1
|
Chiou R, Duncan J, Jefferies E, Lambon Ralph MA. The Dimensionality of Neural Coding for Cognitive Control Is Gradually Transformed within the Lateral Prefrontal Cortex. J Neurosci 2025; 45:e0233242024. [PMID: 39663116 PMCID: PMC11800757 DOI: 10.1523/jneurosci.0233-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 12/13/2024] Open
Abstract
Cognitive control relies on neural representations that are inherently high-dimensional and distributed across multiple subregions in the prefrontal cortex (PFC). Traditional approaches tackle prefrontal representation by reducing it into a unidimensional measure (univariate amplitude) or using it to distinguish a limited number of alternatives (pattern classification). In contrast, representational similarity analysis (RSA) enables flexibly formulating various hypotheses about informational contents underlying the neural codes, explicitly comparing hypotheses, and examining the representational alignment between brain regions. Here, we used a multifaceted paradigm wherein the difficulty of cognitive control was manipulated separately for five cognitive tasks. We used RSA to unveil representational contents, measure the representational alignment between regions, and quantify representational generality versus specificity. We found a graded transition in the lateral PFC: The dorsocaudal PFC was tuned to task difficulty (indexed by reaction times), preferentially connected with the parietal cortex, and representationally generalizable across domains. The ventrorostral PFC was tuned to the abstract structure of tasks, preferentially connected with the temporal cortex, and representationally specific. The middle PFC (interposed between the dorsocaudal and ventrorostral PFC) was tuned to individual task sets and ranked in the middle in terms of connectivity and generalizability. Furthermore, whether a region was dimensionally rich or sparse covaried with its functional profile: Low dimensionality (only gist) in the dorsocaudal PFC dovetailed with better generality, whereas high dimensionality (gist plus details) in the ventrorostral PFC corresponded with better ability to encode subtleties. Our findings, collectively, demonstrate how cognitive control is decomposed into distinct facets that transition steadily along prefrontal subregions.
Collapse
Affiliation(s)
- Rocco Chiou
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire CB2 7EF, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Headington, Oxfordshire OX3 9DA, United Kingdom
- School of Psychology, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire CB2 7EF, United Kingdom
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, Yorkshire YO10 5DD, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire CB2 7EF, United Kingdom
| |
Collapse
|
2
|
Mattoni M, Fisher AJ, Gates KM, Chein J, Olino TM. Group-to-individual generalizability and individual-level inferences in cognitive neuroscience. Neurosci Biobehav Rev 2025; 169:106024. [PMID: 39889869 DOI: 10.1016/j.neubiorev.2025.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Much of cognitive neuroscience research is focused on group-averages and interindividual brain-behavior associations. However, many theories core to the goal of cognitive neuroscience, such as hypothesized neural mechanisms for a behavior, are inherently based on intraindividual processes. To accommodate this mismatch between study design and theory, research frequently relies on an implicit assumption that group-level, between-person inferences extend to individual-level, within-person processes. The assumption of group-to-individual generalizability, formally referred to as ergodicity, requires that a process be both homogenous within a population and stationary within individuals over time. Our goal in this review is to assess this assumption and provide an accessible introduction to idiographic science (study of the individual) for the cognitive neuroscientist, ultimately laying a foundation for increased focus on the study of intraindividual processes. We first review the history of idiographic science in psychology to connect this longstanding literature with recent individual-level research goals in cognitive neuroscience. We then consider two requirements of group-to-individual generalizability, pattern homogeneity and stationarity, and suggest that most processes in cognitive neuroscience do not meet these assumptions. Consequently, interindividual findings are inappropriate for the intraindividual inferences that many theories are based on. To address this challenge, we suggest precision imaging as an ideal path forward for intraindividual study and present a research framework for complementary interindividual and intraindividual study.
Collapse
Affiliation(s)
- Matthew Mattoni
- Temple University, Department of Psychology and Neuroscience, 1801 N Broad St., Philadelphia, PA, USA.
| | - Aaron J Fisher
- University of California-Berkeley, Department of Psychology, 2121 Berkeley Way, Berkeley, CA, USA
| | - Kathleen M Gates
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, 235 E. Cameron Avenue, Chapel Hill, NC, USA
| | - Jason Chein
- Temple University, Department of Psychology and Neuroscience, 1801 N Broad St., Philadelphia, PA, USA
| | - Thomas M Olino
- Temple University, Department of Psychology and Neuroscience, 1801 N Broad St., Philadelphia, PA, USA
| |
Collapse
|
3
|
Lee HJ, Dworetsky A, Labora N, Gratton C. Using precision approaches to improve brain-behavior prediction. Trends Cogn Sci 2025; 29:170-183. [PMID: 39419740 DOI: 10.1016/j.tics.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Predicting individual behavioral traits from brain idiosyncrasies has broad practical implications, yet predictions vary widely. This constraint may be driven by a combination of signal and noise in both brain and behavioral variables. Here, we expand on this idea, highlighting the potential of extended sampling 'precision' studies. First, we discuss their relevance to improving the reliability of individualized estimates by minimizing measurement noise. Second, we review how targeted within-subject experiments, when combined with individualized analysis or modeling frameworks, can maximize signal. These improvements in signal-to-noise facilitated by precision designs can help boost prediction studies. We close by discussing the integration of precision approaches with large-sample consortia studies to leverage the advantages of both.
Collapse
Affiliation(s)
- Hyejin J Lee
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| | - Ally Dworetsky
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Nathan Labora
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
4
|
Lord B, Allen JJ, Young S, Sanguinetti J. Enhancing Equanimity with Non-Invasive Brain Stimulation: A Novel Framework for Mindfulness Interventions. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00381-1. [PMID: 39708953 DOI: 10.1016/j.bpsc.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
Mindfulness has gained widespread recognition for its benefits to mental health, cognitive performance, and wellbeing. However, the multifaceted nature of mindfulness, encompassing elements like attentional focus, emotional regulation, and present-moment awareness, complicates its definition and measurement. A key component that may underlie its broad benefits is equanimity - the ability to maintain an open and non-reactive attitude toward all sensory experiences. Empirical research suggests that mindfulness works through a combination of top-down attentional control and bottom-up sensory and emotional processes, and that equanimity's role in regulating those bottom-up processes drives the psychological and physiological benefits, making it a promising target for both theoretical and practical exploration. Given these findings, the development of interventions that specifically augment equanimity could improve the impact of mindfulness practices. Research into non-invasive brain stimulation (NIBS) suggests that it is a potential tool for altering neural circuits involved in mindfulness. However, most NIBS studies to date have focused on improving cognitive control systems, leaving equanimity relatively unexplored. Preliminary findings from focused ultrasound interventions targeting the posterior cingulate cortex (PCC) suggest that NIBS can directly facilitate equanimity by inhibiting self-referential processing in the default mode network (DMN) to promote a more present-centered state of awareness. Future research should prioritize the integration of NIBS with well-defined mindfulness training protocols, focusing on equanimity as a core target. This approach could provide a novel framework for advancing both contemplative neuroscience and clinical applications, offering new insights into the mechanisms of mindfulness and refining NIBS methodologies to support individualized, precision wellness interventions.
Collapse
Affiliation(s)
- Brian Lord
- University of Arizona, SEMA Lab, Center for Consciousness Studies, Tuscon, AZ; University of Arizona, Department of Psychology, Tuscon, AZ.
| | - John Jb Allen
- University of Arizona, SEMA Lab, Center for Consciousness Studies, Tuscon, AZ; University of Arizona, Department of Psychology, Tuscon, AZ
| | - Shinzen Young
- University of Arizona, SEMA Lab, Center for Consciousness Studies, Tuscon, AZ; Sanmai Technologies, PBC, Sunnyvale, CA
| | - Jay Sanguinetti
- University of Arizona, SEMA Lab, Center for Consciousness Studies, Tuscon, AZ; Sanmai Technologies, PBC, Sunnyvale, CA
| |
Collapse
|
5
|
Racicot J, Smine S, Afzali K, Orban P. Functional brain connectivity changes associated with day-to-day fluctuations in affective states. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1141-1154. [PMID: 39322824 PMCID: PMC11525411 DOI: 10.3758/s13415-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Affective neuroscience has traditionally relied on cross-sectional studies to uncover the brain correlates of affects, emotions, and moods. Such findings obfuscate intraindividual variability that may reveal meaningful changing affect states. The few functional magnetic resonance imaging longitudinal studies that have linked changes in brain function to the ebbs and flows of affective states over time have mostly investigated a single individual. In this study, we explored how the functional connectivity of brain areas associated with affective processes can explain within-person fluctuations in self-reported positive and negative affects across several subjects. To do so, we leveraged the Day2day dataset that includes 40 to 50 resting-state functional magnetic resonance imaging scans along self-reported positive and negative affectivity from a sample of six healthy participants. Sparse multivariate mixed-effect linear models could explain 15% and 11% of the within-person variation in positive and negative affective states, respectively. Evaluation of these models' generalizability to new data demonstrated the ability to predict approximately 5% and 2% of positive and negative affect variation. The functional connectivity of limbic areas, such as the amygdala, hippocampus, and insula, appeared most important to explain the temporal dynamics of affects over days, weeks, and months.
Collapse
Affiliation(s)
- Jeanne Racicot
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Département de Psychiatrie et d'addictologie, Université de Montréal, Montréal, Canada
| | - Salima Smine
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
| | - Kamran Afzali
- Consortium Santé Numérique, Université de Montréal, Montréal, Canada
| | - Pierre Orban
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada.
- Département de Psychiatrie et d'addictologie, Université de Montréal, Montréal, Canada.
| |
Collapse
|
6
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. The human social cognitive network contains multiple regions within the amygdala. SCIENCE ADVANCES 2024; 10:eadp0453. [PMID: 39576857 PMCID: PMC11584017 DOI: 10.1126/sciadv.adp0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Reasoning about someone's thoughts and intentions-i.e., forming a "theory of mind"-is a core aspect of social cognition and relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by social cognitive processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to anterior regions of the medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between internal circuits of the amygdala and a broader distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph J Salvo
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rodrigo M Braga
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Kupers ER, Knapen T, Merriam EP, Kay KN. Principles of intensive human neuroimaging. Trends Neurosci 2024; 47:856-864. [PMID: 39455343 PMCID: PMC11563852 DOI: 10.1016/j.tins.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.
Collapse
Affiliation(s)
- Eline R Kupers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Sciences, Amsterdam, the Netherlands; Cognitive Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Kendrick N Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Billot A, Jhingan N, Varkanitsa M, Blank I, Ryskin R, Kiran S, Fedorenko E. The language network ages well: Preserved selectivity, lateralization, and within-network functional synchronization in older brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619954. [PMID: 39484368 PMCID: PMC11527140 DOI: 10.1101/2024.10.23.619954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Healthy aging is associated with structural and functional brain changes. However, cognitive abilities differ from one another in how they change with age: whereas executive functions, like working memory, show age-related decline, aspects of linguistic processing remain relatively preserved (Hartshorne et al., 2015). This heterogeneity of the cognitive-behavioral landscape in aging predicts differences among brain networks in whether and how they should change with age. To evaluate this prediction, we used individual-subject fMRI analyses ('precision fMRI') to examine the language-selective network (Fedorenko et al., 2024) and the Multiple Demand (MD) network, which supports executive functions (Duncan et al., 2020), in older adults (n=77) relative to young controls (n=470). In line with past claims, relative to young adults, the MD network of older adults shows weaker and less spatially extensive activations during an executive function task and reduced within-network functional synchronization. However, in stark contrast to the MD network, we find remarkable preservation of the language network in older adults. Their language network responds to language as strongly and selectively as in younger adults, and is similarly lateralized and internally synchronized. In other words, the language network of older adults looks indistinguishable from that of younger adults. Our findings align with behavioral preservation of language skills in aging and suggest that some networks remain young-like, at least on standard measures of function and connectivity.
Collapse
Affiliation(s)
- Anne Billot
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School; Boston, MA 02114
- Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Niharika Jhingan
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Maria Varkanitsa
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA 02215
| | - Idan Blank
- Department of Psychology and Department of Linguistics, University of California Los Angeles, Los Angeles, CA 90095
| | - Rachel Ryskin
- Department of Cognitive & Information Sciences, University of California Merced, Merced, CA 95343
| | - Swathi Kiran
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA 02215
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA 02114
| |
Collapse
|
9
|
Lynch CJ, Elbau IG, Ng T, Ayaz A, Zhu S, Wolk D, Manfredi N, Johnson M, Chang M, Chou J, Summerville I, Ho C, Lueckel M, Bukhari H, Buchanan D, Victoria LW, Solomonov N, Goldwaser E, Moia S, Caballero-Gaudes C, Downar J, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Kay K, Aloysi A, Gordon EM, Bhati MT, Williams N, Power JD, Zebley B, Grosenick L, Gunning FM, Liston C. Frontostriatal salience network expansion in individuals in depression. Nature 2024; 633:624-633. [PMID: 39232159 PMCID: PMC11410656 DOI: 10.1038/s41586-024-07805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/09/2024] [Indexed: 09/06/2024]
Abstract
Decades of neuroimaging studies have shown modest differences in brain structure and connectivity in depression, hindering mechanistic insights or the identification of risk factors for disease onset1. Furthermore, whereas depression is episodic, few longitudinal neuroimaging studies exist, limiting understanding of mechanisms that drive mood-state transitions. The emerging field of precision functional mapping has used densely sampled longitudinal neuroimaging data to show behaviourally meaningful differences in brain network topography and connectivity between and in healthy individuals2-4, but this approach has not been applied in depression. Here, using precision functional mapping and several samples of deeply sampled individuals, we found that the frontostriatal salience network is expanded nearly twofold in the cortex of most individuals with depression. This effect was replicable in several samples and caused primarily by network border shifts, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was stable over time, unaffected by mood state and detectable in children before the onset of depression later in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in frontostriatal circuits that tracked fluctuations in specific symptoms and predicted future anhedonia symptoms. Together, these findings identify a trait-like brain network topology that may confer risk for depression and mood-state-dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Immanuel G Elbau
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Tommy Ng
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Aliza Ayaz
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Shasha Zhu
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Danielle Wolk
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Nicola Manfredi
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Johnson
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Chang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Jolin Chou
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | - Claire Ho
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Maximilian Lueckel
- Leibniz Institute for Resilience Research, Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Hussain Bukhari
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Derrick Buchanan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Nili Solomonov
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Eric Goldwaser
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Stefano Moia
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | | | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Daniel M Blumberger
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Amy Aloysi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mahendra T Bhati
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nolan Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Hughes C, Setton R, Mwilambwe-Tshilobo L, Baracchini G, Turner GR, Spreng RN. Precision mapping of the default network reveals common and distinct (inter) activity for autobiographical memory and theory of mind. J Neurophysiol 2024; 132:375-388. [PMID: 38958281 PMCID: PMC11427040 DOI: 10.1152/jn.00427.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
The default network is widely implicated as a common neural substrate for self-generated thought, such as remembering one's past (autobiographical memory) and imagining the thoughts and feelings of others (theory of mind). Findings that the default network comprises subnetworks of regions, some commonly and some distinctly involved across processes, suggest that one's own experiences inform their understanding of others. With the advent of precision functional MRI (fMRI) methods, however, it is unclear if this shared substrate is observed instead due to traditional group analysis methods. We investigated this possibility using a novel combination of methodological strategies. Twenty-three participants underwent multi-echo resting-state and task fMRI. We used their resting-state scans to conduct cortical parcellation sensitive to individual variation while preserving our ability to conduct group analysis. Using multivariate analyses, we assessed the functional activation and connectivity profiles of default network regions while participants engaged in autobiographical memory, theory of mind, or a sensorimotor control condition. Across the default network, we observed stronger activity associated with both autobiographical memory and theory of mind compared to the control condition. Nonetheless, we also observed that some regions showed preferential activity to either experimental condition, in line with past work. The connectivity results similarly indicated shared and distinct functional profiles. Our results support that autobiographical memory and theory of mind, two theoretically important and widely studied domains of social cognition, evoke common and distinct aspects of the default network even when ensuring high fidelity to individual-specific characteristics.NEW & NOTEWORTHY We used cutting-edge precision functional MRI (fMRI) methods such as multi-echo fMRI acquisition and denoising, a robust experimental paradigm, and individualized cortical parcellation across 23 participants to provide evidence that remembering one's past experiences and imagining the thoughts and feelings of others share a common neural substrate. Evidence from activation and connectivity analyses indicate overlapping and distinct functional profiles of these widely studied episodic and social processes.
Collapse
Affiliation(s)
- Colleen Hughes
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Roni Setton
- Psychology Department, Harvard University, Cambridge, Massachusetts, United States
| | - Laetitia Mwilambwe-Tshilobo
- Psychology Department, Princeton University, Princeton, New Jersey, United States
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Deen B, Husain G, Freiwald WA. A familiar face and person processing area in the human temporal pole. Proc Natl Acad Sci U S A 2024; 121:e2321346121. [PMID: 38954551 PMCID: PMC11252731 DOI: 10.1073/pnas.2321346121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
How does the brain process the faces of familiar people? Neuropsychological studies have argued for an area of the temporal pole (TP) linking faces with person identities, but magnetic susceptibility artifacts in this region have hampered its study with fMRI. Using data acquisition and analysis methods optimized to overcome this artifact, we identify a familiar face response in TP, reliably observed in individual brains. This area responds strongly to visual images of familiar faces over unfamiliar faces, objects, and scenes. However, TP did not just respond to images of faces, but also to a variety of high-level social cognitive tasks, including semantic, episodic, and theory of mind tasks. The response profile of TP contrasted with a nearby region of the perirhinal cortex that responded specifically to faces, but not to social cognition tasks. TP was functionally connected with a distributed network in the association cortex associated with social cognition, while PR was functionally connected with face-preferring areas of the ventral visual cortex. This work identifies a missing link in the human face processing system that specifically processes familiar faces, and is well placed to integrate visual information about faces with higher-order conceptual information about other people. The results suggest that separate streams for person and face processing reach anterior temporal areas positioned at the top of the cortical hierarchy.
Collapse
Affiliation(s)
- Ben Deen
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA70118
- Laboratory of Neural Systems, The Rockefeller University, New York, NY10065
| | - Gazi Husain
- Hunter College, City University of New York, New York, NY10065
| | | |
Collapse
|
12
|
Sueoka Y, Paunov A, Tanner A, Blank IA, Ivanova A, Fedorenko E. The Language Network Reliably "Tracks" Naturalistic Meaningful Nonverbal Stimuli. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:385-408. [PMID: 38911462 PMCID: PMC11192443 DOI: 10.1162/nol_a_00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/08/2024] [Indexed: 06/25/2024]
Abstract
The language network, comprised of brain regions in the left frontal and temporal cortex, responds robustly and reliably during language comprehension but shows little or no response during many nonlinguistic cognitive tasks (e.g., Fedorenko & Blank, 2020). However, one domain whose relationship with language remains debated is semantics-our conceptual knowledge of the world. Given that the language network responds strongly to meaningful linguistic stimuli, could some of this response be driven by the presence of rich conceptual representations encoded in linguistic inputs? In this study, we used a naturalistic cognition paradigm to test whether the cognitive and neural resources that are responsible for language processing are also recruited for processing semantically rich nonverbal stimuli. To do so, we measured BOLD responses to a set of ∼5-minute-long video and audio clips that consisted of meaningful event sequences but did not contain any linguistic content. We then used the intersubject correlation (ISC) approach (Hasson et al., 2004) to examine the extent to which the language network "tracks" these stimuli, that is, exhibits stimulus-related variation. Across all the regions of the language network, meaningful nonverbal stimuli elicited reliable ISCs. These ISCs were higher than the ISCs elicited by semantically impoverished nonverbal stimuli (e.g., a music clip), but substantially lower than the ISCs elicited by linguistic stimuli. Our results complement earlier findings from controlled experiments (e.g., Ivanova et al., 2021) in providing further evidence that the language network shows some sensitivity to semantic content in nonverbal stimuli.
Collapse
Affiliation(s)
- Yotaro Sueoka
- Department of Brain and Cognitive Sciences, Massachusetts Instititute of Technology, Cambridge, MA, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander Paunov
- Department of Brain and Cognitive Sciences, Massachusetts Instititute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Instititute of Technology, Cambridge, MA, USA
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif/Yvette, France
| | - Alyx Tanner
- McGovern Institute for Brain Research, Massachusetts Instititute of Technology, Cambridge, MA, USA
| | - Idan A. Blank
- Department of Psychology and Linguistics, University of California Los Angeles, Los Angeles, CA, USA
| | - Anna Ivanova
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Instititute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Instititute of Technology, Cambridge, MA, USA
- Program in Speech and Hearing Biosciences and Technology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
13
|
Wolna A, Szewczyk J, Diaz M, Domagalik A, Szwed M, Wodniecka Z. Tracking Components of Bilingual Language Control in Speech Production: An fMRI Study Using Functional Localizers. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:315-340. [PMID: 38832359 PMCID: PMC11093400 DOI: 10.1162/nol_a_00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 06/05/2024]
Abstract
When bilingual speakers switch back to speaking in their native language (L1) after having used their second language (L2), they often experience difficulty in retrieving words in their L1. This phenomenon is referred to as the L2 after-effect. We used the L2 after-effect as a lens to explore the neural bases of bilingual language control mechanisms. Our goal was twofold: first, to explore whether bilingual language control draws on domain-general or language-specific mechanisms; second, to investigate the precise mechanism(s) that drive the L2 after-effect. We used a precision fMRI approach based on functional localizers to measure the extent to which the brain activity that reflects the L2 after-effect overlaps with the language network (Fedorenko et al., 2010) and the domain-general multiple demand network (Duncan, 2010), as well as three task-specific networks that tap into interference resolution, lexical retrieval, and articulation. Forty-two Polish-English bilinguals participated in the study. Our results show that the L2 after-effect reflects increased engagement of domain-general but not language-specific resources. Furthermore, contrary to previously proposed interpretations, we did not find evidence that the effect reflects increased difficulty related to lexical access, articulation, and the resolution of lexical interference. We propose that difficulty of speech production in the picture naming paradigm-manifested as the L2 after-effect-reflects interference at a nonlinguistic level of task schemas or a general increase of cognitive control engagement during speech production in L1 after L2.
Collapse
Affiliation(s)
- Agata Wolna
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Jakub Szewczyk
- Institute of Psychology, Jagiellonian University, Kraków, Poland
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Michele Diaz
- Social, Life, and Engineering Sciences Imaging Center, Pennsylvania State University, Pennsylvania, USA
| | | | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Zofia Wodniecka
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
14
|
Shain C, Kean H, Casto C, Lipkin B, Affourtit J, Siegelman M, Mollica F, Fedorenko E. Distributed Sensitivity to Syntax and Semantics throughout the Language Network. J Cogn Neurosci 2024; 36:1427-1471. [PMID: 38683732 DOI: 10.1162/jocn_a_02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Human language is expressive because it is compositional: The meaning of a sentence (semantics) can be inferred from its structure (syntax). It is commonly believed that language syntax and semantics are processed by distinct brain regions. Here, we revisit this claim using precision fMRI methods to capture separation or overlap of function in the brains of individual participants. Contrary to prior claims, we find distributed sensitivity to both syntax and semantics throughout a broad frontotemporal brain network. Our results join a growing body of evidence for an integrated network for language in the human brain within which internal specialization is primarily a matter of degree rather than kind, in contrast with influential proposals that advocate distinct specialization of different brain areas for different types of linguistic functions.
Collapse
Affiliation(s)
| | - Hope Kean
- Massachusetts Institute of Technology
| | | | | | | | | | | | | |
Collapse
|
15
|
Dworetsky A, Seitzman BA, Adeyemo B, Nielsen AN, Hatoum AS, Smith DM, Nichols TE, Neta M, Petersen SE, Gratton C. Two common and distinct forms of variation in human functional brain networks. Nat Neurosci 2024; 27:1187-1198. [PMID: 38689142 PMCID: PMC11248096 DOI: 10.1038/s41593-024-01618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While most previous work treats individual differences as linked to boundary shifts between the borders of regions, here we show that cortical 'variants' also occur at a distance from their typical position, forming ectopic intrusions. Both 'border' and 'ectopic' variants are common across individuals, but differ in their location, network associations, properties of subgroups of individuals, activations during tasks, and prediction of behavioral phenotypes. Border variants also track significantly more with shared genetics than ectopic variants, suggesting a closer link between ectopic variants and environmental influences. This work argues that these two dissociable forms of variation-border shifts and ectopic intrusions-must be separately accounted for in the analysis of individual differences in cortical systems across people.
Collapse
Affiliation(s)
- Ally Dworetsky
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Benjamin A Seitzman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek M Smith
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas E Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Maital Neta
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Steven E Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
- Department of Psychology, Northwestern University, Evanston, IL, USA.
- Neuroscience Program, Florida State University, Tallahassee, FL, USA.
- Department of Neurology, Northwestern University, Evanston, IL, USA.
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
16
|
Grotzinger H, Pritschet L, Shapturenka P, Santander T, Murata EM, Jacobs EG. Diurnal Fluctuations in Steroid Hormones Tied to Variation in Intrinsic Functional Connectivity in a Densely Sampled Male. J Neurosci 2024; 44:e1856232024. [PMID: 38627091 PMCID: PMC11140665 DOI: 10.1523/jneurosci.1856-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/30/2024] Open
Abstract
Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into how the endocrine system dynamically regulates aspects of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the global efficiency of large-scale brain networks in a woman sampled every 24 h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6 and 7 A.M. and nadir between 7 and 8 P.M. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 h across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, 17β-estradiol-the primary form of estrogen-and cortisol. Standardized regression analyses revealed widespread associations between testosterone, estradiol, and cortisol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in the Dorsal Attention Network was coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and a naturally cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence in both sexes and to a heightened degree in the male. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are associated with patterns of whole-brain functional connectivity.
Collapse
Affiliation(s)
- Hannah Grotzinger
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Laura Pritschet
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Pavel Shapturenka
- Chemical Engineering, University of California, Santa Barbara, California 93106
| | - Tyler Santander
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Elle M Murata
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Emily G Jacobs
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106
| |
Collapse
|
17
|
Fedorenko E, Ivanova AA, Regev TI. The language network as a natural kind within the broader landscape of the human brain. Nat Rev Neurosci 2024; 25:289-312. [PMID: 38609551 DOI: 10.1038/s41583-024-00802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/14/2024]
Abstract
Language behaviour is complex, but neuroscientific evidence disentangles it into distinct components supported by dedicated brain areas or networks. In this Review, we describe the 'core' language network, which includes left-hemisphere frontal and temporal areas, and show that it is strongly interconnected, independent of input and output modalities, causally important for language and language-selective. We discuss evidence that this language network plausibly stores language knowledge and supports core linguistic computations related to accessing words and constructions from memory and combining them to interpret (decode) or generate (encode) linguistic messages. We emphasize that the language network works closely with, but is distinct from, both lower-level - perceptual and motor - mechanisms and higher-level systems of knowledge and reasoning. The perceptual and motor mechanisms process linguistic signals, but, in contrast to the language network, are sensitive only to these signals' surface properties, not their meanings; the systems of knowledge and reasoning (such as the system that supports social reasoning) are sometimes engaged during language use but are not language-selective. This Review lays a foundation both for in-depth investigations of these different components of the language processing pipeline and for probing inter-component interactions.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Program in Speech and Hearing in Bioscience and Technology, Harvard University, Cambridge, MA, USA.
| | - Anna A Ivanova
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tamar I Regev
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Jain S, Vo VA, Wehbe L, Huth AG. Computational Language Modeling and the Promise of In Silico Experimentation. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:80-106. [PMID: 38645624 PMCID: PMC11025654 DOI: 10.1162/nol_a_00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 01/18/2023] [Indexed: 04/23/2024]
Abstract
Language neuroscience currently relies on two major experimental paradigms: controlled experiments using carefully hand-designed stimuli, and natural stimulus experiments. These approaches have complementary advantages which allow them to address distinct aspects of the neurobiology of language, but each approach also comes with drawbacks. Here we discuss a third paradigm-in silico experimentation using deep learning-based encoding models-that has been enabled by recent advances in cognitive computational neuroscience. This paradigm promises to combine the interpretability of controlled experiments with the generalizability and broad scope of natural stimulus experiments. We show four examples of simulating language neuroscience experiments in silico and then discuss both the advantages and caveats of this approach.
Collapse
Affiliation(s)
- Shailee Jain
- Department of Computer Science, University of Texas at Austin, Austin, TX, USA
| | - Vy A. Vo
- Brain-Inspired Computing Lab, Intel Labs, Hillsboro, OR, USA
| | - Leila Wehbe
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexander G. Huth
- Department of Computer Science, University of Texas at Austin, Austin, TX, USA
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
19
|
Regev TI, Kim HS, Chen X, Affourtit J, Schipper AE, Bergen L, Mahowald K, Fedorenko E. High-level language brain regions process sublexical regularities. Cereb Cortex 2024; 34:bhae077. [PMID: 38494886 PMCID: PMC11486690 DOI: 10.1093/cercor/bhae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
A network of left frontal and temporal brain regions supports language processing. This "core" language network stores our knowledge of words and constructions as well as constraints on how those combine to form sentences. However, our linguistic knowledge additionally includes information about phonemes and how they combine to form phonemic clusters, syllables, and words. Are phoneme combinatorics also represented in these language regions? Across five functional magnetic resonance imaging experiments, we investigated the sensitivity of high-level language processing brain regions to sublexical linguistic regularities by examining responses to diverse nonwords-sequences of phonemes that do not constitute real words (e.g. punes, silory, flope). We establish robust responses in the language network to visually (experiment 1a, n = 605) and auditorily (experiments 1b, n = 12, and 1c, n = 13) presented nonwords. In experiment 2 (n = 16), we find stronger responses to nonwords that are more well-formed, i.e. obey the phoneme-combinatorial constraints of English. Finally, in experiment 3 (n = 14), we provide suggestive evidence that the responses in experiments 1 and 2 are not due to the activation of real words that share some phonology with the nonwords. The results suggest that sublexical regularities are stored and processed within the same fronto-temporal network that supports lexical and syntactic processes.
Collapse
Affiliation(s)
- Tamar I Regev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Hee So Kim
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Xuanyi Chen
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Cognitive Sciences, Rice University, Houston, TX 77005, United States
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Abigail E Schipper
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Leon Bergen
- Department of Linguistics, University of California San Diego, San Diego CA 92093, United States
| | - Kyle Mahowald
- Department of Linguistics, University of Texas at Austin, Austin, TX 78712, United States
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- The Harvard Program in Speech and Hearing Bioscience and Technology, Boston, MA 02115, United States
| |
Collapse
|
20
|
Malik-Moraleda S, Jouravlev O, Taliaferro M, Mineroff Z, Cucu T, Mahowald K, Blank IA, Fedorenko E. Functional characterization of the language network of polyglots and hyperpolyglots with precision fMRI. Cereb Cortex 2024; 34:bhae049. [PMID: 38466812 PMCID: PMC10928488 DOI: 10.1093/cercor/bhae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
How do polyglots-individuals who speak five or more languages-process their languages, and what can this population tell us about the language system? Using fMRI, we identified the language network in each of 34 polyglots (including 16 hyperpolyglots with knowledge of 10+ languages) and examined its response to the native language, non-native languages of varying proficiency, and unfamiliar languages. All language conditions engaged all areas of the language network relative to a control condition. Languages that participants rated as higher proficiency elicited stronger responses, except for the native language, which elicited a similar or lower response than a non-native language of similar proficiency. Furthermore, unfamiliar languages that were typologically related to the participants' high-to-moderate-proficiency languages elicited a stronger response than unfamiliar unrelated languages. The results suggest that the language network's response magnitude scales with the degree of engagement of linguistic computations (e.g. related to lexical access and syntactic-structure building). We also replicated a prior finding of weaker responses to native language in polyglots than non-polyglot bilinguals. These results contribute to our understanding of how multiple languages coexist within a single brain and provide new evidence that the language network responds more strongly to stimuli that more fully engage linguistic computations.
Collapse
Affiliation(s)
- Saima Malik-Moraleda
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA 02114, United States
| | - Olessia Jouravlev
- Department of Cognitive Science, Carleton University, Ottawa K1S 5B6, Canada
| | - Maya Taliaferro
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Zachary Mineroff
- Eberly Center, Carnegie Mellon University, Pittsburgh, PA 15289, United States
| | - Theodore Cucu
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15289, United States
| | - Kyle Mahowald
- Department of Linguistics, The University of Texas at Austin, Austin, TX 78712, United States
| | - Idan A Blank
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA 02114, United States
| |
Collapse
|
21
|
Malik-Moraleda S, Jouravlev O, Taliaferro M, Mineroff Z, Cucu T, Mahowald K, Blank IA, Fedorenko E. Functional characterization of the language network of polyglots and hyperpolyglots with precision fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.19.524657. [PMID: 36711949 PMCID: PMC9882290 DOI: 10.1101/2023.01.19.524657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
How do polyglots-individuals who speak five or more languages-process their languages, and what can this population tell us about the language system? Using fMRI, we identified the language network in each of 34 polyglots (including 16 hyperpolyglots with knowledge of 10+ languages) and examined its response to the native language, non-native languages of varying proficiency, and unfamiliar languages. All language conditions engaged all areas of the language network relative to a control condition. Languages that participants rated as higher-proficiency elicited stronger responses, except for the native language, which elicited a similar or lower response than a non-native language of similar proficiency. Furthermore, unfamiliar languages that were typologically related to the participants' high-to-moderate-proficiency languages elicited a stronger response than unfamiliar unrelated languages. The results suggest that the language network's response magnitude scales with the degree of engagement of linguistic computations (e.g., related to lexical access and syntactic-structure building). We also replicated a prior finding of weaker responses to native language in polyglots than non-polyglot bilinguals. These results contribute to our understanding of how multiple languages co-exist within a single brain and provide new evidence that the language network responds more strongly to stimuli that more fully engage linguistic computations.
Collapse
Affiliation(s)
- Saima Malik-Moraleda
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA 02114
| | - Olessia Jouravlev
- Department of Cognitive Science, Carleton University, Ottawa, Canada, K1S 5B6
| | - Maya Taliaferro
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Theodore Cucu
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15289
| | - Kyle Mahowald
- Department of Linguistics, The University of Texas at Austin, Austin, TX 78712
| | - Idan A. Blank
- Department of Psychology, University of California Los Angeles, CA 90095
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA 02114
| |
Collapse
|
22
|
Nugiel T, Demeter DV, Mitchell ME, Garza A, Hernandez AE, Juranek J, Church JA. Brain connectivity and academic skills in English learners. Cereb Cortex 2024; 34:bhad414. [PMID: 38044467 PMCID: PMC10793574 DOI: 10.1093/cercor/bhad414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
English learners (ELs) are a rapidly growing population in schools in the United States with limited experience and proficiency in English. To better understand the path for EL's academic success in school, it is important to understand how EL's brain systems are used for academic learning in English. We studied, in a cohort of Hispanic middle-schoolers (n = 45, 22F) with limited English proficiency and a wide range of reading and math abilities, brain network properties related to academic abilities. We applied a method for localizing brain regions of interest (ROIs) that are group-constrained, yet individually specific, to test how resting state functional connectivity between regions that are important for academic learning (reading, math, and cognitive control regions) are related to academic abilities. ROIs were selected from task localizers probing reading and math skills in the same participants. We found that connectivity across all ROIs, as well as connectivity of just the cognitive control ROIs, were positively related to measures of reading skills but not math skills. This work suggests that cognitive control brain systems have a central role for reading in ELs. Our results also indicate that an individualized approach for localizing brain function may clarify brain-behavior relationships.
Collapse
Affiliation(s)
- Tehila Nugiel
- Department of Psychology, Florida State University, Tallahassee, FL 32304, United States
| | - Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037, United States
| | - Mackenzie E Mitchell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - AnnaCarolina Garza
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Arturo E Hernandez
- Department of Psychology, University of Houston, Houston, TX 77204, United States
| | - Jenifer Juranek
- Department of Pediatrics, University of Texas Health Science Center, Houston, TX 77225, United States
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
- Biomedical Imaging Center, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
23
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. Social cognitive regions of human association cortex are selectively connected to the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570477. [PMID: 38106046 PMCID: PMC10723387 DOI: 10.1101/2023.12.06.570477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Reasoning about someone's thoughts and intentions - i.e., forming a theory of mind - is an important aspect of social cognition that relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by theory of mind processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to regions of the anterior medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between amygdala circuits and a distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
24
|
Wolna A, Szewczyk J, Diaz M, Domagalik A, Szwed M, Wodniecka Z. Domain-general and language-specific contributions to speech production in a second language: an fMRI study using functional localizers. Sci Rep 2024; 14:57. [PMID: 38168139 PMCID: PMC10761726 DOI: 10.1038/s41598-023-49375-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
For bilinguals, speaking in a second language (L2) compared to the native language (L1) is usually more difficult. In this study we asked whether the difficulty in L2 production reflects increased demands imposed on domain-general or core language mechanisms. We compared the brain response to speech production in L1 and L2 within two functionally-defined networks in the brain: the Multiple Demand (MD) network and the language network. We found that speech production in L2 was linked to a widespread increase of brain activity in the domain-general MD network. The language network did not show a similarly robust differences in processing speech in the two languages, however, we found increased response to L2 production in the language-specific portion of the left inferior frontal gyrus (IFG). To further explore our results, we have looked at domain-general and language-specific response within the brain structures postulated to form a Bilingual Language Control (BLC) network. Within this network, we found a robust increase in response to L2 in the domain-general, but also in some language-specific voxels including in the left IFG. Our findings show that L2 production strongly engages domain-general mechanisms, but only affects language sensitive portions of the left IFG. These results put constraints on the current model of bilingual language control by precisely disentangling the domain-general and language-specific contributions to the difficulty in speech production in L2.
Collapse
Affiliation(s)
- Agata Wolna
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland.
| | - Jakub Szewczyk
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Michele Diaz
- Social, Life, and Engineering Sciences Imaging Center, The Pennsylvania State University, Pennsylvania, USA
| | | | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland
| | - Zofia Wodniecka
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland.
| |
Collapse
|
25
|
Lee JJ, Scott TL, Perrachione TK. Efficient functional localization of language regions in the brain. Neuroimage 2024; 285:120489. [PMID: 38065277 PMCID: PMC10999251 DOI: 10.1016/j.neuroimage.2023.120489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Important recent advances in the cognitive neuroscience of language have been made using functional localizers to demarcate language-selective regions in individual brains. Although single-subject localizers offer insights that are unavailable in classic group analyses, they require additional scan time that imposes costs on investigators and participants. In particular, the unique practical challenges of scanning children and other special populations has led to less adoption of localizers for neuroimaging research with these theoretically and clinically important groups. Here, we examined how measurements of the spatial extent and functional response profiles of language regions are affected by the duration of an auditory language localizer. We compared how parametrically smaller amounts of data collected from one scanning session affected (i) consistency of group-level whole-brain parcellations, (ii) functional selectivity of subject-level activation in individually defined functional regions of interest (fROIs), (iii) sensitivity and specificity of subject-level whole-brain and fROI activation, and (iv) test-retest reliability of subject-level whole-brain and fROI activation. For many of these metrics, the localizer duration could be reduced by 50-75% while preserving the stability and reliability of both the spatial extent and functional response profiles of language areas. These results indicate that, for most measures relevant to cognitive neuroimaging studies, the brain's language network can be localized just as effectively with 3.5 min of scan time as it can with 12 min. Minimizing the time required to reliably localize the brain's language network allows more effective localizer use in situations where each minute of scan time is particularly precious.
Collapse
Affiliation(s)
- Jayden J Lee
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave., Boston, MA 02215, United States
| | - Terri L Scott
- Department of Neurological Surgery, University of California - San Francisco, San Francisco, CA, United States
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave., Boston, MA 02215, United States.
| |
Collapse
|
26
|
Peterson M, Braga RM, Floris DL, Nielsen JA. Evidence for a Compensatory Relationship between Left- and Right-Lateralized Brain Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570817. [PMID: 38106130 PMCID: PMC10723397 DOI: 10.1101/2023.12.08.570817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The two hemispheres of the human brain are functionally asymmetric. At the network level, the language network exhibits left-hemisphere lateralization. While this asymmetry is widely replicated, the extent to which other functional networks demonstrate lateralization remains a subject of Investigation. Additionally, it is unknown how the lateralization of one functional network may affect the lateralization of other networks within individuals. We quantified lateralization for each of 17 networks by computing the relative surface area on the left and right cerebral hemispheres. After examining the ecological, convergent, and external validity and test-retest reliability of this surface area-based measure of lateralization, we addressed two hypotheses across multiple datasets (Human Connectome Project = 553, Human Connectome Project-Development = 343, Natural Scenes Dataset = 8). First, we hypothesized that networks associated with language, visuospatial attention, and executive control would show the greatest lateralization. Second, we hypothesized that relationships between lateralized networks would follow a dependent relationship such that greater left-lateralization of a network would be associated with greater right-lateralization of a different network within individuals, and that this pattern would be systematic across individuals. A language network was among the three networks identified as being significantly left-lateralized, and attention and executive control networks were among the five networks identified as being significantly right-lateralized. Next, correlation matrices, an exploratory factor analysis, and confirmatory factor analyses were used to test the second hypothesis and examine the organization of lateralized networks. We found general support for a dependent relationship between highly left- and right-lateralized networks, meaning that across subjects, greater left lateralization of a given network (such as a language network) was linked to greater right lateralization of another network (such as a ventral attention/salience network) and vice versa. These results further our understanding of brain organization at the macro-scale network level in individuals, carrying specific relevance for neurodevelopmental conditions characterized by disruptions in lateralization such as autism and schizophrenia.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dorothea L. Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jared A. Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA
| |
Collapse
|
27
|
Tuckute G, Sathe A, Srikant S, Taliaferro M, Wang M, Schrimpf M, Kay K, Fedorenko E. Driving and suppressing the human language network using large language models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537080. [PMID: 37090673 PMCID: PMC10120732 DOI: 10.1101/2023.04.16.537080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Transformer models such as GPT generate human-like language and are highly predictive of human brain responses to language. Here, using fMRI-measured brain responses to 1,000 diverse sentences, we first show that a GPT-based encoding model can predict the magnitude of brain response associated with each sentence. Then, we use the model to identify new sentences that are predicted to drive or suppress responses in the human language network. We show that these model-selected novel sentences indeed strongly drive and suppress activity of human language areas in new individuals. A systematic analysis of the model-selected sentences reveals that surprisal and well-formedness of linguistic input are key determinants of response strength in the language network. These results establish the ability of neural network models to not only mimic human language but also noninvasively control neural activity in higher-level cortical areas, like the language network.
Collapse
Affiliation(s)
- Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Aalok Sathe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Shashank Srikant
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- MIT-IBM Watson AI Lab, Cambridge, MA 02142, USA
| | - Maya Taliaferro
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Mingye Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Martin Schrimpf
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Quest for Intelligence, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
28
|
Becker A. The benefits of single-subject research designs and multi-methodological approaches for neuroscience research. Front Hum Neurosci 2023; 17:1190412. [PMID: 37954937 PMCID: PMC10634204 DOI: 10.3389/fnhum.2023.1190412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Affiliation(s)
- April Becker
- Department of Behavior Analysis, College of Health and Public Service, University of North Texas, Denton, TX, United States
| |
Collapse
|
29
|
Grotzinger H, Pritschet L, Shapturenka P, Santander T, Murata E, Jacobs EG. Diurnal fluctuations in steroid hormones tied to variation in intrinsic functional connectivity in a densely sampled male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562607. [PMID: 37905054 PMCID: PMC10614853 DOI: 10.1101/2023.10.16.562607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into the means through which our endocrine system regulates dynamic properties of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the functional efficiency of large-scale brain networks in a woman sampled every 24h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6-7am and nadir between 7-8pm. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 hours across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, cortisol, and estradiol. Standardized regression analyses revealed predominantly positive associations between testosterone, cortisol, and estradiol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in Dorsal Attention and Salience/Ventral Attention Networks were coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and naturally-cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence to a comparable degree in both sexes. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are tied to patterns of whole-brain functional connectivity.
Collapse
Affiliation(s)
- Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Laura Pritschet
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Pavel Shapturenka
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA
| | - Tyler Santander
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Elle Murata
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Emily G. Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA
| |
Collapse
|
30
|
Uddin LQ, Betzel RF, Cohen JR, Damoiseaux JS, De Brigard F, Eickhoff SB, Fornito A, Gratton C, Gordon EM, Laird AR, Larson-Prior L, McIntosh AR, Nickerson LD, Pessoa L, Pinho AL, Poldrack RA, Razi A, Sadaghiani S, Shine JM, Yendiki A, Yeo BTT, Spreng RN. Controversies and progress on standardization of large-scale brain network nomenclature. Netw Neurosci 2023; 7:864-905. [PMID: 37781138 PMCID: PMC10473266 DOI: 10.1162/netn_a_00323] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)-endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.
Collapse
Affiliation(s)
- Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences and Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jessica R. Cohen
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica S. Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA
| | | | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Evan M. Gordon
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Linda Larson-Prior
- Deptartment of Psychiatry and Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A. Randal McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Vancouver, BC, Canada
| | | | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Ana Luísa Pinho
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | | | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois, Urbana Champaign, IL, USA
| | - James M. Shine
- Brain and Mind Center, University of Sydney, Sydney, Australia
| | - Anastasia Yendiki
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
31
|
Benn Y, Ivanova AA, Clark O, Mineroff Z, Seikus C, Silva JS, Varley R, Fedorenko E. The language network is not engaged in object categorization. Cereb Cortex 2023; 33:10380-10400. [PMID: 37557910 PMCID: PMC10545444 DOI: 10.1093/cercor/bhad289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
The relationship between language and thought is the subject of long-standing debate. One claim states that language facilitates categorization of objects based on a certain feature (e.g. color) through the use of category labels that reduce interference from other, irrelevant features. Therefore, language impairment is expected to affect categorization of items grouped by a single feature (low-dimensional categories, e.g. "Yellow Things") more than categorization of items that share many features (high-dimensional categories, e.g. "Animals"). To test this account, we conducted two behavioral studies with individuals with aphasia and an fMRI experiment with healthy adults. The aphasia studies showed that selective low-dimensional categorization impairment was present in some, but not all, individuals with severe anomia and was not characteristic of aphasia in general. fMRI results revealed little activity in language-responsive brain regions during both low- and high-dimensional categorization; instead, categorization recruited the domain-general multiple-demand network (involved in wide-ranging cognitive tasks). Combined, results demonstrate that the language system is not implicated in object categorization. Instead, selective low-dimensional categorization impairment might be caused by damage to brain regions responsible for cognitive control. Our work adds to the growing evidence of the dissociation between the language system and many cognitive tasks in adults.
Collapse
Affiliation(s)
- Yael Benn
- Department of Psychology, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
| | - Anna A Ivanova
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Oliver Clark
- Department of Psychology, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
| | - Zachary Mineroff
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Chloe Seikus
- Division of Psychology & Language Sciences, University College London, London WC1E 6BT, UK
| | - Jack Santos Silva
- Division of Psychology & Language Sciences, University College London, London WC1E 6BT, UK
| | - Rosemary Varley
- Division of Psychology & Language Sciences, University College London, London WC1E 6BT, UK
| | - Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
32
|
Kraus B, Zinbarg R, Braga RM, Nusslock R, Mittal VA, Gratton C. Insights from personalized models of brain and behavior for identifying biomarkers in psychiatry. Neurosci Biobehav Rev 2023; 152:105259. [PMID: 37268180 PMCID: PMC10527506 DOI: 10.1016/j.neubiorev.2023.105259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
A main goal in translational neuroscience is to identify neural correlates of psychopathology ("biomarkers") that can be used to facilitate diagnosis, prognosis, and treatment. This goal has led to substantial research into how psychopathology symptoms relate to large-scale brain systems. However, these efforts have not yet resulted in practical biomarkers used in clinical practice. One reason for this underwhelming progress may be that many study designs focus on increasing sample size instead of collecting additional data within each individual. This focus limits the reliability and predictive validity of brain and behavioral measures in any one person. As biomarkers exist at the level of individuals, an increased focus on validating them within individuals is warranted. We argue that personalized models, estimated from extensive data collection within individuals, can address these concerns. We review evidence from two, thus far separate, lines of research on personalized models of (1) psychopathology symptoms and (2) fMRI measures of brain networks. We close by proposing approaches uniting personalized models across both domains to improve biomarker research.
Collapse
Affiliation(s)
- Brian Kraus
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Richard Zinbarg
- Department of Psychology, Northwestern University, Evanston, IL, USA; The Family Institute at Northwestern University, Evanston, IL, USA
| | - Rodrigo M Braga
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Chicago, IL, USA; Northwestern University, Department of Psychiatry, Chicago, IL, USA; Northwestern University, Medical Social Sciences, Chicago, IL, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Psychology, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
33
|
Silcox JW, Mickey B, Payne BR. Disruption to left inferior frontal cortex modulates semantic prediction effects in reading and subsequent memory: Evidence from simultaneous TMS-EEG. Psychophysiology 2023; 60:e14312. [PMID: 37203307 DOI: 10.1111/psyp.14312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 05/20/2023]
Abstract
Readers use prior context to predict features of upcoming words. When predictions are accurate, this increases the efficiency of comprehension. However, little is known about the fate of predictable and unpredictable words in memory or the neural systems governing these processes. Several theories suggest that the speech production system, including the left inferior frontal cortex (LIFC), is recruited for prediction but evidence that LIFC plays a causal role is lacking. We first examined the effects of predictability on memory and then tested the role of posterior LIFC using transcranial magnetic stimulation (TMS). In Experiment 1, participants read category cues, followed by a predictable, unpredictable, or incongruent target word for later recall. We observed a predictability benefit to memory, with predictable words remembered better than unpredictable words. In Experiment 2, participants performed the same task with electroencephalography (EEG) while undergoing event-related TMS over posterior LIFC using a protocol known to disrupt speech production, or over the right hemisphere homologue as an active control site. Under control stimulation, predictable words were better recalled than unpredictable words, replicating Experiment 1. This predictability benefit to memory was eliminated under LIFC stimulation. Moreover, while an a priori ROI-based analysis did not yield evidence for a reduction in the N400 predictability effect, mass-univariate analyses did suggest that the N400 predictability effect was reduced in spatial and temporal extent under LIFC stimulation. Collectively, these results provide causal evidence that the LIFC is recruited for prediction during silent reading, consistent with prediction-through-production accounts.
Collapse
Affiliation(s)
- Jack W Silcox
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - Brian Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| | - Brennan R Payne
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
34
|
Lynch CJ, Elbau I, Ng T, Ayaz A, Zhu S, Manfredi N, Johnson M, Wolk D, Power JD, Gordon EM, Kay K, Aloysi A, Moia S, Caballero-Gaudes C, Victoria LW, Solomonov N, Goldwaser E, Zebley B, Grosenick L, Downar J, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Williams N, Gunning FM, Liston C. Expansion of a frontostriatal salience network in individuals with depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.551651. [PMID: 37645792 PMCID: PMC10461904 DOI: 10.1101/2023.08.09.551651] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hundreds of neuroimaging studies spanning two decades have revealed differences in brain structure and functional connectivity in depression, but with modest effect sizes, complicating efforts to derive mechanistic pathophysiologic insights or develop biomarkers. 1 Furthermore, although depression is a fundamentally episodic condition, few neuroimaging studies have taken a longitudinal approach, which is critical for understanding cause and effect and delineating mechanisms that drive mood state transitions over time. The emerging field of precision functional mapping using densely-sampled longitudinal neuroimaging data has revealed unexpected, functionally meaningful individual differences in brain network topology in healthy individuals, 2-5 but these approaches have never been applied to individuals with depression. Here, using precision functional mapping techniques and 11 datasets comprising n=187 repeatedly sampled individuals and >21,000 minutes of fMRI data, we show that the frontostriatal salience network is expanded two-fold in most individuals with depression. This effect was replicable in multiple samples, including large-scale, group-average data (N=1,231 subjects), and caused primarily by network border shifts affecting specific functional systems, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was unexpectedly stable over time, unaffected by changes in mood state, and detectable in children before the subsequent onset of depressive symptoms in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in specific frontostriatal circuits that tracked fluctuations in specific symptom domains and predicted future anhedonia symptoms before they emerged. Together, these findings identify a stable trait-like brain network topology that may confer risk for depression and mood-state dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.
Collapse
|
35
|
Deen B, Schwiedrzik CM, Sliwa J, Freiwald WA. Specialized Networks for Social Cognition in the Primate Brain. Annu Rev Neurosci 2023; 46:381-401. [PMID: 37428602 PMCID: PMC11115357 DOI: 10.1146/annurev-neuro-102522-121410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Primates have evolved diverse cognitive capabilities to navigate their complex social world. To understand how the brain implements critical social cognitive abilities, we describe functional specialization in the domains of face processing, social interaction understanding, and mental state attribution. Systems for face processing are specialized from the level of single cells to populations of neurons within brain regions to hierarchically organized networks that extract and represent abstract social information. Such functional specialization is not confined to the sensorimotor periphery but appears to be a pervasive theme of primate brain organization all the way to the apex regions of cortical hierarchies. Circuits processing social information are juxtaposed with parallel systems involved in processing nonsocial information, suggesting common computations applied to different domains. The emerging picture of the neural basis of social cognition is a set of distinct but interacting subnetworks involved in component processes such as face perception and social reasoning, traversing large parts of the primate brain.
Collapse
Affiliation(s)
- Ben Deen
- Psychology Department & Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen, A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research; and Leibniz-Science Campus Primate Cognition, Göttingen, Germany
| | - Julia Sliwa
- Sorbonne Université, Institut du Cerveau, ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Winrich A Freiwald
- Laboratory of Neural Systems and The Price Family Center for the Social Brain, The Rockefeller University, New York, NY, USA;
- The Center for Brains, Minds and Machines, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Chen X, Affourtit J, Ryskin R, Regev TI, Norman-Haignere S, Jouravlev O, Malik-Moraleda S, Kean H, Varley R, Fedorenko E. The human language system, including its inferior frontal component in "Broca's area," does not support music perception. Cereb Cortex 2023; 33:7904-7929. [PMID: 37005063 PMCID: PMC10505454 DOI: 10.1093/cercor/bhad087] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 04/04/2023] Open
Abstract
Language and music are two human-unique capacities whose relationship remains debated. Some have argued for overlap in processing mechanisms, especially for structure processing. Such claims often concern the inferior frontal component of the language system located within "Broca's area." However, others have failed to find overlap. Using a robust individual-subject fMRI approach, we examined the responses of language brain regions to music stimuli, and probed the musical abilities of individuals with severe aphasia. Across 4 experiments, we obtained a clear answer: music perception does not engage the language system, and judgments about music structure are possible even in the presence of severe damage to the language network. In particular, the language regions' responses to music are generally low, often below the fixation baseline, and never exceed responses elicited by nonmusic auditory conditions, like animal sounds. Furthermore, the language regions are not sensitive to music structure: they show low responses to both intact and structure-scrambled music, and to melodies with vs. without structural violations. Finally, in line with past patient investigations, individuals with aphasia, who cannot judge sentence grammaticality, perform well on melody well-formedness judgments. Thus, the mechanisms that process structure in language do not appear to process music, including music syntax.
Collapse
Affiliation(s)
- Xuanyi Chen
- Department of Cognitive Sciences, Rice University, TX 77005, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Rachel Ryskin
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Cognitive & Information Sciences, University of California, Merced, Merced, CA 95343, United States
| | - Tamar I Regev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Samuel Norman-Haignere
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Olessia Jouravlev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Saima Malik-Moraleda
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138, United States
| | - Hope Kean
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Rosemary Varley
- Psychology & Language Sciences, UCL, London, WCN1 1PF, United Kingdom
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
37
|
Liu Y, Gao C, Wang P, Friederici AD, Zaccarella E, Chen L. Exploring the neurobiology of Merge at a basic level: insights from a novel artificial grammar paradigm. Front Psychol 2023; 14:1151518. [PMID: 37287773 PMCID: PMC10242141 DOI: 10.3389/fpsyg.2023.1151518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Human language allows us to generate an infinite number of linguistic expressions. It's proposed that this competence is based on a binary syntactic operation, Merge, combining two elements to form a new constituent. An increasing number of recent studies have shifted from complex syntactic structures to two-word constructions to investigate the neural representation of this operation at the most basic level. Methods This fMRI study aimed to develop a highly flexible artificial grammar paradigm for testing the neurobiology of human syntax at a basic level. During scanning, participants had to apply abstract syntactic rules to assess whether a given two-word artificial phrase could be further merged with a third word. To control for lower-level template-matching and working memory strategies, an additional non-mergeable word-list task was set up. Results Behavioral data indicated that participants complied with the experiment. Whole brain and region of interest (ROI) analyses were performed under the contrast of "structure > word-list." Whole brain analysis confirmed significant involvement of the posterior inferior frontal gyrus [pIFG, corresponding to Brodmann area (BA) 44]. Furthermore, both the signal intensity in Broca's area and the behavioral performance showed significant correlations with natural language performance in the same participants. ROI analysis within the language atlas and anatomically defined Broca's area revealed that only the pIFG was reliably activated. Discussion Taken together, these results support the notion that Broca's area, particularly BA 44, works as a combinatorial engine where words are merged together according to syntactic information. Furthermore, this study suggests that the present artificial grammar may serve as promising material for investigating the neurobiological basis of syntax, fostering future cross-species studies.
Collapse
Affiliation(s)
- Yang Liu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Chenyang Gao
- School of Global Education and Development, University of Chinese Academy of Social Sciences, Beijing, China
| | - Peng Wang
- Method and Development Group (MEG and Cortical Networks), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
38
|
Hauptman M, Blank I, Fedorenko E. Non-literal language processing is jointly supported by the language and theory of mind networks: Evidence from a novel meta-analytic fMRI approach. Cortex 2023; 162:96-114. [PMID: 37023480 PMCID: PMC10210011 DOI: 10.1016/j.cortex.2023.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2022] [Accepted: 01/11/2023] [Indexed: 03/12/2023]
Abstract
Going beyond the literal meaning of language is key to communicative success. However, the mechanisms that support non-literal inferences remain debated. Using a novel meta-analytic approach, we evaluate the contribution of linguistic, social-cognitive, and executive mechanisms to non-literal interpretation. We identified 74 fMRI experiments (n = 1,430 participants) from 2001 to 2021 that contrasted non-literal language comprehension with a literal control condition, spanning ten phenomena (e.g., metaphor, irony, indirect speech). Applying the activation likelihood estimation approach to the 825 activation peaks yielded six left-lateralized clusters. We then evaluated the locations of both the individual-study peaks and the clusters against probabilistic functional atlases (cf. anatomical locations, as is typically done) for three candidate brain networks-the language-selective network (Fedorenko, Behr, & Kanwisher, 2011), which supports language processing, the Theory of Mind (ToM) network (Saxe & Kanwisher, 2003), which supports social inferences, and the domain-general Multiple-Demand (MD) network (Duncan, 2010), which supports executive control. These atlases were created by overlaying individual activation maps of participants who performed robust and extensively validated 'localizer' tasks that selectively target each network in question (n = 806 for language; n = 198 for ToM; n = 691 for MD). We found that both the individual-study peaks and the ALE clusters fell primarily within the language network and the ToM network. These results suggest that non-literal processing is supported by both i) mechanisms that process literal linguistic meaning, and ii) mechanisms that support general social inference. They thus undermine a strong divide between literal and non-literal aspects of language and challenge the claim that non-literal processing requires additional executive resources.
Collapse
Affiliation(s)
- Miriam Hauptman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Idan Blank
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA; Department of Linguistics, UCLA, Los Angeles, CA 90095, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Program in Speech and Hearing in Bioscience and Technology, Harvard University, Boston, MA 02114, USA.
| |
Collapse
|
39
|
Bedini M, Olivetti E, Avesani P, Baldauf D. Accurate localization and coactivation profiles of the frontal eye field and inferior frontal junction: an ALE and MACM fMRI meta-analysis. Brain Struct Funct 2023; 228:997-1017. [PMID: 37093304 PMCID: PMC10147761 DOI: 10.1007/s00429-023-02641-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
The frontal eye field (FEF) and the inferior frontal junction (IFJ) are prefrontal structures involved in mediating multiple aspects of goal-driven behavior. Despite being recognized as prominent nodes of the networks underlying spatial attention and oculomotor control, and working memory and cognitive control, respectively, the limited quantitative evidence on their precise localization has considerably impeded the detailed understanding of their structure and connectivity. In this study, we performed an activation likelihood estimation (ALE) fMRI meta-analysis by selecting studies that employed standard paradigms to accurately infer the localization of these regions in stereotaxic space. For the FEF, we found the highest spatial convergence of activations for prosaccade and antisaccade paradigms at the junction of the precentral sulcus and superior frontal sulcus. For the IFJ, we found consistent activations across oddball/attention, working memory, task-switching and Stroop paradigms at the junction of the inferior precentral sulcus and inferior frontal sulcus. We related these clusters to previous meta-analyses, sulcal/gyral neuroanatomy, and a comprehensive brain parcellation, highlighting important differences compared to their results and taxonomy. Finally, we leveraged the ALE peak coordinates as seeds to perform a meta-analytic connectivity modeling (MACM) analysis, which revealed systematic coactivation patterns spanning the frontal, parietal, and temporal cortices. We decoded the behavioral domains associated with these coactivations, suggesting that these may allow FEF and IFJ to support their specialized roles in flexible behavior. Our study provides the meta-analytic groundwork for investigating the relationship between functional specialization and connectivity of two crucial control structures of the prefrontal cortex.
Collapse
Affiliation(s)
- Marco Bedini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy.
- Department of Psychology, University of California, San Diego, McGill Hall 9500 Gilman Dr, La Jolla, CA, 92093-0109, USA.
| | - Emanuele Olivetti
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
- NILab, Bruno Kessler Foundation (FBK), Via delle Regole 101, 38123, Trento, Italy
| | - Paolo Avesani
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
- NILab, Bruno Kessler Foundation (FBK), Via delle Regole 101, 38123, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
| |
Collapse
|
40
|
Bruffaerts R, Pongos A, Shain C, Lipkin B, Siegelman M, Wens V, Sjøgård M, Pantazis D, Blank I, Goldman S, De Tiège X, Fedorenko E. Functional identification of language-responsive channels in individual participants in MEG investigations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533424. [PMID: 36993378 PMCID: PMC10055362 DOI: 10.1101/2023.03.23.533424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Making meaningful inferences about the functional architecture of the language system requires the ability to refer to the same neural units across individuals and studies. Traditional brain imaging approaches align and average brains together in a common space. However, lateral frontal and temporal cortex, where the language system resides, is characterized by high structural and functional inter-individual variability. This variability reduces the sensitivity and functional resolution of group-averaging analyses. This problem is compounded by the fact that language areas often lay in close proximity to regions of other large-scale networks with different functional profiles. A solution inspired by other fields of cognitive neuroscience (e.g., vision) is to identify language areas functionally in each individual brain using a 'localizer' task (e.g., a language comprehension task). This approach has proven productive in fMRI, yielding a number of discoveries about the language system, and has been successfully extended to intracranial recording investigations. Here, we apply this approach to MEG. Across two experiments (one in Dutch speakers, n=19; one in English speakers, n=23), we examined neural responses to the processing of sentences and a control condition (nonword sequences). We demonstrated that the neural response to language is spatially consistent at the individual level. The language-responsive sensors of interest were, as expected, less responsive to the nonwords condition. Clear inter-individual differences were present in the topography of the neural response to language, leading to greater sensitivity when the data were analyzed at the individual level compared to the group level. Thus, as in fMRI, functional localization yields benefits in MEG and thus opens the door to probing fine-grained distinctions in space and time in future MEG investigations of language processing.
Collapse
Affiliation(s)
- Rose Bruffaerts
- Computational Neurology, Experimental Neurobiology Unit (ENU), Department of Biomedical Sciences, University of Antwerp, Belgium; Department of Neurosciences, KU Leuven, Belgium
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alvince Pongos
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Bioengineering, UC Berkeley-UCSF, San Francisco, CA, USA
| | - Cory Shain
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin Lipkin
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew Siegelman
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Psychology, Columbia University, New York, NY, USA
| | - Vincent Wens
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Martin Sjøgård
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Idan Blank
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Psychology, University of California Los Angeles, CA, USA
| | - Serge Goldman
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Xavier De Tiège
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
41
|
Hranilovich JA, Legget KT, Dodd KC, Wylie KP, Tregellas JR. Functional magnetic resonance imaging of headache: Issues, best-practices, and new directions, a narrative review. Headache 2023; 63:309-321. [PMID: 36942411 PMCID: PMC10089616 DOI: 10.1111/head.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/20/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE To ensure readers are informed consumers of functional magnetic resonance imaging (fMRI) research in headache, to outline ongoing challenges in this area of research, and to describe potential considerations when asked to collaborate on fMRI research in headache, as well as to suggest future directions for improvement in the field. BACKGROUND Functional MRI has played a key role in understanding headache pathophysiology, and mapping networks involved with headache-related brain activity have the potential to identify intervention targets. Some investigators have also begun to explore its use for diagnosis. METHODS/RESULTS The manuscript is a narrative review of the current best practices in fMRI in headache research, including guidelines on transparency and reproducibility. It also contains an outline of the fundamentals of MRI theory, task-related study design, resting-state functional connectivity, relevant statistics and power analysis, image preprocessing, and other considerations essential to the field. CONCLUSION Best practices to increase reproducibility include methods transparency, eliminating error, using a priori hypotheses and power calculations, using standardized instruments and diagnostic criteria, and developing large-scale, publicly available datasets.
Collapse
Affiliation(s)
- Jennifer A Hranilovich
- Division of Child Neurology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristina T Legget
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Keith C Dodd
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| |
Collapse
|
42
|
MacGregor LJ, Gilbert RA, Balewski Z, Mitchell DJ, Erzinçlioğlu SW, Rodd JM, Duncan J, Fedorenko E, Davis MH. Causal Contributions of the Domain-General (Multiple Demand) and the Language-Selective Brain Networks to Perceptual and Semantic Challenges in Speech Comprehension. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:665-698. [PMID: 36742011 PMCID: PMC9893226 DOI: 10.1162/nol_a_00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/07/2022] [Indexed: 06/18/2023]
Abstract
Listening to spoken language engages domain-general multiple demand (MD; frontoparietal) regions of the human brain, in addition to domain-selective (frontotemporal) language regions, particularly when comprehension is challenging. However, there is limited evidence that the MD network makes a functional contribution to core aspects of understanding language. In a behavioural study of volunteers (n = 19) with chronic brain lesions, but without aphasia, we assessed the causal role of these networks in perceiving, comprehending, and adapting to spoken sentences made more challenging by acoustic-degradation or lexico-semantic ambiguity. We measured perception of and adaptation to acoustically degraded (noise-vocoded) sentences with a word report task before and after training. Participants with greater damage to MD but not language regions required more vocoder channels to achieve 50% word report, indicating impaired perception. Perception improved following training, reflecting adaptation to acoustic degradation, but adaptation was unrelated to lesion location or extent. Comprehension of spoken sentences with semantically ambiguous words was measured with a sentence coherence judgement task. Accuracy was high and unaffected by lesion location or extent. Adaptation to semantic ambiguity was measured in a subsequent word association task, which showed that availability of lower-frequency meanings of ambiguous words increased following their comprehension (word-meaning priming). Word-meaning priming was reduced for participants with greater damage to language but not MD regions. Language and MD networks make dissociable contributions to challenging speech comprehension: Using recent experience to update word meaning preferences depends on language-selective regions, whereas the domain-general MD network plays a causal role in reporting words from degraded speech.
Collapse
Affiliation(s)
- Lucy J. MacGregor
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Rebecca A. Gilbert
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Zuzanna Balewski
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
| | - Daniel J. Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Jennifer M. Rodd
- Psychology and Language Sciences, University College London, London, UK
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA
| | - Matthew H. Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
43
|
Ladwig Z, Seitzman BA, Dworetsky A, Yu Y, Adeyemo B, Smith DM, Petersen SE, Gratton C. BOLD cofluctuation 'events' are predicted from static functional connectivity. Neuroimage 2022; 260:119476. [PMID: 35842100 PMCID: PMC9428936 DOI: 10.1016/j.neuroimage.2022.119476] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/09/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Recent work identified single time points ("events") of high regional cofluctuation in functional Magnetic Resonance Imaging (fMRI) which contain more large-scale brain network information than other, low cofluctuation time points. This suggested that events might be a discrete, temporally sparse signal which drives functional connectivity (FC) over the timeseries. However, a different, not yet explored possibility is that network information differences between time points are driven by sampling variability on a constant, static, noisy signal. Using a combination of real and simulated data, we examined the relationship between cofluctuation and network structure and asked if this relationship was unique, or if it could arise from sampling variability alone. First, we show that events are not discrete - there is a gradually increasing relationship between network structure and cofluctuation; ∼50% of samples show very strong network structure. Second, using simulations we show that this relationship is predicted from sampling variability on static FC. Finally, we show that randomly selected points can capture network structure about as well as events, largely because of their temporal spacing. Together, these results suggest that, while events exhibit particularly strong representations of static FC, there is little evidence that events are unique timepoints that drive FC structure. Instead, a parsimonious explanation for the data is that events arise from a single static, but noisy, FC structure.
Collapse
Affiliation(s)
- Zach Ladwig
- Interdepartmental Neuroscience Program, Northwestern University
| | - Benjamin A Seitzman
- Department of Radiation Oncology, Washington University St. Louis School of Medicine
| | | | - Yuhua Yu
- Department of Psychology, Northwestern University
| | - Babatunde Adeyemo
- Department of Neurology, Washington University St. Louis School of Medicine
| | - Derek M Smith
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine
| | - Steven E Petersen
- Department of Radiology, Washington University St. Louis School of Medicine; Department of Neurology, Washington University St. Louis School of Medicine; Department of Psychological and Brain Sciences, Washington University St. Louis School of Medicine; Department of Neuroscience, Washington University St. Louis School of Medicine; Department of Biomedical Engineering, Washington University St. Louis School of Medicine
| | - Caterina Gratton
- Interdepartmental Neuroscience Program, Northwestern University; Department of Psychology, Northwestern University; Department of Neurology, Northwestern University.
| |
Collapse
|
44
|
Chiou R, Jefferies E, Duncan J, Humphreys GF, Lambon Ralph MA. A middle ground where executive control meets semantics: the neural substrates of semantic control are topographically sandwiched between the multiple-demand and default-mode systems. Cereb Cortex 2022; 33:4512-4526. [PMID: 36130101 PMCID: PMC10110444 DOI: 10.1093/cercor/bhac358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/12/2022] Open
Abstract
Semantic control is the capability to operate on meaningful representations, selectively focusing on certain aspects of meaning while purposefully ignoring other aspects based on one's behavioral aim. This ability is especially vital for comprehending figurative/ambiguous language. It remains unclear why and how regions involved in semantic control seem reliably juxtaposed alongside other functionally specialized regions in the association cortex, prompting speculation about the relationship between topography and function. We investigated this issue by characterizing how semantic control regions topographically relate to the default-mode network (associated with memory and abstract cognition) and multiple-demand network (associated with executive control). Topographically, we established that semantic control areas were sandwiched by the default-mode and multi-demand networks, forming an orderly arrangement observed both at the individual and group level. Functionally, semantic control regions exhibited "hybrid" responses, fusing generic preferences for cognitively demanding operation (multiple-demand) and for meaningful representations (default-mode) into a domain-specific preference for difficult operation on meaningful representations. When projected onto the principal gradient of human connectome, the neural activity of semantic control showed a robustly dissociable trajectory from visuospatial control, implying different roles in the functional transition from sensation to cognition. We discuss why the hybrid functional profile of semantic control regions might result from their intermediate topographical positions on the cortex.
Collapse
Affiliation(s)
- Rocco Chiou
- MRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF, UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, UK
| | | | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF, UK.,Department of Experimental Psychology, University of Oxford, OX2 6GG, UK
| | - Gina F Humphreys
- MRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF, UK
| | | |
Collapse
|
45
|
Lipkin B, Tuckute G, Affourtit J, Small H, Mineroff Z, Kean H, Jouravlev O, Rakocevic L, Pritchett B, Siegelman M, Hoeflin C, Pongos A, Blank IA, Struhl MK, Ivanova A, Shannon S, Sathe A, Hoffmann M, Nieto-Castañón A, Fedorenko E. Probabilistic atlas for the language network based on precision fMRI data from >800 individuals. Sci Data 2022; 9:529. [PMID: 36038572 PMCID: PMC9424256 DOI: 10.1038/s41597-022-01645-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Two analytic traditions characterize fMRI language research. One relies on averaging activations across individuals. This approach has limitations: because of inter-individual variability in the locations of language areas, any given voxel/vertex in a common brain space is part of the language network in some individuals but in others, may belong to a distinct network. An alternative approach relies on identifying language areas in each individual using a functional 'localizer'. Because of its greater sensitivity, functional resolution, and interpretability, functional localization is gaining popularity, but it is not always feasible, and cannot be applied retroactively to past studies. To bridge these disjoint approaches, we created a probabilistic functional atlas using fMRI data for an extensively validated language localizer in 806 individuals. This atlas enables estimating the probability that any given location in a common space belongs to the language network, and thus can help interpret group-level activation peaks and lesion locations, or select voxels/electrodes for analysis. More meaningful comparisons of findings across studies should increase robustness and replicability in language research.
Collapse
Affiliation(s)
- Benjamin Lipkin
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Small
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Zachary Mineroff
- Human-computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hope Kean
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olessia Jouravlev
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Lara Rakocevic
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brianna Pritchett
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Caitlyn Hoeflin
- Harris School of Public Policy, University of Chicago, Chicago, IL, USA
| | - Alvincé Pongos
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Idan A Blank
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Melissa Kline Struhl
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Ivanova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Shannon
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aalok Sathe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malte Hoffmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Cambridge, MA, USA
| | - Alfonso Nieto-Castañón
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Speech, Hearing, Bioscience, and Technology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
46
|
Michon KJ, Khammash D, Simmonite M, Hamlin AM, Polk TA. Person-specific and precision neuroimaging: Current methods and future directions. Neuroimage 2022; 263:119589. [PMID: 36030062 DOI: 10.1016/j.neuroimage.2022.119589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022] Open
Abstract
Most neuroimaging studies of brain function analyze data in normalized space to identify regions of common activation across participants. These studies treat interindividual differences in brain organization as noise, but this approach can obscure important information about the brain's functional architecture. Recently, a number of studies have adopted a person-specific approach that aims to characterize these individual differences and explore their reliability and implications for behavior. A subset of these studies has taken a precision imaging approach that collects multiple hours of data from each participant to map brain function on a finer scale. In this review, we provide a broad overview of how person-specific and precision imaging techniques have used resting-state measures to examine individual differences in the brain's organization and their impact on behavior, followed by how task-based activity continues to add detail to these discoveries. We argue that person-specific and precision approaches demonstrate substantial promise in uncovering new details of the brain's functional organization and its relationship to behavior in many areas of cognitive neuroscience. We also discuss some current limitations in this new field and some new directions it may take.
Collapse
Affiliation(s)
| | - Dalia Khammash
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Molly Simmonite
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Abbey M Hamlin
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Paunov AM, Blank IA, Jouravlev O, Mineroff Z, Gallée J, Fedorenko E. Differential Tracking of Linguistic vs. Mental State Content in Naturalistic Stimuli by Language and Theory of Mind (ToM) Brain Networks. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:413-440. [PMID: 37216061 PMCID: PMC10158571 DOI: 10.1162/nol_a_00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/11/2022] [Indexed: 05/24/2023]
Abstract
Language and social cognition, especially the ability to reason about mental states, known as theory of mind (ToM), are deeply related in development and everyday use. However, whether these cognitive faculties rely on distinct, overlapping, or the same mechanisms remains debated. Some evidence suggests that, by adulthood, language and ToM draw on largely distinct-though plausibly interacting-cortical networks. However, the broad topography of these networks is similar, and some have emphasized the importance of social content / communicative intent in the linguistic signal for eliciting responses in the language areas. Here, we combine the power of individual-subject functional localization with the naturalistic-cognition inter-subject correlation approach to illuminate the language-ToM relationship. Using functional magnetic resonance imaging (fMRI), we recorded neural activity as participants (n = 43) listened to stories and dialogues with mental state content (+linguistic, +ToM), viewed silent animations and live action films with mental state content but no language (-linguistic, +ToM), or listened to an expository text (+linguistic, -ToM). The ToM network robustly tracked stimuli rich in mental state information regardless of whether mental states were conveyed linguistically or non-linguistically, while tracking a +linguistic / -ToM stimulus only weakly. In contrast, the language network tracked linguistic stimuli more strongly than (a) non-linguistic stimuli, and than (b) the ToM network, and showed reliable tracking even for the linguistic condition devoid of mental state content. These findings suggest that in spite of their indisputably close links, language and ToM dissociate robustly in their neural substrates-and thus plausibly cognitive mechanisms-including during the processing of rich naturalistic materials.
Collapse
Affiliation(s)
- Alexander M. Paunov
- Department of Brain and Cognitive Sciences, MIT, Cambridge, USA
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin Center, 91191Gif/Yvette, France
| | - Idan A. Blank
- Department of Brain and Cognitive Sciences, MIT, Cambridge, USA
- Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Olessia Jouravlev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Institute for Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Zachary Mineroff
- Department of Brain and Cognitive Sciences, MIT, Cambridge, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Eberly Center for Teaching Excellence & Educational Innovation, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jeanne Gallée
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, USA
| |
Collapse
|
48
|
Tuckute G, Paunov A, Kean H, Small H, Mineroff Z, Blank I, Fedorenko E. Frontal language areas do not emerge in the absence of temporal language areas: A case study of an individual born without a left temporal lobe. Neuropsychologia 2022; 169:108184. [DOI: 10.1016/j.neuropsychologia.2022.108184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/07/2021] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
49
|
Malik-Moraleda S, Cucu T, Lipkin B, Fedorenko E. The Domain-General Multiple Demand Network Is More Active in Early Balanced Bilinguals Than Monolinguals During Executive Processing. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:647-664. [PMID: 37214622 PMCID: PMC10158558 DOI: 10.1162/nol_a_00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/23/2021] [Indexed: 05/24/2023]
Abstract
The bilingual experience may place special cognitive demands on speakers and has been argued to lead to improvements in domain-general executive abilities, like cognitive control and working memory. Such improvements have been argued for based on both behavioral and brain imaging evidence. However, the empirical landscape is complex and ridden with controversy. Here we attempt to shed light on this question through an fMRI investigation of relatively large, relatively homogeneous, and carefully matched samples of early balanced bilinguals (n = 55) and monolinguals (n = 54), using robust, previously validated individual-level markers of neural activity in the domain-general multiple demand (MD) network, which supports executive functions. We find that the bilinguals, compared to the monolinguals, show significantly stronger neural responses to an executive (spatial working memory) task, and a larger difference between a harder and an easier condition of the task, across the MD network. These stronger neural responses are accompanied by better behavioral performance on the working memory task. We further show that the bilingual-vs.-monolingual difference in neural responses is not ubiquitous across the brain as no group difference in magnitude is observed in primary visual areas, which also respond to the task. Although the neural group difference in the MD network appears robust, it remains difficult to causally link it to bilingual experience specifically.
Collapse
Affiliation(s)
- Saima Malik-Moraleda
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, USA
| | - Theodor Cucu
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin Lipkin
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, USA
| |
Collapse
|
50
|
Mekki Y, Guillemot V, Lemaitre H, Carrion-Castillo A, Forkel S, Frouin V, Philippe C. The genetic architecture of language functional connectivity. Neuroimage 2021; 249:118795. [PMID: 34929384 DOI: 10.1016/j.neuroimage.2021.118795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
Language is a unique trait of the human species, of which the genetic architecture remains largely unknown. Through language disorders studies, many candidate genes were identified. However, such complex and multifactorial trait is unlikely to be driven by only few genes and case-control studies, suffering from a lack of power, struggle to uncover significant variants. In parallel, neuroimaging has significantly contributed to the understanding of structural and functional aspects of language in the human brain and the recent availability of large scale cohorts like UK Biobank have made possible to study language via image-derived endophenotypes in the general population. Because of its strong relationship with task-based fMRI (tbfMRI) activations and its easiness of acquisition, resting-state functional MRI (rsfMRI) have been more popularised, making it a good surrogate of functional neuronal processes. Taking advantage of such a synergistic system by aggregating effects across spatially distributed traits, we performed a multivariate genome-wide association study (mvGWAS) between genetic variations and resting-state functional connectivity (FC) of classical brain language areas in the inferior frontal (pars opercularis, triangularis and orbitalis), temporal and inferior parietal lobes (angular and supramarginal gyri), in 32,186 participants from UK Biobank. Twenty genomic loci were found associated with language FCs, out of which three were replicated in an independent replication sample. A locus in 3p11.1, regulating EPHA3 gene expression, is found associated with FCs of the semantic component of the language network, while a locus in 15q14, regulating THBS1 gene expression is found associated with FCs of the perceptual-motor language processing, bringing novel insights into the neurobiology of language.
Collapse
Affiliation(s)
- Yasmina Mekki
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France.
| | - Vincent Guillemot
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Hervé Lemaitre
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | | | - Stephanie Forkel
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | - Vincent Frouin
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France
| | - Cathy Philippe
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France.
| |
Collapse
|