- Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico, Universidad de Alicante, San Vicente del Raspeig (Alicante), Spain
- Servicio de Obstetricia, Hospital Virgen de los Lirios-Fisabio, Alcoi, Spain
- Sección de Antropología, Sociedad de Ciencias Aranzadi, Donostia - San Sebastián, Spain
| | - Reg Murphy
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Kerkko Nordqvist
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
| | - Friederike Novotny
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Martin Obenaus
- Silva Nortica Archäologische Dienstleistungen, Thunau am Kamp, Austria
| | - Lauro Olmo-Enciso
- Department of History, University of Alcalá, Alcalá de Henares, Spain
| | - Päivi Onkamo
- Department of Biology, University of Turku, Turku, Finland
| | - Jörg Orschiedt
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Halle, Germany
- Institut für Prähistorische Archäologie, Freie Universität Berlin, Berlin, Germany
| | - Valerii Patrushev
- Centre of Archaeological and Ethnographical Investigation, Mari State University, Yoshkar-Ola, Russia
| | - Sanni Peltola
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alejandro Romero
- Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico, Universidad de Alicante, San Vicente del Raspeig (Alicante), Spain
- Departamento de Biotecnología, Universidad de Alicante, San Vicente del Raspeig, Spain
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Domingo C Salazar-García
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, Valencia, Spain
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Elena Serrano
- Instituto Internacional de Investigaciones Prehistóricas, Universidad de Cantabria, Santander, Spain
- TAR Arqueología, Madrid, Spain
| | | | - Emanuela Sias
- Centro Studi sulla Civiltà del Mare, Stintino, Italy
| | - Mario Šlaus
- Anthropological Center, Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Ladislav Stančo
- Institute of Classical Archaeology, Faculty of Arts, Charles University, Prague, Czech Republic
| | - Treena Swanston
- Department of Anthropology, Economics and Political Science, MacEwan University, Edmonton, Alberta, Canada
| | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | | | - Katrien Van de Vijver
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Center for Archaeological Sciences, University of Leuven, Leuven, Belgium
- Dienst Archeologie - Stad Mechelen, Mechelen, Belgium
| | - Tamara L Varney
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
| | | | - Christopher K Waters
- Heritage Department, National Parks of Antigua and Barbuda, St. Paul's Parish, Antigua and Barbuda
| | - Estella Weiss-Krejci
- Austrian Archaeological Institute, Austrian Academy of Sciences, Vienna, Austria
- Institut für Ur- und Frühgeschichte, Heidelberg University, Heidelberg, Germany
- Department of Social and Cultural Anthropology, University of Vienna, Vienna, Austria
| | - Eduard Winter
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Thiseas C Lamnidis
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Maria Spyrou
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Munich, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Department of Anthropology, Harvard University, Cambridge, MA, USA
| | - Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, .
| |
Collapse
|
4
|
Trzebny A, Nahimova O, Dabert M. High temperatures and low humidity promote the occurrence of microsporidians (Microsporidia) in mosquitoes (Culicidae). Parasit Vectors 2024; 17:187. [PMID: 38605410 PMCID: PMC11008030 DOI: 10.1186/s13071-024-06254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND In the context of climate change, a growing concern is that vector-pathogen or host-parasite interactions may be correlated with climatic factors, especially increasing temperatures. In the present study, we used a mosquito-microsporidian model to determine the impact of environmental factors such as temperature, humidity, wind and rainfall on the occurrence rates of opportunistic obligate microparasites (Microsporidia) in hosts from a family that includes important disease vectors (Culicidae). METHODS In our study, 3000 adult mosquitoes collected from the field over 3 years were analysed. Mosquitoes and microsporidia were identified using PCR and sequencing of the hypervariable V5 region of the small subunit ribosomal RNA gene and a shortened fragment of the cytochrome c oxidase subunit I gene, respectively. RESULTS DNA metabarcoding was used to identify nine mosquito species, all of which were hosts of 12 microsporidian species. The prevalence of microsporidian DNA across all mosquito samples was 34.6%. Microsporidian prevalence in mosquitoes was more frequent during warm months (> 19 °C; humidity < 65%), as was the co-occurrence of two or three microsporidian species in a single host individual. During warm months, microsporidian occurrence was noted 1.6-fold more often than during the cold periods. Among the microsporidians found in the mosquitoes, five (representing the genera Enterocytospora, Vairimorpha and Microsporidium) were positively correlated with an increase in temperature, whereas one (Hazardia sp.) was significantly correlated with a decrease in temperature. Threefold more microsporidian co-occurrences were recorded in the warm months than in the cold months. CONCLUSIONS These results suggest that the susceptibility of mosquitoes to parasite occurrence is primarily determined by environmental conditions, such as, for example, temperatures > 19 °C and humidity not exceeding 62%. Collectively, our data provide a better understanding of the effects of the environment on microsporidian-mosquito interactions.
Collapse
Affiliation(s)
- Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Olena Nahimova
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Genetics and Cytology Department, School of Biology, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
5
|
Nelder MP, Schats R, Poinar HN, Cooke A, Brickley MB. Pathogen prospecting of museums: Reconstructing malaria epidemiology. Proc Natl Acad Sci U S A 2024; 121:e2310859121. [PMID: 38527214 PMCID: PMC11009618 DOI: 10.1073/pnas.2310859121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Malaria is a disease of global significance. Ongoing changes to the earth's climate, antimalarial resistance, insecticide resistance, and socioeconomic decline test the resilience of malaria prevention programs. Museum insect specimens present an untapped resource for studying vector-borne pathogens, spurring the question: Do historical mosquito collections contain Plasmodium DNA, and, if so, can museum specimens be used to reconstruct the historical epidemiology of malaria? In this Perspective, we explore molecular techniques practical to pathogen prospecting, which, more broadly, we define as the science of screening entomological museum specimens for human, animal, or plant pathogens. Historical DNA and pathogen prospecting provide a means of describing the coevolution of human, vector, and parasite, informing the development of insecticides, diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Mark P. Nelder
- Enteric, Zoonotic and Vector-Borne Diseases, Health Protection, Public Health Ontario, Toronto, ONM5G 1M1, Canada
| | - Rachel Schats
- Laboratory for Human Osteoarchaeology, Faculty of Archaeology, Leiden University, 2333 CCLeiden, The Netherlands
| | - Hendrik N. Poinar
- Department of Anthropology, McMaster University, Hamilton, ONL8S 4L9, Canada
- Department of Biochemistry, McMaster University, Hamilton, ONL8S 4L9, Canada
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ONL8S 4L9, Canada
| | - Amanda Cooke
- Department of Anthropology, McMaster University, Hamilton, ONL8S 4L9, Canada
| | - Megan B. Brickley
- Department of Anthropology, McMaster University, Hamilton, ONL8S 4L9, Canada
| |
Collapse
|
6
|
Leys M, Bottieau E, Rebolledo J, Martin C. Imported malaria: A 20-year retrospective study from a tertiary public hospital in Brussels, Belgium. Infect Dis Now 2024; 54:104856. [PMID: 38311002 DOI: 10.1016/j.idnow.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Malaria continues to cause a significant number of infections in non-endemic regions. In this paper, we describe the epidemiological trend and morbidity of imported malaria diagnosed in a tertiary hospital in Brussels. METHODS We conducted a retrospective study describing a cohort of malaria episodes (in- and outpatients) at Centre Hospitalier Universitaire Saint-Pierre from 1998 to 2017. Epidemiological and clinical data were collected by reviewing medical files. RESULTS A total of 1011 malaria episodes were analyzed. Median age at diagnosis was 35 years, and 66 % of patients were men (672/1011). Malaria cases significantly increased over the two decades (from 17 in 1998 to 79 in 2017). Plasmodium falciparum malaria was most often diagnosed (846/935, 89 %), primarily from Central (530/935, 57 %) and West Africa (324/935, 35 %). Many cases (383/764, 50 %) were diagnosed in patients "visiting friends and relatives". HIV-infected and other immunocompromised patients were significantly more likely to present with severe malaria (at least one severity criteria as defined by the WHO) compared to other patients (24/57, 42 % vs 138/732, 19 %, p < 0.01 and 15/21, 71 % vs 147/767, 19 %, p < 0.001). Severe malaria was diagnosed in 16.9 % and the mortality rate was low (5/1011, 0.5 %). CONCLUSION Imported malaria increased over the years with a large, albeit stable number of cases diagnosed in patients visiting friends and relatives. These findings, along with the high rate of severe malaria in HIV and immunocompromised patients, underscore an urgent need for strengthened malaria surveillance and targeted preventive interventions.
Collapse
Affiliation(s)
- Mikaël Leys
- Université Libre de Bruxelles (ULB), CHU Saint-Pierre, Infectious Diseases Department, Brussels, Belgium
| | - Emmanuel Bottieau
- Department of Infectious Diseases, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Charlotte Martin
- Université Libre de Bruxelles (ULB), CHU Saint-Pierre, Infectious Diseases Department, Brussels, Belgium.
| |
Collapse
|
7
|
Kessel J, Rosanas-Urgell A, Dingwerth T, Goetsch U, Haller J, Huits R, Kattenberg JH, Meinecke A, Monsieurs P, Sroka M, Witte T, Wolf T. Investigation of an airport-associated cluster of falciparum malaria in Frankfurt, Germany, 2022. Euro Surveill 2024; 29:2300298. [PMID: 38304950 PMCID: PMC10835754 DOI: 10.2807/1560-7917.es.2024.29.5.2300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/19/2023] [Indexed: 02/03/2024] Open
Abstract
Airport malaria is uncommon but increasing in Europe and often difficult to diagnose. We describe the clinical, epidemiological and environmental investigations of a cluster of airport malaria cases and measures taken in response. Three Frankfurt International Airport employees without travel histories to malaria-endemic areas were diagnosed with Plasmodium falciparum malaria in Germany in 2022. Two cases were diagnosed within 1 week, and the third one after 10 weeks. Two cases had severe disease, all three recovered fully. The cases worked in separate areas and no specific location for the transmissions could be identified. No additional cases were detected among airport employees. In June and July, direct flights from Equatorial Guinea, Nigeria and Angola and one parcel originating in Ghana arrived at Frankfurt airport. No vector-competent mosquitoes could be trapped to identify the source of the outbreak. Whole genome sequencing of P. falciparum genomes showed a high genetic relatedness between samples of the three cases and suggested the geographical origin closest to Ghana. A diagnosis of airport malaria should prompt appropriate and comprehensive outbreak investigations to identify the source and to prevent severe forms of falciparum malaria.
Collapse
Affiliation(s)
- Johanna Kessel
- Goethe University, University Hospital Frankfurt, Department of Infectious Diseases, Frankfurt, Germany
| | - Anna Rosanas-Urgell
- Unit of Malariology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tobias Dingwerth
- Medical Center Frankfurt, Medical Services & Health Management Lufthansa Group, Frankfurt, Germany
| | - Udo Goetsch
- Municipal Health Protection Authority, Frankfurt, Germany
| | - Jonas Haller
- Goethe University, Department of Integrative parasitology and animal physiology, Frankfurt, Germany
- Municipal Health Protection Authority, Frankfurt, Germany
| | - Ralph Huits
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Johanna H Kattenberg
- Unit of Malariology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Anna Meinecke
- Hannover Medical School, Department of Rheumatology and Immunology, Hannover, Germany
| | - Pieter Monsieurs
- Unit of Malariology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Torsten Witte
- Hannover Medical School, Department of Rheumatology and Immunology, Hannover, Germany
| | - Timo Wolf
- Goethe University, University Hospital Frankfurt, Department of Infectious Diseases, Frankfurt, Germany
| |
Collapse
|
8
|
Lu G, Zhang D, Chen J, Cao Y, Chai L, Liu K, Chong Z, Zhang Y, Lu Y, Heuschen AK, Müller O, Zhu G, Cao J. Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review. Malar J 2023; 22:175. [PMID: 37280626 DOI: 10.1186/s12936-023-04604-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. METHODS A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle-Ottawa Scale (aNOS). RESULTS A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. CONCLUSIONS Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models.
Collapse
Affiliation(s)
- Guangyu Lu
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, 225007, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China.
| | - Dongying Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juan Chen
- School of Nursing, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yuanyuan Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Liying Chai
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, 225007, China
| | - Kaixuan Liu
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, 225007, China
| | - Zeying Chong
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, 225007, China
| | - Yuying Zhang
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, 225007, China
| | - Yan Lu
- Nanjing Health and Customs Quarantine Office, Nanjing, China
| | | | - Olaf Müller
- Institute of Global Health, Medical School, Ruprecht-Karls-University, Heidelberg, Germany
| | - Guoding Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.
| | - Jun Cao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.
| |
Collapse
|
9
|
Boucheikhchoukh M, Lafri I, Chamssidine Combo A, Regalado C, Barthés C, Leulmi H. Assessing the Effectiveness of Qista Baited Traps in Capturing Mosquito Vectors of Diseases in the Camargue Region (France) and Investigating Their Diversity. Animals (Basel) 2023; 13:1809. [PMID: 37409687 DOI: 10.3390/ani13111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Nuisance, allergy, and vector role: mosquitoes are responsible for numerous inconveniences. Several strategies have been employed to fight against this confirmed vector. To record the diversity of mosquito vectors in Camargue (France) and assess the effectiveness of the Qista trap, six BAMs were deployed as a belt barrier to protect the Espeyran Castle (Saint-Gilles, Camargue). Prior to evaluating the reduction in the nuisance rate, recovery nets from the traps and human landing catches (HLC) were utilized twice a week in the treated and control areas. Overall, 85,600 mosquitoes were captured, belonging to eleven species, namely Aedes albopictus, Aedes caspius, Aedes detritus, Aedes dorsalis, Aedes rossicus, Aedes vexans, Anopheles maculipennis, Culex pipiens, Culex modestus, Culiseta annulata and Culiseta longiareolata. The six BAM devices trapped 84,461 mosquitoes. The average capture rate per BAM is 76.92 mosquitoes per day. The rate of nuisance has decreased from 4.33 ± 2.88 before the deployment to 1.59 ± 2.77 after BAM implantation. The Qista BAM trap seems to be an excellent tool for reducing the nuisance rate and may help researchers to optimize trapping methods by obtaining more significant sample sizes. It may also allow the updating of the host-seeking mosquito species' reported biodiversity in the south of France.
Collapse
Affiliation(s)
- Mehdi Boucheikhchoukh
- Department of Veterinary Sciences, Chadli Bendjedid El Tarf University, PB 73, El-Tarf 36000, Algeria
| | - Ismail Lafri
- Department of Veterinary Sciences, Blida 1 University, Blida 09000, Algeria
| | | | - Christophe Regalado
- Department of "Licence Sciences et Technologies", Université Grenoble Alpes, 480 Avenue Centrale Domaine Universitaire, 38400 Saint-Martin-d'Hères, France
- Department of "Génie Biologique", Aix-Marseille Université, 19 Boulevard Saint Jean Chrysostome, 04000 Digne les Bains, France
| | - César Barthés
- Qista Techno BAM, 130 Lubéron Avenue, 13560 Sénas, France
- Department of "Génie Biologique", Université de Caen Basse Normandie-Campus 2, Boulevard du Maréchal Juin, CEDEX 5, 14032 Caen, France
| | - Hamza Leulmi
- Qista Techno BAM, 130 Lubéron Avenue, 13560 Sénas, France
| |
Collapse
|
10
|
Ferrando-Bernal M. Ancient DNA suggests anaemia and low bone mineral density as the cause for porotic hyperostosis in ancient individuals. Sci Rep 2023; 13:6968. [PMID: 37117261 PMCID: PMC10147686 DOI: 10.1038/s41598-023-33405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Porotic hyperostosis (PH) is a disease that had high prevalence during the Neolithic. Several hypotheses have been suggested to explain the origin of the disease, such as an iron deficiency diet, low B12 intake, malaria caused by Plasmodium spp., low haemoglobin levels or low vitamin D levels. None of these hypotheses have been tested genetically. Here, I calculated different genetic scores to test each hypothesis. Additionally, I calculated a genetic score of bone mineral density as it is a phenotype that seems to be selected in ancient Europeans. I apply these genetic scores on 80 ancient samples, 33 with diagnosed PH. The results seem to suggest anaemia and low bone mineral density as the main cause for this disease. Additionally, Neolithic individuals show the lowest genetic risk score for bone mineral density of all other periods tested here, which may explain the highest prevalence of the porotic hyperostosis during this age.
Collapse
|
11
|
Microsporidians (Microsporidia) parasitic on mosquitoes (Culicidae) in central Europe are often multi-host species. J Invertebr Pathol 2023; 197:107873. [PMID: 36577478 DOI: 10.1016/j.jip.2022.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
Microsporidians (Microsporidia) are a diverse group of obligate and intracellular parasites of eukaryotes. There is evidence that the real species diversity in the phylum could be greatly underestimated, especially for microsporidians parasitic on invertebrates. Mosquitoes (Culicidae) are among very important microsporidian host groups. However, to date, no extensive survey on the prevalence of microsporidians in European mosquitoes has been performed. Here, we used mosquitoes collected in west-central Poland and a metabarcoding approach to examine the prevalence and diversity of microsporidian species among European mosquitoes. We found that up to one-third of mosquitoes in Europe may be infected with at least 13 microsporidian species belonging to the genera Amblyospora, Hazardia, Encephalitozoon, Enterocytospora, and Nosema and the holding genus Microsporidium. The lack of a difference in microsporidian prevalence between mosquito sexes implies that other factors, e.g., temperature or humidity, affect microsporidian occurrence in adult mosquitoes. Each microsporidian species was found in at least three mosquito species, which suggests that these microsporidians are polyxenic rather than monoxenic parasites. The co-occurrence of at least two different microsporidian species was found in 3.6% of host individuals. The abundance of microsporidian DNA sequences suggests interactions between co-occurring parasites; however, these results should be confirmed by microscopic and quantitative methods. In addition, further histological research is required to describe Microsporidium sp. PL01 or match its DNA to that of an already described species.
Collapse
|
12
|
Sustainable Radical Cure of the Latent Malarias. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
13
|
Neira M, Erguler K, Ahmady-Birgani H, Al-Hmoud ND, Fears R, Gogos C, Hobbhahn N, Koliou M, Kostrikis LG, Lelieveld J, Majeed A, Paz S, Rudich Y, Saad-Hussein A, Shaheen M, Tobias A, Christophides G. Climate change and human health in the Eastern Mediterranean and Middle East: Literature review, research priorities and policy suggestions. ENVIRONMENTAL RESEARCH 2023; 216:114537. [PMID: 36273599 PMCID: PMC9729515 DOI: 10.1016/j.envres.2022.114537] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 05/17/2023]
Abstract
Human health is linked to climatic factors in complex ways, and climate change can have profound direct and indirect impacts on the health status of any given region. Susceptibility to climate change is modulated by biological, ecological and socio-political factors such as age, gender, geographic location, socio-economic status, occupation, health status and housing conditions, among other. In the Eastern Mediterranean and Middle East (EMME), climatic factors known to affect human health include extreme heat, water shortages and air pollution. Furthermore, the epidemiology of vector-borne diseases (VBDs) and the health consequences of population displacement are also influenced by climate change in this region. To inform future policies for adaptation and mitigation measures, and based on an extensive review of the available knowledge, we recommend several research priorities for the region. These include the generation of more empirical evidence on exposure-response functions involving climate change and specific health outcomes, the development of appropriate methodologies to evaluate the physical and psychological effects of climate change on vulnerable populations, determining how climate change alters the ecological determinants of human health, improving our understanding of the effects of long-term exposure to heat stress and air pollution, and evaluating the interactions between adaptation and mitigation strategies. Because national boundaries do not limit most climate-related factors expected to impact human health, we propose that adaptation/mitigation policies must have a regional scope, and therefore require collaborative efforts among EMME nations. Policy suggestions include a decisive region-wide decarbonisation, the integration of environmentally driven morbidity and mortality data throughout the region, advancing the development and widespread use of affordable technologies for the production and management of drinking water by non-traditional means, the development of comprehensive strategies to improve the health status of displaced populations, and fostering regional networks for monitoring and controlling the spread of infectious diseases and disease vectors.
Collapse
Affiliation(s)
- Marco Neira
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus.
| | - Kamil Erguler
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | | | | | - Robin Fears
- European Academies Science Advisory Council (EASAC), Halle (Saale), Germany
| | | | - Nina Hobbhahn
- European Academies Science Advisory Council (EASAC), Halle (Saale), Germany
| | - Maria Koliou
- University of Cyprus Medical School, Nicosia, Cyprus
| | - Leondios G Kostrikis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus; Cyprus Academy of Sciences, Letters, and Arts, Nicosia, Cyprus
| | - Jos Lelieveld
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus; Max Planck Institute for Chemistry, Mainz, Germany
| | - Azeem Majeed
- Department of Primary Care & Public Health, Imperial College London, London, United Kingdom
| | - Shlomit Paz
- Department of Geography and Environmental Studies, University of Haifa, Haifa, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, The Weismann Institute of Science, Rehovot, Israel
| | - Amal Saad-Hussein
- Environment and Climate Change Research Institute, National Research Centre, Cairo, Egypt
| | - Mohammed Shaheen
- Damour for Community Development - Research Department, Palestine
| | - Aurelio Tobias
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - George Christophides
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
14
|
Malaria parasite prevalence in Sub-Saharan African migrants screened in Sweden: a cross-sectional study. Lancet Reg Health Eur 2023; 27:100581. [PMID: 37069854 PMCID: PMC10105256 DOI: 10.1016/j.lanepe.2022.100581] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Background Asymptomatic infections with malaria parasites are common in populations in endemic areas. These infections may persist in migrants after arrival in a non-endemic area. Screening to find and clear these infections is generally not implemented in non-endemic countries, despite a potential negative health impact. We performed a study to evaluate the Plasmodium parasite prevalence in migrants living in Sweden. Methods Adults and children born in Sub-Saharan Africa (SSA) were invited in the study between April 2019 and June 2022 at 10 different sites, mainly as part of the national Migrant Health Assessment Program in Stockholm and Västerås, Sweden. Rapid diagnostic tests (RDT) and real-time PCR were used to detect malaria parasites. Prevalence and test sensitivity were calculated with 95% confidence intervals (CI). Univariate and multivariable logistic regression were used to evaluate associations with PCR positivity. Findings In total, 789 individuals were screened for Plasmodium spp. of which 71 (9.0%) were positive by PCR and 18 (2.3%) also by RDT. When performed during the national screening program, 10.4% was PCR positive. A high prevalence was detected in migrants with Uganda as the country of last residence, 53/187 (28.3%), and in this group the prevalence was highest in children, 29/81 (35.8%). Among the PCR positive, 47/71 (66.2%) belonged to families with at least one other member testing positive (odds ratio [OR] 43.4 (95% CI 19.0-98.9), and the time lived in Sweden ranged between 6 and 386 days. Interpretation A high malaria parasite prevalence was found in migrants from SSA, particularly in children offered screening in Stockholm, Sweden during the study period. Awareness of asymptomatic malaria infection is needed and screening for malaria in migrants arriving from high endemic countries should be considered. Funding The Swedish Research Council, Stockholm County Council and Centre for Clinical Research, Västmanland, Sweden.
Collapse
|
15
|
Menegon M, Tomazatos A, Severini F, Raele DA, Lilja T, Werner D, Boccolini D, Toma L, Vasco I, Lühken R, Kampen H, Cafiero MA, Di Luca M. Molecular Characterization of Anopheles algeriensis Theobald, 1903 (Diptera: Culicidae) Populations from Europe. Pathogens 2022; 11:pathogens11090990. [PMID: 36145422 PMCID: PMC9505642 DOI: 10.3390/pathogens11090990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Anopheles algeriensis Theobald, 1903, considered a competent vector of Plasmodium parasites, is a mosquito species widely distributed in the Mediterranean area but rare in Northern and Central Europe. The disappearance of its suitable breeding sites in Italy is having a detrimental effect on the occurrence of this species once common along the Southern coasts and on the islands. Recently, molecular investigations have renewed interest in this species, highlighting a genetic heterogeneity among European populations. In this study, An. algeriensis populations from Italy, Germany, Romania, and Sweden were analyzed by molecular typing of the intergenic transcribed spacer 2 (ITS2). The mitochondrial cytochrome c oxidase subunit I (COI) was also analyzed from specimens collected in Southern Italy. With the aim of investigating the population structure of this species, the obtained data were compared to all publicly available ITS2 and COI sequences of An. algeriensis, adding specimens from Spain and Portugal. The analyses of both markers indicate a split between Iberian populations (Spain for ITS2 and Spain/Portugal for COI) and those from the rest of Europe, revealing two cryptic species. The analysis of the COI barcode revealed a third clade representing a cryptic species present in Danube Delta (Romania). The high levels of genetic divergence among the clades of An. algeriensis indicate that this taxon represents a species complex, potentially harboring several distinct cryptic species.
Collapse
Affiliation(s)
- Michela Menegon
- Dipartimento Malattie Infettive, Reparto Malattie Trasmesse da Vettori, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence:
| | - Alexandru Tomazatos
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Francesco Severini
- Dipartimento Malattie Infettive, Reparto Malattie Trasmesse da Vettori, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Donato Antonio Raele
- Laboratorio di Entomologia Sanitaria, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Tobias Lilja
- Department of Microbiology, National Veterinary Institute, 75189 Uppsala, Sweden
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Daniela Boccolini
- Dipartimento Malattie Infettive, Reparto Malattie Trasmesse da Vettori, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Luciano Toma
- Dipartimento Malattie Infettive, Reparto Malattie Trasmesse da Vettori, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ilaria Vasco
- Laboratorio di Entomologia Sanitaria, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Renke Lühken
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany
| | - Maria Assunta Cafiero
- Laboratorio di Entomologia Sanitaria, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Marco Di Luca
- Dipartimento Malattie Infettive, Reparto Malattie Trasmesse da Vettori, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
16
|
Romaszko J, Dragańska E, Jalali R, Cymes I, Glińska-Lewczuk K. Universal Climate Thermal Index as a prognostic tool in medical science in the context of climate change: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154492. [PMID: 35278561 DOI: 10.1016/j.scitotenv.2022.154492] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The assessment of the impact of meteorological factors on the epidemiology of various diseases and on human pathophysiology and physiology requires a comprehensive approach and new tools independent of currently occurring climate change. The thermal comfort index, i.e., Universal Climate Thermal Index (UTCI), is gaining more and more recognition from researchers interested in such assessments. This index facilitates the evaluation of the impact of cold stress and heat stress on the human organism and the assessment of the incidence of weather-related diseases. This work aims at identifying those areas of medical science for which the UTCI was applied for scientific research as well as its popularization among clinicians, epidemiologists, and specialists in public health management. This is a systematic review of literature found in Pubmed, Sciencedirect and Web of Science databases from which, consistent with PRISMA guidelines, original papers employing the UTCI in studies related to health, physiological parameters, and epidemiologic applications were extracted. Out of the total number of 367 papers identified in the databases, 33 original works were included in the analysis. The selected publications were analyzed in terms of determining the areas of medical science in which the UTCI was applied. The majority of studies were devoted to the broadly understood mortality, cardiac events, and emergency medicine. A significant disproportion between publications discussing heat stress and those utilizing the UTCI for its assessment was revealed.
Collapse
Affiliation(s)
- Jerzy Romaszko
- Department of Family Medicine and Infectious Diseases, School of Medicine, University of Warmia and Mazury in Olsztyn, Poland.
| | - Ewa Dragańska
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Poland
| | - Rakesh Jalali
- School of Medicine, Department of Emergency Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - Iwona Cymes
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Poland
| | | |
Collapse
|
17
|
Yin J, Yan H, Li M. Prompt and precise identification of various sources of infection in response to the prevention of malaria re-establishment in China. Infect Dis Poverty 2022; 11:45. [PMID: 35436964 PMCID: PMC9014402 DOI: 10.1186/s40249-022-00968-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Prompt and precise diagnosis of patients is an essential component of malaria control and elimination strategies, it is even more vital for the prevention of malaria re-establishment in the post elimination phase. After eliminating malaria in China, the strategy for prevention of malaria re-establishment was updated in a timely manner from the elimination strategy focusing on each case/focus to the prevention of re-establishment focusing on timely identification of the source of infection. However, there are numerous challenges, such as the persistent large number of imported malaria cases, the long-term threat of border malaria, unknown levels of asymptomatic infections and Plasmodium falciparum HRP2/3 gene deletions, and the continuous spreading of antimalarial drug resistance. Meanwhile, the detection capacity also need to be further improved to meet the timely detection of all sources of infection, otherwise it is bound to occur introduced malaria cases and malaria re-establishment in the presence of malaria vector mosquitoes. Therefore, it is necessary to continuously strengthen the malaria detection competency at all levels, promote the research and development on the malaria parasitological testing technologies, thus improving the timely detection of various sources of infection, and preventing the re-establishment of malaria.
Collapse
Affiliation(s)
- Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China.
| | - He Yan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Mei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| |
Collapse
|
18
|
High Blood Parasite Infection Rate and Low Fitness Suggest That Forest Water Bodies Comprise Ecological Traps for Pied Flycatchers. BIRDS 2022. [DOI: 10.3390/birds3020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Blood parasites are considered to have strong negative effects on host fitness. Negative fitness consequences may be associated with proximity to areas where blood parasite vectors reproduce. This study tested for relationships between haemosporidian infection prevalence, parasitemia, and fitness parameters of breeding Pied Flycatchers (Ficedula hypoleuca) at different distances from forest water bodies. Prevalence and parasitemias (the intensity of infection) of haemosporidians and vector abundance generally decreased with increasing distance from forest lakes, streams, and bogs. Fledgling numbers were lower, and their condition was worse in the vicinity of water bodies, compared with those located one kilometer away from lakes and streams. At the beginning of the breeding season, adult body mass was not related to distance to the nearest water body, whereas at the end of the breeding season body mass was significantly lower closer to water bodies. Forest areas around water bodies may represent ecological traps for Pied Flycatchers. Installing nest boxes in the vicinity of forest water bodies creates unintended ecological traps that may have conservation implications.
Collapse
|
19
|
Dorrucci M, Boccolini D, Bella A, Lucarelli C, D'Amato S, Caraglia A, Maraglino FP, Severini C, Gradoni L, Pezzotti P. Malaria surveillance system and Hospital Discharge Records: Assessing differences in Italy, 2011–2017 database analysis. Travel Med Infect Dis 2022; 48:102322. [DOI: 10.1016/j.tmaid.2022.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/17/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022]
|
20
|
Mwaiswelo RO, Kabuga H, Kweka EJ, Baraka V. Is it time for Africa to adopt primaquine in the era of malaria control and elimination? Trop Med Health 2022; 50:17. [PMID: 35216617 PMCID: PMC8874101 DOI: 10.1186/s41182-022-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Primaquine is a gametocytocidal drug known to significantly reduce malaria transmission. However, primaquine induces a dose-dependent acute hemolytic anemia (AHA) in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency that has led to a limited use of the drug especially in Africa where the condition is common. The World Health Organization (WHO) now recommends a single low dose (SLD) of primaquine (0.25 mg/kg) as P. falciparum gametocytocidal without the need for prior screening of G6PD status. Adoption and implementation of SLD primaquine in Africa may probably reduce malaria transmission, a pre-requisite for malaria elimination. This review therefore, focused on the safety of primaquine for control of malaria in Africa. The literature search was performed using online database Google Scholar, PubMed, HINARI, and Science Direct. Search terms used were “malaria”, “primaquine”, “safety”, “G6PD deficiency”, “large scale” or “mass administration”. Clinical trials in many African countries have shown SLD primaquine to be safe especially in a milder African G6PD A- variant. Likewise, large-scale primaquine administrations outside Africa involving hundreds of thousands to tenths of millions of participants and with severe variants of G6PD deficiency have also shown primaquine to be safe and well-tolerated. Fourteen deaths associated with primaquine have been reported globally over the past 6 decades, but none occurred following the administration of SLD primaquine. Available evidence shows that the WHO-recommended SLD primaquine dose added to effective schizonticides is safe and well-tolerated even in individuals with G6PD deficiency, and therefore, it can be safely used in the African population with the mildest G6PD A- variant. Sub-Saharan Africa contributes about 95% of global malaria cases and related deaths. Despite safety concerns adoption of SLD primaquine is needed to further reduce malaria transmission, an essential prerequisite for the elimination of the infection in Africa. Large scale administrations of primaquine for control and elimination of malaria have been implemented in other parts of the world where there are severe variants of G6PD deficiency, but only around 1% of the population had mild adverse effects. African G6PD A- is a milder variant of deficiency, and the hemolysis that occurs following a single 0.25 mg/kg primaquine administration in this group is usually mild and self-limiting. With proper planning and preparation for the management of adverse effects, administration of SLD primaquine plus effective schizonticides, in a form of mass drug administration or seasonal malaria chemoprevention can be used in Africa to reduce malaria transmission.
Collapse
Affiliation(s)
- Richard O Mwaiswelo
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, P.O Box 65300, Dar es Salaam, Tanzania.
| | - Hamis Kabuga
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, P.O Box 65300, Dar es Salaam, Tanzania
| | - Eliningaya J Kweka
- Department of Research, Tropical Pesticides Research Institute, P.O Box 3024, Arusha, Tanzania.,Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Vito Baraka
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania
| |
Collapse
|
21
|
Birnberg L, Climent-Sanz E, Codoñer FM, Busquets N. Microbiota Variation Across Life Stages of European Field-Caught Anopheles atroparvus and During Laboratory Colonization: New Insights for Malaria Research. Front Microbiol 2021; 12:775078. [PMID: 34899658 PMCID: PMC8652072 DOI: 10.3389/fmicb.2021.775078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 01/30/2023] Open
Abstract
The potential use of bacteria for developing novel vector control approaches has awakened new interests in the study of the microbiota associated with vector species. To set a baseline for future malaria research, a high-throughput sequencing of the bacterial 16S ribosomal gene V3-V4 region was used to profile the microbiota associated with late-instar larvae, newly emerged females, and wild-caught females of a sylvan Anopheles atroparvus population from a former malaria transmission area of Spain. Field-acquired microbiota was then assessed in non-blood-fed laboratory-reared females from the second, sixth, and 10th generations. Diversity analyses revealed that bacterial communities varied and clustered differently according to origin with sylvan larvae and newly emerged females distributing closer to laboratory-reared females than to their field counterparts. Inter-sample variation was mostly observed throughout the different developmental stages in the sylvan population. Larvae harbored the most diverse bacterial communities; wild-caught females, the poorest. In the transition from the sylvan environment to the first time point of laboratory breeding, a significant increase in diversity was observed, although this did decline under laboratory conditions. Despite diversity differences between wild-caught and laboratory-reared females, a substantial fraction of the bacterial communities was transferred through transstadial transmission and these persisted over 10 laboratory generations. Differentially abundant bacteria were mostly identified between breeding water and late-instar larvae, and in the transition from wild-caught to laboratory-reared females from the second generation. Our findings confirmed the key role of the breeding environment in shaping the microbiota of An. atroparvus. Gram-negative bacteria governed the microbiota of An. atroparvus with the prevalence of proteobacteria. Pantoea, Thorsellia, Serratia, Asaia, and Pseudomonas dominating the microbiota associated with wild-caught females, with the latter two governing the communities of laboratory-reared females. A core microbiota was identified with Pseudomonas and Serratia being the most abundant core genera shared by all sylvan and laboratory specimens. Overall, understanding the microbiota composition of An. atroparvus and how this varies throughout the mosquito life cycle and laboratory colonization paves the way when selecting potential bacterial candidates for use in microbiota-based intervention strategies against mosquito vectors, thereby improving our knowledge of laboratory-reared An. atroparvus mosquitoes for research purposes.
Collapse
Affiliation(s)
- Lotty Birnberg
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Barcelona, Spain
| | - Eric Climent-Sanz
- ADM-Biopolis, Parc Cientific Universitat de València, Paterna, Spain
| | | | - Núria Busquets
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Barcelona, Spain
| |
Collapse
|
22
|
Raele DA, Severini F, Boccolini D, Menegon M, Toma L, Vasco I, Franco E, Miccolis P, Desiante F, Nola V, Salerno P, Cafiero MA, Di Luca M. Entomological Surveillance in Former Malaria-endemic Areas of Southern Italy. Pathogens 2021; 10:pathogens10111521. [PMID: 34832676 PMCID: PMC8619560 DOI: 10.3390/pathogens10111521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria still represents a potential public health issue in Italy, and the presence of former Anopheles vectors and cases imported annually merit continuous surveillance. In areas no longer endemic, the concurrent presence of gametocyte carriers and competent vectors makes re-emergence of local transmission possible, as recently reported in Greece. In October 2017, due to the occurrence of four suspected introduced malaria cases in the province of Taranto (Apulia region), entomological investigations were performed to verify the involvement of local anopheline species. In 2019–2020 entomological surveys were extended to other areas historically prone to malaria between the provinces of Taranto and Matera and the province of Foggia (Gargano Promontory). Resting mosquitoes were collected in animal shelters and human dwellings, larvae were sampled in natural and artificial breeding sites, and specimens were both morphologically and molecularly identified. A total of 2228 mosquitoes were collected, 54.3% of which were anophelines. In all the investigated areas, Anopheles labranchiae was the most widespread species, while Anopheles algeriensis was predominant at the Gargano sites, and Anopheles superpictus and Anopheles plumbeus were recorded in the province of Matera. Our findings showed a potentially high receptivity in the surveyed areas, where the abundance of the two former malaria vectors, An. labranchiae and An. superpictus, is related to environmental and climatic parameters and to anthropic activities.
Collapse
Affiliation(s)
- Donato Antonio Raele
- Laboratorio di Entomologia Sanitaria, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (D.A.R.); (I.V.); (M.A.C.)
| | - Francesco Severini
- Dipartimento Malattie Infettive, Reparto Malattie Trasmesse da Vettori, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (D.B.); (M.M.); (L.T.)
| | - Daniela Boccolini
- Dipartimento Malattie Infettive, Reparto Malattie Trasmesse da Vettori, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (D.B.); (M.M.); (L.T.)
| | - Michela Menegon
- Dipartimento Malattie Infettive, Reparto Malattie Trasmesse da Vettori, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (D.B.); (M.M.); (L.T.)
| | - Luciano Toma
- Dipartimento Malattie Infettive, Reparto Malattie Trasmesse da Vettori, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (D.B.); (M.M.); (L.T.)
| | - Ilaria Vasco
- Laboratorio di Entomologia Sanitaria, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (D.A.R.); (I.V.); (M.A.C.)
| | - Ettore Franco
- Dipartimento di Prevenzione, Azienda Sanitaria Locale, 74121 Taranto, Italy; (E.F.); (P.M.); (F.D.)
| | - Pasquale Miccolis
- Dipartimento di Prevenzione, Azienda Sanitaria Locale, 74121 Taranto, Italy; (E.F.); (P.M.); (F.D.)
| | - Francesco Desiante
- Dipartimento di Prevenzione, Azienda Sanitaria Locale, 74121 Taranto, Italy; (E.F.); (P.M.); (F.D.)
| | - Vincenzo Nola
- Dipartimento di Prevenzione, Sanità e Benessere Animale, Azienda Sanitaria Locale, 75100 Matera, Italy; (V.N.); (P.S.)
| | - Pietrangelo Salerno
- Dipartimento di Prevenzione, Sanità e Benessere Animale, Azienda Sanitaria Locale, 75100 Matera, Italy; (V.N.); (P.S.)
| | - Maria Assunta Cafiero
- Laboratorio di Entomologia Sanitaria, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (D.A.R.); (I.V.); (M.A.C.)
| | - Marco Di Luca
- Dipartimento Malattie Infettive, Reparto Malattie Trasmesse da Vettori, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (D.B.); (M.M.); (L.T.)
- Correspondence:
| |
Collapse
|
23
|
Hocking L, George J, Broberg EK, Struelens MJ, Leitmeyer KC, Deshpande A, Parkinson S, Francombe J, Morley KI, de Carvalho Gomes H. Point of Care Testing for Infectious Disease in Europe: A Scoping Review and Survey Study. Front Public Health 2021; 9:722943. [PMID: 34746078 PMCID: PMC8563586 DOI: 10.3389/fpubh.2021.722943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Point of care testing (POCT) for infectious diseases is testing conducted near the patient. It allows clinicians to offer the most appropriate treatment more quickly. As POCT devices have increased in accuracy and become more cost-effective, their use has grown, but a systematic assessment of their use for clinical and public health management of infectious diseases in EU/EEA countries has not been previously undertaken. Methods: A scoping review of the literature on POCT in EU/ EEA countries as at November 2019, and a survey of key stakeholders. Results: 350 relevant articles were identified and 54 survey responses from 26 EU/EEA countries were analysed. POCT is available for a range of infectious diseases and in all countries responding to the survey (for at least one disease). POCT is commonly available for influenza, HIV/AIDS, Legionnaires' disease and malaria, where it is used in at least half of EU/EEA countries. While POCT has the potential to support many improvements to clinical care of infectious diseases (e.g., faster diagnosis, more appropriate use of antimicrobials), the results suggest POCT is infrequently used to support public health functions (e.g., disease surveillance and reporting). Conclusion: Although POCT is in use to some extent in all EU/EEA countries, the full benefits of POCT in wider public health functions have yet to be realised. Further research on barriers and facilitators to implementation is warranted.
Collapse
Affiliation(s)
| | | | - Eeva K Broberg
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Marc J Struelens
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
24
|
Calderaro A, Montecchini S, Buttrini M, Piccolo G, Rossi S, Arcangeletti MC, Farina B, De Conto F, Chezzi C. Malaria Diagnosis in Non-Endemic Settings: The European Experience in the Last 22 Years. Microorganisms 2021; 9:microorganisms9112265. [PMID: 34835391 PMCID: PMC8620059 DOI: 10.3390/microorganisms9112265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Accurate, prompt, and reliable tools for the diagnosis of malaria are crucial for tracking the successes or drawbacks of control and elimination efforts, and for future programs aimed at global malaria eradication. Although microscopy remains the gold standard method, the number of imported malaria cases and the risk of reappearance of autochthonous cases stimulated several laboratories located in European countries to evaluate methods and algorithms suited to non-endemic settings, where skilled microscopists are not always available. In this review, an overview of the field evaluation and a comparison of the methods used for the diagnosis of malaria by European laboratories is reported, showing that the development of numerous innovations is continuous. In particular, the combination of rapid diagnostic tests and molecular assays with microscopy represents a reliable system for the early diagnosis of malaria in non-endemic settings.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
- Correspondence: ; Tel.: +39-0521-033499; Fax: +39-0521-993620
| | - Sara Montecchini
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Mirko Buttrini
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Giovanna Piccolo
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Sabina Rossi
- Unit of Clinical Microbiology, University Hospital of Parma, Viale A. Gramsci 14, 43126 Parma, Italy;
| | - Maria Cristina Arcangeletti
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Benedetta Farina
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| |
Collapse
|
25
|
Alenou LD, Etang J. Airport Malaria in Non-Endemic Areas: New Insights into Mosquito Vectors, Case Management and Major Challenges. Microorganisms 2021; 9:2160. [PMID: 34683481 PMCID: PMC8540862 DOI: 10.3390/microorganisms9102160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the implementation of preventive measures in airports and aircrafts, the risk of importing Plasmodium spp. infected mosquitoes is still present in malaria-free countries. Evidence suggests that mosquitoes have found a new alliance with the globalization of trade and climate change, leading to an upsurge of malaria parasite transmission around airports. The resulting locally acquired form of malaria is called Airport malaria. However, piecemeal information is available, regarding its epidemiological and entomological patterns, as well as the challenges in the diagnosis, treatment, and prevention. Understanding these issues is a critical step towards a better implementation of control strategies. To cross reference this information, we conducted a systematic review on 135 research articles published between 1969 (when the first cases of malaria in airports were reported) and 2020 (i.e., 51 years later). It appears that the risk of malaria transmission by local mosquito vectors in so called malaria-free countries is not zero; this risk is more likely to be fostered by infected vectors coming from endemic countries by air or by sea. Furthermore, there is ample evidence that airport malaria is increasing in these countries. From 2010 to 2020, the number of cases in Europe was 7.4 times higher than that recorded during the 2000-2009 decade. This increase may be associated with climate change, increased international trade, the decline of aircraft disinsection, as well as delays in case diagnosis and treatment. More critically, current interventions are weakened by biological and operational challenges, such as drug resistance in malaria parasites and vector resistance to insecticides, and logistic constraints. Therefore, there is a need to strengthen malaria prevention and treatment for people at risk of airport malaria, and implement a rigorous routine entomological and epidemiological surveillance in and around airports.
Collapse
Affiliation(s)
- Leo Dilane Alenou
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases’ Control in Central Africa (OCEAC), Yaoundé P.O. Box 288, Cameroon;
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon
| | - Josiane Etang
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases’ Control in Central Africa (OCEAC), Yaoundé P.O. Box 288, Cameroon;
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Faculty 09—Agricultural Sciences, Nutritional Sciences and Environmental Management, Justus-Liebig-University Gießen, Winchester Str. 2, 35394 Giessen, Germany
| |
Collapse
|
26
|
Rougeron V, Boundenga L, Arnathau C, Durand P, Renaud F, Prugnolle F. A population genetic perspective on the origin, spread and adaptation of the human malaria agents Plasmodium falciparum and Plasmodium vivax. FEMS Microbiol Rev 2021; 46:6373923. [PMID: 34550355 DOI: 10.1093/femsre/fuab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
Malaria is considered one of the most important scourges that humanity has faced during its history, being responsible every year for numerous deaths worldwide. The disease is caused by protozoan parasites, among which two species are responsible of the majority of the burden, Plasmodium falciparum and Plasmodium vivax. For these two parasite species, the questions of their origin (how and when they appeared in humans), of their spread throughout the world, as well as how they have adapted to humans have long been of interest to the scientific community. Here, we review the current knowledge that has accumulated on these different questions, thanks in particular to the analysis of the genetic and genomic variability of these parasites and comparison with related Plasmodium species infecting other host species (like non-human primates). In this paper we review the existing body of knowledge, including current research dealing with these questions, focusing particularly on genetic analysis and genomic variability of these parasites and comparison with related Plasmodium species infecting other species of host (such as non-human primates).
Collapse
Affiliation(s)
- Virginie Rougeron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Larson Boundenga
- CIRMF, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Céline Arnathau
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Patrick Durand
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - François Renaud
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Franck Prugnolle
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| |
Collapse
|
27
|
Spanoudis CG, Pappas CS, Savopoulou-Soultani M, Andreadis SS. Composition, seasonal abundance, and public health importance of mosquito species in the regional unit of Thessaloniki, Northern Greece. Parasitol Res 2021; 120:3083-3090. [PMID: 34338859 DOI: 10.1007/s00436-021-07264-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022]
Abstract
Mosquitoes (Diptera: Culicidae) are the largest group of blood-feeding insects that disturb not only humans but also other mammals and birds. This study reports the presence of native mosquito species in the regional unit of Thessaloniki and the monitoring of their population. In total, 13 mosquito species belonging to four genera were identified. The most dominant species was Culex pipiens, followed by Aedes caspius. In the present study, we report for the first time the presence of Ae. vittatus in Greece and of Anopheles plumbeus in the regional unit of Thessaloniki. Regarding the seasonal variation, species of the genus Aedes were the ones that first appeared in late March, followed by Culex species at the end of April and finally species of the genus Anopheles in July. Species of the Aedes genus were found to be the most abundant in the first quarter of the year (late March to early April). Population of Cx. pipiens remained at high levels from late April to late September. Species of the genus Anopheles were found in high densities from early August to October. The current study contributes to the knowledge of the mosquito species composition and their relative abundance in an area where West Nile virus caused severe epidemic outbreaks.
Collapse
Affiliation(s)
- Christos G Spanoudis
- Laboratory of Applied Zoology and Parasitology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Christos S Pappas
- Laboratory of Applied Zoology and Parasitology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Matilda Savopoulou-Soultani
- Laboratory of Applied Zoology and Parasitology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Stefanos S Andreadis
- Hellenic Agricultural Organization Dimitra, Institute of Plant Breeding and Genetic Resources, 57001, Thermi, Greece.
| |
Collapse
|
28
|
Chen TT, Ljungqvist FC, Castenbrandt H, Hildebrandt F, Ingholt MM, Hesson JC, Ankarklev J, Seftigen K, Linderholm HW. The spatiotemporal distribution of historical malaria cases in Sweden: a climatic perspective. Malar J 2021; 20:212. [PMID: 33933085 PMCID: PMC8088552 DOI: 10.1186/s12936-021-03744-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/20/2021] [Indexed: 12/03/2022] Open
Abstract
Background Understanding of the impacts of climatic variability on human health remains poor despite a possibly increasing burden of vector-borne diseases under global warming. Numerous socioeconomic variables make such studies challenging during the modern period while studies of climate–disease relationships in historical times are constrained by a lack of long datasets. Previous studies have identified the occurrence of malaria vectors, and their dependence on climate variables, during historical times in northern Europe. Yet, malaria in Sweden in relation to climate variables is understudied and relationships have never been rigorously statistically established. This study seeks to examine the relationship between malaria and climate fluctuations, and to characterise the spatio-temporal variations at parish level during severe malaria years in Sweden 1749–1859. Methods Symptom-based annual malaria case/death data were obtained from nationwide parish records and military hospital records in Stockholm. Pearson (rp) and Spearman’s rank (rs) correlation analyses were conducted to evaluate inter-annual relationship between malaria data and long meteorological series. The climate response to larger malaria events was further explored by Superposed Epoch Analysis, and through Geographic Information Systems analysis to map spatial variations of malaria deaths. Results The number of malaria deaths showed the most significant positive relationship with warm-season temperature of the preceding year. The strongest correlation was found between malaria deaths and the mean temperature of the preceding June–August (rs = 0.57, p < 0.01) during the 1756–1820 period. Only non-linear patterns can be found in response to precipitation variations. Most malaria hot-spots, during severe malaria years, concentrated in areas around big inland lakes and southern-most Sweden. Conclusions Unusually warm and/or dry summers appear to have contributed to malaria epidemics due to both indoor winter transmission and the evidenced long incubation and relapse time of P. vivax, but the results also highlight the difficulties in modelling climate–malaria associations. The inter-annual spatial variation of malaria hot-spots further shows that malaria outbreaks were more pronounced in the southern-most region of Sweden in the first half of the nineteenth century compared to the second half of the eighteenth century.
Collapse
Affiliation(s)
- Tzu Tung Chen
- Regional Climate Group, Department of Earth Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Fredrik Charpentier Ljungqvist
- Department of History, Stockholm University, 106 91, Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, 106 91, Stockholm, Sweden.,Swedish Collegium for Advanced Study, Linneanum, Thunbergsvägen 2, 752 38, Uppsala, Sweden
| | | | - Franziska Hildebrandt
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mathias Mølbak Ingholt
- PandemiX Center, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jenny C Hesson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Seftigen
- Regional Climate Group, Department of Earth Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden.,Dendro Sciences Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Hans W Linderholm
- Regional Climate Group, Department of Earth Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| |
Collapse
|
29
|
Beteck RM, Jordaan A, Seldon R, Laming D, Hoppe HC, Warner DF, Khanye SD. Easy-To-Access Quinolone Derivatives Exhibiting Antibacterial and Anti-Parasitic Activities. Molecules 2021; 26:molecules26041141. [PMID: 33672753 PMCID: PMC7931078 DOI: 10.3390/molecules26041141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb) has a unique structural organisation, comprising a high lipid content mixed with polysaccharides. This makes cell wall a formidable barrier impermeable to hydrophilic agents. In addition, during host infection, Mtb resides in macrophages within avascular necrotic granulomas and cavities, which shield the bacterium from the action of most antibiotics. To overcome these protective barriers, a new class of anti-TB agents exhibiting lipophilic character have been recommended by various reports in literature. Herein, a series of lipophilic heterocyclic quinolone compounds was synthesised and evaluated in vitro against pMSp12::GFP strain of Mtb, two protozoan parasites (Plasmodium falciparum and Trypanosoma brucei brucei) and against ESKAPE pathogens. The resultant compounds exhibited varied anti-Mtb activity with MIC90 values in the range of 0.24–31 µM. Cross-screening against P. falciparum and T.b. brucei, identified several compounds with antiprotozoal activities in the range of 0.4–20 µM. Compounds were generally inactive against ESKAPE pathogens, with only compounds 8c, 8g and 13 exhibiting moderate to poor activity against S. aureus and A. baumannii.
Collapse
Affiliation(s)
- Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Correspondence: (R.M.B.); (S.D.K.); Tel.: +27-46-603-8397 (S.D.K.)
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (A.J.); (D.F.W.)
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa;
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
| | - Heinrich C. Hoppe
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda 6140, South Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (A.J.); (D.F.W.)
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - Setshaba D. Khanye
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
- Correspondence: (R.M.B.); (S.D.K.); Tel.: +27-46-603-8397 (S.D.K.)
| |
Collapse
|
30
|
Sousa A, Aguilar-Alba M, Vetter M, García-Barrón L, Morales J. Drivers of autochthonous and imported malaria in Spain and their relationship with meteorological variables. EURO-MEDITERRANEAN JOURNAL FOR ENVIRONMENTAL INTEGRATION 2021; 6:33. [PMID: 33614904 PMCID: PMC7885756 DOI: 10.1007/s41207-021-00245-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Since the early twentieth century, the intensity of malaria transmission has decreased sharply worldwide, although it is still an infectious disease with a yearly estimate of 228 million cases. The aim of this study was to expand our knowledge on the main drivers of malaria in Spain. In the case of autochthonous malaria, these drivers were linked to socioeconomic and hygienic and sanitary conditions, especially in rural areas due to their close proximity to the wetlands that provide an important habitat for anopheline reproduction. In the case of imported malaria, the main drivers were associated with urban areas, a high population density and international communication nodes (e.g. airports). Another relevant aspect is that the major epidemic episodes of the twentieth century were strongly influenced by war and military conflicts and overcrowding of the healthcare system due to the temporal overlap with the pandemic flu of 1918. Therefore, military conflicts and overlap with other epidemics or pandemics are considered to be drivers of malaria that can-in a temporary manner-exponentially intensify transmission of the disease. Climatic factors did not play a relevant role as drivers of malaria in Spain (at least directly). However, they did influence the seasonality of the disease and, during the epidemic outbreak of 1940-1944, the climate conditions favored or coadjuvated its spread. The results of this study provide additional knowledge on the seasonal and interannual variability of malaria that can help to develop and implement health risk control measures. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s41207-021-00245-8.
Collapse
Affiliation(s)
- Arturo Sousa
- Department of Plant Biology and Ecology, Universidad de Sevilla, 41012 Seville, Spain
| | - Mónica Aguilar-Alba
- Department of Physical Geography and AGR, Universidad de Sevilla, 41004 Seville, Spain
| | - Mark Vetter
- Geovisualization, Würzburg University of Applied Sciences, Würzburg, Germany
| | | | - Julia Morales
- Department of Plant Biology and Ecology, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
31
|
Loufouma Mbouaka A, Gamble M, Wurst C, Jäger HY, Maixner F, Zink A, Noedl H, Binder M. The elusive parasite: comparing macroscopic, immunological, and genomic approaches to identifying malaria in human skeletal remains from Sayala, Egypt (third to sixth centuries AD). ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2021; 13:115. [PMID: 34149953 PMCID: PMC8202054 DOI: 10.1007/s12520-021-01350-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/19/2021] [Indexed: 05/12/2023]
Abstract
UNLABELLED Although malaria is one of the oldest and most widely distributed diseases affecting humans, identifying and characterizing its presence in ancient human remains continue to challenge researchers. We attempted to establish a reliable approach to detecting malaria in human skeletons using multiple avenues of analysis: macroscopic observations, rapid diagnostic tests, and shotgun-capture sequencing techniques, to identify pathological changes, Plasmodium antigens, and Plasmodium DNA, respectively. Bone and tooth samples from ten individuals who displayed skeletal lesions associated with anaemia, from a site in southern Egypt (third to sixth centuries AD), were selected. Plasmodium antigens were detected in five of the ten bone samples, and traces of Plasmodium aDNA were detected in six of the twenty bone and tooth samples. There was relatively good synchronicity between the biomolecular findings, despite not being able to authenticate the results. This study highlights the complexity and limitations in the conclusive identification of the Plasmodium parasite in ancient human skeletons. Limitations regarding antigen and aDNA preservation and the importance of sample selection are at the forefront of the search for malaria in the past. We confirm that, currently, palaeopathological changes such as cribra orbitalia are not enough to be certain of the presence of malaria. While biomolecular methods are likely the best chance for conclusive identification, we were unable to obtain results which correspond to the current authentication criteria of biomolecules. This study represents an important contribution in the refinement of biomolecular techniques used; also, it raises new insight regarding the consistency of combining several approaches in the identification of malaria in past populations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12520-021-01350-z.
Collapse
Affiliation(s)
- Alvie Loufouma Mbouaka
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Michelle Gamble
- Bioarchaeology Department, Austrian Archaeological Institute at the Austrian Academy of Sciences, Franz Klein-Gasse 1, 1190 Vienna, Austria
- Present Address: Heritage and Archaeological Research Practice, 101 Rose Street South Lane, EH2 3JG Edinburgh, Scotland
| | - Christina Wurst
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Heidi Yoko Jäger
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Harald Noedl
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
- Present Address: Malaria Research Initiative Bandarban, Vienna, Austria
| | - Michaela Binder
- Bioarchaeology Department, Austrian Archaeological Institute at the Austrian Academy of Sciences, Franz Klein-Gasse 1, 1190 Vienna, Austria
- Present Address: Planen und Bauen im Bestand, Novetus, Belvederegasse 41, 1040 Vienna, Austria
| |
Collapse
|
32
|
Hillyer JF. Parasites and Parasitology in this SARS-CoV-2, COVID-19 World: An American Society of Parasitologists Presidential Address. J Parasitol 2020; 106:859-868. [PMID: 33450760 DOI: 10.1645/20-158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) is one of the worst global health crises of this generation. The core of this pandemic is the rapid transmissibility of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, its high morbidity and mortality, and the presence of infectious asymptomatic carriers. As a result, COVID-19 has dominated this year's headlines and commanded significant research attention. As we consider SARS-CoV-2 and the COVID-19 pandemic, it is essential that scientists, governments, the media, and the general population also come to grips with the everyday cost of parasitic diseases. Plasmodium (malaria), schistosomes, filarial worms, hookworms, Ascaris, whipworms, and other protozoan and metazoan parasites take a tremendous toll on local communities. Yet, because most of these diseases are no longer endemic to developed countries, their research and intervention are not funded at levels that are proportional to their global morbidity and mortality. The scientific and public health communities must indeed vigorously fight SARS-CoV-2 and COVID-19, but while doing so and beyond, it will be essential to demonstrate steadfast resolve toward understanding and combating the parasitic diseases that for centuries have haunted humankind.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
33
|
Birnberg L, Aranda C, Talavera S, Núñez AI, Escosa R, Busquets N. Laboratory colonization and maintenance of Anopheles atroparvus from the Ebro Delta, Spain. Parasit Vectors 2020; 13:394. [PMID: 32746901 PMCID: PMC7398269 DOI: 10.1186/s13071-020-04268-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022] Open
Abstract
Background Historically, Anopheles atroparvus has been considered one of the most important malaria vectors in Europe. Since malaria was eradicated from the European continent, the interest in studying its vectors reduced significantly. Currently, to better assess the potential risk of malaria resurgence on the continent, there is a growing need to update the data on susceptibility of indigenous Anopheles populations to imported Plasmodium species. In order to do this, as a first step, an adequate laboratory colony of An. atroparvus is needed. Methods Anopheles atroparvus mosquitoes were captured in rice fields from the Ebro Delta (Spain). Field-caught specimens were maintained in the laboratory under simulated field-summer conditions. Adult females were artificially blood-fed on fresh whole rabbit blood for oviposition. First- to fourth-instar larvae were fed on pulverized fish and turtle food. Adults were maintained with a 10% sucrose solution ad libitum. Results An An. atroparvus population from the Ebro Delta was successfully established in the laboratory. During the colonization process, feeding and hatching rates increased, while a reduction in larval mortality rate was observed. Conclusions The present study provides a detailed rearing and maintenance protocol for An. atroparvus and a publicly available reference mosquito strain within the INFRAVEC2 project for further research studies involving vector-parasite interactions. ![]()
Collapse
Affiliation(s)
- Lotty Birnberg
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), Barcelona, Spain
| | - Carles Aranda
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), Barcelona, Spain.,Servei de Control de Mosquits del Consell Comarcal del Baix Llobregat, Barcelona, Spain
| | - Sandra Talavera
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), Barcelona, Spain
| | - Ana I Núñez
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), Barcelona, Spain
| | - Raúl Escosa
- Consorci de Polítiques Ambientals de les Terres de l'Ebre (COPATE), Tarragona, Spain
| | - Núria Busquets
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), Barcelona, Spain.
| |
Collapse
|
34
|
Sondén K, Rolling T, Wångdahl A, Ydring E, Vygen-Bonnet S, Kobbe R, Douhan J, Hammar U, Duijster J, de Gier B, Freedman J, Gysin N, Stark K, Stevens F, Vestergaard LS, Tegnell A, Färnert A. Malaria in Eritrean migrants newly arrived in seven European countries, 2011 to 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 30722809 PMCID: PMC6386211 DOI: 10.2807/1560-7917.es.2019.24.5.1800139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Global migration has resulted in a large number of asylum applications in Europe. In 2014, clusters of Plasmodium vivax cases were reported among newly arrived Eritreans. This study aimed to assess malaria among Eritrean migrants in Europe from 2011 to 2016. We reviewed European migration numbers and malaria surveillance data for seven countries (Denmark, Germany, Netherlands, Norway, Sweden, Switzerland and the United Kingdom) which received 44,050 (94.3%) of 46,730 Eritreans seeking asylum in Europe in 2014. The overall number of malaria cases, predominantly P. vivax, increased significantly in 2014 compared to previous years, with the largest increases in Germany (44 P. vivax cases in 2013 vs 294 in 2014, p < 0.001) and Sweden (18 in 2013 vs 205 in 2014, p < 0.001). Overall, malaria incidence in Eritreans increased from 1-5 to 25 cases per 1,000, and was highest in male teenagers (50 cases/1,000). In conclusion, an exceptional increase of malaria cases occurred in Europe in 2014 and 2015, due to rising numbers of Eritreans with high incidence of P. vivax arriving in Europe. Our results demonstrate potential for rapid changes in imported malaria patterns, highlighting the need for improved awareness, surveillance efforts and timely healthcare in migrants.
Collapse
Affiliation(s)
- Klara Sondén
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Thierry Rolling
- Clinical Research Department, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.,Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Wångdahl
- Department of Infectious Diseases, Västmanland Hospital, Västerås, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Elsie Ydring
- Public Health Agency of Sweden, Stockholm, Sweden
| | | | - Robert Kobbe
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johan Douhan
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hammar
- Unit of Biostatistics, Department of Epidemiology, Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Janneke Duijster
- Department for Early Warning and Surveillance Center for Epidemiology and Surveillance of Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Brechje de Gier
- Department for Early Warning and Surveillance Center for Epidemiology and Surveillance of Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - Nicole Gysin
- Federal Office of Public Health, Bern, Switzerland
| | | | | | | | | | - Anna Färnert
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Boccolini D, Menegon M, Di Luca M, Toma L, Severini F, Marucci G, D'Amato S, Caraglia A, Maraglino FP, Rezza G, Romi R, Gradoni L, Severini C. Non-imported malaria in Italy: paradigmatic approaches and public health implications following an unusual cluster of cases in 2017. BMC Public Health 2020; 20:857. [PMID: 32503526 PMCID: PMC7275312 DOI: 10.1186/s12889-020-08748-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/21/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The European region achieved interruption of malaria transmission during the 1970s. Since then, malaria control programs were replaced by surveillance systems in order to prevent possible re-emergence of this disease. Sporadic cases of non-imported malaria were recorded in several European countries in the past decade and locally transmitted outbreaks of Plasmodium vivax, most probably supported by Anopheles sacharovi, have been repeatedly reported from Greece since 2009. The possibility of locally-transmitted malaria has been extensively studied in Italy where the former malaria vector An. labranchiae survived the control campaign which led to malaria elimination. In this study, we present paradigmatic cases that occurred during a 2017 unusual cluster, which caused strong concern in public opinion and were carefully investigated after the implementation of the updated malaria surveillance system. METHODS For suspected locally-transmitted malaria cases, alerts to Ministry of Health (MoH) and the National Institute of Health (ISS) were mandated by the Local Health Services (LHS). Epidemiological investigations on the transmission modes and the identification of possible infection's source were carried out by LHS, MoH and ISS. Entomological investigations were implemented locally for all suspected locally-transmitted cases that occurred in periods suitable to anopheline activity. Molecular diagnosis by nested-PCR for the five human Plasmodium species was performed to support microscopic diagnosis. In addition, genotyping of P. falciparum isolate was carried out to investigate putative sources of infection and transmission modalities. RESULTS In 2017, a cluster of seven non-imported cases was recorded from August through October. Among them, P. ovale curtisi was responsible of one case whereas six cases were caused by P. falciparum. Two cases were proved to be nosocomial while the other five were recorded as cryptic at the end of epidemiological investigations. CONCLUSIONS The epidemiological evidence shows that the locally acquired events are sporadic, often remain unresolved and classified as cryptic ones despite investigative efforts. The "cluster" of seven non-imported cases that occurred in 2017 in different regions of Italy therefore represents a conscious alert that should lead us to maintain a constant level of surveillance in a former malaria endemic country.
Collapse
Affiliation(s)
- Daniela Boccolini
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Michela Menegon
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Marco Di Luca
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Luciano Toma
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesco Severini
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Gianluca Marucci
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefania D'Amato
- Ministero della Salute, Direzione Generale della Prevenzione Sanitari, Ufficio 5 - Prevenzione delle Malattie Trasmissibili e Profilassi Internazionale, Rome, Italy
| | - Anna Caraglia
- Ministero della Salute, Direzione Generale della Prevenzione Sanitaria, Ufficio 1 - Affari generali e segreteria tecnico-organizzativa, Rome, Italy
| | - Francesco Paolo Maraglino
- Ministero della Salute, Direzione Generale della Prevenzione Sanitari, Ufficio 5 - Prevenzione delle Malattie Trasmissibili e Profilassi Internazionale, Rome, Italy
| | - Giovanni Rezza
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Roberto Romi
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Luigi Gradoni
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Carlo Severini
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
36
|
SZANYI K, NAGY A, MOLNÁR A, SZABÓ LJ, SZANYI S. Mosquito (Diptera: Culicidae) fauna of the Velyka Dobron’ Game Reserve(West Ukraine) with new distribution data and medical risk assessment. TURK J ZOOL 2020. [DOI: 10.3906/zoo-1910-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Abstract
Malaria is one of the most cited vector-borne infectious diseases by climate change expert panels. Malaria vectors often need water sheets or wetlands to complete the disease life cycle. The current context of population mobility and global change requires detailed monitoring and surveillance of malaria in all countries. This study analysed the spatiotemporal distribution of death and illness cases caused by autochthonous and imported malaria in Spain during the 20th and 21st centuries using multidisciplinary sources, Geographic Information System (GIS) and geovisualisation. The results obtained reveal that, in the 20th and 21st centuries, malaria has not had a homogeneous spatial distribution. Between 1916 and 1930, 77% of deaths from autochthonous malaria were concentrated in only 20% of Spanish provinces; in 1932, 88% of patients treated in anti-malarial dispensaries were concentrated in these same provinces. These last data reveal the huge potential that anti-malarial dispensaries could have as a tool to reconstruct historical epidemiology. Spanish autochthonous malaria has presented epidemic upsurge episodes, especially those of 1917–1922 and 1939–1944, influenced by armed conflict, population movement and damaged health and hygiene conditions. Although meteorological variables have not played a key role in these epidemic episodes, they contributed by providing suitable conditions for their intensification. After the eradication of autochthonous malaria in 1961, imported malaria cases began to be detected in 1973, reaching more than 700 cases per year at the end of the second decade of the 21st century. Therefore, consistent and detailed historical studies are necessary to better understand the drivers that have led to the decline and elimination of malaria in Europe and other temperate countries.
Collapse
|
38
|
Talapko J, Škrlec I, Alebić T, Jukić M, Včev A. Malaria: The Past and the Present. Microorganisms 2019; 7:microorganisms7060179. [PMID: 31234443 PMCID: PMC6617065 DOI: 10.3390/microorganisms7060179] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Malaria is a severe disease caused by parasites of the genus Plasmodium, which is transmitted to humans by a bite of an infected female mosquito of the species Anopheles. Malaria remains the leading cause of mortality around the world, and early diagnosis and fast-acting treatment prevent unwanted outcomes. It is the most common disease in Africa and some countries of Asia, while in the developed world malaria occurs as imported from endemic areas. The sweet sagewort plant was used as early as the second century BC to treat malaria fever in China. Much later, quinine started being used as an antimalaria drug. A global battle against malaria started in 1955, and Croatia declared 1964 to be the year of eradication of malaria. The World Health Organization carries out a malaria control program on a global scale, focusing on local strengthening of primary health care, early diagnosis of the disease, timely treatment, and disease prevention. Globally, the burden of malaria is lower than ten years ago. However, in the last few years, there has been an increase in the number of malaria cases around the world. It is moving towards targets established by the WHO, but that progress has slowed down.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, HR-31000 Osijek, Croatia.
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, HR-31000 Osijek, Croatia.
| | - Tamara Alebić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia.
| | - Melita Jukić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia.
- General Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia.
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, HR-31000 Osijek, Croatia.
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia.
| |
Collapse
|
39
|
Vatandoost H, Raeisi A, Saghafipour A, Nikpour F, Nejati J. Malaria situation in Iran: 2002-2017. Malar J 2019; 18:200. [PMID: 31208453 PMCID: PMC6580592 DOI: 10.1186/s12936-019-2836-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is considered as a major threat to health systems. It is still considered as one of the most important infectious diseases in Iran, but with an elimination goal in 2025. This study aimed to review the malaria situation in Iran over the 16 years. Methods The data was collected from epidemiological registration forms that had been completed by physicians and malaria focal points in the National Centers for Disease Control and Prevention. Results During the study period, 134,273 malaria cases were reported. The malaria incidence decreased from 0.24/1000 cases in 2002 to 0.01/1000 in 2017. From 2009 onward, the number of imported cases increased in comparison with the autochthonous and indigenous cases. Most cases were seen in males and people over 15 years of age. Moreover, the dominant registered reports were from rural areas. Most malaria cases were reported from the south and southeastern of Iran. Plasmodium vivax was the dominant species. Conclusion The dramatic drop in the incidence of autochthonous cases can hopefully support malaria elimination as a major goal in the near future.
Collapse
Affiliation(s)
- Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Raeisi
- National Program for Malaria Control, Center of Disease Control & Prevention, Ministry of Health and Medical Education, Tehran, Iran
| | - Abedin Saghafipour
- Department of Public Health, School of Public Health, Qom University of Medical Sciences, Qom, Iran.
| | - Fatemeh Nikpour
- National Program for Malaria Control, Center of Disease Control & Prevention, Ministry of Health and Medical Education, Tehran, Iran
| | - Jalil Nejati
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
40
|
Tagliapietra V, Arnoldi D, Di Luca M, Toma L, Rizzoli A. Investigation on potential malaria vectors (Anopheles spp.) in the Province of Trento, Italy. Malar J 2019; 18:151. [PMID: 31036019 PMCID: PMC6489321 DOI: 10.1186/s12936-019-2785-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Europe and Italy were declared malaria free since the 1970s although the presence of competent vectors and the high number of yearly imported malaria cases make this disease a potential rising health issue. In September 2017, a cryptic fatal case of Plasmodium falciparum malaria in the Province of Trento, Italy, raised the concern of health authorities on the possible resurgence of this disease in the Mediterranean Basin. METHODS An entomological surveillance by means of BG traps, CDC light traps and larval search was performed. Sites were chosen among urban and suburban environments (e.g. private houses, public parks, schools, cemeteries, ecotone urban/forest, farms), ranging from an altitude of 91 to 1332 m above sea level. All the mosquitoes collected were morphologically identified and about half of them (103; 49%) were confirmed with the sequencing analysis of the rRNA internal transcribed spacer 2 (ITS-2). RESULTS In the present study 287 sites were screened for the presence of Anopheles spp. and 211 specimens were collected and identified. Hundred-eighteen individuals (56%) belonged to Anopheles plumbeus, 56 (26.5%) to Anopheles maculipennis complex, 10 (4.7%) to Anopheles claviger and 27 were identified only at genus level. This is the first record for the presence of An. plumbeus in the study area. CONCLUSIONS The presence of Anopheles spp. mosquitoes in the Province of Trento, Italy, has been updated with the occurrence of An. plumbeus. The risk of malaria endemicity in the area is to be considered very low, but urban and peri-urban habitat may act as potential breeding sites for the presence of mosquito vectors and should be constantly monitored.
Collapse
Affiliation(s)
- Valentina Tagliapietra
- Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach 1, San Michele all'Adige, Trento, Italy.
| | - Daniele Arnoldi
- Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach 1, San Michele all'Adige, Trento, Italy
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Luciano Toma
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach 1, San Michele all'Adige, Trento, Italy
| |
Collapse
|
41
|
Abstract
Migration is increasing and practitioners need to be aware of the unique health needs of this population. The prevalence of infectious diseases among migrants varies and generally mirrors that of their countries of origin, but is modified by the circumstance of migration, the presence of pre-arrival screening programs and post arrival access to health care. To optimize the health of migrants practitioners; (1) should take all opportunities to screen migrants at risk for latent infections such as tuberculosis, chronic hepatitis B and C, HIV, strongyloidiasis, schistosomiasis and Chagas disease, (2) update routine vaccines in all age groups and, (3) be aware of "rare and tropical infections" related to migration and return travel.
Collapse
Affiliation(s)
- Christina Greenaway
- Division of Infectious Diseases, Jewish General Hospital, Room E0057, 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada; Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada; J.D. MacLean Center for Tropical Diseases at McGill, McGill University Health Centre, Glen Site, 1001 Décarie Boulevard, Montreal, Quebec H4A 3J1, Canada.
| | - Francesco Castelli
- University Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili, Piazza del Mercato, 15, Lombardy, Brescia 25121, Italy; UNESCO Chair "Training and Empowering Human Resources for Health Development in Resource-Limited Countries", University of Brescia, Brescia, Italy
| |
Collapse
|
42
|
Hertig E. Distribution of Anopheles vectors and potential malaria transmission stability in Europe and the Mediterranean area under future climate change. Parasit Vectors 2019; 12:18. [PMID: 30621785 PMCID: PMC6325871 DOI: 10.1186/s13071-018-3278-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022] Open
Abstract
Background In the scope of climate change the possible recurrence and/or expansion of vector-borne diseases poses a major concern. The occurrence of vector competent Anopheles species as well as favorable climatic conditions may lead to the re-emergence of autochthonous malaria in Europe and the Mediterranean area. However, high-resolution assessments of possible changes of Anopheles vector distributions and of potential malaria transmission stability in the European-Mediterranean area under changing climatic conditions during the course of the 21st century are not available yet. Methods Boosted Regression Trees are applied to relate climate variables and land cover classes to vector occurrences. Changes in future vector distributions and potential malaria transmission stability due to climate change are assessed using state-of-the art regional climate model simulations. Results Distinct changes in the distributions of the dominant vectors of human malaria are to be expected under climate change. In general, temperature and precipitation changes will lead to a northward spread of the occurrences of Anopheles vectors. Yet, for some Mediterranean areas, occurrence probabilities may decline. Conclusions Potential malaria transmission stability is increased in areas where the climatic changes favor vector occurrences as well as significantly impact the vectorial capacity. As a result, vector stability shows the highest increases between historical and future periods for the southern and south-eastern European areas. Anopheles atroparvus, the dominant vector in large parts of Europe, might play an important role with respect to changes of the potential transmission stability. Electronic supplementary material The online version of this article (10.1186/s13071-018-3278-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elke Hertig
- Institute of Geography, University of Augsburg, Alter Postweg 118, 86135, Augsburg, Germany.
| |
Collapse
|
43
|
Ghazali DA, Guericolas M, Thys F, Sarasin F, Arcos González P, Casalino E. Climate Change Impacts on Disaster and Emergency Medicine Focusing on Mitigation Disruptive Effects: an International Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1379. [PMID: 29966379 PMCID: PMC6069477 DOI: 10.3390/ijerph15071379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022]
Abstract
In recent decades, climate change has been responsible for an increase in the average temperature of the troposphere and of the oceans, with consequences on the frequency and intensity of many extreme weather phenomena. Climate change’s effects on natural disasters can be expected to induce a rise in humanitarian crises. In addition, it will surely impact the population’s long-term general health, especially among the most fragile. There are foreseeable health risks that both ambulatory care organizations and hospitals will face as global temperatures rise. These risks include the geographic redistribution of infectious (particularly zoonotic) diseases, an increase in cardiac and respiratory illnesses, as well as a host of other health hazards. Some of these risks have been detailed for most developed countries as well as for some developing countries. Using these existing risk assessments as a template, organizational innovations as well as implementation strategies should be proposed to mitigate the disruptive effects of these health risks on emergency departments and by extension, reduce the negative impact of climate change on the populations they serve.
Collapse
Affiliation(s)
- Daniel Aiham Ghazali
- Emergency Department and EMS, University Hospital of Bichat, Paris 75018, France.
- Ilumens Simulation Center, University of Paris-Diderot, Paris 75018, France.
| | | | - Frédéric Thys
- Acute Care Division & Emergency Department, Grand Hôpital de Charleroi, Charleroi 6040, Belgium.
- Faculty of Public Health & Medicine, Catholic University of Louvain, Brussels 1348, Belgium.
| | - François Sarasin
- Emergency Department, University Hospital of Geneva, Geneva 44041, Switzerland.
- University of Geneva Medical School, Geneva 1205, Switzerland.
| | - Pedro Arcos González
- Unit for Research in Emergency and Disaster, Department of Medicine, University of Oviedo, Oviedo 33006, Spain.
| | - Enrique Casalino
- Emergency Department and EMS, University Hospital of Bichat, Paris 75018, France.
- University of Paris Diderot, Sorbonne Paris Cité, EA 7334 Recherche clinique coordonnée ville-hôpital, Méthodologies et Société (REMES), Paris 75018, France.
- Study Group for Efficiency and Quality of Emergency Departments and Non-Scheduled Activities Departments, Paris 75018, France.
| |
Collapse
|
44
|
Beyond Climate Change and Health: Integrating Broader Environmental Change and Natural Environments for Public Health Protection and Promotion in the UK. ATMOSPHERE 2018. [DOI: 10.3390/atmos9070245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasingly, the potential short and long-term impacts of climate change on human health and wellbeing are being demonstrated. However, other environmental change factors, particularly relating to the natural environment, need to be taken into account to understand the totality of these interactions and impacts. This paper provides an overview of ongoing research in the Health Protection Research Unit (HPRU) on Environmental Change and Health, particularly around the positive and negative effects of the natural environment on human health and well-being and primarily within a UK context. In addition to exploring the potential increasing risks to human health from water-borne and vector-borne diseases and from exposure to aeroallergens such as pollen, this paper also demonstrates the potential opportunities and co-benefits to human physical and mental health from interacting with the natural environment. The involvement of a Health and Environment Public Engagement (HEPE) group as a public forum of “critical friends” has proven useful for prioritising and exploring some of this research; such public involvement is essential to minimise public health risks and maximise the benefits which are identified from this research into environmental change and human health. Research gaps are identified and recommendations made for future research into the risks, benefits and potential opportunities of climate and other environmental change on human and planetary health.
Collapse
|
45
|
Mitsakakis K, Hin S, Müller P, Wipf N, Thomsen E, Coleman M, Zengerle R, Vontas J, Mavridis K. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E259. [PMID: 29401670 PMCID: PMC5858328 DOI: 10.3390/ijerph15020259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 01/22/2023]
Abstract
Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.
Collapse
Affiliation(s)
- Konstantinos Mitsakakis
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Sebastian Hin
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Pie Müller
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002 Basel, Switzerland.
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland.
| | - Nadja Wipf
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002 Basel, Switzerland.
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland.
| | - Edward Thomsen
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Michael Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.
| |
Collapse
|
46
|
Pergantas P, Tsatsaris A, Malesios C, Kriparakou G, Demiris N, Tselentis Y. A spatial predictive model for malaria resurgence in central Greece integrating entomological, environmental and social data. PLoS One 2017; 12:e0178836. [PMID: 28662158 PMCID: PMC5490999 DOI: 10.1371/journal.pone.0178836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/19/2017] [Indexed: 01/17/2023] Open
Abstract
Malaria constitutes an important cause of human mortality. After 2009 Greece experienced a resurgence of malaria. Here, we develop a model-based framework that integrates entomological, geographical, social and environmental evidence in order to guide the mosquito control efforts and apply this framework to data from an entomological survey study conducted in Central Greece. Our results indicate that malaria transmission risk in Greece is potentially substantial. In addition, specific districts such as seaside, lakeside and rice field regions appear to represent potential malaria hotspots in Central Greece. We found that appropriate maps depicting the basic reproduction number, R0, are useful tools for informing policy makers on the risk of malaria resurgence and can serve as a guide to inform recommendations regarding control measures.
Collapse
Affiliation(s)
| | - Andreas Tsatsaris
- Technological Educational Institute of Athens, Department of Department of Civil, Surveying and Geoinformatics Engineering, Athens, Greece
| | - Chrisovalantis Malesios
- Democritus University of Thrace, Department of Rural Development, Orestiada, Greece
- * E-mail:
| | | | - Nikolaos Demiris
- Athens University of Economics and Business, Department of Statistics, Athens, Greece
| | - Yiannis Tselentis
- University of Crete, Regional Public Health Laboratory, Faculty of Medicine, Heraklion, Greece
| |
Collapse
|
47
|
Casalino E, Choquet C, Wargon M, Curac S, Duchateau FX, Revue E, Hellmann R. Changement climatique : proposition d’une cartographie des risques pour la santé et la médecine d’urgence en France. ANNALES FRANCAISES DE MEDECINE D URGENCE 2017. [DOI: 10.1007/s13341-016-0695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Piperaki ET, Tassios P. Parasitic infections: their position and impact in the postindustrial world. Clin Microbiol Infect 2016; 22:469-70. [DOI: 10.1016/j.cmi.2016.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 01/15/2023]
|