1
|
Häkkinen S, Voorhies WI, Willbrand EH, Tsai YH, Gagnant T, Yao JK, Weiner KS, Bunge SA. Anchoring functional connectivity to individual sulcal morphology yields insights in a pediatric study of reasoning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.18.590165. [PMID: 38659961 PMCID: PMC11042283 DOI: 10.1101/2024.04.18.590165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A salient neuroanatomical feature of the human brain is its pronounced cortical folding, and there is mounting evidence that sulcal morphology is relevant to functional brain architecture and cognition. However, our understanding of the relationships between sulcal anatomy, brain activity, and behavior is still in its infancy. We previously found the depth of three small, shallow sulci in lateral prefrontal cortex (LPFC) was linked to reasoning performance in childhood and adolescence (Voorhies et al., 2021). These findings beg the question: what is the linking mechanism between sulcal morphology and cognition? To shed light on this question, we investigated functional connectivity among sulci in LPFC and lateral parietal cortex (LPC). We leveraged manual parcellations (21 sulci/hemisphere, total of 1806) and functional magnetic resonance (fMRI) data from a reasoning task from 43 participants aged 7-18 years (20 female). We conducted clustering and classification analyses of individual-level functional connectivity among sulci. Broadly, we found that 1) the connectivity patterns of individual sulci could be differentiated - and more accurately than rotated sulcal labels equated for size and shape; 2) sulcal connectivity did not consistently correspond with that of probabilistic labels or large-scale networks; 3) sulci clustered together into groups with similar patterns, not dictated by spatial proximity; and 4) across individuals, greater depth was associated with higher network centrality for several sulci under investigation. These results highlight that functional connectivity can be meaningfully anchored to individual sulcal anatomy, and demonstrate that functional network centrality can vary as a function of sulcal depth.
Collapse
Affiliation(s)
- Suvi Häkkinen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Willa I. Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Ethan H. Willbrand
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, 53726 USA
| | - Yi-Heng Tsai
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Thomas Gagnant
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | | | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Silvia A. Bunge
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|
2
|
Labonte AK, Camacho MC, Moser J, Koirala S, Laumann TO, Marek S, Fair D, Sylvester CM. Precision Functional Mapping to Advance Developmental Psychiatry Research. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100370. [PMID: 39309212 PMCID: PMC11416589 DOI: 10.1016/j.bpsgos.2024.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Many psychiatric conditions have their roots in early development. Individual differences in prenatal brain function (which is influenced by a combination of genetic risk and the prenatal environment) likely interact with individual differences in postnatal experience, resulting in substantial variation in brain functional organization and development in infancy. Neuroimaging has been a powerful tool for understanding typical and atypical brain function and holds promise for uncovering the neurodevelopmental basis of psychiatric illness; however, its clinical utility has been relatively limited thus far. A substantial challenge in this endeavor is the traditional approach of averaging brain data across groups despite individuals varying in their brain organization, which likely obscures important clinically relevant individual variation. Precision functional mapping (PFM) is a neuroimaging technique that allows the capture of individual-specific and highly reliable functional brain properties. Here, we discuss how PFM, through its focus on individuals, has provided novel insights for understanding brain organization across the life span and its promise in elucidating the neural basis of psychiatric disorders. We first summarize the extant literature on PFM in normative populations, followed by its limited utilization in studying psychiatric conditions in adults. We conclude by discussing the potential for infant PFM in advancing developmental precision psychiatry applications, given that many psychiatric disorders start during early infancy and are associated with changes in individual-specific functional neuroanatomy. By exploring the intersection of PFM, development, and psychiatric research, this article underscores the importance of individualized approaches in unraveling the complexities of brain function and improving clinical outcomes across development.
Collapse
Affiliation(s)
- Alyssa K. Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, Missouri
| | - M. Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Timothy O. Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Damien Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Chad M. Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Albantakis L, Bernard C, Brenner N, Marder E, Narayanan R. The Brain's Best Kept Secret Is Its Degenerate Structure. J Neurosci 2024; 44:e1339242024. [PMID: 39358027 PMCID: PMC11450540 DOI: 10.1523/jneurosci.1339-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Degeneracy is defined as multiple sets of solutions that can produce very similar system performance. Degeneracy is seen across phylogenetic scales, in all kinds of organisms. In neuroscience, degeneracy can be seen in the constellation of biophysical properties that produce a neuron's characteristic intrinsic properties and/or the constellation of mechanisms that determine circuit outputs or behavior. Here, we present examples of degeneracy at multiple levels of organization, from single-cell behavior, small circuits, large circuits, and, in cognition, drawing conclusions from work ranging from bacteria to human cognition. Degeneracy allows the individual-to-individual variability within a population that creates potential for evolution.
Collapse
Affiliation(s)
- Larissa Albantakis
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | | | - Naama Brenner
- Department of Chemical Engineering and Network Biology Research Lab, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Eve Marder
- Biology Department and Volen Center Brandeis University Waltham, Massachusetts 02454
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Petersen SE, Seitzman BA, Nelson SM, Wig GS, Gordon EM. Principles of cortical areas and their implications for neuroimaging. Neuron 2024; 112:2837-2853. [PMID: 38834069 DOI: 10.1016/j.neuron.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what "computations" or "functions" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.
Collapse
Affiliation(s)
- Steven E Petersen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin A Seitzman
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gagan S Wig
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Hughes C, Setton R, Mwilambwe-Tshilobo L, Baracchini G, Turner GR, Spreng RN. Precision mapping of the default network reveals common and distinct (inter) activity for autobiographical memory and theory of mind. J Neurophysiol 2024; 132:375-388. [PMID: 38958281 PMCID: PMC11427040 DOI: 10.1152/jn.00427.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
The default network is widely implicated as a common neural substrate for self-generated thought, such as remembering one's past (autobiographical memory) and imagining the thoughts and feelings of others (theory of mind). Findings that the default network comprises subnetworks of regions, some commonly and some distinctly involved across processes, suggest that one's own experiences inform their understanding of others. With the advent of precision functional MRI (fMRI) methods, however, it is unclear if this shared substrate is observed instead due to traditional group analysis methods. We investigated this possibility using a novel combination of methodological strategies. Twenty-three participants underwent multi-echo resting-state and task fMRI. We used their resting-state scans to conduct cortical parcellation sensitive to individual variation while preserving our ability to conduct group analysis. Using multivariate analyses, we assessed the functional activation and connectivity profiles of default network regions while participants engaged in autobiographical memory, theory of mind, or a sensorimotor control condition. Across the default network, we observed stronger activity associated with both autobiographical memory and theory of mind compared to the control condition. Nonetheless, we also observed that some regions showed preferential activity to either experimental condition, in line with past work. The connectivity results similarly indicated shared and distinct functional profiles. Our results support that autobiographical memory and theory of mind, two theoretically important and widely studied domains of social cognition, evoke common and distinct aspects of the default network even when ensuring high fidelity to individual-specific characteristics.NEW & NOTEWORTHY We used cutting-edge precision functional MRI (fMRI) methods such as multi-echo fMRI acquisition and denoising, a robust experimental paradigm, and individualized cortical parcellation across 23 participants to provide evidence that remembering one's past experiences and imagining the thoughts and feelings of others share a common neural substrate. Evidence from activation and connectivity analyses indicate overlapping and distinct functional profiles of these widely studied episodic and social processes.
Collapse
Affiliation(s)
- Colleen Hughes
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Roni Setton
- Psychology Department, Harvard University, Cambridge, Massachusetts, United States
| | - Laetitia Mwilambwe-Tshilobo
- Psychology Department, Princeton University, Princeton, New Jersey, United States
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Giannakopoulou O, Kakkos I, Dimitrakopoulos GN, Tarousi M, Sun Y, Bezerianos A, Koutsouris DD, Matsopoulos GK. Individual Variability in Brain Connectivity Patterns and Driving-Fatigue Dynamics. SENSORS (BASEL, SWITZERLAND) 2024; 24:3894. [PMID: 38931678 PMCID: PMC11207888 DOI: 10.3390/s24123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Mental fatigue during driving poses significant risks to road safety, necessitating accurate assessment methods to mitigate potential hazards. This study explores the impact of individual variability in brain networks on driving fatigue assessment, hypothesizing that subject-specific connectivity patterns play a pivotal role in understanding fatigue dynamics. By conducting a linear regression analysis of subject-specific brain networks in different frequency bands, this research aims to elucidate the relationships between frequency-specific connectivity patterns and driving fatigue. As such, an EEG sustained driving simulation experiment was carried out, estimating individuals' brain networks using the Phase Lag Index (PLI) to capture shared connectivity patterns. The results unveiled notable variability in connectivity patterns across frequency bands, with the alpha band exhibiting heightened sensitivity to driving fatigue. Individualized connectivity analysis underscored the complexity of fatigue assessment and the potential for personalized approaches. These findings emphasize the importance of subject-specific brain networks in comprehending fatigue dynamics, while providing sensor space minimization, advocating for the development of efficient mobile sensor applications for real-time fatigue detection in driving scenarios.
Collapse
Affiliation(s)
- Olympia Giannakopoulou
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| | - Ioannis Kakkos
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
- Department of Biomedical Engineering, University of West Attica, 12243 Athens, Greece
| | | | - Marilena Tarousi
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Anastasios Bezerianos
- Brain Dynamics Laboratory, Barrow Neurological Institute (BNI), St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| | - Dimitrios D. Koutsouris
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| | - George K. Matsopoulos
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| |
Collapse
|
7
|
Dworetsky A, Seitzman BA, Adeyemo B, Nielsen AN, Hatoum AS, Smith DM, Nichols TE, Neta M, Petersen SE, Gratton C. Two common and distinct forms of variation in human functional brain networks. Nat Neurosci 2024; 27:1187-1198. [PMID: 38689142 PMCID: PMC11248096 DOI: 10.1038/s41593-024-01618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While most previous work treats individual differences as linked to boundary shifts between the borders of regions, here we show that cortical 'variants' also occur at a distance from their typical position, forming ectopic intrusions. Both 'border' and 'ectopic' variants are common across individuals, but differ in their location, network associations, properties of subgroups of individuals, activations during tasks, and prediction of behavioral phenotypes. Border variants also track significantly more with shared genetics than ectopic variants, suggesting a closer link between ectopic variants and environmental influences. This work argues that these two dissociable forms of variation-border shifts and ectopic intrusions-must be separately accounted for in the analysis of individual differences in cortical systems across people.
Collapse
Affiliation(s)
- Ally Dworetsky
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Benjamin A Seitzman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek M Smith
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas E Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Maital Neta
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Steven E Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
- Department of Psychology, Northwestern University, Evanston, IL, USA.
- Neuroscience Program, Florida State University, Tallahassee, FL, USA.
- Department of Neurology, Northwestern University, Evanston, IL, USA.
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
8
|
Kurkela K, Ritchey M. Intrinsic functional connectivity among memory networks does not predict individual differences in narrative recall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555768. [PMID: 38464053 PMCID: PMC10925185 DOI: 10.1101/2023.08.31.555768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Individuals differ greatly in their ability to remember the details of past events, yet little is known about the brain processes that explain such individual differences in a healthy young population. Previous research suggests that episodic memory relies on functional communication among ventral regions of the default mode network ("DMN-C") that are strongly interconnected with the medial temporal lobes. In this study, we investigated whether the intrinsic functional connectivity of the DMN-C subnetwork is related to individual differences in memory ability, examining this relationship across 243 individuals (ages 18-50 years) from the openly available Cambridge Center for Aging and Neuroscience (Cam-CAN) dataset. We first estimated each participant's whole-brain intrinsic functional brain connectivity by combining data from resting-state, movie-watching, and sensorimotor task scans to increase statistical power. We then examined whether intrinsic functional connectivity predicted performance on a narrative recall task. We found no evidence that functional connectivity of the DMN-C, with itself, with other related DMN subnetworks, or with the rest of the brain, was related to narrative recall. Exploratory connectome-based predictive modeling (CBPM) analyses of the entire connectome revealed a whole-brain multivariate pattern that predicted performance, although these changes were largely outside of known memory networks. These results add to emerging evidence suggesting that individual differences in memory cannot be easily explained by brain differences in areas typically associated with episodic memory function.
Collapse
Affiliation(s)
- Kyle Kurkela
- Department of Psychology and Neuroscience, Boston College
| | | |
Collapse
|
9
|
Nakuci J, Yeon J, Xue K, Kim JH, Kim SP, Rahnev D. Quantifying the contribution of subject and group factors in brain activation. Cereb Cortex 2023; 33:11092-11101. [PMID: 37771044 PMCID: PMC10646690 DOI: 10.1093/cercor/bhad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Research in neuroscience often assumes universal neural mechanisms, but increasing evidence points toward sizeable individual differences in brain activations. What remains unclear is the extent of the idiosyncrasy and whether different types of analyses are associated with different levels of idiosyncrasy. Here we develop a new method for addressing these questions. The method consists of computing the within-subject reliability and subject-to-group similarity of brain activations and submitting these values to a computational model that quantifies the relative strength of group- and subject-level factors. We apply this method to a perceptual decision-making task (n = 50) and find that activations related to task, reaction time, and confidence are influenced equally strongly by group- and subject-level factors. Both group- and subject-level factors are dwarfed by a noise factor, though higher levels of smoothing increases their contributions relative to noise. Overall, our method allows for the quantification of group- and subject-level factors of brain activations and thus provides a more detailed understanding of the idiosyncrasy levels in brain activations.
Collapse
Affiliation(s)
- Johan Nakuci
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Jiwon Yeon
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Kai Xue
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Ji-Hyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
10
|
Uddin LQ, Betzel RF, Cohen JR, Damoiseaux JS, De Brigard F, Eickhoff SB, Fornito A, Gratton C, Gordon EM, Laird AR, Larson-Prior L, McIntosh AR, Nickerson LD, Pessoa L, Pinho AL, Poldrack RA, Razi A, Sadaghiani S, Shine JM, Yendiki A, Yeo BTT, Spreng RN. Controversies and progress on standardization of large-scale brain network nomenclature. Netw Neurosci 2023; 7:864-905. [PMID: 37781138 PMCID: PMC10473266 DOI: 10.1162/netn_a_00323] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)-endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.
Collapse
Affiliation(s)
- Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences and Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jessica R. Cohen
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica S. Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA
| | | | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Evan M. Gordon
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Linda Larson-Prior
- Deptartment of Psychiatry and Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A. Randal McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Vancouver, BC, Canada
| | | | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Ana Luísa Pinho
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | | | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois, Urbana Champaign, IL, USA
| | - James M. Shine
- Brain and Mind Center, University of Sydney, Sydney, Australia
| | - Anastasia Yendiki
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
11
|
Kraus B, Zinbarg R, Braga RM, Nusslock R, Mittal VA, Gratton C. Insights from personalized models of brain and behavior for identifying biomarkers in psychiatry. Neurosci Biobehav Rev 2023; 152:105259. [PMID: 37268180 PMCID: PMC10527506 DOI: 10.1016/j.neubiorev.2023.105259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
A main goal in translational neuroscience is to identify neural correlates of psychopathology ("biomarkers") that can be used to facilitate diagnosis, prognosis, and treatment. This goal has led to substantial research into how psychopathology symptoms relate to large-scale brain systems. However, these efforts have not yet resulted in practical biomarkers used in clinical practice. One reason for this underwhelming progress may be that many study designs focus on increasing sample size instead of collecting additional data within each individual. This focus limits the reliability and predictive validity of brain and behavioral measures in any one person. As biomarkers exist at the level of individuals, an increased focus on validating them within individuals is warranted. We argue that personalized models, estimated from extensive data collection within individuals, can address these concerns. We review evidence from two, thus far separate, lines of research on personalized models of (1) psychopathology symptoms and (2) fMRI measures of brain networks. We close by proposing approaches uniting personalized models across both domains to improve biomarker research.
Collapse
Affiliation(s)
- Brian Kraus
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Richard Zinbarg
- Department of Psychology, Northwestern University, Evanston, IL, USA; The Family Institute at Northwestern University, Evanston, IL, USA
| | - Rodrigo M Braga
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Chicago, IL, USA; Northwestern University, Department of Psychiatry, Chicago, IL, USA; Northwestern University, Medical Social Sciences, Chicago, IL, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Psychology, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
12
|
Lynch CJ, Elbau I, Ng T, Ayaz A, Zhu S, Manfredi N, Johnson M, Wolk D, Power JD, Gordon EM, Kay K, Aloysi A, Moia S, Caballero-Gaudes C, Victoria LW, Solomonov N, Goldwaser E, Zebley B, Grosenick L, Downar J, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Williams N, Gunning FM, Liston C. Expansion of a frontostriatal salience network in individuals with depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.551651. [PMID: 37645792 PMCID: PMC10461904 DOI: 10.1101/2023.08.09.551651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hundreds of neuroimaging studies spanning two decades have revealed differences in brain structure and functional connectivity in depression, but with modest effect sizes, complicating efforts to derive mechanistic pathophysiologic insights or develop biomarkers. 1 Furthermore, although depression is a fundamentally episodic condition, few neuroimaging studies have taken a longitudinal approach, which is critical for understanding cause and effect and delineating mechanisms that drive mood state transitions over time. The emerging field of precision functional mapping using densely-sampled longitudinal neuroimaging data has revealed unexpected, functionally meaningful individual differences in brain network topology in healthy individuals, 2-5 but these approaches have never been applied to individuals with depression. Here, using precision functional mapping techniques and 11 datasets comprising n=187 repeatedly sampled individuals and >21,000 minutes of fMRI data, we show that the frontostriatal salience network is expanded two-fold in most individuals with depression. This effect was replicable in multiple samples, including large-scale, group-average data (N=1,231 subjects), and caused primarily by network border shifts affecting specific functional systems, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was unexpectedly stable over time, unaffected by changes in mood state, and detectable in children before the subsequent onset of depressive symptoms in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in specific frontostriatal circuits that tracked fluctuations in specific symptom domains and predicted future anhedonia symptoms before they emerged. Together, these findings identify a stable trait-like brain network topology that may confer risk for depression and mood-state dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.
Collapse
|
13
|
Hauptman M, Blank I, Fedorenko E. Non-literal language processing is jointly supported by the language and theory of mind networks: Evidence from a novel meta-analytic fMRI approach. Cortex 2023; 162:96-114. [PMID: 37023480 PMCID: PMC10210011 DOI: 10.1016/j.cortex.2023.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2022] [Accepted: 01/11/2023] [Indexed: 03/12/2023]
Abstract
Going beyond the literal meaning of language is key to communicative success. However, the mechanisms that support non-literal inferences remain debated. Using a novel meta-analytic approach, we evaluate the contribution of linguistic, social-cognitive, and executive mechanisms to non-literal interpretation. We identified 74 fMRI experiments (n = 1,430 participants) from 2001 to 2021 that contrasted non-literal language comprehension with a literal control condition, spanning ten phenomena (e.g., metaphor, irony, indirect speech). Applying the activation likelihood estimation approach to the 825 activation peaks yielded six left-lateralized clusters. We then evaluated the locations of both the individual-study peaks and the clusters against probabilistic functional atlases (cf. anatomical locations, as is typically done) for three candidate brain networks-the language-selective network (Fedorenko, Behr, & Kanwisher, 2011), which supports language processing, the Theory of Mind (ToM) network (Saxe & Kanwisher, 2003), which supports social inferences, and the domain-general Multiple-Demand (MD) network (Duncan, 2010), which supports executive control. These atlases were created by overlaying individual activation maps of participants who performed robust and extensively validated 'localizer' tasks that selectively target each network in question (n = 806 for language; n = 198 for ToM; n = 691 for MD). We found that both the individual-study peaks and the ALE clusters fell primarily within the language network and the ToM network. These results suggest that non-literal processing is supported by both i) mechanisms that process literal linguistic meaning, and ii) mechanisms that support general social inference. They thus undermine a strong divide between literal and non-literal aspects of language and challenge the claim that non-literal processing requires additional executive resources.
Collapse
Affiliation(s)
- Miriam Hauptman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Idan Blank
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA; Department of Linguistics, UCLA, Los Angeles, CA 90095, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Program in Speech and Hearing in Bioscience and Technology, Harvard University, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Chin EM, Kitase Y, Madurai NK, Robinson S, Jantzie LL. In utero methadone exposure permanently alters anatomical and functional connectivity: A preclinical evaluation. Front Pediatr 2023; 11:1139378. [PMID: 36911026 PMCID: PMC9995894 DOI: 10.3389/fped.2023.1139378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The opioid epidemic is an ongoing public health crisis, and children born following prenatal opioid exposure (POE) have increased risk of long-term cognitive and behavioral sequelae. Clinical studies have identified reduced gray matter volume and abnormal white matter microstructure in children with POE but impacts on whole-brain functional brain connectivity (FC) have not been reported. To define effects of POE on whole brain FC and white matter injury in adult animals, we performed quantitative whole-brain structural and functional MRI. We used an established rat model of POE in which we have previously reported impaired executive function in adult rats analogous to persistent neurocognitive symptoms described in humans with POE. Pregnant Sprague-Dawley rat dams received continuous methadone (12 mg/kg/day) vs. saline infusion for 28 days via osmotic mini-pumps, exposing rats to pre- and postnatal opioid until weaning. At young adult age (P60), POE and saline exposed offspring underwent in vivo MRI included diffusion tensor imaging and functional MRI (fMRI). Results indicate that fractional anisotropy (FA) was decreased in adult animals with POE [n = 11] compared to animals that received saline [n = 9] in major white matter tracts, including the corpus callosum (p < 0.001) and external capsule (p < 0.01). This change in FA was concomitant with reduced axial diffusivity in the external capsule (p < 0.01) and increased radial diffusivity in the corpus callosum (p < 0.01). fMRI analyses reveal brainwide FC was diffusely lower in POE (p < 10-6; 10% of variance explained by group). Decreased connectivity in cortical-cortical and cortico-basal ganglia circuitry was particularly prominent with large effect sizes (Glass's Δ > 1). Taken together, these data confirm POE reduces brainwide functional connectivity as well as microstructural integrity of major white matter tracts. Altered neural circuitry, dysregulated network refinement, and diffuse network dysfunction have been implicated in executive function deficits that are common in children with POE. FC may serve as a translatable biomarker in children with POE.
Collapse
Affiliation(s)
- Eric M. Chin
- Department of Neurodevelopmental Medicine, Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yuma Kitase
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nethra K. Madurai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Department of Neurodevelopmental Medicine, Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Department of Neurodevelopmental Medicine, Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Lynch CJ, Elbau IG, Ng TH, Wolk D, Zhu S, Ayaz A, Power JD, Zebley B, Gunning FM, Liston C. Automated optimization of TMS coil placement for personalized functional network engagement. Neuron 2022; 110:3263-3277.e4. [PMID: 36113473 PMCID: PMC11446252 DOI: 10.1016/j.neuron.2022.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 12/11/2022]
Abstract
Transcranial magnetic stimulation (TMS) is used to treat multiple psychiatric and neurological conditions by manipulating activity in particular brain networks and circuits, but individual responses are highly variable. In clinical settings, TMS coil placement is typically based on either group average functional maps or scalp heuristics. Here, we found that this approach can inadvertently target different functional networks in depressed patients due to variability in their functional brain organization. More precise TMS targeting should be feasible by accounting for each patient's unique functional neuroanatomy. To this end, we developed a targeting approach, termed targeted functional network stimulation (TANS). The TANS approach improved stimulation specificity in silico in 8 highly sampled patients with depression and 6 healthy individuals and in vivo when targeting somatomotor functional networks representing the upper and lower limbs. Code for implementing TANS and an example dataset are provided as a resource.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA.
| | - Immanuel G Elbau
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Tommy H Ng
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Danielle Wolk
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Shasha Zhu
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Aliza Ayaz
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA.
| |
Collapse
|
16
|
Karahan E, Tait L, Si R, Özkan A, Szul MJ, Graham KS, Lawrence AD, Zhang J. The interindividual variability of multimodal brain connectivity maintains spatial heterogeneity and relates to tissue microstructure. Commun Biol 2022; 5:1007. [PMID: 36151363 PMCID: PMC9508245 DOI: 10.1038/s42003-022-03974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Humans differ from each other in a wide range of biometrics, but to what extent brain connectivity varies between individuals remains largely unknown. By combining diffusion-weighted imaging (DWI) and magnetoencephalography (MEG), this study characterizes the inter-subject variability (ISV) of multimodal brain connectivity. Structural connectivity is characterized by higher ISV in association cortices including the core multiple-demand network and lower ISV in the sensorimotor cortex. MEG ISV exhibits frequency-dependent signatures, and the extent of MEG ISV is consistent with that of structural connectivity ISV in selective macroscopic cortical clusters. Across the cortex, the ISVs of structural connectivity and beta-band MEG functional connectivity are negatively associated with cortical myelin content indexed by the quantitative T1 relaxation rate measured by high-resolution 7 T MRI. Furthermore, MEG ISV from alpha to gamma bands relates to the hindrance and restriction of the white-matter tissue estimated by DWI microstructural models. Our findings depict the inter-relationship between the ISV of brain connectivity from multiple modalities, and highlight the role of tissue microstructure underpinning the ISV.
Collapse
Affiliation(s)
- Esin Karahan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Ruoguang Si
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Ayşegül Özkan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Maciek J Szul
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France.,Université Claude Bernard Lyon I, Lyon, France
| | - Kim S Graham
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom. .,Department of Computer Science, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
17
|
Michon KJ, Khammash D, Simmonite M, Hamlin AM, Polk TA. Person-specific and precision neuroimaging: Current methods and future directions. Neuroimage 2022; 263:119589. [PMID: 36030062 DOI: 10.1016/j.neuroimage.2022.119589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022] Open
Abstract
Most neuroimaging studies of brain function analyze data in normalized space to identify regions of common activation across participants. These studies treat interindividual differences in brain organization as noise, but this approach can obscure important information about the brain's functional architecture. Recently, a number of studies have adopted a person-specific approach that aims to characterize these individual differences and explore their reliability and implications for behavior. A subset of these studies has taken a precision imaging approach that collects multiple hours of data from each participant to map brain function on a finer scale. In this review, we provide a broad overview of how person-specific and precision imaging techniques have used resting-state measures to examine individual differences in the brain's organization and their impact on behavior, followed by how task-based activity continues to add detail to these discoveries. We argue that person-specific and precision approaches demonstrate substantial promise in uncovering new details of the brain's functional organization and its relationship to behavior in many areas of cognitive neuroscience. We also discuss some current limitations in this new field and some new directions it may take.
Collapse
Affiliation(s)
| | - Dalia Khammash
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Molly Simmonite
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Abbey M Hamlin
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Somers DC, Michalka SW, Tobyne SM, Noyce AL. Individual Subject Approaches to Mapping Sensory-Biased and Multiple-Demand Regions in Human Frontal Cortex. Curr Opin Behav Sci 2021; 40:169-177. [PMID: 34307791 PMCID: PMC8294130 DOI: 10.1016/j.cobeha.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sensory modality, widely accepted as a key factor in the functional organization of posterior cortical areas, also shapes the organization of human frontal lobes. 'Deep imaging,' or the practice of collecting a sizable amount of data on individual subjects, offers significant advantages in revealing fine-scale aspects of functional organization of the human brain. Here, we review deep imaging approaches to mapping multiple sensory-biased and multiple-demand regions within human lateral frontal cortex. In addition, we discuss how deep imaging methods can be transferred to large public data sets to further extend functional mapping at the group level. We also review how 'connectome fingerprinting' approaches, combined with deep imaging, can be used to localize fine-grained functional organization in individual subjects using resting-state data. Finally, we summarize current 'best practices' for deep imaging.
Collapse
Affiliation(s)
- David C. Somers
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Samantha W. Michalka
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Olin College of Engineering, Needham, MA, US
| | - Sean M. Tobyne
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Physiological Systems – Sensing, Perception and Applied Robotics Division, Charles River Analytics, Inc., Cambridge, MA, USA
| | - Abigail L. Noyce
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Gratton C, Braga RM. Editorial overview: Deep imaging of the individual brain: past, practice, and promise. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Salvo JJ, Holubecki AM, Braga RM. Correspondence between functional connectivity and task-related activity patterns within the individual. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Lynch CJ, Elbau I, Liston C. Improving precision functional mapping routines with multi-echo fMRI. Curr Opin Behav Sci 2021; 40:113-119. [PMID: 34095359 DOI: 10.1016/j.cobeha.2021.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rapidly developing approaches to acquiring and analyzing densely-sampled, single-subject fMRI data have opened new avenues for understanding the neurobiological basis of individual differences in behavior and could allow fMRI to become a more clinically useful tool. Here, we review briefly key insights from these precision functional mapping studies and a highlight significant barrier to their clinical translation. Specifically, that reliable delineation of functional brain networks in individual humans can require hours of resting-state fMRI data per-subject. We found recently that multi-echo fMRI improves the test-retest reliability of resting-state functional connectivity measurements, mitigating the need for acquiring large quantities of per -subject data. Because the benefits of multi-echo acquisitions are most pronounced in clinically important but artifact-prone brain regions, such as the subgenual cingulate and structures deep in the subcortex, this approach has the potential to increase the impact of precision functional mapping routines in both healthy and clinical populations.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69 Street, Box 240, New York, NY 10021
| | - Immanuel Elbau
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69 Street, Box 240, New York, NY 10021
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69 Street, Box 240, New York, NY 10021
| |
Collapse
|