1
|
Zhao Q, Geng S, Wang B, Sun Y, Nie W, Bai B, Yu C, Zhang F, Tang G, Zhang D, Zhou Y, Liu J, Hong S. Deep Learning in Heart Sound Analysis: From Techniques to Clinical Applications. HEALTH DATA SCIENCE 2024; 4:0182. [PMID: 39387057 PMCID: PMC11461928 DOI: 10.34133/hds.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
Importance: Heart sound auscultation is a routinely used physical examination in clinical practice to identify potential cardiac abnormalities. However, accurate interpretation of heart sounds requires specialized training and experience, which limits its generalizability. Deep learning, a subset of machine learning, involves training artificial neural networks to learn from large datasets and perform complex tasks with intricate patterns. Over the past decade, deep learning has been successfully applied to heart sound analysis, achieving remarkable results and accumulating substantial heart sound data for model training. Although several reviews have summarized deep learning algorithms for heart sound analysis, there is a lack of comprehensive summaries regarding the available heart sound data and the clinical applications. Highlights: This review will compile the commonly used heart sound datasets, introduce the fundamentals and state-of-the-art techniques in heart sound analysis and deep learning, and summarize the current applications of deep learning for heart sound analysis, along with their limitations and areas for future improvement. Conclusions: The integration of deep learning into heart sound analysis represents a significant advancement in clinical practice. The growing availability of heart sound datasets and the continuous development of deep learning techniques contribute to the improvement and broader clinical adoption of these models. However, ongoing research is needed to address existing challenges and refine these technologies for broader clinical use.
Collapse
Affiliation(s)
- Qinghao Zhao
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | | | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology,
Peking University Cancer Hospital and Institute, Beijing, China
| | - Yutong Sun
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Wenchang Nie
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Baochen Bai
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Chao Yu
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Feng Zhang
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Gongzheng Tang
- National Institute of Health Data Science,
Peking University, Beijing, China
- Institute of Medical Technology,
Health Science Center of Peking University, Beijing, China
| | | | - Yuxi Zhou
- Department of Computer Science,
Tianjin University of Technology, Tianjin, China
- DCST, BNRist, RIIT, Institute of Internet Industry,
Tsinghua University, Beijing, China
| | - Jian Liu
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Shenda Hong
- National Institute of Health Data Science,
Peking University, Beijing, China
- Institute of Medical Technology,
Health Science Center of Peking University, Beijing, China
| |
Collapse
|
2
|
Fathima AJ, Fasla MMN. A comprehensive review on heart disease prognostication using different artificial intelligence algorithms. Comput Methods Biomech Biomed Engin 2024; 27:1357-1374. [PMID: 38424704 DOI: 10.1080/10255842.2024.2319706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Prediction of heart diseases on time is significant in order to preserve life. Many conventional methods have taken efforts on earlier prediction but faced with challenges of higher prediction cost, extended time for computation and complexities with larger volume of data which reduced prediction accuracy. In order to overcome such pitfalls, AI (Artificial Intelligence) technology has been evolved in diagnosing heart diseases through deployment of several ML (Machine Learning) and DL (Deep Learning) algorithms. It improves detection by influencing with its capacity of learning from the massive data containing age, obesity, hypertension and other risk factors of patients and extract it accordingly to differentiate on the circumstances. Moreover, storage of larger data with AI greatly assists in analysing the occurrence of the disease from past historical data. Hence, this paper intends to provide a review on different AI based algorithms used in the heart disease prognostication and delivers its benefits through researching on various existing works. It performs comparative analysis and critical assessment as encompassing accuracies and maximum utilization of algorithms focussed by traditional studies in this area. The major findings of the paper emphasized on the evolution and continuous explorations of AI techniques for heart disease prediction and the future researchers aims in determining the dimensions that have attained high and low prediction accuracies on which appropriate research works can be performed. Finally, future research is included to offer new stimulus for further investigation of AI in cardiac disease diagnosis.
Collapse
Affiliation(s)
- A Jainul Fathima
- Assistant Professor, IT Francis Xavier Engineering College, Tirunelveli - 627003, India
| | | |
Collapse
|
3
|
Zhou G, Chien C, Chen J, Luan L, Chen Y, Carroll S, Dayton J, Thanjan M, Bayle K, Flynn P. Identifying pediatric heart murmurs and distinguishing innocent from pathologic using deep learning. Artif Intell Med 2024; 153:102867. [PMID: 38723434 DOI: 10.1016/j.artmed.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE To develop a deep learning algorithm to perform multi-class classification of normal pediatric heart sounds, innocent murmurs, and pathologic murmurs. METHODS We prospectively enrolled children under age 18 being evaluated by the Division of Pediatric Cardiology. Parents provided consent for a deidentified recording of their child's heart sounds with a digital stethoscope. Innocent murmurs were validated by a pediatric cardiologist and pathologic murmurs were validated by echocardiogram. To augment our collection of normal heart sounds, we utilized a public database of pediatric heart sound recordings (Oliveira, 2022). We propose two novel approaches for this audio classification task. We train a vision transformer on either Markov transition field or Gramian angular field image representations of the frequency spectrum. We benchmark our results against a ResNet-50 CNN trained on spectrogram images. RESULTS Our final dataset consisted of 366 normal heart sounds, 175 innocent murmurs, and 216 pathologic murmurs. Innocent murmurs collected include Still's murmur, venous hum, and flow murmurs. Pathologic murmurs included ventricular septal defect, tetralogy of Fallot, aortic regurgitation, aortic stenosis, pulmonary stenosis, mitral regurgitation and stenosis, and tricuspid regurgitation. We find that the Vision Transformer consistently outperforms the ResNet-50 on all three image representations, and that the Gramian angular field is the superior image representation for pediatric heart sounds. We calculated a one-vs-rest multi-class ROC curve for each of the three classes. Our best model achieves an area under the curve (AUC) value of 0.92 ± 0.05, 0.83 ± 0.04, and 0.88 ± 0.04 for identifying normal heart sounds, innocent murmurs, and pathologic murmurs, respectively. CONCLUSION We present two novel methods for pediatric heart sound classification, which outperforms the current standard of using a convolutional neural network trained on spectrogram images. To our knowledge, we are the first to demonstrate multi-class classification of pediatric murmurs. Multiclass output affords a more explainable and interpretable model, which can facilitate further model improvement in the downstream model development cycle and enhance clinician trust and therefore adoption.
Collapse
Affiliation(s)
- George Zhou
- Weill Cornell Medicine, New York, NY 10021, USA.
| | - Candace Chien
- Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Justin Chen
- Staten Island University Hospital, Northwell Health, Staten Island, NY 10305, USA
| | - Lucille Luan
- Teachers College, Columbia University, New York, NY 10027, USA
| | | | - Sheila Carroll
- Division of Pediatric Cardiology, NewYork-Presbyterian Hospital, New York, NY 10021, USA
| | - Jeffrey Dayton
- Division of Pediatric Cardiology, NewYork-Presbyterian Hospital, New York, NY 10021, USA
| | - Maria Thanjan
- Division of Pediatric Cardiology, NewYork-Presbyterian Hospital Queens, New York, NY 11355, USA
| | - Ken Bayle
- Division of Pediatric Cardiology, NewYork-Presbyterian Hospital Queens, New York, NY 11355, USA
| | - Patrick Flynn
- Division of Pediatric Cardiology, NewYork-Presbyterian Hospital, New York, NY 10021, USA
| |
Collapse
|
4
|
Wei Y, Deng Y, Sun C, Lin M, Jiang H, Peng Y. Deep learning with noisy labels in medical prediction problems: a scoping review. J Am Med Inform Assoc 2024; 31:1596-1607. [PMID: 38814164 PMCID: PMC11187424 DOI: 10.1093/jamia/ocae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVES Medical research faces substantial challenges from noisy labels attributed to factors like inter-expert variability and machine-extracted labels. Despite this, the adoption of label noise management remains limited, and label noise is largely ignored. To this end, there is a critical need to conduct a scoping review focusing on the problem space. This scoping review aims to comprehensively review label noise management in deep learning-based medical prediction problems, which includes label noise detection, label noise handling, and evaluation. Research involving label uncertainty is also included. METHODS Our scoping review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched 4 databases, including PubMed, IEEE Xplore, Google Scholar, and Semantic Scholar. Our search terms include "noisy label AND medical/healthcare/clinical," "uncertainty AND medical/healthcare/clinical," and "noise AND medical/healthcare/clinical." RESULTS A total of 60 papers met inclusion criteria between 2016 and 2023. A series of practical questions in medical research are investigated. These include the sources of label noise, the impact of label noise, the detection of label noise, label noise handling techniques, and their evaluation. Categorization of both label noise detection methods and handling techniques are provided. DISCUSSION From a methodological perspective, we observe that the medical community has been up to date with the broader deep-learning community, given that most techniques have been evaluated on medical data. We recommend considering label noise as a standard element in medical research, even if it is not dedicated to handling noisy labels. Initial experiments can start with easy-to-implement methods, such as noise-robust loss functions, weighting, and curriculum learning.
Collapse
Affiliation(s)
- Yishu Wei
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
- Reddit Inc., San Francisco, CA 16093, United States
| | - Yu Deng
- Center for Health Information Partnerships, Northwestern University, Chicago, IL 10611, United States
| | - Cong Sun
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| | - Mingquan Lin
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hongmei Jiang
- Department of Statistics and Data Science, Northwestern University, Evanston, IL 60208, United States
| | - Yifan Peng
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
5
|
De Fazio R, Spongano L, De Vittorio M, Patrono L, Visconti P. Machine Learning Algorithms for Processing and Classifying Unsegmented Phonocardiographic Signals: An Efficient Edge Computing Solution Suitable for Wearable Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:3853. [PMID: 38931636 PMCID: PMC11207414 DOI: 10.3390/s24123853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
The phonocardiogram (PCG) can be used as an affordable way to monitor heart conditions. This study proposes the training and testing of several classifiers based on SVMs (support vector machines), k-NN (k-Nearest Neighbor), and NNs (neural networks) to perform binary ("Normal"/"Pathologic") and multiclass ("Normal", "CAD" (coronary artery disease), "MVP" (mitral valve prolapse), and "Benign" (benign murmurs)) classification of PCG signals, without heart sound segmentation algorithms. Two datasets of 482 and 826 PCG signals from the Physionet/CinC 2016 dataset are used to train the binary and multiclass classifiers, respectively. Each PCG signal is pre-processed, with spike removal, denoising, filtering, and normalization; afterward, it is divided into 5 s frames with a 1 s shift. Subsequently, a feature set is extracted from each frame to train and test the binary and multiclass classifiers. Concerning the binary classification, the trained classifiers yielded accuracies ranging from 92.4 to 98.7% on the test set, with memory occupations from 92.7 kB to 11.1 MB. Regarding the multiclass classification, the trained classifiers achieved accuracies spanning from 95.3 to 98.6% on the test set, occupying a memory portion from 233 kB to 14.1 MB. The NNs trained and tested in this work offer the best trade-off between performance and memory occupation, whereas the trained k-NN models obtained the best performance at the cost of large memory occupation (up to 14.1 MB). The classifiers' performance slightly depends on the signal quality, since a denoising step is performed during pre-processing. To this end, the signal-to-noise ratio (SNR) was acquired before and after the denoising, indicating an improvement between 15 and 30 dB. The trained and tested models occupy relatively little memory, enabling their implementation in resource-limited systems.
Collapse
Affiliation(s)
- Roberto De Fazio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
| | - Lorenzo Spongano
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73010 Arnesano, Italy
| | - Luigi Patrono
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
| | - Paolo Visconti
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73010 Arnesano, Italy
| |
Collapse
|
6
|
Ranipa K, Zhu WP, Swamy MNS. A novel feature-level fusion scheme with multimodal attention CNN for heart sound classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 248:108122. [PMID: 38507960 DOI: 10.1016/j.cmpb.2024.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/03/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND AND OBJECTIVE Most of the existing machine learning-based heart sound classification methods achieve limited accuracy. Since they primarily depend on single domain feature information and tend to focus equally on each part of the signal rather than employing a selective attention mechanism. In addition, they fail to exploit convolutional neural network (CNN) - based features with an effective fusion strategy. METHODS In order to overcome these limitations, a novel multimodal attention convolutional neural network (MACNN) with a feature-level fusion strategy, in which Mel-cepstral domain as well as general frequency domain features are incorporated to increase the diversity of the features, is proposed in this paper. In the proposed method, DilationAttenNet is first utilized to construct attention-based CNN feature extractors and then these feature extractors are jointly optimized in MACNN at the feature-level. The attention mechanism aims to suppress irrelevant information and focus on crucial diverse features extracted from the CNN. RESULTS Extensive experiments are carried out to study the efficacy of the feature level fusion in comparison to that with early fusion. The results show that the proposed MACNN method significantly outperforms the state-of-the-art approaches in terms of accuracy and score for the two publicly available Github and Physionet datasets. CONCLUSION The findings of our experiments demonstrated the high performance for heart sound classification based on the proposed MACNN, and hence have potential clinical usefulness in the identification of heart diseases. This technique can assist cardiologists and researchers in the design and development of heart sound classification methods.
Collapse
Affiliation(s)
- Kalpeshkumar Ranipa
- Department of Electrical and Computer Engineering, Concordia University, Canada.
| | - Wei-Ping Zhu
- Department of Electrical and Computer Engineering, Concordia University, Canada.
| | - M N S Swamy
- Department of Electrical and Computer Engineering, Concordia University, Canada.
| |
Collapse
|
7
|
Manshadi OD, Mihandoost S. Murmur identification and outcome prediction in phonocardiograms using deep features based on Stockwell transform. Sci Rep 2024; 14:7592. [PMID: 38555390 PMCID: PMC10981708 DOI: 10.1038/s41598-024-58274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
Traditionally, heart murmurs are diagnosed through cardiac auscultation, which requires specialized training and experience. The purpose of this study is to predict patients' clinical outcomes (normal or abnormal) and identify the presence or absence of heart murmurs using phonocardiograms (PCGs) obtained at different auscultation points. A semi-supervised model tailored to PCG classification is introduced in this study, with the goal of improving performance using time-frequency deep features. The study begins by investigating the behavior of PCGs in the time-frequency domain, utilizing the Stockwell transform to convert the PCG signal into two-dimensional time-frequency maps (TFMs). A deep network named AlexNet is then used to derive deep feature sets from these TFMs. In feature reduction, redundancy is eliminated and the number of deep features is reduced to streamline the feature set. The effectiveness of the extracted features is evaluated using three different classifiers using the CinC/Physionet challenge 2022 dataset. For Task I, which focuses on heart murmur detection, the proposed approach achieved an average accuracy of 93%, sensitivity of 91%, and F1-score of 91%. According to Task II of the CinC/Physionet challenge 2022, the approach showed a clinical outcome cost of 5290, exceeding the benchmark set by leading methods in the challenge.
Collapse
Affiliation(s)
| | - Sara Mihandoost
- Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran.
| |
Collapse
|
8
|
Arjoune Y, Nguyen TN, Doroshow RW, Shekhar R. A Noise-Robust Heart Sound Segmentation Algorithm Based on Shannon Energy. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:7747-7761. [PMID: 39398361 PMCID: PMC11469632 DOI: 10.1109/access.2024.3351570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Heart sound segmentation has been shown to improve the performance of artificial intelligence (AI)-based auscultation decision support systems increasingly viewed as a solution to compensate for eroding auscultatory skills and the associated subjectivity. Various segmentation approaches with demonstrated performance can be utilized for this task, but their robustness can suffer in the presence of noise. A noise-robust heart sound segmentation algorithm was developed and its accuracy was tested using two datasets: the CirCor DigiScope Phonocardiogram dataset and an in-house dataset - a heart murmur library collected at the Children's National Hospital (CNH). On the CirCor dataset, our segmentation algorithm marked the boundaries of the primary heart sounds S1 and S2 with an accuracy of 0.28 ms and 0.29 ms, respectively, and correctly identified the actual positive segments with a sensitivity of 97.44%. The algorithm also executed four times faster than a logistic regression hidden semi-Markov model. On the CNH dataset, the algorithm succeeded in 87.4% cases, achieving a 6% increase in segmentation success rate demonstrated by our original Shannon energy-based algorithm. Accurate heart sound segmentation is critical to supporting and accelerating AI research in cardiovascular diseases. The proposed algorithm increases the robustness of heart sound segmentation to noise and viability for clinical use.
Collapse
Affiliation(s)
- Youness Arjoune
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC 20010, USA
| | | | - Robin W Doroshow
- Department of Cardiology, Children's National Hospital, Washington, DC 20010, USA
| | - Raj Shekhar
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC 20010, USA
| |
Collapse
|
9
|
Ribeiro P, Sá J, Paiva D, Rodrigues PM. Cardiovascular Diseases Diagnosis Using an ECG Multi-Band Non-Linear Machine Learning Framework Analysis. Bioengineering (Basel) 2024; 11:58. [PMID: 38247935 PMCID: PMC10813154 DOI: 10.3390/bioengineering11010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND cardiovascular diseases (CVDs), which encompass heart and blood vessel issues, stand as the leading cause of global mortality for many people. METHODS the present study intends to perform discrimination between seven well-known CVDs (bundle branch block, cardiomyopathy, myocarditis, myocardial hypertrophy, myocardial infarction, valvular heart disease, and dysrhythmia) and one healthy control group, respectively, by feeding a set of machine learning (ML) models with 10 non-linear features extracted every 1 s from electrocardiography (ECG) lead signals of a well-known ECG database (PTB diagnostic ECG database) using multi-band analysis performed by discrete wavelet transform (DWT). The ML models were trained and tested using a leave-one-out cross-validation approach, assessing the individual and combined capabilities of features, per each lead or combined, to distinguish between pairs of study groups and for conducting a comprehensive all vs. all analysis. RESULTS the Accuracy discrimination results ranged between 73% and 100%, the Recall between 68% and 100%, and the AUC between 0.42 and 1. CONCLUSIONS the results suggest that our method is a good tool for distinguishing CVDs, offering significant advantages over other studies that used the same dataset, including a multi-class comparison group (all vs. all), a wider range of binary comparisons, and the use of classical non-linear analysis under ECG multi-band analysis performed by DWT.
Collapse
Affiliation(s)
| | | | | | - Pedro Miguel Rodrigues
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal; (P.R.); (J.S.); (D.P.)
| |
Collapse
|
10
|
Netto AN, Abraham L, Philip S. HBNET: A blended ensemble model for the detection of cardiovascular anomalies using phonocardiogram. Technol Health Care 2024; 32:1925-1945. [PMID: 38393859 DOI: 10.3233/thc-231290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
BACKGROUND Cardiac diseases are highly detrimental illnesses, responsible for approximately 32% of global mortality [1]. Early diagnosis and prompt treatment can reduce deaths caused by cardiac diseases. In paediatric patients, it is challenging for paediatricians to identify functional murmurs and pathological murmurs from heart sounds. OBJECTIVE The study intends to develop a novel blended ensemble model using hybrid deep learning models and softmax regression to classify adult, and paediatric heart sounds into five distinct classes, distinguishing itself as a groundbreaking work in this domain. Furthermore, the research aims to create a comprehensive 5-class paediatric phonocardiogram (PCG) dataset. The dataset includes two critical pathological classes, namely atrial septal defects and ventricular septal defects, along with functional murmurs, pathological and normal heart sounds. METHODS The work proposes a blended ensemble model (HbNet-Heartbeat Network) comprising two hybrid models, CNN-BiLSTM and CNN-LSTM, as base models and Softmax regression as meta-learner. HbNet leverages the strengths of base models and improves the overall PCG classification accuracy. Mel Frequency Cepstral Coefficients (MFCC) capture the crucial audio signal characteristics relevant to the classification. The amalgamation of these two deep learning structures enhances the precision and reliability of PCG classification, leading to improved diagnostic results. RESULTS The HbNet model exhibited excellent results with an average accuracy of 99.72% and sensitivity of 99.3% on an adult dataset, surpassing all the existing state-of-the-art works. The researchers have validated the reliability of the HbNet model by testing it on a real-time paediatric dataset. The paediatric model's accuracy is 86.5%. HbNet detected functional murmur with 100% precision. CONCLUSION The results indicate that the HbNet model exhibits a high level of efficacy in the early detection of cardiac disorders. Results also imply that HbNet has the potential to serve as a valuable tool for the development of decision-support systems that aid medical practitioners in confirming their diagnoses. This method makes it easier for medical professionals to diagnose and initiate prompt treatment while performing preliminary auscultation and reduces unnecessary echocardiograms.
Collapse
Affiliation(s)
- Ann Nita Netto
- Department of Electronics and Communication Engineering, LBS Institute of Technology for Women, APJ Abdul Kalam Technological University, Trivandrum, India
| | - Lizy Abraham
- Department of Electronics and Communication Engineering, LBS Institute of Technology for Women, APJ Abdul Kalam Technological University, Trivandrum, India
| | - Saji Philip
- Department of Cardiology, Thiruvalla Medical Mission Hospital, Thiruvalla, India
| |
Collapse
|
11
|
Ma S, Chen J, Ho JWK. An edge-device-compatible algorithm for valvular heart diseases screening using phonocardiogram signals with a lightweight convolutional neural network and self-supervised learning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107906. [PMID: 37950925 DOI: 10.1016/j.cmpb.2023.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/24/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Detection and classification of heart murmur using mobile-phone-collected sound is an emerging approach to the scale-up screening of valvular heart disease at a population level. Nonetheless, the widespread adoption of artificial intelligence (AI) methods for this type of mobile health (mHealth) application requires highly accurate and lightweight AI models that can be deployed in consumer-grade mobile devices. This study presents a lightweight deep learning model and a self-supervised learning (SSL) method to utilise unlabelled data to improve the accuracy of valvular heart disease classification using phonocardiogram data. METHODS This study proposes a lightweight convolutional neural network (CNN) that consists of ten times fewer parameters than other deep learning models to classify phonocardiogram data. SSL is applied to harness a large collection of unlabelled data as pre-training to enhance the accuracy and robustness of the model and reduce the number of epochs required to converge. A mobile application prototype that encapsulates the model is developed to perform in-device inference and fine-turning. RESULTS The proposed lightweight model achieves an average accuracy of 98.65% in 10-fold cross-validation. When coupled with SSL using unlabelled data, the pre-trained model can reach an average accuracy higher than 99.4% in 10-fold cross-validation. Furthermore, SSL-trained models have a 4-20% improvement in classification accuracy over non-SSL-trained models when tested with perturbed or noisy data, suggesting that SSL improves robustness of the model. When deployed on common smartphones, in-device fine-tuning and inference of the model can be completed within 0.03-0.37 s, which is considerably faster than 0.22-5.7 s by a standard CNN model that have ten times the number of parameters. Our lightweight model also consumes only a third of the power compared to the larger standard model. CONCLUSION This work presents a lightweight and accurate phonocardiogram classifier that supports near real-time performance on standard mobile devices.
Collapse
Affiliation(s)
- Shichao Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Junyi Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
12
|
Zobair KM, Houghton L, Tjondronegoro D, Sanzogni L, Islam MZ, Sarker T, Islam MJ. Systematic review of Internet of medical things for cardiovascular disease prevention among Australian first nations. Heliyon 2023; 9:e22420. [PMID: 38074865 PMCID: PMC10700651 DOI: 10.1016/j.heliyon.2023.e22420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 10/29/2023] [Accepted: 11/12/2023] [Indexed: 10/16/2024] Open
Abstract
Chronic diseases within Indigenous communities constitute the most compelling ill-health burdens and treatment inequalities, particularly in rural and remote Australia. In response to these vital issues, a systematic literature review of the adoption of wearable, Artificial Intelligence-driven, electrocardiogram sensors, in a telehealth Internet of Medical Things (IoMT) context was conducted to scale up rural Indigenous health. To this end, four preselected scientific databases were chosen for data extraction to align with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) technique. From the initially collected (n = 4436 ) articles, a total of 32 articles were analysed, being synthesised from the review inclusion criteria, maintaining strict eligibility and eliminating duplicates. None of the various studies found on this innovative healthcare intervention has given a comprehensive picture of how this could be an effective method of care dedicated to rural Indigenous communities with cardiovascular diseases (CVDs). Herein, we presented the unique concepts of IoMT-driven wearable biosensors tailored for rural indigenous cardiac patients, their clinical implications, and cardiovascular disease management within the telehealth domain. This work contributes to understanding the adoption of wearable IoMT sensor-driven telehealth model, highlighting the need for real-time data from First Nations patients in rural and remote areas for CVD prevention. Pertinent implications, research impacts, limitations and future research directions are endorsed, securing long-term Wearable IoMT sensor-driven telehealth sustainability.
Collapse
Affiliation(s)
- Khondker Mohammad Zobair
- Department of Business Strategy and Innovation, Griffith Business School, Griffith University, Nathan, QLD, 4100, Australia
| | - Luke Houghton
- Department of Business Strategy and Innovation, Griffith Business School, Griffith University, Nathan, QLD, 4100, Australia
| | - Dian Tjondronegoro
- Department of Business Strategy and Innovation, Griffith Business School, Griffith University, Nathan, QLD, 4100, Australia
| | - Louis Sanzogni
- Department of Business Strategy and Innovation, Griffith Business School, Griffith University, Nathan, QLD, 4100, Australia
| | - Md Zahidul Islam
- Computer Science and Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Tapan Sarker
- University of Southern Queensland, Brisbane, QLD, 4300, Australia
| | - Md Jahirul Islam
- Griffith Criminology Institute, Griffith University, Mt Gravatt, QLD, 4122, Australia
| |
Collapse
|
13
|
Torre-Cruz J, Canadas-Quesada F, Ruiz-Reyes N, Vera-Candeas P, Garcia-Galan S, Carabias-Orti J, Ranilla J. Detection of valvular heart diseases combining orthogonal non-negative matrix factorization and convolutional neural networks in PCG signals. J Biomed Inform 2023; 145:104475. [PMID: 37595770 DOI: 10.1016/j.jbi.2023.104475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND AND OBJECTIVE Valvular heart disease (VHD) is associated with elevated mortality rates. Although transthoracic echocardiography (TTE) is the gold standard detection tool, phonocardiography (PCG) could be an alternative as it is a cost-effective and noninvasive method for cardiac auscultation. Many researchers have dedicated their efforts to improving the decision-making process and developing robust and precise approaches to assist physicians in providing reliable diagnoses of VHD. METHODS This research proposes a novel approach for the detection of anomalous valvular heart sounds from PCG signals. The proposed approach combines orthogonal non-negative matrix factorization (ONMF) and convolutional neural network (CNN) architectures in a three-stage cascade. The aim of the proposal is to improve the learning process by identifying the optimal ONMF temporal or spectral patterns for accurate detection. In the first stage, the time-frequency representation of the input PCG signal is computed. Next, band-pass filtering is performed to locate the spectral range that is most relevant for the presence of such cardiac abnormalities. In the second stage, the temporal and spectral cardiac structures are extracted using the ONMF approach. These structures are utilized in the third stage and fed into the CNN architecture to detect abnormal heart sounds. RESULTS Several state-of-the-art CNN architectures, such as LeNet5, AlexNet, ResNet50, VGG16 and GoogLeNet, have been evaluated to determine the effectiveness of using ONMF temporal features for VHD detection. The results reveal that the integration of ONMF temporal features with a CNN classifier significantly improve VHD detection. Specifically, the proposed approach achieves an accuracy improvement of approximately 45% when ONMF spectral features are used and 35% when time-frequency features from the short-time Fourier transform (STFT) spectrogram are used. Additionally, feeding ONMF temporal features into low-complexity CNN architectures yields competitive results comparable to those obtained with complex architectures. CONCLUSIONS The temporal structure factorized by ONMF plays a critical role in distinguishing between normal heart sounds and abnormal heart sounds since the repeatability of normal heart cycles is disrupted by the presence of cardiac abnormalities. Consequently, the results highlight the importance of appropriate input data representation in the learning process of CNN models in the biomedical field of valvular heart sound detection.
Collapse
Affiliation(s)
- J Torre-Cruz
- Department of Telecommunication Engineering. University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares (Jaen), 23700, Spain.
| | - F Canadas-Quesada
- Department of Telecommunication Engineering. University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares (Jaen), 23700, Spain
| | - N Ruiz-Reyes
- Department of Telecommunication Engineering. University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares (Jaen), 23700, Spain
| | - P Vera-Candeas
- Department of Telecommunication Engineering. University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares (Jaen), 23700, Spain
| | - S Garcia-Galan
- Department of Telecommunication Engineering. University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares (Jaen), 23700, Spain
| | - J Carabias-Orti
- Department of Telecommunication Engineering. University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares (Jaen), 23700, Spain
| | - J Ranilla
- Department of Computer Science, University of Oviedo, Campus de Gijón s/n, Gijon (Asturias), 33203, Spain
| |
Collapse
|
14
|
Okeibunor JC, Jaca A, Iwu-Jaja CJ, Idemili-Aronu N, Ba H, Zantsi ZP, Ndlambe AM, Mavundza E, Muneene D, Wiysonge CS, Makubalo L. The use of artificial intelligence for delivery of essential health services across WHO regions: a scoping review. Front Public Health 2023; 11:1102185. [PMID: 37469694 PMCID: PMC10352788 DOI: 10.3389/fpubh.2023.1102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Background Artificial intelligence (AI) is a broad outlet of computer science aimed at constructing machines capable of simulating and performing tasks usually done by human beings. The aim of this scoping review is to map existing evidence on the use of AI in the delivery of medical care. Methods We searched PubMed and Scopus in March 2022, screened identified records for eligibility, assessed full texts of potentially eligible publications, and extracted data from included studies in duplicate, resolving differences through discussion, arbitration, and consensus. We then conducted a narrative synthesis of extracted data. Results Several AI methods have been used to detect, diagnose, classify, manage, treat, and monitor the prognosis of various health issues. These AI models have been used in various health conditions, including communicable diseases, non-communicable diseases, and mental health. Conclusions Presently available evidence shows that AI models, predominantly deep learning, and machine learning, can significantly advance medical care delivery regarding the detection, diagnosis, management, and monitoring the prognosis of different illnesses.
Collapse
Affiliation(s)
| | - Anelisa Jaca
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | | | - Ngozi Idemili-Aronu
- Department of Sociology/Anthropology, University of Nigeria, Nsukka, Nigeria
| | - Housseynou Ba
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Zukiswa Pamela Zantsi
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | - Asiphe Mavis Ndlambe
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | - Edison Mavundza
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | | | - Charles Shey Wiysonge
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Durban, South Africa
| | - Lindiwe Makubalo
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| |
Collapse
|
15
|
Chen W, Zhou Z, Bao J, Wang C, Chen H, Xu C, Xie G, Shen H, Wu H. Classifying Heart-Sound Signals Based on CNN Trained on MelSpectrum and Log-MelSpectrum Features. Bioengineering (Basel) 2023; 10:645. [PMID: 37370576 DOI: 10.3390/bioengineering10060645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The intelligent classification of heart-sound signals can assist clinicians in the rapid diagnosis of cardiovascular diseases. Mel-frequency cepstral coefficients (MelSpectrums) and log Mel-frequency cepstral coefficients (Log-MelSpectrums) based on a short-time Fourier transform (STFT) can represent the temporal and spectral structures of original heart-sound signals. Recently, various systems based on convolutional neural networks (CNNs) trained on the MelSpectrum and Log-MelSpectrum of segmental heart-sound frames that outperform systems using handcrafted features have been presented and classified heart-sound signals accurately. However, there is no a priori evidence of the best input representation for classifying heart sounds when using CNN models. Therefore, in this study, the MelSpectrum and Log-MelSpectrum features of heart-sound signals combined with a mathematical model of cardiac-sound acquisition were analysed theoretically. Both the experimental results and theoretical analysis demonstrated that the Log-MelSpectrum features can reduce the classification difference between domains and improve the performance of CNNs for heart-sound classification.
Collapse
Affiliation(s)
- Wei Chen
- Medical School, Nantong University, Nantong 226001, China
- School of Information Science and Technology, Nantong University, Nantong 226019, China
| | - Zixuan Zhou
- School of Information Science and Technology, Nantong University, Nantong 226019, China
| | - Junze Bao
- Medical School, Nantong University, Nantong 226001, China
| | - Chengniu Wang
- Medical School, Nantong University, Nantong 226001, China
| | - Hanqing Chen
- Medical School, Nantong University, Nantong 226001, China
| | - Chen Xu
- School of Information Science and Technology, Nantong University, Nantong 226019, China
| | - Gangcai Xie
- Medical School, Nantong University, Nantong 226001, China
| | - Hongmin Shen
- School of Information Science and Technology, Nantong University, Nantong 226019, China
| | - Huiqun Wu
- Medical School, Nantong University, Nantong 226001, China
| |
Collapse
|
16
|
Mang L, Canadas-Quesada F, Carabias-Orti J, Combarro E, Ranilla J. Cochleogram-based adventitious sounds classification using convolutional neural networks. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Research of heart sound classification using two-dimensional features. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Li F, Zhang Z, Wang L, Liu W. Heart sound classification based on improved mel-frequency spectral coefficients and deep residual learning. Front Physiol 2022; 13:1084420. [PMID: 36620204 PMCID: PMC9814508 DOI: 10.3389/fphys.2022.1084420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Heart sound classification plays a critical role in the early diagnosis of cardiovascular diseases. Although there have been many advances in heart sound classification in the last few years, most of them are still based on conventional segmented features and shallow structure-based classifiers. Therefore, we propose a new heart sound classification method based on improved mel-frequency cepstrum coefficient features and deep residual learning. Firstly, the heart sound signal is preprocessed, and its improved features are computed. Then, these features are used as input features of the neural network. The pathological information in the heart sound signal is further extracted by the deep residual network. Finally, the heart sound signal is classified into different categories according to the features learned by the neural network. This paper presents comprehensive analyses of different network parameters and network connection strategies. The proposed method achieves an accuracy of 94.43% on the dataset in this paper.
Collapse
Affiliation(s)
- Feng Li
- Department of Computer Science and Technology, Anhui University of Finance and Economics, Bengbu, Anhui, China,School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Zheng Zhang
- Department of Computer Science and Technology, Anhui University of Finance and Economics, Bengbu, Anhui, China
| | - Lingling Wang
- Department of Computer Science and Technology, Anhui University of Finance and Economics, Bengbu, Anhui, China,*Correspondence: Lingling Wang ,
| | - Wei Liu
- Department of Computer Science and Technology, Anhui University of Finance and Economics, Bengbu, Anhui, China
| |
Collapse
|
19
|
Robust classification of heart valve sound based on adaptive EMD and feature fusion. PLoS One 2022; 17:e0276264. [PMID: 36480575 PMCID: PMC9731417 DOI: 10.1371/journal.pone.0276264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is considered one of the leading causes of death worldwide. In recent years, this research area has attracted researchers' attention to investigate heart sounds to diagnose the disease. To effectively distinguish heart valve defects from normal heart sounds, adaptive empirical mode decomposition (EMD) and feature fusion techniques were used to analyze the classification of heart sounds. Based on the correlation coefficient and Root Mean Square Error (RMSE) method, adaptive EMD was proposed under the condition of screening the intrinsic mode function (IMF) components. Adaptive thresholds based on Hausdorff Distance were used to choose the IMF components used for reconstruction. The multidimensional features extracted from the reconstructed signal were ranked and selected. The features of waveform transformation, energy and heart sound signal can indicate the state of heart activity corresponding to various heart sounds. Here, a set of ordinary features were extracted from the time, frequency and nonlinear domains. To extract more compelling features and achieve better classification results, another four cardiac reserve time features were fused. The fusion features were sorted using six different feature selection algorithms. Three classifiers, random forest, decision tree, and K-nearest neighbor, were trained on open source and our databases. Compared to the previous work, our extensive experimental evaluations show that the proposed method can achieve the best results and have the highest accuracy of 99.3% (1.9% improvement in classification accuracy). The excellent results verified the robustness and effectiveness of the fusion features and proposed method.
Collapse
|
20
|
Sarra RR, Dinar AM, Mohammed MA, Ghani MKA, Albahar MA. A Robust Framework for Data Generative and Heart Disease Prediction Based on Efficient Deep Learning Models. Diagnostics (Basel) 2022; 12:diagnostics12122899. [PMID: 36552906 PMCID: PMC9777498 DOI: 10.3390/diagnostics12122899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Biomarkers including fasting blood sugar, heart rate, electrocardiogram (ECG), blood pressure, etc. are essential in the heart disease (HD) diagnosing. Using wearable sensors, these measures are collected and applied as inputs to a deep learning (DL) model for HD diagnosis. However, it is observed that model accuracy weakens when the data gathered are scarce or imbalanced. Therefore, this work proposes two DL-based frameworks, GAN-1D-CNN, and GAN-Bi-LSTM. These frameworks contain: (1) a generative adversarial network (GAN) and (2) a one-dimensional convolutional neural network (1D-CNN) or bi-directional long short-term memory (Bi-LSTM). The GAN model is utilized to augment the small and imbalanced dataset, which is the Cleveland dataset. The 1D-CNN and Bi-LSTM models are then trained using the enlarged dataset to diagnose HD. Unlike previous works, the proposed frameworks increase the dataset first to avoid the prediction bias caused by the limited data. The GAN-1D-CNN achieved 99.1% accuracy, specificity, sensitivity, F1-score, and 100% area under the curve (AUC). Similarly, the GAN-Bi-LSTM obtained 99.3% accuracy, 99.2% specificity, 99.3% sensitivity, 99.2% F1-score, and 100% AUC. Furthermore, time complexity of proposed frameworks is investigated with and without principal component analysis (PCA). The PCA method reduced prediction times for 61 samples using GAN-1D-CNN and GAN-Bi-LSTM to 68.8 and 74.8 ms, respectively. These results show that it is reliable to use our frameworks for augmenting limited data and predicting heart disease.
Collapse
Affiliation(s)
- Raniya R. Sarra
- Computer Engineering Department, University of Technology, Baghdad 00964, Iraq
| | - Ahmed M. Dinar
- Computer Engineering Department, University of Technology, Baghdad 00964, Iraq
- Correspondence: ; Tel.: +964-770-307-2072
| | - Mazin Abed Mohammed
- College of Computer Science and Information Technology, University of Anbar, Ramadi 31001, Iraq
| | - Mohd Khanapi Abd Ghani
- Biomedical Computing and Engineering Technologies (BIOCORE) Applied Research Group, Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Durian Tunggal 76100, Malaysia
| | - Marwan Ali Albahar
- Department of Computer Science, Umm Al Qura University, Mecca 24211, Saudi Arabia
| |
Collapse
|
21
|
Huang Y, Li H, Tao R, Han W, Zhang P, Yu X, Wu R. A customized framework for coronary artery disease detection using phonocardiogram signals. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
A lightweight hybrid deep learning system for cardiac valvular disease classification. Sci Rep 2022; 12:14297. [PMID: 35995814 PMCID: PMC9395359 DOI: 10.1038/s41598-022-18293-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/09/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a prominent cause of death globally. The introduction of medical big data and Artificial Intelligence (AI) technology encouraged the effort to develop and deploy deep learning models for distinguishing heart sound abnormalities. These systems employ phonocardiogram (PCG) signals because of their lack of sophistication and cost-effectiveness. Automated and early diagnosis of cardiovascular diseases (CVDs) helps alleviate deadly complications. In this research, a cardiac diagnostic system that combined CNN and LSTM components was developed, it uses phonocardiogram (PCG) signals, and utilizes either augmented or non-augmented datasets. The proposed model discriminates five heart valvular conditions, namely normal, Aortic Stenosis (AS), Mitral Regurgitation (MR), Mitral Stenosis (MS), and Mitral Valve Prolapse (MVP). The findings demonstrate that the suggested end-to-end architecture yields outstanding performance concerning all important evaluation metrics. For the five classes problem using the open heart sound dataset, accuracy was 98.5%, F1-score was 98.501%, and Area Under the Curve (AUC) was 0.9978 for the non-augmented dataset and accuracy was 99.87%, F1-score was 99.87%, and AUC was 0.9985 for the augmented dataset. Model performance was further evaluated using the PhysioNet/Computing in Cardiology 2016 challenge dataset, for the two classes problem, accuracy was 93.76%, F1-score was 85.59%, and AUC was 0.9505. The achieved results show that the proposed system outperforms all previous works that use the same audio signal databases. In the future, the findings will help build a multimodal structure that uses both PCG and ECG signals.
Collapse
|
23
|
Torre-Cruz J, Martinez-Muñoz D, Ruiz-Reyes N, Muñoz-Montoro AJ, Puentes-Chiachio M, Canadas-Quesada FJ. Unsupervised detection and classification of heartbeats using the dissimilarity matrix in PCG signals. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106909. [PMID: 35649297 DOI: 10.1016/j.cmpb.2022.106909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Auscultation is the first technique applied to the early diagnose of any cardiovascular disease (CVD) in rural areas and poor-resources countries because of its low cost and non-invasiveness. However, it highly depends on the physician's expertise to recognize specific heart sounds heard through the stethoscope. The analysis of phonocardiogram (PCG) signals attempts to segment each cardiac cycle into the four cardiac states (S1, systole, S2 and diastole) in order to develop automatic systems applied to an efficient and reliable detection and classification of heartbeats. In this work, we propose an unsupervised approach, based on time-frequency characteristics shown by cardiac sounds, to detect and classify heartbeats S1 and S2. METHODS The proposed system consists of a two-stage cascade. The first stage performs a rough heartbeat detection while the second stage refines the previous one, improving the temporal localization and also classifying the heartbeats into types S1 and S2. The first contribution is a novel approach that combines the dissimilarity matrix with the frame-level spectral divergence to locate heartbeats using the repetitiveness shown by the heart sounds and the temporal relationships between the intervals defined by the events S1/S2 and non-S1/S2 (systole and diastole). The second contribution is a verification-correction-classification process based on a sliding window that allows the preservation of the temporal structure of the cardiac cycle in order to be applied in the heart sound classification. The proposed method has been assessed using the open access databases PASCAL, CirCor DigiScope Phonocardiogram and an additional sound mixing procedure considering both Additive White Gaussian Noise (AWGN) and different kinds of clinical ambient noises from a commercial database. RESULTS The proposed method outperforms the detection and classification performance of other recent state-of-the-art methods. Although our proposal achieves the best average accuracy for PCG signals without cardiac abnormalities, 99.4% in heartbeat detection and 97.2% in heartbeat classification, its worst average accuracy is always above 92% for PCG signals with cardiac abnormalities, signifying an improvement in heartbeat detection/classification above 10% compared to the other state-of-the-art methods evaluated. CONCLUSIONS The proposed method provides the best detection/classification performance in realistic scenarios where the presence of cardiac anomalies as well as different types of clinical environmental noises are active in the PCG signal. Of note, the promising modelling of the temporal structures of the heart provided by the dissimilarity matrix together with the frame-level spectral divergence, as well as the removal of a significant number of spurious heart events and recovery of missing heart events, both corrected by the proposed verification-correction-classification algorithm, suggest that our proposal is a successful tool to be applied in heart segmentation.
Collapse
Affiliation(s)
- J Torre-Cruz
- Department of Telecommunication Engineering, University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares 23700, Jaen, Spain.
| | - D Martinez-Muñoz
- Department of Telecommunication Engineering, University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares 23700, Jaen, Spain
| | - N Ruiz-Reyes
- Department of Telecommunication Engineering, University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares 23700, Jaen, Spain
| | - A J Muñoz-Montoro
- Department of Computer Science, University of Oviedo, Campus de Gijón, s/n, Gijón 33203, Spain
| | - M Puentes-Chiachio
- Cardiology, University Hospital of Jaen, Av. del Ejercito Espanol, 10, 23007 Jaen, Spain
| | - F J Canadas-Quesada
- Department of Telecommunication Engineering, University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares 23700, Jaen, Spain
| |
Collapse
|
24
|
Classifier identification using Deep Learning and Machine Learning Algorithms for the detection of Valvular Heart diseases. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Guo L, Huang P, He H, Lu Q, Su Z, Zhang Q, Li J, Ma Q, Li J. A method to classify bone marrow cells with rejected option. BIOMED ENG-BIOMED TE 2022; 67:227-236. [PMID: 35439402 DOI: 10.1515/bmt-2021-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/25/2022] [Indexed: 11/15/2022]
Abstract
Bone marrow cell morphology has always been an important tool for the diagnosis of blood diseases. Still, it requires years of experience from a suitable person. Furthermore, the outcomes of their recognition are subjective and there is no objective quantitative standard. As a result, developing a deep learning automatic classification system for bone marrow cells is extremely important. However, typical classification machine learning systems only produce classification answers, and will not refuse to generate predictions when the prediction reliability is low. It will pose a big problem in some high-risk systems such as bone marrow cell recognition. This paper proposes a bone marrow cell classification method with rejected option (CMWRO) to classify 11 bone marrow cells. CMWRO is based on convolutional neural networks, ICP and SoftMax (CNN-ICP-SoftMax), containing a classifier with rejected option. When the rejected rate (RR) of tested samples is 0.3143, it can ensure that the precision, sensitivity, accuracy of the accepted samples reach 0.9921, 0.9917 and 0.9944 respectively. And the rejected samples will be handled by other ways, such as identified by doctors. Besides, the method has a good filtering effect on cell types that the classifier is not trained, such as abnormal cells and cells with less sample distribution. It can reach more than 82% in filtering efficiency. CMWRO improves the doctors' trust in the results of accepted samples to a certain extent. They only need to carefully identify the samples that CMWRO refuses to recognize, and finally combines the two results. It can greatly improve the efficiency and accuracy of bone marrow cell recognition.
Collapse
Affiliation(s)
- Liang Guo
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Industrial Ultrashort Pulse Laser Technology, Shenzhen 518055, China
| | - Peiduo Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Haisen He
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Qinghang Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Zhihao Su
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Qingmao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Jiaming Li
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Qiongxiong Ma
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Jie Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Wang M, Guo B, Hu Y, Zhao Z, Liu C, Tang H. Transfer Learning Models for Detecting Six Categories of Phonocardiogram Recordings. J Cardiovasc Dev Dis 2022; 9:86. [PMID: 35323634 PMCID: PMC8951694 DOI: 10.3390/jcdd9030086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND AIMS Auscultation is a cheap and fundamental technique for detecting cardiovascular disease effectively. Doctors' abilities in auscultation are varied. Sometimes, there may be cases of misdiagnosis, even when auscultation is performed by an experienced doctor. Hence, it is necessary to propose accurate computational tools to assist auscultation, especially in developing countries. Artificial intelligence technology can be an efficient diagnostic tool for detecting cardiovascular disease. This work proposed an automatic multiple classification method for cardiovascular disease detection by heart sound signals. METHODS AND RESULTS In this work, a 1D heart sound signal is translated into its corresponding 3D spectrogram using continuous wavelet transform (CWT). In total, six classes of heart sound data are used in this experiment. We combine an open database (including five classes of heart sound data: aortic stenosis, mitral regurgitation, mitral stenosis, mitral valve prolapse and normal) with one class (pulmonary hypertension) of heart sound data collected by ourselves to perform the experiment. To make the method robust in a noisy environment, the background deformation technique is used before training. Then, 10 transfer learning networks (GoogleNet, SqueezeNet, DarkNet19, MobileNetv2, Inception-ResNetv2, DenseNet201, Inceptionv3, ResNet101, NasNet-Large, and Xception) are used for comparison. Furthermore, other models (LSTM and CNN) are also compared with our proposed algorithm. The experimental results show that four transfer learning networks (ResNet101, DenseNet201, DarkNet19 and GoogleNet) outperformed their peer models with an accuracy of 0.98 to detect the multiple heart diseases. The performances have been validated both in the original heart sound and the augmented heart sound using 10-fold cross validation. The results of these 10 folds are reported in this research. CONCLUSIONS Our method obtained high classification accuracy even under a noisy background, which suggests that the proposed classification method could be used in auxiliary diagnosis for cardiovascular diseases.
Collapse
Affiliation(s)
- Miao Wang
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (M.W.); (B.G.); (Y.H.); (Z.Z.)
| | - Binbin Guo
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (M.W.); (B.G.); (Y.H.); (Z.Z.)
| | - Yating Hu
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (M.W.); (B.G.); (Y.H.); (Z.Z.)
| | - Zehang Zhao
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (M.W.); (B.G.); (Y.H.); (Z.Z.)
| | - Chengyu Liu
- School of Instrument Science and Engineering, Southeast University, Nanjing 214135, China;
| | - Hong Tang
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (M.W.); (B.G.); (Y.H.); (Z.Z.)
| |
Collapse
|
27
|
Suri JS, Bhagawati M, Paul S, Protogerou AD, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S, Faa G, Laird JR, Johri AM, Kalra MK, Paraskevas KI, Saba L. A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review. Diagnostics (Basel) 2022; 12:722. [PMID: 35328275 PMCID: PMC8947682 DOI: 10.3390/diagnostics12030722] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Athanasios D. Protogerou
- Research Unit Clinic, Laboratory of Pathophysiology, Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 11527 Athens, Greece;
| | - George D. Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester 46962, UK;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110020, India;
| | - Zoltan Ruzsa
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary;
| | - Aditya M. Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India;
| | - Gavino Faa
- Department of Pathology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| | - John R. Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA 94574, USA;
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, N. Iraklio, 14122 Athens, Greece;
| | - Luca Saba
- Department of Radiology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| |
Collapse
|
28
|
A machine learning framework for risk prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: A Canadian study. Comput Biol Med 2022; 140:105102. [PMID: 34973521 DOI: 10.1016/j.compbiomed.2021.105102] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
MOTIVATION Machine learning (ML) algorithms can provide better cardiovascular event (CVE) prediction. However, ML algorithms are mostly explored for predicting a single CVE at a time. The objective of this study is to design and develop an ML-based system to predict multi-label CVEs, such as (i) coronary artery disease, (ii) acute coronary syndrome, and (iii) a composite CVE-a class of AtheroEdge 3.0 (ML) system. METHODS Focused carotid B-mode ultrasound and coronary angiography are performed on a group of 459 participants consisting of three cardiovascular labels. Initially, 23 risk predictors comprising (i) patients' demographics, (ii) clinical blood-biomarkers, and (iii) carotid ultrasound image-based phenotypes are collected. Six types of classification techniques comprising (a) four problem transformation methods (PTM) and (b) two algorithm adaptation methods (AAM) are used for multi-label CVE prediction. The performance of the proposed system is evaluated for accuracy, sensitivity, specificity, F1-score, and area-under-the-curve (AUC) using 10-fold cross-validation. The proposed system is also verified using another database of 522 participants. RESULTS For the primary database, PTM demonstrated a better multi-label CVE prediction than AAM (mean accuracy: 80.89% vs. 62.83%, mean AUC: 0.89 vs. 0.63), validating our hypothesis. The PTM-based binary relevance (BR) technique provided optimal performance in multi-label CVE prediction. The overall multi-label classification accuracy, sensitivity, specificity, F1-score, and AUC using BR are 81.2 ± 3.01%, 76.5 ± 8.8%, 83.8 ± 3.8%, 75.37 ± 5.8%, and 0.89 ± 0.02 (p < 0.0001), respectively. When used on the second Canadian database with seven cardiovascular events (acute coronary syndrome, myocardial infarction, angina, stroke, transient ischemic attack, heart failure, and death), the proposed system showed an accuracy of 96.36 ± 0.87% (AUC: 0.61 ± 0.06, p < 0.0001). CONCLUSION ML-based multi-label classification algorithms, such as binary relevance, yielded the best predictions for three cardiovascular endpoints.
Collapse
|
29
|
Ozkok FO, Celik M. Convolutional neural network analysis of recurrence plots for high resolution melting classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 207:106139. [PMID: 34029831 DOI: 10.1016/j.cmpb.2021.106139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE High resolution melting (HRM) analysis is a rapid and correct method for identification of species, such as, microorganism, bacteria, yeast, virus, etc. HRM data are produced using real-time polymerase chain reaction (PCR) and unique for each species. Analysis of the HRM data is important for several applications, such as, for detection of diseases (e.g., influenza, zika virus, SARS-Cov-2 and Covid-19 diseases) in health, for identification of spoiled foods in food industry, for analysis of crime scene evidence in forensic investigation, etc. However, the characteristics of the HRM data can change due to the experimental conditions or instrumental settings. In addition, it becomes laborious and time-consuming process as the number of samples increases. Because of these reasons, the analysis and classification of the HRM data become challenging for species which have similar characteristics. METHODS To improve the classification accuracy of HRM data, we propose to use image (visual) representation of HRM data, which we call HRM images, that are generated using recurrence plots, and propose convolutional neural network (CNN) based models for classifying HRM images. In this study, two different types of recurrence plots are generated, which are black-white recurrence plots (BW-RP) and gray scale recurrence plots (GS-RP) and four different CNN models are proposed for classifying HRM data. RESULTS The classification performance of the proposed methods are evaluated based on average classification accuracy and F1 score, specificity, recall, and precision values for each yeast species. When BW-RP representation of HRM data is used as input to the CNN models, the best classification accuracy of 95.2% is obtained. The classification accuracies of CNN models for melting curve and GS-RP data representations of HRM data are 90.13% and 86.13%, respectively. The classification accuracy of support vector machines (SVM) model that take melting curve representation of HRM data is 86.53%. Moreover, when BW-RP representation of HRM data is used as input to the CNN models, the F1 score, specificity, recall and precision values are the highest for almost all of species. CONCLUSIONS Experimental results show that using BW-RP representation of HRM data improved the classification accuracy of HRM data and CNN models that take these images as input outperformed CNN models that take melting curve and GS-RP representations of HRM data as inputs and SVM model that take melting curve representation of HRM data as input.
Collapse
Affiliation(s)
- Fatma Ozge Ozkok
- Department of Computer Engineering, Erciyes University, Kayseri, 38039 TURKEY.
| | - Mete Celik
- Department of Computer Engineering, Erciyes University, Kayseri, 38039 TURKEY.
| |
Collapse
|
30
|
Chen W, Sun Q, Chen X, Xie G, Wu H, Xu C. Deep Learning Methods for Heart Sounds Classification: A Systematic Review. ENTROPY 2021; 23:e23060667. [PMID: 34073201 PMCID: PMC8229456 DOI: 10.3390/e23060667] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023]
Abstract
The automated classification of heart sounds plays a significant role in the diagnosis of cardiovascular diseases (CVDs). With the recent introduction of medical big data and artificial intelligence technology, there has been an increased focus on the development of deep learning approaches for heart sound classification. However, despite significant achievements in this field, there are still limitations due to insufficient data, inefficient training, and the unavailability of effective models. With the aim of improving the accuracy of heart sounds classification, an in-depth systematic review and an analysis of existing deep learning methods were performed in the present study, with an emphasis on the convolutional neural network (CNN) and recurrent neural network (RNN) methods developed over the last five years. This paper also discusses the challenges and expected future trends in the application of deep learning to heart sounds classification with the objective of providing an essential reference for further study.
Collapse
Affiliation(s)
- Wei Chen
- Medical School, Nantong University, Nantong 226001, China; (W.C.); (G.X.); (H.W.)
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
| | - Qiang Sun
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
- Correspondence: (Q.S.); (C.X.)
| | - Xiaomin Chen
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
| | - Gangcai Xie
- Medical School, Nantong University, Nantong 226001, China; (W.C.); (G.X.); (H.W.)
| | - Huiqun Wu
- Medical School, Nantong University, Nantong 226001, China; (W.C.); (G.X.); (H.W.)
| | - Chen Xu
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
- Correspondence: (Q.S.); (C.X.)
| |
Collapse
|