1
|
Grav LM, Rojek JB, la Cour Karottki KJ, Lee JS, Kildegaard HF. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells. Methods Mol Biol 2025; 2853:49-69. [PMID: 39460914 DOI: 10.1007/978-1-0716-4104-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Genome editing has become an important aspect of Chinese hamster ovary (CHO) cell line engineering for improving the production of recombinant protein therapeutics. Currently, the engineering focus is directed toward expanding product diversity while controlling and improving product quality and yields. In this chapter, we present our protocol for using the genome editing tool Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) to knock out engineering target genes in CHO cells. As an example, we describe how to knock out the glutamine synthetase (GS) gene, which increases the selection efficiency of the GS-mediated gene amplification system.
Collapse
Affiliation(s)
- Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | - Johan Blatt Rojek
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
2
|
Moon C, Park CS, Jeong CM, Lee HS, Kim K, Byeon H, Eom D, Kim HH. LC-MS/MS analysis of surface and lysate N-glycans of CHO-K1 cells: Structure, relative quantity, and absolute quantity. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1252:124441. [PMID: 39756143 DOI: 10.1016/j.jchromb.2024.124441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025]
Abstract
Chinese hamster ovary (CHO)-K1 cells are widely used in biomedical research relevant to cancer, toxicity screening, and viruses, as well as in the production of recombinant proteins for biopharmaceuticals. In this study, liquid chromatography (LC)-electrospray ionization (ESI)-higher energy collisional dissociation (HCD)-tandem mass spectrometry (MS/MS) was used to characterize the surface and lysate N-glycans of CHO-K1 cells and analyze their structures. The relative quantity (%) of each N-glycan and absolute quantity (pmol) of total N-glycans were also obtained. In total, 37 surface and 30 lysate N-glycans were identified. Each of these two fractions contained eight high-mannose type (required for protection against proteolysis and N-glycosylation of recombinant proteins) at 28.8 % (the sum of the relative quantities of each N-glycan) and 66.5 %, respectively. Additionally, the surface and lysate N-glycans differed in their levels of sialyation (affect cell-cell interactions; 48.1 % and 13.5 %), fucosylation (affect cell signaling; 37.9 % and 25.5 %), and terminal-galactosylation (prerequisite for subsequent sialylation; 36.6 % and 20.9 %). These results indicate that the lysate of CHO-K1 cells contained more mannosylated (2.3-fold) N-glycans compared to the surface, which contained relatively more sialylated (3.6-fold), slightly more highly fucosylated (1.5-fold), and more terminal-galactosylated (1.8-fold) N-glycans. The sum of the absolute quantity of each N-glycan was obtained as a ratio of 1 (1,778.7 pmol; surface):2.2 (3,887.3 pmol; lysate) from approximately 5 × 106 CHO-K1 cells. This study is the first to compare the surface and lysate N-glycans of CHO-K1 cells using LC-ESI-HCD-MS/MS. The results can be used to control and optimize biotechnology and biomedical research using CHO-K1 cells.
Collapse
Affiliation(s)
- Chulmin Moon
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chi Soo Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chang Myeong Jeong
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han Seul Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyuran Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Haeun Byeon
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Daeun Eom
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
3
|
Woo HJ, Kim J, Kim SM, Kim D, Moon JY, Park D, Lee JS. Context-dependent genomic locus effects on antibody production in recombinant Chinese hamster ovary cells generated through random integration. Comput Struct Biotechnol J 2024; 23:1654-1665. [PMID: 38680870 PMCID: PMC11046053 DOI: 10.1016/j.csbj.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
High-yield production of therapeutic protein using Chinese hamster ovary (CHO) cells requires stable cell line development (CLD). CLD typically uses random integration of transgenes; however, this results in clonal variation and subsequent laborious clone screening. Therefore, site-specific integration of a protein expression cassette into a desired chromosomal locus showing high transcriptional activity and stability, referred to as a hot spot, is emerging. Although positional effects are important for therapeutic protein expression, the sequence-specific mechanisms by which hotspots work are not well understood. In this study, we performed whole-genome sequencing (WGS) to locate randomly inserted vectors in the genome of recombinant CHO cells expressing high levels of monoclonal antibodies (mAbs) and experimentally validated these locations and vector compositions. The integration site was characterized by active histone marks and potential enhancer activities, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated indel mutations in the region upstream of the integration site led to a significant reduction in specific antibody productivity by up to 30%. Notably, the integration site and its core region did not function equivalently outside the native genomic context, showing a minimal effect on the increase in exogenous protein expression in the host cell line. We also observed a superior production capacity of the mAb expressing cell line compared to that of the host cell line. Collectively, this study demonstrates that developing recombinant CHO cell lines to produce therapeutic proteins at high levels requires a balance of factors including transgene configuration, genomic locus landscape, and host cell properties.
Collapse
Affiliation(s)
- Hyun Jee Woo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jaehoon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Molecular Science and Technology Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Seul Mi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dongwoo Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Yun Moon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
4
|
Šprager E, Möller J, Lin Y, Reisinger V, Bratkovič T, Lunder M, Vašl J, Krajnc A. Identification of Acyl-Protein Thioesterase-1 as a Polysorbate-Degrading Host Cell Protein in a Monoclonal Antibody Formulation Using Activity-Based Protein Profiling. J Pharm Sci 2024; 113:2128-2139. [PMID: 38772451 DOI: 10.1016/j.xphs.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Polysorbate (PS) degradation in monoclonal antibody (mAb) formulations poses a significant challenge in the biopharmaceutical industry. PS maintains protein stability during drug product's shelf life but is vulnerable to breakdown by low-abundance residual host cell proteins (HCPs), particularly hydrolytic enzymes such as lipases and esterases. In this study, we used activity-based protein profiling (ABPP) coupled with mass spectrometry to identify acyl-protein thioesterase-1 (APT-1) as a polysorbate-degrading HCP in one case of mAb formulation with stability problems. We validated the role of APT1 by matching the polysorbate degradation fingerprint in the mAb formulation with that of a recombinant APT1 protein. Furthermore, we found an agreement between APT1 levels and PS degradation rates in the mAb formulation, and we successfully halted PS degradation using APT1-specific inhibitors ML348 and ML211. APT1 was found to co-purify with a specific mAb via hitchhiking mechanism. Our work provides a streamlined approach to identifying critical HCPs in PS degradation, supporting quality-by-design principles in pharmaceutical development.
Collapse
Affiliation(s)
- Ernest Šprager
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia; Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia
| | - Jens Möller
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Yuhsien Lin
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Veronika Reisinger
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Mojca Lunder
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Jožica Vašl
- Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia
| | - Aleksander Krajnc
- Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia.
| |
Collapse
|
5
|
Bauer N, Oberist C, Poth M, Stingele J, Popp O, Ausländer S. Genomic barcoding for clonal diversity monitoring and control in cell-based complex antibody production. Sci Rep 2024; 14:14587. [PMID: 38918509 PMCID: PMC11199663 DOI: 10.1038/s41598-024-65323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Engineered mammalian cells are key for biotechnology by enabling broad applications ranging from in vitro model systems to therapeutic biofactories. Engineered cell lines exist as a population containing sub-lineages of cell clones that exhibit substantial genetic and phenotypic heterogeneity. There is still a limited understanding of the source of this inter-clonal heterogeneity as well as its implications for biotechnological applications. Here, we developed a genomic barcoding strategy for a targeted integration (TI)-based CHO antibody producer cell line development process. This technology provided novel insights about clone diversity during stable cell line selection on pool level, enabled an imaging-independent monoclonality assessment after single cell cloning, and eventually improved hit-picking of antibody producer clones by monitoring of cellular lineages during the cell line development (CLD) process. Specifically, we observed that CHO producer pools generated by TI of two plasmids at a single genomic site displayed a low diversity (< 0.1% RMCE efficiency), which further depends on the expressed molecules, and underwent rapid population skewing towards dominant clones during routine cultivation. Clonal cell lines from one individual TI event demonstrated a significantly lower variance regarding production-relevant and phenotypic parameters as compared to cell lines from distinct TI events. This implies that the observed cellular diversity lies within pre-existing cell-intrinsic factors and that the majority of clonal variation did not develop during the CLD process, especially during single cell cloning. Using cellular barcodes as a proxy for cellular diversity, we improved our CLD screening workflow and enriched diversity of production-relevant parameters substantially. This work, by enabling clonal diversity monitoring and control, paves the way for an economically valuable and data-driven CLD process.
Collapse
Affiliation(s)
- Niels Bauer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Christoph Oberist
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Michaela Poth
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Oliver Popp
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Simon Ausländer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
6
|
González-Hernández Y, Perré P. Building blocks needed for mechanistic modeling of bioprocesses: A critical review based on protein production by CHO cells. Metab Eng Commun 2024; 18:e00232. [PMID: 38501051 PMCID: PMC10945193 DOI: 10.1016/j.mec.2024.e00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
This paper reviews the key building blocks needed to develop a mechanistic model for use as an operational production tool. The Chinese Hamster Ovary (CHO) cell, one of the most widely used hosts for antibody production in the pharmaceutical industry, is considered as a case study. CHO cell metabolism is characterized by two main phases, exponential growth followed by a stationary phase with strong protein production. This process presents an appropriate degree of complexity to outline the modeling strategy. The paper is organized into four main steps: (1) CHO systems and data collection; (2) metabolic analysis; (3) formulation of the mathematical model; and finally, (4) numerical solution, calibration, and validation. The overall approach can build a predictive model of target variables. According to the literature, one of the main current modeling challenges lies in understanding and predicting the spontaneous metabolic shift. Possible candidates for the trigger of the metabolic shift include the concentration of lactate and carbon dioxide. In our opinion, ammonium, which is also an inhibiting product, should be further investigated. Finally, the expected progress in the emerging field of hybrid modeling, which combines the best of mechanistic modeling and machine learning, is presented as a fascinating breakthrough. Note that the modeling strategy discussed here is a general framework that can be applied to any bioprocess.
Collapse
Affiliation(s)
- Yusmel González-Hernández
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France
| | - Patrick Perré
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France
| |
Collapse
|
7
|
Roshanmehr F, Abdoli S, Bazi Z, Jari M, Shahbazi M. Enhancing the productivity and proliferation of CHO-K1 cells by oncoprotein YAP (Yes-associated protein). Appl Microbiol Biotechnol 2024; 108:285. [PMID: 38573360 PMCID: PMC10994876 DOI: 10.1007/s00253-024-13122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
CHO cells are extensively employed in biological drug industry to manufacture therapeutic proteins. Nevertheless, production of biopharmaceuticals faces obstacles such as limited growth and inadequate productivity. Employing host cell engineering techniques for CHO cells serves as a valuable approach to address the constraints encountered in biologics manufacturing. Despite advancements, most techniques focus on specific genes to address individual cellular challenges. The significance of YAP, transcriptional co-activator, cannot be overstated due to its involvement in regulating organ size and tumor formation. YAP's influence extends to various cellular processes and is regulated by kinase cascade in the Hippo pathway, which phosphorylates serine residues in specific LATS recognition motifs. Activation of YAP has been observed to impact both the size and quantity of cells. This research investigates the effects of YAP5SA on proliferation, apoptosis, and productivity in CHO-K1 cells. YAP5SA, with mutations in all five LATS-target sites, is selected for its heightened activity and resistance to repression through the Hippo-LATS1/2 kinase signaling pathway. Plasmid harboring YAP5SA was transfected into EPO-CHO and the influence of YAP5SA overexpression was investigated. According to our findings, transfection of EPO-CHO cells with YAP5SA exhibited a substantial enhancement in CHO cell productivity, resulting in a 3-fold increase in total protein and EPO, as well as a 1.5-fold increase in specific productivity. Additionally, it significantly contributes in augmenting viability, size, and proliferation. Overall, the findings of this study exemplify the potential of utilizing YAP5SA to impact particular cellular mechanisms, thereby presenting an avenue for customizing cells to fulfill production demands. KEY POINTS: • YAP5SA in CHO cells boosts growth, reduces apoptosis, and significantly improves productivity. • YAP5SA regulates genes involved in proliferation, survival, and mTOR activation. • YAP5SA increases productivity by improving cell cycle, c-MYC expression, and mTOR pathway.
Collapse
Affiliation(s)
- Farnaz Roshanmehr
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahriyar Abdoli
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Bazi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Jari
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Arya Tina Gene (ATG), Biopharmaceutical Company, Gorgan, Iran.
| |
Collapse
|
8
|
Rahman MR, Kawabe Y, Suzuki K, Chen S, Amamoto Y, Kamihira M. Inducible transgene expression in CHO cells using an artificial transcriptional activator with estrogen-binding domain. Biotechnol J 2024; 19:e2300362. [PMID: 38161242 DOI: 10.1002/biot.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Biopharmaceuticals, including therapeutic antibodies, are rapidly growing products in the pharmaceutical market. Mammalian cells, such as Chinese hamster ovary (CHO) cells, are widely used as production hosts because recombinant antibodies require complex three-dimensional structures modified with sugar chains. Recombinant protein production using mammalian cells is generally performed with cell growth. In this study, we developed a technology that controls cell growth and recombinant protein production to induce recombinant protein production with predetermined timing. Expression of green fluorescent protein (GFP) gene and a single-chain antibody fused with the Fc-region of the human IgG1 (scFv-Fc) gene can be induced and mediated by the estrogen receptor-based artificial transcription factor Gal4-ERT2-VP16 and corresponding inducer drugs. We generated CHO cells using an artificial gene expression system. The addition of various concentrations of inducer drugs to the culture medium allowed control of proliferation and transgene expression of the engineered CHO cells. Use of 4-hydroxytamoxifen, an antagonist of estrogen, as an inducing agent yielded high gene expression at a concentration more than 10-fold lower than that of β-estradiol. When scFv-Fc was produced under inducing conditions, continuous production was possible for more than 2 weeks while maintaining high specific productivity (57 pg cell-1 day-1 ). This artificial gene expression control system that utilizes the estrogen response of estrogen receptors can be an effective method for inducible production of biopharmaceuticals.
Collapse
Affiliation(s)
- Md Rashidur Rahman
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Kozumi Suzuki
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Satoshi Chen
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Yuki Amamoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Yamano-Adachi N, Hata H, Nakanishi Y, Omasa T. Effects of genome instability of parental CHO cell clones on chromosome number distribution and recombinant protein production in parent-derived subclones. J Biosci Bioeng 2024; 137:54-63. [PMID: 37981489 DOI: 10.1016/j.jbiosc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Chinese hamster ovary (CHO) cells are the de facto standard host cells for biopharmaceuticals, and there is great interest in developing methods for constructing stable production cell lines. In this study, clones with a wide chromosome number distribution were selected from isolated antibody-producing strains, and subclones obtained from these clones were evaluated. The transgene copy number varied between the subclones. Even among subclones with similar copy numbers of antibody genes and maintained insertion sites, clones with different productivity were generated. Although the chromosome number distribution differed between these subclones, there was no correlation between the variability in chromosome number after cloning (genome instability) and productivity. Most of the subclones obtained from a parental strain with a wide chromosome number had the same wide chromosome number distribution as the parental strain. Less frequently, cells with less variation (remaining in one distribution) in chromosome number were isolated from cells with a wide chromosome number distribution, from which subclones with less variation in chromosome number were obtained when subcloning was performed again. These results imply that the characteristics of clones with chromosomal instability are inherited by subclones, and thus provide a better understanding of cell line stability/instability.
Collapse
Affiliation(s)
- Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hirofumi Hata
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuto Nakanishi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Xu Y, Crowe KB, Lieske PL, Barnes M, Bandara K, Chu J, Wei W, Scarcelli JJ, Zhang L. A high-fidelity, dual site-specific integration system in CHO cells by a Bxb1 recombinase. Biotechnol J 2024; 19:e2300410. [PMID: 38375559 DOI: 10.1002/biot.202300410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 02/21/2024]
Abstract
Site-specific integration (SSI) via recombinase mediated cassette exchange (RMCE) has shown advantages over random integration methods for expression of biotherapeutics. As an extension of our previous work developing SSI host cells, we developed a dual-site SSI system having two independent integration sites at different genomic loci, each containing a unique landing pad (LP). This system was leveraged to generate and compare two RMCE hosts, one (dFRT) compatible with the Flp recombinase, the other (dBxb1) compatible with the Bxb1 recombinase. Our comparison demonstrated that the dBxb1 host was able to generate stable transfectant pools in a shorter time frame, and cells within the dBxb1 transfectant pools were more phenotypically and genotypically stable. We further improved process performance of the dBxb1 host, resulting in desired fed batch performance attributes. Clones derived from this improved host (referred as 41L-11) maintained stable expression profiles over extended generations. While the data represents a significant improvement in the efficiency of our cell line development process, the dual LP architecture also affords a high degree of flexibility for development of complex protein modalities.
Collapse
Affiliation(s)
- Yifeng Xu
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Kerstin B Crowe
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Paulena L Lieske
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Michael Barnes
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Kalpanie Bandara
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Jianlin Chu
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Wei Wei
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - John J Scarcelli
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Lin Zhang
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| |
Collapse
|
11
|
Oliviero C, Hinz SC, Grzeschik J, Hock B, Kolmar H, Hagens G. Cell Line Development Using Targeted Gene Integration into MAR-Rich Landing Pads for Stable Expression of Transgenes. Methods Mol Biol 2023; 2681:343-359. [PMID: 37405657 DOI: 10.1007/978-1-0716-3279-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Integration of a gene of interest (GOI) into the genome of mammalian cells is the first step of cell line development campaigns for the production of biotherapeutics. Besides random integration methods, targeted gene integration approaches have emerged as promising tools over the last few years. In addition to reducing heterogeneity within a pool of recombinant transfectants, this process can also facilitate shorter timelines of the current cell line development process. Herein, we describe protocols for generating host cell lines carrying matrix attachment region (MAR)-rich landing pads (LPs), including BxB1 recombination sites. These LP-containing cell lines allow for site-specific and simultaneous integration of multiple GOIs. The resulting transgene-expressing stable recombinant clones can be used for the production of mono- or multispecific antibodies.
Collapse
Affiliation(s)
- Claudia Oliviero
- Institute of Life Technologies, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Sion, Switzerland
| | - Steffen C Hinz
- Institute of Life Technologies, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Sion, Switzerland
| | | | - Björn Hock
- Aerium Therapeutics, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerrit Hagens
- Institute of Life Technologies, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Sion, Switzerland.
| |
Collapse
|
12
|
Legros C, Rojas A, Dupré C, Brasseur C, Riest‐Fery I, Muller O, Ortuno J, Nosjean O, Guenin S, Ferry G, Boutin JA. Approach to the specificity and selectivity between D2 and D3 receptors by mutagenesis and binding experiments part I: Expression and characterization of D2 and D3 receptor mutants. Protein Sci 2022; 31:e4459. [PMID: 36177735 PMCID: PMC9667827 DOI: 10.1002/pro.4459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
D3/D2 sub-specificity is a complex problem to solve. Indeed, in the absence of easy structural biology of the G-protein coupled receptors, and despite key progresses in this area, the systematic knowledge of the ligand/receptor relationship is difficult to obtain. Due to these structural biology limitations concerning membrane proteins, we favored the use of directed mutagenesis to document a rational towards the discovery of markedly specific D3 ligands over D2 ligands together with basic binding experiments. Using our methodology of stable expression of receptors in HEK cells, we constructed the gene encoding for 24 mutants and 4 chimeras of either D2 or D3 receptors and expressed them stably. Those cell lines, expressing a single copy of one receptor mutant each, were stably constructed, selected, amplified and the membranes from them were prepared. Binding data at those receptors were obtained using standard binding conditions for D2 and D3 dopamine receptors. We generated 26 new molecules derived from D2 or D3 ligands. Using 8 reference compounds and those 26 molecules, we characterized their binding at those mutants and chimeras, exemplifying an approach to better understand the difference at the molecular level of the D2 and D3 receptors. Although all the individual results are presented and could be used for minute analyses, the present report does not discuss the differences between D2 and D3 data. It simply shows the feasibility of the approach and its potential.
Collapse
Affiliation(s)
- Céline Legros
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Anne Rojas
- Chimie MédicinaleInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Clémence Dupré
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Chantal Brasseur
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Isabelle Riest‐Fery
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Muller
- Chimie MédicinaleInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | | | - Olivier Nosjean
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Sophie‐Pénélope Guenin
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Gilles Ferry
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Jean A. Boutin
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Laboratory of Neuronal and Neuroendocrine Differentiation and CommunicationUniversity of NormandyRouenFrance
| |
Collapse
|
13
|
Min H, Kim SM, Kim D, Lee S, Lee S, Lee JS. Hybrid cell line development system utilizing site-specific integration and methotrexate-mediated gene amplification in Chinese hamster ovary cells. Front Bioeng Biotechnol 2022; 10:977193. [PMID: 36185448 PMCID: PMC9521551 DOI: 10.3389/fbioe.2022.977193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Site-specific integration has emerged as a promising strategy for streamlined and predictable Chinese hamster ovary (CHO) cell line development (CLD). However, the low specific productivity of the targeted integrants limits their practical application. In this study, we developed a hybrid CLD platform combining site-specific integration of a transgene and dihydrofolate reductase/methotrexate (DHFR/MTX)-mediated gene amplification to generate high-producing recombinant CHO cell lines. We used the CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform to integrate the DHFR expression cassette and transgene landing pad into a CHO genomic hot spot, C12orf35 locus, of DHFR-knockout CHO-K1 host cell lines. When subjected to various MTX concentrations up to 1 μM, EGFP-expressing targeted integrants showed a 3.6-fold increase in EGFP expression in the presence of 200 nM MTX, accompanied by an increase in the DHFR and EGFP copy number. A single-step 200 nM MTX amplification increased the specific monoclonal antibody (mAb) productivity (qmAb) of recombinant mAb-producing targeted integrants by 2.8-folds, reaching a qmAb of 9.1–11.0 pg/cell/day. Fluorescence in situ hybridization analysis showed colocalization of DHFR and mAb sequences at the intended chromosomal locations without clear amplified arrays of signals. Most MTX-amplified targeted integrants sustained recombinant mAb production during long-term culture in the absence of MTX, supporting stable gene expression in the amplified cell lines. Our study provides a new CLD platform that increases the productivity of targeted integrants by amplifying the transgene copies.
Collapse
Affiliation(s)
- Honggi Min
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seul Mi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Dongwoo Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Solhwi Lee
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Sumin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
- *Correspondence: Jae Seong Lee,
| |
Collapse
|
14
|
Yang W, Zhang J, Xiao Y, Li W, Wang T. Screening Strategies for High-Yield Chinese Hamster Ovary Cell Clones. Front Bioeng Biotechnol 2022; 10:858478. [PMID: 35782513 PMCID: PMC9247297 DOI: 10.3389/fbioe.2022.858478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are by far the most commonly used mammalian expression system for recombinant expression of therapeutic proteins in the pharmaceutical industry. The development of high-yield stable cell lines requires processes of transfection, selection, screening and adaptation, among which the screening process requires tremendous time and determines the level of forming highly productive monoclonal cell lines. Therefore, how to achieve productive cell lines is a major question prior to industrial manufacturing. Cell line development (CLD) is one of the most critical steps in the production of recombinant therapeutic proteins. Generation of high-yield cell clones is mainly based on the time-consuming, laborious process of selection and screening. With the increase in recombinant therapeutic proteins expressed by CHO cells, CLD has become a major bottleneck in obtaining cell lines for manufacturing. The basic principles for CLD include preliminary screening for high-yield cell pool, single-cell isolation and improvement of productivity, clonality and stability. With the development of modern analysis and testing technologies, various screening methods have been used for CLD to enhance the selection efficiency of high-yield clonal cells. This review provides a comprehensive overview on preliminary screening methods for high-yield cell pool based on drug selective pressure. Moreover, we focus on high throughput methods for isolating high-yield cell clones and increasing the productivity and stability, as well as new screening strategies used for the biopharmaceutical industry.
Collapse
Affiliation(s)
- Wenwen Yang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| | - Yunxi Xiao
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Wenqing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| |
Collapse
|
15
|
Oliviero C, Hinz SC, Bogen JP, Kornmann H, Hock B, Kolmar H, Hagens G. Generation of a Host Cell line containing a MAR-rich landing pad for site-specific integration and expression of transgenes. Biotechnol Prog 2022; 38:e3254. [PMID: 35396920 PMCID: PMC9539524 DOI: 10.1002/btpr.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
In recent years, targeted gene integration (TI) has been introduced as a strategy for the generation of recombinant mammalian cell lines for the production of biotherapeutics. Besides reducing the immense heterogeneity within a pool of recombinant transfectants, TI also aims at shortening the duration of the current cell line development process. Here we describe the generation of a host cell line carrying Matrix‐Attachment Region (MAR)‐rich landing pads (LPs), which allow for the simultaneous and site‐specific integration of multiple genes of interest (GOIs). We show that several copies of each chicken lysozyme 5'MAR‐based LP containing either BxB1 wild type or mutated recombination sites, integrated at one random chromosomal locus of the host cell genome. We further demonstrate that these LP‐containing host cell lines can be used for the site‐specific integration of several GOIs and thus, generation of transgene‐expressing stable recombinant clones. Transgene expression was shown by site‐specific integration of heavy and light chain genes coding for a monospecific antibody (msAb) as well as for a bi‐specific antibody (bsAb). The genetic stability of the herein described LP‐based recombinant clones expressing msAb or bsAb was demonstrated by cultivating the recombinant clones and measuring antibody titers over 85 generations. We conclude that the host cell containing multiple copies of MAR‐rich landing pads can be successfully used for stable expression of one or several GOIs.
Collapse
Affiliation(s)
- Claudia Oliviero
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| | - Steffen C Hinz
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Henri Kornmann
- Ferring Biologics Innovation Center, Route de la Corniche 8, CH-1066, Epalinges, Switzerland
| | - Björn Hock
- Ferring Biologics Innovation Center, Route de la Corniche 8, CH-1066, Epalinges, Switzerland.,SwissThera SA, Route de la Corniche 4, CH-1066, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Gerrit Hagens
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| |
Collapse
|
16
|
Mikkonen S, Josefsson L, Mäkinen MEL, Chotteau V, Emmer Å. Capillary and microchip electrophoresis method development for amino acid monitoring during biopharmaceutical cultivation. Biotechnol J 2022; 17:e2100325. [PMID: 35320618 DOI: 10.1002/biot.202100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/19/2022] [Accepted: 03/19/2022] [Indexed: 11/12/2022]
Abstract
The increased use of biopharmaceuticals calls for improved means of bioprocess monitoring. In this work, capillary electrophoresis (CE) and microchip electrophoresis (MCE) methods were developed and applied for the analysis of amino acids (AAs) in cell culture supernatant. In samples from different days of a Chinese hamster ovary cell cultivation process, all 19 proteinogenic AAs containing primary amine groups could be detected using CE, and 17 out of 19 AAs using MCE. The relative concentration changes in different samples agreed well with those measured by high-performance liquid chromatography (HPLC). Compared to the more commonly employed HPLC analysis, the CE and MCE methods resulted in faster analysis, while significantly lowering both the sample and reagent consumption, and the cost per analysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Saara Mikkonen
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Applied Physical Chemistry, Stockholm, Sweden
| | - Leila Josefsson
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Applied Physical Chemistry, Stockholm, Sweden
| | - Meeri E-L Mäkinen
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, Stockholm, Sweden
| | - Veronique Chotteau
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, Stockholm, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, KTH, Stockholm, Sweden
| | - Åsa Emmer
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Applied Physical Chemistry, Stockholm, Sweden
| |
Collapse
|
17
|
Park JU, Han HJ, Baik JY. Energy metabolism in Chinese hamster ovary (CHO) cells: Productivity and beyond. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Glücklich N, Carle S, Buske J, Mäder K, Garidel P. Assessing the polysorbate degradation fingerprints and kinetics of lipases - how the activity of polysorbate degrading hydrolases is influenced by the assay and assay conditions. Eur J Pharm Sci 2021; 166:105980. [PMID: 34419573 DOI: 10.1016/j.ejps.2021.105980] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Two of the most widely used surfactants to stabilize biologicals against e.g. interfacial stresses are polysorbate 20 (PS20) and polysorbate 80 (PS80). In recent years, numerous cases of hydrolytic polysorbate (PS) degradation in liquid formulations of biopharmaceuticals have been observed. Concomitant with the degradation of PSs, formulated proteins become inherently instable and more susceptible to aggregation. Furthermore, poorly soluble fatty acids (FA) are released from the PSs, which might lead to FA precipitation and the formation of visible and subvisible particles. Therefore, possible particle inducing factors have to be monitored closely. The major root cause of hydrolytic PS degradation in biologicals is the presence of enzymatic active host cell proteins (HCP), like lipases and esterases, which are co-purified with the active pharmaceutical ingredient. Such contaminants can be detected via their hydrolytic activity, either using ester-based substrates or PS itself. However, each approach has its up- and downsides, which makes the comparison of the results from other publications difficult. It was therefore the aim of the present study to investigate the impact of lipase specificities on the assay readouts. This study evaluates three different surrogate (model) lipases with distinctively different degradation kinetics and substrate specificities using specific analytical methods. The analytical panel contains on one hand two lipase activity assays with ester-based substrates, either detecting the release of para-nitrophenol or 4-methylumbelliferone, and on the other hand two PS-based monitoring analyses (fluorescence micelle assay and reverse phase high performance liquid chromatography - charged aerosol detection), which detect hydrolytic "activity" directly in the target substrate. Thereby, strengths and weaknesses of each assay are discussed, and recommendations are made for the respective use cases. Our results show that the determined lipase activities vary not only from assay to assay, but also significantly for the lipase tested, thus showing a different degradation fingerprint in the RP-HPLC-CAD chromatogram. This demonstrates that a comprehensive monitoring approach is essential to assess potential HCP contaminations.
Collapse
Affiliation(s)
- Nils Glücklich
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany; Martin-Luther-University Halle-Wittenberg, Institute of Chemistry, Faculty of Physical and Theoretical Chemistry, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
19
|
Pratama F, Linton D, Dixon N. Genetic and process engineering strategies for enhanced recombinant N-glycoprotein production in bacteria. Microb Cell Fact 2021; 20:198. [PMID: 34649588 PMCID: PMC8518210 DOI: 10.1186/s12934-021-01689-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background The production of N-linked glycoproteins in genetically amenable bacterial hosts offers great potential for reduced cost, faster/simpler bioprocesses, greater customisation, and utility for distributed manufacturing of glycoconjugate vaccines and glycoprotein therapeutics. Efforts to optimize production hosts have included heterologous expression of glycosylation enzymes, metabolic engineering, use of alternative secretion pathways, and attenuation of gene expression. However, a major bottleneck to enhance glycosylation efficiency, which limits the utility of the other improvements, is the impact of target protein sequon accessibility during glycosylation. Results Here, we explore a series of genetic and process engineering strategies to increase recombinant N-linked glycosylation, mediated by the Campylobacter-derived PglB oligosaccharyltransferase in Escherichia coli. Strategies include increasing membrane residency time of the target protein by modifying the cleavage site of its secretion signal, and modulating protein folding in the periplasm by use of oxygen limitation or strains with compromised oxidoreductase or disulphide-bond isomerase activity. These approaches achieve up to twofold improvement in glycosylation efficiency. Furthermore, we also demonstrate that supplementation with the chemical oxidant cystine enhances the titre of glycoprotein in an oxidoreductase knockout strain by improving total protein production and cell fitness, while at the same time maintaining higher levels of glycosylation efficiency. Conclusions In this study, we demonstrate that improved protein glycosylation in the heterologous host could be achieved by mimicking the coordination between protein translocation, folding and glycosylation observed in native host such as Campylobacter jejuni and mammalian cells. Furthermore, it provides insight into strain engineering and bioprocess strategies, to improve glycoprotein yield and titre, and to avoid physiological burden of unfolded protein stress upon cell growth. The process and genetic strategies identified herein will inform further optimisation and scale-up of heterologous recombinant N-glycoprotein production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01689-x.
Collapse
Affiliation(s)
- Fenryco Pratama
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.,Microbial Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Dennis Linton
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M1 7DN, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, M1 7DN, UK. .,Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
20
|
Zhang Z, Chen J, Wang J, Gao Q, Ma Z, Xu S, Zhang L, Cai J, Zhou W. Reshaping cell line development and CMC strategy for fast responses to pandemic outbreak. Biotechnol Prog 2021; 37:e3186. [PMID: 34148295 DOI: 10.1002/btpr.3186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
The global pandemic outbreak COVID-19 (SARS-COV-2), has prompted many pharmaceutical companies to develop vaccines and therapeutic biologics for its prevention and treatment. Most of the therapeutic biologics are common human IgG antibodies, which were identified by next-generation sequencing (NGS) with the B cells from the convalescent patients. To fight against pandemic outbreaks like COVID-19, biologics development strategies need to be optimized to speed up the timeline. Since the advent of therapeutic biologics, strategies of transfection and cell line selection have been continuously improved for greater productivity and efficiency. NGS has also been implemented for accelerated cell bank testing. These recent advances enable us to rethink and reshape the chemistry, manufacturing, and controls (CMC) strategy in order to start supplying Good Manufacturing Practices (GMP) materials for clinical trials as soon as possible. We elucidated an accelerated CMC workflow for biologics, including using GMP-compliant pool materials for phase I clinical trials, selecting the final clone with product quality similar to that of phase I materials for late-stage development and commercial production.
Collapse
Affiliation(s)
- Zheng Zhang
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Ji Chen
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Junghao Wang
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Qiao Gao
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Zhujun Ma
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Shurong Xu
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Li Zhang
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Jill Cai
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Weichang Zhou
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| |
Collapse
|
21
|
Baik JY, Han HJ, Lee KH. DNA Double-Strand Breaks Affect Chromosomal Rearrangements during Methotrexate-Mediated Gene Amplification in Chinese Hamster Ovary Cells. Pharmaceutics 2021; 13:pharmaceutics13030376. [PMID: 33809068 PMCID: PMC8000239 DOI: 10.3390/pharmaceutics13030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Methotrexate (MTX)-mediated gene amplification has been widely used in Chinese hamster ovary (CHO) cells for the biomanufacturing of therapeutic proteins. Although many studies have reported chromosomal instability and extensive chromosomal rearrangements in MTX-mediated gene-amplified cells, which may be associated with cell line instability issues, the mechanisms of chromosomal rearrangement formation remain poorly understood. We tested the impact of DNA double-strand breaks (DSBs) on chromosomal rearrangements using bleomycin, a DSB-inducing reagent. Bleomycin-treated CHO-DUK cells, which are one of the host cell lines deficient in dihydrofolate reductase (Dhfr) activity, exhibited a substantial number of cells containing radial formations or non-radial formations with chromosomal rearrangements, suggesting that DSBs may be associated with chromosomal rearrangements. To confirm the causes of DSBs during gene amplification, we tested the effects of MTX treatment and the removal of nucleotide base precursors on DSB formation in Dhfr-deficient (i.e., CHO-DUK) and Dhfr-expressing (i.e., CHO-K1) cells. Immunocytochemistry demonstrated that MTX treatment did not induce DSBs per se, but a nucleotide shortage caused by the MTX-mediated inhibition of Dhfr activity resulted in DSBs. Our data suggest that a nucleotide shortage caused by MTX-mediated Dhfr inhibition in production cell lines is the primary cause of a marked increase in DSBs, resulting in extensive chromosomal rearrangements after gene amplification processes.
Collapse
Affiliation(s)
- Jong Youn Baik
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
- Department of Biological Engineering, Inha University, Incheon 22212, Korea;
- Correspondence: (J.Y.B.); (K.H.L.); Tel.: +82-32-860-7513 (J.Y.B.); +1-302-831-0344 (K.H.L.)
| | - Hye-Jin Han
- Department of Biological Engineering, Inha University, Incheon 22212, Korea;
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
- Correspondence: (J.Y.B.); (K.H.L.); Tel.: +82-32-860-7513 (J.Y.B.); +1-302-831-0344 (K.H.L.)
| |
Collapse
|
22
|
Kim C, Jeong YK, Yu J, Shin HJ, Ku KB, Cha HJ, Han JH, Hong SA, Kim BT, Kim SJ, Woo JS, Bae S. Efficient Human Cell Coexpression System and Its Application to the Production of Multiple Coronavirus Antigens. Adv Biol (Weinh) 2021; 5:e2000154. [PMID: 33852178 DOI: 10.1002/adbi.202000154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/08/2021] [Indexed: 01/14/2023]
Abstract
Coproduction of multiple proteins at high levels in a single human cell line would be extremely useful for basic research and medical applications. Here, a novel strategy for the stable expression of multiple proteins by integrating the genes into defined transcriptional hotspots in the human genome is presented. As a proof-of-concept, it is shown that EYFP is expressed at similar levels from hotspots and that the EYFP expression increases proportionally with the copy number. It is confirmed that three different fluorescent proteins, encoded by genes integrated at different loci, can be coexpressed at high levels. Further, a stable cell line is generated, producing antigens from different human coronaviruses: MERS-CoV and HCoV-OC43. Antibodies raised against these antigens, which contain human N-glycosylation, show neutralizing activities against both viruses, suggesting that the coexpression system provides a quick and predictable way to produce multiple coronavirus antigens, such as the recent 2019 novel human coronavirus.
Collapse
Affiliation(s)
- Chonsaeng Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - You Kyeong Jeong
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jihyeon Yu
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Hye Jin Shin
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Keun Bon Ku
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Hyung Jin Cha
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Jun Hee Han
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Sung-Ah Hong
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Bum-Tae Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Jae-Sung Woo
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
23
|
Park SH, Park JH, Lee JH, Lee HM, Kang YJ, Lee EJ, Shin S, Lee GM, Kim YG. Amplification of EBNA-1 through a single-plasmid vector-based gene amplification system in HEK293 cells as an efficient transient gene expression system. Appl Microbiol Biotechnol 2020; 105:67-76. [PMID: 33191460 DOI: 10.1007/s00253-020-11001-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Our previous work showed that there is a limitation in the use of dihydrofolate reductase (dhfr)/methotrexate (MTX)-mediated gene amplification systems in dhfr-non-deficient HEK293 cells, as endogenous dhfr may interfere with the amplification process. In the present study, we successfully generated Epstein-Barr virus nuclear antigen-1 (EBNA-1)-amplified HEK293 cells in a dhfr-non-deficient HEK293 cell background using a single-plasmid vector-based gene amplification system with shRNA targeting the 3'-UTR of endogenous dhfr. The introduction of this shRNA efficiently downregulated the expression of endogenous dhfr in the HEK293 cells without affecting exogenous dhfr expression. The downregulation of endogenous dhfr improved the efficiency of EBNA-1 amplification, as evidenced by a comparison with the amplification extent in cells lacking shRNA expression at the same MTX concentration. The EBNA-1 expression levels from the EBNA-1-amplified clones selected in this study were higher than those obtained from EBNA-1-amplified clones that were generated using the conventional amplification in our previous study. Consistent with previous studies, EBNA-1 amplification improved the production of the Fc-fusion protein through a specific protein productivity (qp)-enhancing effect, rather than by improving cell growth or transfection efficiency. In addition, the N-glycan profiles in the Fc-fusion protein produced using this transient gene expression (TGE) system were not affected by EBNA-1 amplification. These results indicate the potential utility of EBNA-1-amplified mammalian cells, developed using a single-plasmid vector-based gene amplification system, for efficient protein production. KEY POINTS: • EBNA-1-amplified HEK293 cells were established using gene amplification system. • EBNA-1 amplification in TGE system can increase the Fc-fusion protein productivity. • EBNA-1 amplification does not affect the N-glycan profile in the Fc-fusion protein.
Collapse
Affiliation(s)
- Sun-Hye Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Jong-Ho Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Joo-Hyoung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Hoon-Min Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Yeon-Ju Kang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Eun-Ji Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Seunghyeon Shin
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea.
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
24
|
Shin SW, Lee JS. CHO Cell Line Development and Engineering via Site-specific Integration: Challenges and Opportunities. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0093-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Chen P, Chen M, Menon A, Hussain AI, Carey E, Lee C, Horwitz J, O'Connell S, Cooper JW, Schwartz R, Gowetski DB. Development of a High Yielding Bioprocess for a Pre-fusion RSV Subunit Vaccine. J Biotechnol 2020; 325:261-270. [PMID: 33068697 DOI: 10.1016/j.jbiotec.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 02/03/2023]
Abstract
Respiratory syncytial virus (RSV) is a highly contagious virus causing severe infection in infants and the elderly. Various approaches are being used to develop an effective RSV vaccine. The RSV fusion (F) subunit, particularly the cleaved trimeric pre-fusion F, is one of the most promising vaccine candidates under development. The pre-fusion conformation elicits the majority of neutralizing antibodies during natural infection. However, this pre-fusion conformation is metastable and prone to conversion to a post-fusion conformation, thus hindering the potential of this construct as a vaccine antigen. The Vaccine Research Center (VRC) at the National Institutes of Health (NIH) designed a structurally stabilized pre-fusion F glycoprotein, DS-Cav1, that showed high immunogenicity and induced a neutralizing response in animal studies. To advance this candidate to clinical manufacturing, a production process that maintained product quality (i.e. a cleaved trimer with pre-fusion conformation) and delivered high protein expression levels was required. This report describes the development of the vaccine candidate including vector design and cell culture process development to meet these challenges. Co-transfection of individual plasmids to express DS-Cav1 and furin (for DS-Cav1 cleavage and activation) demonstrated a superior protein product expression and pre-fusion conformation compared to co-expression with a double gene vector. A top clone was selected based on these measurements. Protein expression levels were further increased by seeding density optimization and a biphasic hypothermia temperature downshift. The combined efforts led to a high-yield fed-batch production of approximately 1,500 mg/L (or up to 15,000 doses per liter) at harvest. The process was scaled up and demonstrated to be reproducible at 50 L-scale for toxicity and Phase I clinical trial use. Preliminary phase I data indicate the pre-fusion antigen has a promising efficacy (Crank et al., 2019).
Collapse
Affiliation(s)
- Peifeng Chen
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA.
| | - Mingzhong Chen
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Amritha Menon
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Althaf I Hussain
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Elizabeth Carey
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Christopher Lee
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Joe Horwitz
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Sarah O'Connell
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Johnathan W Cooper
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Richard Schwartz
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Daniel B Gowetski
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| |
Collapse
|
26
|
Yoon C, Kim D, Lim JH, Lee GM. Forskolin Increases cAMP Levels and Enhances Recombinant Antibody Production in CHO Cell Cultures. Biotechnol J 2020. [DOI: 10.1002/biot.202000264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chansik Yoon
- Department of Biological Sciences KAIST Daejeon 34141 Republic of Korea
| | - Dongil Kim
- Department of Biological Sciences KAIST Daejeon 34141 Republic of Korea
| | - Ju Hyeon Lim
- New Drug Development Center Cheongju 28160 Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences KAIST Daejeon 34141 Republic of Korea
| |
Collapse
|
27
|
Feasible development of stable HEK293 clones by CRISPR/Cas9-mediated site-specific integration for biopharmaceuticals production. Biotechnol Lett 2019; 41:941-950. [DOI: 10.1007/s10529-019-02702-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
|
28
|
Aeschlimann SH, Graf C, Mayilo D, Lindecker H, Urda L, Kappes N, Burr AL, Simonis M, Splinter E, Min M, Laux H. Enhanced CHO Clone Screening: Application of Targeted Locus Amplification and Next‐Generation Sequencing Technologies for Cell Line Development. Biotechnol J 2019; 14:e1800371. [DOI: 10.1002/biot.201800371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/20/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Samuel H. Aeschlimann
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | - Christian Graf
- Novartis Technical R&D, Technical Development BiosimilarsHexal AG, Keltenring 1+3 82041 Oberhaching Germany
| | - Dmytro Mayilo
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | - Hélène Lindecker
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | - Lorena Urda
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | - Nora Kappes
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | - Alicia Leone Burr
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | | | - Erik Splinter
- Cergentis B.VYalelaan 62 3584 CM Utrecht The Netherlands
| | - Max Min
- Cergentis B.VYalelaan 62 3584 CM Utrecht The Netherlands
| | - Holger Laux
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| |
Collapse
|
29
|
Pristovšek N, Nallapareddy S, Grav LM, Hefzi H, Lewis NE, Rugbjerg P, Hansen HG, Lee GM, Andersen MR, Kildegaard HF. Systematic Evaluation of Site-Specific Recombinant Gene Expression for Programmable Mammalian Cell Engineering. ACS Synth Biol 2019; 8:758-774. [PMID: 30807689 DOI: 10.1021/acssynbio.8b00453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many branches of biology depend on stable and predictable recombinant gene expression, which has been achieved in recent years through targeted integration of the recombinant gene into defined integration sites. However, transcriptional levels of recombinant genes in characterized integration sites are controlled by multiple components of the integrated expression cassette. Lack of readily available tools has inhibited meaningful experimental investigation of the interplay between the integration site and the expression cassette components. Here we show in a systematic manner how multiple components contribute to final net expression of recombinant genes in a characterized integration site. We develop a CRISPR/Cas9-based toolbox for construction of mammalian cell lines with targeted integration of a landing pad, containing a recombinant gene under defined 5' proximal regulatory elements. Generated site-specific recombinant cell lines can be used in a streamlined recombinase-mediated cassette exchange for fast screening of different expression cassettes. Using the developed toolbox, we show that different 5' proximal regulatory elements generate distinct and robust recombinant gene expression patterns in defined integration sites of CHO cells with a wide range of transcriptional outputs. This approach facilitates the generation of user-defined and product-specific gene expression patterns for programmable mammalian cell engineering.
Collapse
Affiliation(s)
- Nuša Pristovšek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Saranya Nallapareddy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Hooman Hefzi
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Peter Rugbjerg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Henning Gram Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
30
|
Claßen J, Graf A, Aupert F, Solle D, Höhse M, Scheper T. A novel LED-based 2D-fluorescence spectroscopy system for in-line bioprocess monitoring of Chinese hamster ovary cell cultivations-Part II. Eng Life Sci 2019; 19:341-351. [PMID: 32625013 DOI: 10.1002/elsc.201800146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/13/2019] [Accepted: 03/01/2019] [Indexed: 11/05/2022] Open
Abstract
This study was performed in order to evaluate a new LED-based 2D-fluorescence spectrometer for in-line bioprocess monitoring of Chinese hamster ovary (CHO) cell culture processes. The new spectrometer used selected excitation wavelengths of 280, 365, and 455 nm to collect spectral data from six 10-L fed-batch processes. The technique provides data on various fluorescent compounds from the cultivation medium as well as from cell metabolism. In addition, scattered light offers information about the cultivation status. Multivariate data analysis tools were applied to analyze the large data sets of the collected fluorescence spectra. First, principal component analysis was used to accomplish an overview of all spectral data from all six CHO cultivations. Partial least square regression models were developed to correlate 2D-fluorescence spectral data with selected critical process variables as offline reference values. A separate independent fed-batch process was used for model validation and prediction. An almost continuous in-line bioprocess monitoring was realized because 2D-fluorescence spectra were collected every 10 min during the whole cultivation. The new 2D-fluorescence device demonstrates the significant potential for accurate prediction of the total cell count, viable cell count, and the cell viability. The results strongly indicated that the technique is particularly capable to distinguish between different cell statuses inside the bioreactor. In addition, spectral data provided information about the lactate metabolism shift and cellular respiration during the cultivation process. Overall, the 2D-fluorescence device is a highly sensitive tool for process analytical technology applications in mammalian cell cultures.
Collapse
Affiliation(s)
- Jens Claßen
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| | | | - Florian Aupert
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| | - Dörte Solle
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| | - Marek Höhse
- Sartorius Stedim Biotech GmbH Göttingen Germany
| | - Thomas Scheper
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| |
Collapse
|
31
|
Vorobyova IG, Shukurov RR, Kozlov DG, Koryagina TB, Antipova NV, Stepanenko VN. Modification of a System Based on the Use of Selection and Sorting Markers for the Screening of Stable Transfectants. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818090077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Lee JH, Kim J, Park J, Heo WD, Lee GM. Analysis of Golgi pH in Chinese hamster ovary cells using ratiometric pH‐sensitive fluorescent proteins. Biotechnol Bioeng 2019; 116:1006-1016. [DOI: 10.1002/bit.26920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jong Hyun Lee
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Jihoon Kim
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Jong‐Ho Park
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Won Do Heo
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Gyun Min Lee
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| |
Collapse
|
33
|
Qin J, Wu X, Xia Z, Huang Z, Zhang Y, Wang Y, Fu Q, Zheng C. The effect of hyperosmolality application time on production, quality, and biopotency of monoclonal antibodies produced in CHO cell fed-batch and perfusion cultures. Appl Microbiol Biotechnol 2018; 103:1217-1229. [PMID: 30554388 DOI: 10.1007/s00253-018-9555-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 12/19/2022]
Abstract
Hyperosmolality has been commonly investigated due to its effects on the production and quality characteristics of monoclonal antibodies (mAbs) produced in CHO cell fed-batch cultures. However, the application of hyperosmolality at different times and its effect on biopotency have seldom been researched, especially in perfusion culture. In our study, different degrees of hyperosmolality induced by sodium chloride were investigated in anti-IgE rCHO cell fed-batch cultures and anti-CD52 rCHO cell perfusion cultures during the initial and stable phases. The results showed that the initial hyperosmolality group (IHG) in fed-batch and early phase of perfusion cultures exhibited significant suppression of the viable cell density yet an enhancement in specific productivity, whereas the stable hyperosmolality group (SHG) achieved higher mAb production in both fed-batch and perfusion cultures. Additionally, the SHG produced less aggregates and acidic charge variants than IHG in fed-batch culture, which differed from perfusion cultures. However, the contents of non-glycosylation heavy chain (NGHC) and man5 were higher in SHG than in IHG in fed-batch cultures at plus 60 and 120 mOsm/kg, which was similar to perfusion cultures. Furthermore, the biopotency in the IHG was higher than in the SHG at plus 60 and 120 mOsm/kg in fed-batch cultures, which is similar to complement-dependent cytotoxicity (CDC) efficacy in perfusion cultures. The biopotency of all group was acceptable, except FI3. Thus, the study shows that hyperosmolality at a certain level could be beneficial for both mAb production, quality and biopotency, which could play an important role in process development for commercial production.
Collapse
Affiliation(s)
- Jinyan Qin
- School of Pharmacy, Wuhan University, East Lake Road 185, Wuchang District, Wuhan, 430071, Hubei Province, China.,Shanghai Taiyin Biotech Co., Ltd., Shanghai, 201203, China
| | - Xiang Wu
- Shanghai Taiyin Biotech Co., Ltd., Shanghai, 201203, China
| | - Zhigang Xia
- Shanghai Taiyin Biotech Co., Ltd., Shanghai, 201203, China
| | - Zheng Huang
- School of Pharmacy, Wuhan University, East Lake Road 185, Wuchang District, Wuhan, 430071, Hubei Province, China.,Shanghai Taiyin Biotech Co., Ltd., Shanghai, 201203, China
| | - Ying Zhang
- Shanghai Taiyin Biotech Co., Ltd., Shanghai, 201203, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanchao Wang
- Shanghai Taiyin Biotech Co., Ltd., Shanghai, 201203, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Fu
- Shanghai Taiyin Biotech Co., Ltd., Shanghai, 201203, China
| | - Chen Zheng
- Shanghai Taiyin Biotech Co., Ltd., Shanghai, 201203, China.
| |
Collapse
|
34
|
Grav LM, Sergeeva D, Lee JS, Marin de Mas I, Lewis NE, Andersen MR, Nielsen LK, Lee GM, Kildegaard HF. Minimizing Clonal Variation during Mammalian Cell Line Engineering for Improved Systems Biology Data Generation. ACS Synth Biol 2018; 7:2148-2159. [PMID: 30060646 DOI: 10.1021/acssynbio.8b00140] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mammalian cells are widely used to express genes for basic biology studies and biopharmaceuticals. Current methods for generation of engineered cell lines introduce high genomic and phenotypic diversity, which hamper studies of gene functions and discovery of novel cellular mechanisms. Here, we minimized clonal variation by integrating a landing pad for recombinase-mediated cassette exchange site-specifically into the genome of CHO cells using CRISPR and generated subclones expressing four different recombinant proteins. The subclones showed low clonal variation with high consistency in growth, transgene transcript levels and global transcriptional response to recombinant protein expression, enabling improved studies of the impact of transgenes on the host transcriptome. Little variation over time in subclone phenotypes and transcriptomes was observed when controlling environmental culture conditions. The platform enables robust comparative studies of genome engineered CHO cell lines and can be applied to other mammalian cells for diverse biological, biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Daria Sergeeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jae Seong Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Igor Marin de Mas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustatainability, University of California, San Diego, La Jolla, California 92093, United States
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
35
|
Wang W, Zheng W, Hu F, He X, Wu D, Zhang W, Liu H, Ma X. Enhanced Biosynthesis Performance of Heterologous Proteins in CHO-K1 Cells Using CRISPR-Cas9. ACS Synth Biol 2018; 7:1259-1268. [PMID: 29683658 DOI: 10.1021/acssynbio.7b00375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chinese hamster ovary (CHO) cells are the famous expression system for industrial production of recombinant proteins, such as therapeutic antibodies. However, there still remain bottlenecks in protein quality and weakness in expression efficiency because of the intrinsic genetic properties of the cell. Here we have enhanced biosynthesis performance of heterologous proteins in CHO-K1 cells using CRISPR-Cas9 by editing the genome precisely with two genes for improving ER microenvironment and reinforcing antiapoptotic ability. A linear donor plasmid harboring eGFP-HsQSOX1b and Survivin genes was knocked in specific locus in CHO-K1 genome by the CRISPR-Cas9 RNA guided nucleases via NHEJ with efficiencies of up to 3.85% in the CHO-K1 cell pools following FACS, and the hQSOX1 and hSurvivin genes were integrated into expected genome locus successfully. Compared with control, the antiapoptotic viability of edited CHO-K1 cells was increased by 6.40 times, and the yield has been raised by 5.55 times with GLuc as model protein. The possible molecular mechanisms and pathways of remarkable antiapoptotic ability and protein biosynthesis in modified CHO-K1 cells have been elucidated reasonably. In conclusion, the novel ideas and reliable techniques for obtaining foreign proteins more efficiently in engineered animal cells were very valuable to meet large clinical needs.
Collapse
Affiliation(s)
- Wenpeng Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Fengzhi Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiujuan He
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dong Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenliang Zhang
- Center of Translational Biomedical Research, University of North Carolina at Greensboro, Greensboro, North Carolina 27310, United States
| | - Haipeng Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
36
|
Lee JH, Park JH, Park SH, Kim SH, Kim JY, Min JK, Lee GM, Kim YG. Co-amplification of EBNA-1 and PyLT through dhfr-mediated gene amplification for improving foreign protein production in transient gene expression in CHO cells. Appl Microbiol Biotechnol 2018; 102:4729-4739. [PMID: 29654557 DOI: 10.1007/s00253-018-8977-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/30/2022]
Abstract
Despite the relatively low transfection efficiency and low specific foreign protein productivity (qp) of Chinese hamster ovary (CHO) cell-based transient gene expression (TGE) systems, TGE-based recombinant protein production technology predominantly employs CHO cells for pre-clinical research and development purposes. To improve TGE in CHO cells, Epstein-Barr virus nuclear antigen-1 (EBNA-1)/polyoma virus large T antigen (PyLT)-co-amplified recombinant CHO (rCHO) cells stably expressing EBNA-1 and PyLT were established using dihydrofolate reductase/methotrexate-mediated gene amplification. The level of transiently expressed Fc-fusion protein was significantly higher in the EBNA-1/PyLT-co-amplified pools compared to control cultures. Increased Fc-fusion protein production by EBNA-1/PyLT-co-amplification resulted from a higher qp attributable to EBNA-1 but not PyLT expression. The qp for TGE-based production with EBNA-1/PyLT-co-amplified rCHO cells (EP-amp-20) was approximately 22.9-fold that of the control culture with CHO-DG44 cells. Rather than improved transfection efficiency, this cell line demonstrated increased levels of mRNA expression and replicated DNA, contributing to an increased qp. Furthermore, there was no significant difference in N-glycan profiles in Fc-fusion proteins produced in the TGE system. Taken together, these results showed that the use of rCHO cells with co-amplified expression of the viral elements EBNA-1 and PyLT improves TGE-based therapeutic protein production dramatically. Therefore, EBNA-1/PyLT-co-amplified rCHO cells will likely be useful as host cells in CHO cell-based TGE systems.
Collapse
Affiliation(s)
- Joo-Hyoung Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, South Korea.,Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Jong-Ho Park
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, South Korea.,Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Sun-Hye Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea.,Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Sun-Hong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea.,Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Jee Yon Kim
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, South Korea.
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea. .,Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
37
|
Yu DY, Lee SY, Lee GM. Glutamine synthetase gene knockout-human embryonic kidney 293E cells for stable production of monoclonal antibodies. Biotechnol Bioeng 2018; 115:1367-1372. [DOI: 10.1002/bit.26552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/17/2017] [Accepted: 01/15/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Da Young Yu
- Department of Biological Sciences; KAIST; Yuseong-gu Daejeon Republic of Korea
| | - Sang Yoon Lee
- Department of Biological Sciences; KAIST; Yuseong-gu Daejeon Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences; KAIST; Yuseong-gu Daejeon Republic of Korea
| |
Collapse
|
38
|
Pristovšek N, Hansen HG, Sergeeva D, Borth N, Lee GM, Andersen MR, Kildegaard HF. Using Titer and Titer Normalized to Confluence Are Complementary Strategies for Obtaining Chinese Hamster Ovary Cell Lines with High Volumetric Productivity of Etanercept. Biotechnol J 2018; 13:e1700216. [DOI: 10.1002/biot.201700216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/15/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Nuša Pristovšek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| | - Henning Gram Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| | - Daria Sergeeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB); Muthgasse 11 1190 Vienna Austria
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
- Department of Biological Sciences, KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark; Søltofts Plads, Building 221 2800 Kgs. Lyngby Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| |
Collapse
|
39
|
Kawabe Y, Komatsu S, Komatsu S, Murakami M, Ito A, Sakuma T, Nakamura T, Yamamoto T, Kamihira M. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems. J Biosci Bioeng 2017; 125:599-605. [PMID: 29295784 DOI: 10.1016/j.jbiosc.2017.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022]
Abstract
Chinese hamster ovary (CHO) cells have been used as host cells for the production of pharmaceutical proteins. For the high and stable production of target proteins, the transgene should be integrated into a suitable genomic locus of host cells. Here, we generated knock-in CHO cells, in which transgene cassettes without a vector backbone sequence were integrated into the hprt locus of the CHO genome using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) systems. We investigated the efficiency of targeted knock-in of transgenes using these systems. As a practical example, we generated knock-in CHO cells producing an scFv-Fc antibody using the CRIS-PITCh system mediated by microhomology sequences for targeting. We found that the CRIS-PITCh system can facilitate targeted knock-in for CHO cell engineering.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinya Komatsu
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shodai Komatsu
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mai Murakami
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takahiro Nakamura
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
40
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
41
|
Park JH, Jin JH, Ji IJ, An HJ, Kim JW, Lee GM. Proteomic analysis of host cell protein dynamics in the supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-batch cultures. Biotechnol Bioeng 2017. [DOI: 10.1002/bit.26360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jin Hyoung Park
- Department of Biological Sciences; KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jong Hwa Jin
- New Drug Development Center; Cheongju-si Chungbuk Republic of Korea
| | - In Jung Ji
- Graduate School of Analytical Science & Technology; Chungnam National University; Daejon Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science & Technology; Chungnam National University; Daejon Republic of Korea
| | - Jong Won Kim
- New Drug Development Center; Cheongju-si Chungbuk Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences; KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
42
|
Gupta SK, Shukla P. Sophisticated Cloning, Fermentation, and Purification Technologies for an Enhanced Therapeutic Protein Production: A Review. Front Pharmacol 2017; 8:419. [PMID: 28725194 PMCID: PMC5495827 DOI: 10.3389/fphar.2017.00419] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/13/2017] [Indexed: 11/27/2022] Open
Abstract
The protein productions strategies are crucial towards the development of application based research and elucidating the novel purification strategies for industrial production. Currently, there are few innovative avenues are studies for cloning, upstream, and purification through efficient bioprocess development. Such strategies are beneficial for industries as well as proven to be vital for effectual therapeutic protein development. Though, these techniques are well documented, but, there is scope of addition to current knowledge with novel and new approaches and it will pave new avenues in production of recombinant microbial and non-microbial proteins including secondary metabolites. In this review, we have focussed on the recent development in clone selection, various modern fermentation and purification technologies and future directions in these emerging areas. Moreover, we have also highlighted notable perspectives and challenges involved in the bioengineering of such proteins, including quality by design, gene editing and pioneering ideas. The biopharmaceutical industries continue to shift towards more flexible, automated platforms and economical product development, which in turn can help in developing the cost effective processes and affordable drug development for a large community.
Collapse
Affiliation(s)
- Sanjeev K Gupta
- Advanced Biotech Lab, Ipca Laboratories Ltd.,Mumbai, India.,Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
43
|
Lee JH, Jeong YR, Kim YG, Lee GM. Understanding of decreased sialylation of Fc-fusion protein in hyperosmotic recombinant Chinese hamster ovary cell culture: N-glycosylation gene expression and N-linked glycan antennary profile. Biotechnol Bioeng 2017; 114:1721-1732. [PMID: 28266015 DOI: 10.1002/bit.26284] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 01/14/2023]
Abstract
To understand the effects of hyperosmolality on protein glycosylation, recombinant Chinese hamster ovary (rCHO) cells producing the Fc-fusion protein were cultivated in hyperosmolar medium resulting from adding NaCl (415 mOsm/kg). The hyperosmotic culture showed increased specific Fc-fusion protein productivity (qFc ) but a decreased proportion of acidic isoforms and sialic acid content of the Fc-fusion protein. The intracellular and extracellular sialidase activities in the hyperosmotic cultures were similar to those in the control culture (314 mOsm/kg), indicating that reduced sialylation of Fc-fusion protein at hyperosmolality was not due to elevated sialidase activity. Expression of 52 N-glycosylation-related genes was assessed by the NanoString nCounter system, which provides a direct digital readout using custom-designed color-coded probes. After 3 days of hyperosmotic culture, nine genes (ugp, slc35a3, slc35d2, gcs1, manea, mgat2, mgat5b, b4galt3, and b4galt4) were differentially expressed over 1.5-fold of the control, and all these genes were down-regulated. N-linked glycan analysis by anion exchange and hydrophilic interaction HPLC showed that the proportion of highly sialylated (di-, tri-, tetra-) and tetra-antennary N-linked glycans was significantly decreased upon hyperosmotic culture. Addition of betaine, an osmoprotectant, to the hyperosmotic culture significantly increased the proportion of highly sialylated and tetra-antennary N-linked glycans (P ≤ 0.05), while it increased the expression of the N-glycan branching/antennary genes (mgat2 and mgat4b). Thus, decreased expression of the genes with roles in the N-glycan biosynthesis pathway correlated with reduced sialic acid content of Fc-fusion protein caused by hyperosmolar conditions. Taken together, the results obtained in this study provide a better understanding of the detrimental effects of hyperosmolality on N-glycosylation, especially sialylation, in rCHO cells. Biotechnol. Bioeng. 2017;114: 1721-1732. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jong Hyun Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yeong Ran Jeong
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yeon-Gu Kim
- Biotechnology Process Engineering Center, KRIBB, Ochang-eup, Cheongwon-gu, Cheongju, Republic of Korea.,Department of Bioprocess Engineering, Korea University of Science and Technology (UST), Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
44
|
Zhao L, Fu HY, Raju R, Vishwanathan N, Hu WS. Unveiling gene trait relationship by cross-platform meta-analysis on Chinese hamster ovary cell transcriptome. Biotechnol Bioeng 2017; 114:1583-1592. [PMID: 28218403 DOI: 10.1002/bit.26272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/17/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
In the past few years, transcriptome analysis has been increasingly employed to better understand the physiology of Chinese hamster ovary (CHO) cells at a global level. As more transcriptome data accumulated, meta-analysis on data sets collected from various sources can potentially provide better insights on common properties of those cells. Here, we performed meta-analysis on transcriptome data of different CHO cell lines obtained using NimbleGen or Affymetrix microarray platforms. Hierarchical clustering, non-negative matrix factorization (NMF) analysis, and principal component analysis (PCA) accordantly showed the samples were clustered into two groups: one consists of adherent cells in serum-containing medium, and the other suspension cells in serum-free medium. Genes that were differentially expressed between the two clusters were enriched in a few functional classes by Database for Annotation, Visualization, and Integrated Discovery (DAVID) of which many were common with the enriched gene sets identified by Gene Set Enrichment Analysis (GSEA), including extracellular matrix (ECM) receptor interaction, cell adhesion molecules (CAMs), and lipid related metabolism pathways. Despite the heterogeneous sources of the cell samples, the adherent and suspension growth characteristics and serum-supplementation appear to be a dominant feature in the transcriptome. The results demonstrated that meta-analysis of transcriptome could uncover features in combined data sets that individual data set might not reveal. As transcriptome data sets accumulate over time, meta-analysis will become even more revealing. Biotechnol. Bioeng. 2017;114: 1583-1592. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hsu-Yuan Fu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Ravali Raju
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Nandita Vishwanathan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
45
|
Zou W, Al-Rubeai M. Understanding central carbon metabolism of rapidly proliferating mammalian cells based on analysis of key enzymatic activities in GS-CHO cell lines. Biotechnol Appl Biochem 2016; 63:642-651. [PMID: 26108557 DOI: 10.1002/bab.1409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/19/2015] [Indexed: 12/20/2022]
Abstract
The central carbon metabolism (glycolysis, the pentose phosphate pathway [PPP], and the tricarboxylic acid [TCA] cycle) plays an essential role in the supply of biosynthetic precursors and energy. How the central carbon metabolism changes with the varying growth rates in the in vitro cultivation of rapidly proliferating mammalian cells, such as cancer cells and continuous cell lines for recombinant protein production, remains elusive. Based on relationships between the growth rate and the activity of seven key enzymes from six cell clones, this work reports finding an important metabolic characteristic in rapidly proliferating glutamine synthetase-Chinese hamster ovary cells. The key enzymatic activity involved in the TCA cycle that is responsible for the supply of energy became elevated as the growth rate exhibited increases, while the activity of key enzymes in metabolic pathways (glycolysis and the PPP), responsible for the supply of biosynthetic precursors, tended to decrease-suggesting that rapidly proliferating cells still depended predominantly on the TCA cycle rather than on aerobic glycolysis for their energetic demands. Meanwhile, the growth-limiting resource was most likely biosynthetic substrates rather than energy provision. In addition, the multifaceted role of glucose-6-phosphate isomerase (PGI) was confirmed, based on a significant correlation between PGI activity and the percentage of G2/M-phase cells.
Collapse
Affiliation(s)
- Wu Zou
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
46
|
Abstract
Gene editing with all its own advantages in molecular biology applications has made easy manipulation of various production hosts with the discovery and implementation of modern gene editing tools such as Crispr (Clustered regularly interspaced short palindromic repeats), TALENs (Transcription activator-like effector nucleases) and ZFNs (Zinc finger nucleases). With the advent of these modern tools, it is now possible to manipulate the genome of industrial production hosts such as yeast and mammalian cells which allows developing a potential and cost effective recombinant therapeutic protein. These tools also allow single editing to multiple genes for knocking-in or knocking-out of a host genome quickly in an efficient manner. A recent study on "multiplexed" gene editing revolutionized the knock-out and knock-in events of yeast and CHO, mammalian cells genome for metabolic engineering as well as high, stable, and consistent expression of a transgene encoding complex therapeutic protein such as monoclonal antibody. The gene of interest can either be integrated or deleted at single or multiple loci depending on the strategy and production requirement. This review will give a gist of all the modern tools with a brief description and advances in genetic manipulation using three major tools being implemented for the modification of such hosts with the emphasis on the use of Crispr-Cas9 for the "multiplexing gene-editing approach" for genetic manipulation of yeast and CHO mammalian hosts that ultimately leads to a fast track product development with consistent, improved product yield, quality, and thus affordability for a population at large.
Collapse
Affiliation(s)
- Sanjeev K Gupta
- a Department of Microbiology, Enzyme Technology and Protein Bioinformatics Laboratory , Maharshi Dayanand University , Rohtak , Haryana , India.,b Advanced Biotech Lab (Centre for Research & Development), Ipca Laboratories Ltd , Kandivli, Mumbai , Maharashtra , India
| | - Pratyoosh Shukla
- a Department of Microbiology, Enzyme Technology and Protein Bioinformatics Laboratory , Maharshi Dayanand University , Rohtak , Haryana , India
| |
Collapse
|
47
|
Yu DY, Noh SM, Lee GM. Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance. J Biotechnol 2016; 231:136-140. [DOI: 10.1016/j.jbiotec.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/16/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
48
|
Rouiller Y, Bielser JM, Brühlmann D, Jordan M, Broly H, Stettler M. Screening and assessment of performance and molecule quality attributes of industrial cell lines across different fed-batch systems. Biotechnol Prog 2015; 32:160-70. [DOI: 10.1002/btpr.2186] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/12/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Yolande Rouiller
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| | - Jean-Marc Bielser
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| | - David Brühlmann
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| | - Martin Jordan
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| | - Hervé Broly
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| | - Matthieu Stettler
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| |
Collapse
|
49
|
Cell-laden Polymeric Microspheres for Biomedical Applications. Trends Biotechnol 2015; 33:653-666. [DOI: 10.1016/j.tibtech.2015.09.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/10/2015] [Accepted: 09/08/2015] [Indexed: 01/16/2023]
|
50
|
Ha TK, Kim YG, Lee GM. Understanding of alteredN-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting. Biotechnol Bioeng 2015; 112:1583-93. [DOI: 10.1002/bit.25568] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/20/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Tae Kwang Ha
- Department of Biological Sciences; KAIST, 335 Gwaha k-ro; Yuseong-gu; Daejeon 305-701 Republic of Korea
| | - Yeon-Gu Kim
- Biotechnology Process Engineering Center; KRIBB; Ochang 363-883 Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences; KAIST, 335 Gwaha k-ro; Yuseong-gu; Daejeon 305-701 Republic of Korea
| |
Collapse
|