1
|
Spence GC, Pate DS, Villot C, Fouzie RM, Graves LS, Lao KU, Özgür Ü, Arachchige IU. Solid-state synthesis of Si 1-xGe x nanoalloys with composition-tunable energy gaps and visible to near infrared optical properties. NANOSCALE 2024. [PMID: 39688672 DOI: 10.1039/d4nr03472d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Si1-xGex alloy nanocrystals (NCs) are a class of benign semiconductors that show size and composition-tunable energy gaps and promising optical properties because of the lattice disorder. The random distribution of elements within the alloys can lead to efficient light-matter interactions, making them attractive for Si-compatible optoelectronic devices, transistors, charge storage, and memory applications. However, the fabrication of discrete, quantum-confined alloys has proved a challenging task. Herein, we report solid-state co-disproportionation of a hydrogen silsesquioxane (HSQ)/GeI2 composite precursor to produce homogeneous Si1-xGex NCs with control over the diameter (5.9 ± 0.7-7.8 ± 1.1 nm) and composition (x = 0-14.4%) with strong size confinement effects and visible to near IR absorption and emission properties. As-synthesized alloys show an expanded diamond cubic Si structure, a systematic red-shift of Si-Si Raman peak, and emergence of Si-Ge/Ge-Ge peaks with increasing Ge, consistent with the admixture of isovalent elements. Surface analysis of alloys reveals Si0/Ge0 core and Sin+/Gen+ surface species and efficient surface functionalization with alkyl ligands via thermal hydrosilylation and/or hydrogermylation. Alloy NCs exhibit absorption onsets (2.26-1.92 eV), indirect (1.53-1.80 eV) and direct (2.88-2.47 eV) energy gaps, and photoluminescence (PL) maxima (1.40-1.27 eV) that can be tuned by manipulating the diameter and/or composition. The experimental PL energies are consistent with those predicted by density functional theory (DFT), suggesting that the PL originates from NC core electronic transitions. The facile low-temperature solid-state synthesis and control over physical properties realized in this study will allow discrete Si1-xGex NCs to emerge as low to nontoxic, earth-abundant, and Si-compatible nanostructures for a broad range of electronic and photonic technologies.
Collapse
Affiliation(s)
- Griffin C Spence
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| | - David S Pate
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-9052, USA
| | - Corentin Villot
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| | - Roshana M Fouzie
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| | - Lisa S Graves
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| | - Ümit Özgür
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-9052, USA
| | - Indika U Arachchige
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| |
Collapse
|
2
|
Zhao XH, Tu ZC, Ma YH. Engineering ratchet-based particle separation via extended shortcuts to isothermality. Phys Rev E 2024; 110:034105. [PMID: 39425423 DOI: 10.1103/physreve.110.034105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/09/2024] [Indexed: 10/21/2024]
Abstract
Microscopic particle separation plays a vital role in various scientific and industrial domains. Conventional separation methods relying on external forces or physical barriers inherently exhibit limitations in terms of efficiency, selectivity, and adaptability across diverse particle types. To overcome these limitations, researchers are constantly exploring new separation approaches, among which ratchet-based separation is a noteworthy method. However, in contrast to the extensive numerical studies and experimental investigations on ratchet separation, its theoretical exploration appears weak, particularly lacking in the analysis of energy consumption involved in the separation processes. The latter is of significant importance for achieving energetically efficient separation. In this paper, we propose a nonequilibrium thermodynamic approach, extending the concept of shortcuts to isothermality, to realize controllable separation of overdamped Brownian particles with low energy cost. By utilizing a designed ratchet potential with temporal period τ, we find in the slow-driving regime that the average particle velocity v[over ¯]_{s}∝(1-D/D^{*})τ^{-1}, indicating that particles with different diffusion coefficients D can be guided to move in distinct directions with a preset D^{*}. It is revealed that an inevitable portion of the energy cost in separation depends on the driving dynamics of the ratchet, with an achievable lower bound W_{ex}^{(min)}∝L^{2}|v[over ¯]_{s}|. Here, L is the thermodynamic length of the driving loop in the parametric space. With a sawtooth potential, we numerically test the theoretical findings and illustrate the optimal separation protocol associated with W_{ex}^{(min)}. Finally, for practical considerations, we compare our approach with the conventional ratchets in terms of separation velocity and energy consumption. The scalability of the current framework for separating various particles in two-dimensional space is also demonstrated. This paper bridges the gap between thermodynamic process control and particle separation, paving the way for further thermodynamic optimization in ratchet-based particle separation.
Collapse
Affiliation(s)
| | | | - Yu-Han Ma
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
3
|
Yadav HOS. Three-body interaction of gold nanoparticles: the role of solvent density and ligand shell orientation. Phys Chem Chem Phys 2024; 26:11558-11569. [PMID: 38533797 DOI: 10.1039/d3cp06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Molecular dynamics simulations are used to study the effective interactions of alkanethiol passivated gold nanoparticles in supercritical ethane at two- and three-particle levels with different solvent densities. Effective interaction is calculated as the potential of mean force (PMF) between two nanoparticles, and the three-body effect is estimated as the difference in PMFs calculated at the two- and three-particle levels. The variation in the three-body effect is examined as a function of solvent density. It is found that effective interaction, which is completely repulsive at very high solvent concentrations, progressively turns attractive as solvent density declines. On the other hand, the three-body effect turns out to be repulsive and increases exponentially with decreasing solvent density. Further, the structure of the ligand shell is analyzed as a function of nanoparticle separation, and its relationship with the three-body effect is investigated. It is observed that the three-body effect arises when the ligand shell begins to deform due to van der Waals repulsion between ligand shells. The study provides a deep insight into good understanding of the solvent evaporation-assisted nanoparticle self-assembly and can aid in experiments.
Collapse
Affiliation(s)
- Hari O S Yadav
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Morla-Folch J, Ranzenigo A, Fayad ZA, Teunissen AJP. Nanotherapeutic Heterogeneity: Sources, Effects, and Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307502. [PMID: 38050951 PMCID: PMC11045328 DOI: 10.1002/smll.202307502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Nanomaterials have revolutionized medicine by enabling control over drugs' pharmacokinetics, biodistribution, and biocompatibility. However, most nanotherapeutic batches are highly heterogeneous, meaning they comprise nanoparticles that vary in size, shape, charge, composition, and ligand functionalization. Similarly, individual nanotherapeutics often have heterogeneously distributed components, ligands, and charges. This review discusses nanotherapeutic heterogeneity's sources and effects on experimental readouts and therapeutic efficacy. Among other topics, it demonstrates that heterogeneity exists in nearly all nanotherapeutic types, examines how nanotherapeutic heterogeneity arises, and discusses how heterogeneity impacts nanomaterials' in vitro and in vivo behavior. How nanotherapeutic heterogeneity skews experimental readouts and complicates their optimization and clinical translation is also shown. Lastly, strategies for limiting nanotherapeutic heterogeneity are reviewed and recommendations for developing more reproducible and effective nanotherapeutics provided.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zahi Adel Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abraham Jozef Petrus Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
5
|
Charkova T, Ignatjev I. Optimization of shell-isolated nanoparticle-enhanced Raman spectroscopy experiments with silver core-silica shell nanoparticles. VIBRATIONAL SPECTROSCOPY 2024; 131:103666. [DOI: 10.1016/j.vibspec.2024.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Gupta P, Rai N, Verma A, Gautam V. Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Med Res Rev 2024; 44:138-168. [PMID: 37294298 DOI: 10.1002/med.21981] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Nanomedicine is an emerging field that exploits nanotechnology for the development of novel therapeutic and diagnostic modalities. Researches are been focussed in nanoimaging to develop noninvasive, highly sensitive, and reliable tools for diagnosis and visualization in nanomedical field. The application of nanomedicine in healthcare requires in-depth understanding of their structural, physical and morphological properties, internalization inside living system, biodistribution and localization, stability, mode of action and possible toxic health effects. Microscopic techniques including fluorescence-based confocal laser scanning microscopy, super-resolution fluorescence microscopy and multiphoton microscopy; optical-based Raman microscopy, photoacoustic microscopy and optical coherence tomography; photothermal microscopy; electron microscopy (transmission electron microscope and scanning electron microscope); atomic force microscopy; X-ray microscopy and, correlative multimodal imaging are recognized as an indispensable tool in material research and aided in numerous discoveries. Microscopy holds great promise in detecting the fundamental structures of nanoparticles (NPs) that determines their performance and applications. Moreover, the intricate details that allows assessment of chemical composition, surface topology and interfacial properties, molecular, microstructure, and micromechanical properties are also elucidated. With plethora of applications, microscopy-based techniques have been used to characterize novel NPs alongwith their proficient designing and adoption of safe strategies to be exploited in nanomedicine. Consequently, microscopic techniques have been extensively used in the characterization of fabricated NPs, and their biomedical application in diagnostics and therapeutics. The present review provides an overview of the microscopy-based techniques for in vitro and in vivo application in nanomedical investigation alongwith their challenges and advancement to meet the limitations of conventional methods.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
7
|
Cheng Z, Jones MR. Separation of Nanoparticle Seed Pseudoisomers via Amplification of Their Crystallographic Differences. J Am Chem Soc 2023; 145:27702-27707. [PMID: 38055680 DOI: 10.1021/jacs.3c09945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Seed-mediated syntheses rely on small nanoparticle (NP) precursors that act as templates for growth but are often inhomogeneous with respect to their internal twinning structures (e.g., single crystalline, multiply twinned), leading to nonuniform product morphologies. To address this, we developed a method for separating seed NPs of the same approximate size (∼ 10 nm) but with different interior twinning (i.e., NP "pseudoisomers") by exaggerating their crystallographic differences through heteroexpitaxial metal overgrowth. Specifically, single crystalline and pentatwinned Au seeds that are natively inseparable via traditional methods exhibit drastically different Ag shell morphologies that allow for their selective precipitation through colloidal depletion forces. Oxidation of the Ag shell from separated particles results in seeds that are both size uniform and crystallographically pure (>99%), allowing for the controlled synthesis of a library of Oh- and D5h-symmetric gold NPs bearing {111}, {110}, {730}, {310}, {720}, and {100} facets, several of which have no precedent in the literature. These results lay the foundation for precision nanosynthesis by establishing a new paradigm for the purification of NP precursors.
Collapse
Affiliation(s)
- Zhihua Cheng
- Department of Chemistry, Rice University, MS 6000, Main Street, Houston, Texas 77005, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, MS 6000, Main Street, Houston, Texas 77005, United States
- Department of Material Science and Nanoengineering, Rice University, MS 6000, Main Street, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Le Ouay B, Ohara T, Minami R, Kunitomo R, Ohtani R, Ohba M. Efficient water-based purification of metal-organic polyhedra by centrifugal ultrafiltration. Dalton Trans 2023; 52:15321-15325. [PMID: 37341496 DOI: 10.1039/d3dt01644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
An efficient water-based purification strategy for metal-organic polyhedra (MOPs) using commercially available centrifugal ultrafiltration membranes was developed. Having a diameter above 3 nm, MOPs were almost fully retained by the filters, while free ligands and other impurities were washed away. MOP retention also enabled efficient counter-ion exchange. This method paves the way for the application of MOPs with biological systems.
Collapse
Affiliation(s)
- Benjamin Le Ouay
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tomo Ohara
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Ryosuke Minami
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Rin Kunitomo
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Ryo Ohtani
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Masaaki Ohba
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
9
|
Wu W, Knoll MSG, Giraudet C, Heinrich Rausch M, Fröba AP. Heterodyne dynamic light scattering for the characterization of particle dispersions. APPLIED OPTICS 2023; 62:8007-8017. [PMID: 38038095 DOI: 10.1364/ao.502659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023]
Abstract
Particle self-diffusivities in unimodal and bimodal aqueous dispersions are characterized by dynamic light scattering (DLS) applying a heterodyne detection scheme. For unimodal dispersions close to infinite dilution, it could be evidenced that pure homodyne conditions cannot be realized, leading to an increasing underestimation of diffusivity with a decreasing concentration. Even for bimodal dispersions and neglecting any local oscillator field, the coherent superposition of scattered light from different particle species hinders a clear assignment of the measured signals and their evaluation for diffusivity. In this case, the impact of a cross term on the determined diffusivities cannot be neglected. The results emphasize that the use of a heterodyne detection scheme in DLS experiments is a key aspect for an accurate determination of particle diffusivities in low-concentrated unimodal and bimodal dispersions.
Collapse
|
10
|
Antonio-Pérez A, Durán-Armenta LF, Pérez-Loredo MG, Torres-Huerta AL. Biosynthesis of Copper Nanoparticles with Medicinal Plants Extracts: From Extraction Methods to Applications. MICROMACHINES 2023; 14:1882. [PMID: 37893319 PMCID: PMC10609153 DOI: 10.3390/mi14101882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/29/2023]
Abstract
Copper nanoparticles (CuNPs) can be synthesized by green methods using plant extracts. These methods are more environmentally friendly and offer improved properties of the synthesized NPs in terms of biocompatibility and functional capabilities. Traditional medicine has a rich history of utilization of herbs for millennia, offering a viable alternative or complementary option to conventional pharmacological medications. Plants of traditional herbal use or those with medicinal properties are candidates to be used to obtain NPs due to their high and complex content of biocompounds with different redox capacities that provide a dynamic reaction environment for NP synthesis. Other synthesis conditions, such as salt precursor concentration, temperature, time synthesis, and pH, have a significant effect on the characteristics of the NPs. This paper will review the properties of some compounds from medicinal plants, plant extract obtention methods alternatives, characteristics of plant extracts, and how they relate to the NP synthesis process. Additionally, the document includes diverse applications associated with CuNPs, starting from antibacterial properties to potential applications in metabolic disease treatment, vegetable tissue culture, therapy, and cardioprotective effect, among others.
Collapse
Affiliation(s)
- Aurora Antonio-Pérez
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
| | - Luis Fernando Durán-Armenta
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium;
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - María Guadalupe Pérez-Loredo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
- División Académica de Tecnología Ambiental, Universidad Tecnológica Fidel Velázquez, Av. Emiliano Zapata S/N, El Tráfico, Nicolás Romero C.P.54400, Mexico
| | - Ana Laura Torres-Huerta
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
| |
Collapse
|
11
|
Singh H, Desimone MF, Pandya S, Jasani S, George N, Adnan M, Aldarhami A, Bazaid AS, Alderhami SA. Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. Int J Nanomedicine 2023; 18:4727-4750. [PMID: 37621852 PMCID: PMC10444627 DOI: 10.2147/ijn.s419369] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Background Conventional nanoparticle synthesis methods involve harsh conditions, high costs, and environmental pollution. In this context, researchers are actively searching for sustainable, eco-friendly alternatives to conventional chemical synthesis methods. This has led to the development of green synthesis procedures among which the exploration of the plant-mediated synthesis of nanoparticles experienced a great development. Especially, because plant extracts can work as reducing and stabilizing agents. This opens up new possibilities for cost-effective, environmentally-friendly nanoparticle synthesis with enhanced size uniformity and stability. Moreover, bio-inspired nanoparticles derived from plants exhibit intriguing pharmacological properties, making them highly promising for use in medical applications due to their biocompatibility and nano-dimension. Objective This study investigates the role of specific phytochemicals, such as phenolic compounds, terpenoids, and proteins, in plant-mediated nanoparticle synthesis together with their influence on particle size, stability, and properties. Additionally, we highlight the potential applications of these bio-derived nanoparticles, particularly with regard to drug delivery, disease management, agriculture, bioremediation, and application in other industries. Methodology Extensive research on scientific databases identified green synthesis methods, specifically plant-mediated synthesis, with a focus on understanding the contributions of phytochemicals like phenolic compounds, terpenoids, and proteins. The database search covered the field's development over the past 15 years. Results Insights gained from this exploration highlight plant-mediated green synthesis for cost-effective nanoparticle production with significant pharmacological properties. Utilizing renewable biological resources and controlling nanoparticle characteristics through biomolecule interactions offer promising avenues for future research and applications. Conclusion This review delves into the scientific intricacies of plant-mediated synthesis of nanoparticles, highlighting the advantages of this approach over the traditional chemical synthesis methods. The study showcases the immense potential of green synthesis for medical and other applications, aiming to inspire further research in this exciting area and promote a more sustainable future.
Collapse
Affiliation(s)
- Harjeet Singh
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shivani Pandya
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Srushti Jasani
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Noble George
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, 28814, Saudi Arabia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, 55476, Saudi Arabia
| | - Suliman A Alderhami
- Chemistry Department, Faculty of Science and Arts in Almakhwah, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
12
|
Tehrani SF, Bharadwaj P, Leblond Chain J, Roullin VG. Purification processes of polymeric nanoparticles: How to improve their clinical translation? J Control Release 2023; 360:591-612. [PMID: 37422123 DOI: 10.1016/j.jconrel.2023.06.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Polymeric nanoparticles, as revolutionary nanomedicines, have offered a new class of diagnostic and therapeutic solutions for a multitude of diseases. With its immense potential, the world witnesses the new age of nanotechnology after the COVID-19 vaccines were developed based on nanotechnology. Even though there are countless benchtop research studies in the nanotechnology world, their integration into commercially available technologies is still restricted. The post-pandemic world demands a surge of research in the domain, which leaves us with the fundamental question: why is the clinical translation of therapeutic nanoparticles so restricted? Complications in nanomedicine purification, among other things, are to blame for the lack of transference. Polymeric nanoparticles, owing to their ease of manufacture, biocompatibility, and enhanced efficiency, are one of the more explored domains in organic-based nanomedicines. Purification of nanoparticles can be challenging and necessitates tailoring the available methods in accordance with the polymeric nanoparticle and impurities involved. Though a number of techniques have been described, there are no available guidelines that help in selecting the method to better suit our requirements. We encountered this difficulty while compiling articles for this review and looking for methods to purify polymeric nanoparticles. The currently accessible bibliography for purification techniques only provides approaches for a specific type of nanomaterial or sometimes even procedures for bulk materials, that are not fully relevant to nanoparticles. In our research, we tried to summarize the available purification techniques using the approach of A.F. Armington. We divided the purification systems into two major classes, namely: phase separation-based techniques (based on the physical differences between the phases) and matter exchange-based techniques (centered on physicochemical induced transfer of materials and compounds). The phase separation methods are based on either using nanoparticle size differences to retain them on a physical barrier (filtration techniques) or using their densities to segregate them (centrifugation techniques). The matter exchange separation methods rely on either transferring the molecules or impurities across a barrier using simple physicochemical phenomena, like the concentration gradients (dialysis method) or partition coefficients (extraction technique). After describing the methods in detail, we highlight their advantages and limitations, mainly focusing on preformed polymer-based nanoparticles. Tailoring a purification strategy takes into account the nanoparticle structure and its integrity, the method selected should be suited for preserving the integrity of the particles, in addition to conforming to the economical, material and productivity considerations. In the meantime, we advocate the use of a harmonized international regulatory framework to define the adequate physicochemical and biological characterization of nanomedicines. An appropriate purification strategy serves as the backbone to achieving desired characteristics, in addition to reducing variability. As a result, the present review aspires to serve as a comprehensive guide for researchers, who are new to the domain, as well as a synopsis of purification strategies and analytical characterization methods used in preclinical studies.
Collapse
Affiliation(s)
- Soudeh F Tehrani
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Priyanshu Bharadwaj
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | - V Gaëlle Roullin
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
13
|
Rodoplu Solovchuk D, Boyaci IH, Tamer U, Sahiner N, Cetin D. A simple gradient centrifugation method for bacteria detection in skim milk. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
14
|
Rao A, Roy S, Jain V, Pillai PP. Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25248-25274. [PMID: 35715224 DOI: 10.1021/acsami.2c05378] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The creation of matter with varying degrees of complexities and desired functions is one of the ultimate targets of self-assembly. The ability to regulate the complex interactions between the individual components is essential in achieving this target. In this direction, the initial success of controlling the pathways and final thermodynamic states of a self-assembly process is promising. Despite the progress made in the field, there has been a growing interest in pushing the limits of self-assembly processes. The main inception of this interest is that the intended self-assembled state, with varying complexities, may not be "at equilibrium (or at global minimum)", rendering free energy minimization unsuitable to form the desired product. Thus, we believe that a thorough understanding of the design principles as well as the ability to predict the outcome of a self-assembly process is essential to form a collection of the next generation of complex matter. The present review highlights the potent role of finely tuned interparticle interactions in nanomaterials to achieve the preferred self-assembled structures with the desired properties. We believe that bringing the design and prediction to nanoparticle self-assembly processes will have a similar effect as retrosynthesis had on the logic of chemical synthesis. Along with the guiding principles, the review gives a summary of the different types of products created from nanoparticle assemblies and the functional properties emerging from them. Finally, we highlight the reasonable expectations from the field and the challenges lying ahead in the creation of complex and evolvable matter.
Collapse
Affiliation(s)
- Anish Rao
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Sumit Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Vanshika Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| |
Collapse
|
15
|
Li W, Jiang Y, Lu J. Nanotechnology-enabled immunogenic cell death for improved cancer immunotherapy. Int J Pharm 2023; 634:122655. [PMID: 36720448 PMCID: PMC9975075 DOI: 10.1016/j.ijpharm.2023.122655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Tumor immunotherapy has revolutionized the field of oncology treatments in recent years. As one of the promising strategies of cancer immunotherapy, tumor immunogenic cell death (ICD) has shown significant potential for tumor therapy. Nanoparticles are widely used for drug delivery due to their versatile characteristics, such as stability, slow blood elimination, and tumor-targeting ability. To increase the specificity of ICD inducers and improve the efficiency of ICD induction, functionally specific nanoparticles, such as liposomes, nanostructured lipid carriers, micelles, nanodiscs, biomembrane-coated nanoparticles and inorganic nanoparticles have been widely reported as the vehicles to deliver ICD inducers in vivo. In this review, we summarized the strategies of different nanoparticles for ICD-induced cancer immunotherapy, and systematically discussed their advantages and disadvantages as well as provided feasible strategies for solving these problems. We believe that this review will offer some insights into the design of effective nanoparticulate systems for the therapeutic delivery of ICD inducers, thus, promoting the development of ICD-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States; NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States; Southwest Environmental Health Sciences Center, The University of Arizona, Tucson 85721, United States.
| |
Collapse
|
16
|
Hettiarachchi S, Cha H, Ouyang L, Mudugamuwa A, An H, Kijanka G, Kashaninejad N, Nguyen NT, Zhang J. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. LAB ON A CHIP 2023; 23:982-1010. [PMID: 36367456 DOI: 10.1039/d2lc00793b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Gregor Kijanka
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
17
|
Ang B, Sookram A, Devendran C, He V, Tuck K, Cadarso V, Neild A. Glass-embedded PDMS microfluidic device for enhanced concentration of nanoparticles using an ultrasonic nanosieve. LAB ON A CHIP 2023; 23:525-533. [PMID: 36633124 DOI: 10.1039/d2lc00802e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface acoustic wave (SAW) driven devices typically employ polymeric microfluidic channels of low acoustic impedance mismatch to the fluid in contact, to allow precise control of the wave field. Several of these applications, however, can benefit from the implementation of an acoustically reflective surface at the microfluidic channel's ceiling to increase energy retention within the fluid and hence, performance of the device. In this work, we embed a glass insert at the ceiling of the PDMS microfluidic channel used in a SAW activated nanosieve, which utilises a microparticle resonance for enrichment of nanoparticles. Due to the system's independence of performance on channel geometry and wave field pattern, the glass-inserted device allowed for a 30-fold increase in flow rate, from 0.05 μl min-1 to 1.5 μL min-1, whilst maintaining high capture efficiencies of >90%, when compared to its previously reported design. This effectively enables the system to process larger volume samples, which typically is a main limitation of these type of devices. This work demonstrates a simple way to increase the performance and throughput of SAW-based devices, especially within systems that can benefit from the energy retention.
Collapse
Affiliation(s)
- Bryan Ang
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
| | - Ankush Sookram
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| | - Citsabehsan Devendran
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| | - Vincent He
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| | - Kellie Tuck
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Victor Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| |
Collapse
|
18
|
Rai SN, Mishra D, Singh P, Singh MP, Vamanu E, Petre A. Biosynthesis and Bioapplications of Nanomaterials from Mushroom Products. Curr Pharm Des 2023; 29:1002-1008. [PMID: 37073145 DOI: 10.2174/1381612829666230417083133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/18/2022] [Accepted: 01/19/2023] [Indexed: 04/20/2023]
Abstract
The production of nanoparticles (NPs) from chemical and physical synthesis has ended due to the involvement of toxic byproducts and harsh analytical conditions. Innovation and research in nanoparticle synthesis are derived from biomaterials that have gained attention due to their novel features, such as ease of synthesis, low-cost, eco-friendly approach, and high water solubility. Nanoparticles obtained through macrofungi involve several mushroom species, i.e., Pleurotus spp., Ganoderma spp., Lentinus spp., and Agaricus bisporus. It is well-known that macrofungi possess high nutritional, antimicrobial, anti-cancerous, and immune-modulatory properties. Nanoparticle synthesis via medicinal and edible mushrooms is a striking research field, as macrofungi act as an eco-friendly biofilm that secretes essential enzymes to reduce metal ions. The mushroom-isolated nanoparticles exhibit longer shelf life, higher stability, and increased biological activities. The synthesis mechanisms are still unknown; evidence suggests that fungal flavones and reductases have a significant role. Several macrofungi have been utilized for metal synthesis (such as Ag, Au, Pt, Fe) and non-metal nanoparticles (Cd, Se, etc.). These nanoparticles have found significant applications in advancing industrial and bio-medical ventures. A complete understanding of the synthesis mechanism will help optimize the synthesis protocols and control the shape and size of nanoparticles. This review highlights various aspects of NP production via mushrooms, including its synthesis from mycelium and the fruiting body of macrofungi. Also, we discuss the applications of different technologies in NP high-scale production via mushrooms.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| | - Divya Mishra
- Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002, India
| | - Payal Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mohan P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania
| | - Alexandru Petre
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania
| |
Collapse
|
19
|
Clases D, Gonzalez de Vega R. Facets of ICP-MS and their potential in the medical sciences-Part 2: nanomedicine, immunochemistry, mass cytometry, and bioassays. Anal Bioanal Chem 2022; 414:7363-7386. [PMID: 36042038 PMCID: PMC9427439 DOI: 10.1007/s00216-022-04260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Inductively coupled-plasma mass spectrometry (ICP-MS) has transformed our knowledge on the role of trace and major elements in biology and has emerged as the most versatile technique in elemental mass spectrometry. The scope of ICP-MS has dramatically changed since its inception, and nowadays, it is a mature platform technology that is compatible with chromatographic and laser ablation (LA) systems. Over the last decades, it kept pace with various technological advances and was inspired by interdisciplinary approaches which endorsed new areas of applications. While the first part of this review was dedicated to fundamentals in ICP-MS, its hyphenated techniques and the application in biomonitoring, isotope ratio analysis, elemental speciation analysis, and elemental bioimaging, this second part will introduce relatively current directions in ICP-MS and their potential to provide novel perspectives in the medical sciences. In this context, current directions for the characterisation of novel nanomaterials which are considered for biomedical applications like drug delivery and imaging platforms will be discussed while considering different facets of ICP-MS including single event analysis and dedicated hyphenated techniques. Subsequently, immunochemistry techniques will be reviewed in their capability to expand the scope of ICP-MS enabling analysis of a large range of biomolecules alongside elements. These methods inspired mass cytometry and imaging mass cytometry and have the potential to transform diagnostics and treatment by offering new paradigms for personalised medicine. Finally, the interlacing of immunochemistry methods, single event analysis, and functional nanomaterials has opened new horizons to design novel bioassays which promise potential as assets for clinical applications and larger screening programs and will be discussed in their capabilities to detect low-level proteins and nucleic acids.
Collapse
Affiliation(s)
- David Clases
- Nano Mirco LAB, Institute of Chemistry, University of Graz, Graz, Austria.
| | | |
Collapse
|
20
|
Winkler M, Rhein F, Nirschl H, Gleiss M. Real-Time Modeling of Volume and Form Dependent Nanoparticle Fractionation in Tubular Centrifuges. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3161. [PMID: 36144949 PMCID: PMC9500975 DOI: 10.3390/nano12183161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A dynamic process model for the simulation of nanoparticle fractionation in tubular centrifuges is presented. Established state-of-the-art methods are further developed to incorporate multi-dimensional particle properties (traits). The separation outcome is quantified based on a discrete distribution of particle volume, elongation and flatness. The simulation algorithm solves a mass balance between interconnected compartments which represent the separation zone. Grade efficiencies are calculated by a short-cut model involving material functions and higher dimensional particle trait distributions. For the one dimensional classification of fumed silica nanoparticles, the numerical solution is validated experimentally. A creation and characterization of a virtual particle system provides an additional three dimensional input dataset. Following a three dimensional fractionation case study, the tubular centrifuge model underlines the fact that a precise fractionation according to particle form is extremely difficult. In light of this, the paper discusses particle elongation and flatness as impacting traits during fractionation in tubular centrifuges. Furthermore, communications on separation performance and outcome are possible and facilitated by the three dimensional visualization of grade efficiency data. Future research in nanoparticle characterization will further enhance the models use in real-time separation process simulation.
Collapse
|
21
|
Kumar S, Saha D, Kohlbrecher J, Aswal VK. Interplay of interactions for different pathways of the fractal aggregation of nanoparticles. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Torres-Díaz M, Abreu-Takemura C, Díaz-Vázquez LM. Microalgae Peptide-Stabilized Gold Nanoparticles as a Versatile Material for Biomedical Applications. Life (Basel) 2022; 12:life12060831. [PMID: 35743862 PMCID: PMC9224969 DOI: 10.3390/life12060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Microalgae peptides have many medical and industrial applications due to their functional properties. However, the rapid degradation of peptides not naturally present in biological samples represents a challenge. A strategy to increase microalgae peptide stability in biological samples is to use carriers to protect the active peptide and regulate its release. This study explores the use of gold nanoparticles (AuNPs) as carriers of the Chlorella microalgae peptide (VECYGPNRPQF). The potential of these peptide biomolecules as stabilizing agents to improve the colloidal stability of AuNPs in physiological environments is also discussed. Spectroscopic (UV-VIS, DLS) and Microscopic (TEM) analyses confirmed that the employed modification method produced spherical AuNPs by an average 15 nm diameter. Successful peptide capping of AuNPs was confirmed with TEM images and FTIR spectroscopy. The stability of the microalgae peptide increased when immobilized into the AuNPs surface, as confirmed by the observed thermal shifts in DSC and high zeta-potential values in the colloidal solution. By optimizing the synthesis of AuNPs and tracking the conferred chemical properties as AuNPs were modified with the peptide via various alternative methods, the synthesis of an effective peptide-based coating system for AuNPs and drug carriers was achieved. The microalgae peptide AuNPs showed lower ecotoxicity and better viability than the regular AuNPs.
Collapse
Affiliation(s)
- Marielys Torres-Díaz
- Department of Chemistry, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico;
| | - Caren Abreu-Takemura
- Department of Biology, University of Puerto Rico-Mayagüez Campus, Mayagüez 00680, Puerto Rico;
| | - Liz M. Díaz-Vázquez
- Department of Chemistry, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico;
- Correspondence:
| |
Collapse
|
23
|
Zhang R, Gao Y, Chen L, Ge G. Controllable preparation of monodisperse nanobubbles by membrane sieving. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Martins CSM, Araújo AN, de Gouveia LP, Prior JAV. Minimizing the Silver Free Ion Content in Starch Coated Silver Nanoparticle Suspensions with Exchange Cationic Resins. NANOMATERIALS 2022; 12:nano12040644. [PMID: 35214974 PMCID: PMC8877803 DOI: 10.3390/nano12040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023]
Abstract
This work describes the optimization of a methodology for the reduction of silver ions from silver nanoparticle suspensions obtained from low-yield laboratory procedures. The laboratory synthesis of silver nanoparticles following a bottom-up approach starting from silver nitrate, originates silver ions that were not reduced to their fundamental state for nanoparticles creation at the end of the process. However, it is well known that silver ions can easily influence chemical assays due to their chemical reactivity properties and can limit biological assays since they interfere with several biological processes, namely intracellular ones, leading to the death of living cells or organisms. As such, the presence of silver ions is highly undesirable when conducting biological assays to evaluate the influence of silver nanoparticles. We report the development of an easy, low-cost, and rapid methodology that is based on cation exchange resins to minimize the silver ion content in a raw suspension of silver nanoparticles while preserving the integrity of the nanomaterials. This procedure preserves the physical-chemical properties of the nanoparticles, thus allowing the purified nanoparticulate systems to be biologically tested. Different types of cationic resins were tested, and the developed methodology was optimized by changing several parameters. A reduction from 92% to 10% of free silver/total silver ratio was achieved when using the Bio-Rad 50W-X8 100–200 mesh resin and a contact time of 15 min. Filtration by vacuum was used to separate the used resin from the nanoparticles suspension, allowing it to be further reused, as well as the purified AgNPs suspension.
Collapse
Affiliation(s)
- Catarina S. M. Martins
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Alberto N. Araújo
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luís Pleno de Gouveia
- Pharmacological and Regulatory Sciences Group (PharmaRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: (L.P.d.G.); (J.A.V.P.)
| | - João A. V. Prior
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (L.P.d.G.); (J.A.V.P.)
| |
Collapse
|
25
|
Long T, Wu H, Qiao C, Bao B, Zhao S, Liu H. Nonnegligible nano-confinement effect on solvent-mediated interactions between nanoparticles. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Antonaropoulos G, Vasilakaki M, Trohidou KN, Iannotti V, Ausanio G, Abeykoon M, Bozin ES, Lappas A. Tailoring defects and nanocrystal transformation for optimal heating power in bimagnetic Co yFe 1-yO@Co xFe 3-xO 4 particles. NANOSCALE 2022; 14:382-401. [PMID: 34935014 DOI: 10.1039/d1nr05172e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The effects of cobalt incorporation in spherical heterostructured iron oxide nanocrystals (NCs) of sub-critical size have been explored by colloidal chemistry methods. Synchrotron X-ray total scattering methods suggest that cobalt (Co) substitution in rock salt iron oxide NCs tends to remedy their vacant iron sites, offering a higher degree of resistance to oxidative conversion. Self-passivation still creates a spinel-like shell, but with a higher volume fraction of the rock salt Co-containing phase in the core. The higher divalent metal stoichiometry in the rock salt phase, with increasing Co content, results in a population of unoccupied tetrahedral metal sites in the spinel part, likely through oxidative shell creation, involving an ordered defect-clustering mechanism, directly correlated to core stabilization. To shed light on the effects of Co-substitution and atomic-scale defects (vacant sites), Monte Carlo simulations suggest that the designed NCs, with desirable, enhanced magnetic properties (cf. exchange bias and coercivity), are developed with magnetocrystalline anisotropy which increases due to a relatively low content of Co ions in the lattice. The growth of optimally performing candidates combines also a strongly exchange-coupled system, secured through a high volumetric ratio rock salt phase, interfaced by a not so defective spinel shell. In view of these requirements, specific absorption rate (SAR) calculations demonstrate that the rock salt core sufficiently protected from oxidation and the heterostructure preserved over time, play a key role in magnetically mediated heating efficacies, for potential use of such NCs in magnetic hyperthermia applications.
Collapse
Affiliation(s)
- George Antonaropoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Vassilika Vouton, 71110 Heraklion, Greece.
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Marianna Vasilakaki
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, 15310 Athens, Greece
| | - Kalliopi N Trohidou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, 15310 Athens, Greece
| | - Vincenzo Iannotti
- CNR-SPIN and Department of Physics "E. Pancini", University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Giovanni Ausanio
- CNR-SPIN and Department of Physics "E. Pancini", University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Milinda Abeykoon
- Photon Sciences Division, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Emil S Bozin
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alexandros Lappas
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Vassilika Vouton, 71110 Heraklion, Greece.
| |
Collapse
|
27
|
Dienstbier J, Aigner KM, Rolfes J, Peukert W, Segets D, Pflug L, Liers F. Robust optimization in nanoparticle technology: A proof of principle by quantum dot growth in a residence time reactor. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Magnetic/flow controlled continuous size fractionation of magnetic nanoparticles using simulated moving bed chromatography. Talanta 2021; 240:123160. [PMID: 34954615 DOI: 10.1016/j.talanta.2021.123160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022]
Abstract
The use of magnetic nanoparticles shows a steadily increasing technical importance. Particularly in medical technology disciplines such as cancer treatment, the potential of these special particles is increasing rapidly. Magnetic nanoparticles are particles with a submicron size, and consist mostly of magnetite-containing composites. An important quality parameter of such particles is a particle size distribution as narrow as possible, which can only be obtained to a certain degree by synthesis. Apart from ultracentrifugation, there are so far only methods on an analytical scale to narrow the size distribution as a post-processing step. We present a method based on magnetic chromatography, by which high separation efficiencies at yields of up to 99.9% are achieved. The novel technique is based on a competition between the magnetic interaction of the nanoparticles and the separation matrix, as well as the hydrodynamic forces. Furthermore, the method is extended using a continuous mode, namely simulated moving bed chromatography, to obtain potent space-time yields of up to 2.94 g/(L*h). For those reasons, this novel continuous magnetic chromatography method offers high potential for large-scale refinement of magnetic nanoparticles while fulfilling sophisticated quality criteria for high-technology applications.
Collapse
|
29
|
Martins CSM, Sousa HBA, Prior JAV. From Impure to Purified Silver Nanoparticles: Advances and Timeline in Separation Methods. NANOMATERIALS 2021; 11:nano11123407. [PMID: 34947761 PMCID: PMC8703312 DOI: 10.3390/nano11123407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
AgNPs have exceptional characteristics that depend on their size and shape. Over the past years, there has been an exponential increase in applications of nanoparticles (NPs), especially the silver ones (AgNPs), in several areas, such as, for example, electronics; environmental, pharmaceutical, and toxicological applications; theragnostics; and medical treatments, among others. This growing use has led to a greater exposure of humans to AgNPs and a higher risk to human health and the environment. This risk becomes more aggravated when the AgNPs are used without purification or separation from the synthesis medium, in which the hazardous synthesis precursors remain unseparated from the NPs and constitute a severe risk for unnecessary environmental contamination. This review examines the situation of the available separation methods of AgNPs from crude suspensions or real samples. Different separation techniques are reviewed, and relevant data are discussed, with a focus on the sustainability and efficiency of AgNPs separation methods.
Collapse
|
30
|
Ferreira-Gonçalves T, Ferreira D, Ferreira HA, Reis CP. Nanogold-based materials in medicine: from their origins to their future. Nanomedicine (Lond) 2021; 16:2695-2723. [PMID: 34879741 DOI: 10.2217/nnm-2021-0265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The properties of gold-based materials have been explored for centuries in several research fields, including medicine. Multiple published production methods for gold nanoparticles (AuNPs) have shown that the physicochemical and optical properties of AuNPs depend on the production method used. These different AuNP properties have allowed exploration of their usefulness in countless distinct biomedical applications over the last few years. Here we present an extensive overview of the most commonly used AuNP production methods, the resulting distinct properties of the AuNPs and the potential application of these AuNPs in diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo dos Colegiais, Évora, 7000, Portugal
| | - Hugo A Ferreira
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Catarina P Reis
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal.,Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| |
Collapse
|
31
|
Gonzalez-Melo C, Garcia-Brand AJ, Quezada V, Reyes LH, Muñoz-Camargo C, Cruz JC. Highly Efficient Synthesis of Type B Gelatin and Low Molecular Weight Chitosan Nanoparticles: Potential Applications as Bioactive Molecule Carriers and Cell-Penetrating Agents. Polymers (Basel) 2021; 13:polym13234078. [PMID: 34883582 PMCID: PMC8659274 DOI: 10.3390/polym13234078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/25/2022] Open
Abstract
Gelatin and chitosan nanoparticles have been widely used in pharmaceutical, biomedical, and nanofood applications due to their high biocompatibility and biodegradability. This study proposed a highly efficient synthesis method for type B gelatin and low-molecular-weight (LMW) chitosan nanoparticles. Gelatin nanoparticles (GNPs) were synthesized by the double desolvation method and the chitosan nanoparticles (CNPs) by the ionic gelation method. The sizes of the obtained CNPs and GNPs (373 ± 71 nm and 244 ± 67 nm, respectively) and zeta potential (+36.60 ± 3.25 mV and −13.42 ± 1.16 mV, respectively) were determined via dynamic light scattering. Morphology and size were verified utilizing SEM and TEM images. Finally, their biocompatibility was tested to assure their potential applicability as bioactive molecule carriers and cell-penetrating agents.
Collapse
Affiliation(s)
- Cristina Gonzalez-Melo
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia; (C.G.-M.); (A.J.G.-B.); (V.Q.)
| | - Andres J. Garcia-Brand
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia; (C.G.-M.); (A.J.G.-B.); (V.Q.)
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia; (C.G.-M.); (A.J.G.-B.); (V.Q.)
| | - Luis H. Reyes
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
- Correspondence: (L.H.R.); (C.M.-C.); (J.C.C.); Tel.: +57-1-339-4949 (ext. 1702) (L.H.R.); +57-1-339-4949 (ext. 1789) (C.M.-C. & J.C.C.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia; (C.G.-M.); (A.J.G.-B.); (V.Q.)
- Correspondence: (L.H.R.); (C.M.-C.); (J.C.C.); Tel.: +57-1-339-4949 (ext. 1702) (L.H.R.); +57-1-339-4949 (ext. 1789) (C.M.-C. & J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia; (C.G.-M.); (A.J.G.-B.); (V.Q.)
- Correspondence: (L.H.R.); (C.M.-C.); (J.C.C.); Tel.: +57-1-339-4949 (ext. 1702) (L.H.R.); +57-1-339-4949 (ext. 1789) (C.M.-C. & J.C.C.)
| |
Collapse
|
32
|
Laser photo-thermal therapy of epithelial carcinoma using pterin-6-carboxylic acid conjugated gold nanoparticles. Photochem Photobiol Sci 2021; 20:1599-1609. [PMID: 34750785 DOI: 10.1007/s43630-021-00122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Gold nanoparticles functionalized with folic acid toward the internalization into cancer cells have received considerable attention recently. Folic acid is recognized by folate receptors, which are overexpressed in several cancer cells; it is limited in normal cells. In this work, pterin-6-carboxylic acid is proposed as an agonist of folic acid since the pterin-6-carboxylic acid structure has a pterin moiety, the same as folic acid that is recognized by the folate receptor. Here a simple photochemical synthesis of gold nanoparticles functionalized with pterin-6-carboxylic acid is studied. These conjugates were used to cause photothermal damage of HeLa cells irradiating with a diode laser of 808 nm. Pterin-6-carboxylic acid-conjugated gold nanoparticles caused the death of the cell after near-infrared irradiation, dose-dependently. These results indicate a possible internalization of AuNPs via folate receptor-mediated endocytosis due to the recognition or interaction between the folate receptors of HeLa cells and pterin, P6CA.
Collapse
|
33
|
Rai M, Ingle AP, Trzcińska-Wencel J, Wypij M, Bonde S, Yadav A, Kratošová G, Golińska P. Biogenic Silver Nanoparticles: What We Know and What Do We Need to Know? NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2901. [PMID: 34835665 PMCID: PMC8624974 DOI: 10.3390/nano11112901] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Nanobiotechnology is considered to be one of the fastest emerging fields. It is still a relatively new and exciting area of research with considerable potential for development. Among the inorganic nanomaterials, biogenically synthesized silver nanoparticles (bio-AgNPs) have been frequently used due to their unique physicochemical properties that result not only from their shape and size but also from surface coatings of natural origin. These properties determine antibacterial, antifungal, antiprotozoal, anticancer, anti-inflammatory, and many more activities of bio-AgNPs. This review provides the current state of knowledge on the methods and mechanisms of biogenic synthesis of silver nanoparticles as well as their potential applications in different fields such as medicine, food, agriculture, and industries.
Collapse
Affiliation(s)
- Mahendra Rai
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Avinash P. Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola 444104, India;
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| | - Magdalena Wypij
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| | - Shital Bonde
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Alka Yadav
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Gabriela Kratošová
- Nanotechnology Centre, CEET, VŠB–Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava Poruba, Czech Republic;
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| |
Collapse
|
34
|
Yuan J, Cao J, Yu F, Ma J, Zhang D, Tang Y, Zheng J. Microbial biomanufacture of metal/metallic nanomaterials and metabolic engineering: design strategies, fundamental mechanisms, and future opportunities. J Mater Chem B 2021; 9:6491-6506. [PMID: 34296734 DOI: 10.1039/d1tb01000j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomanufacturing metal/metallic nanomaterials with ordered micro/nanostructures and controllable functions is of great importance in both fundamental studies and practical applications due to their low toxicity, lower pollution production, and energy conservation. Microorganisms, as efficient biofactories, have a significant ability to biomineralize and bioreduce metal ions that can be obtained as nanocrystals of varying morphologies and sizes. The development of nanoparticle biosynthesis maximizes the safety and sustainability of the nanoparticle preparation. Significant efforts and progress have been made to develop new green and environmentally friendly methods for biocompatible metal/metallic nanomaterials. In this review, we mainly focus on the microbial biomanufacture of different metal/metallic nanomaterials due to their unique advantages of wide availability, environmental acceptability, low cost, and circular sustainability. Specifically, we summarize recent and important advances in the synthesis strategies and mechanisms for different types of metal/metallic nanomaterials using different microorganisms. Finally, we highlight the current challenges and future research directions in this growing multidisciplinary field of biomaterials science, nanoscience, and nanobiotechnology.
Collapse
Affiliation(s)
- Jianhua Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhu X, Ou Y, Guo Y, He Y, Jin S, Zhou Y. Synthesis Strategy of Metal Oxide Quantum Wires via a Nanoparticle-Induced Graphene Oxide Rolling Procedure. Inorg Chem 2021; 60:11070-11080. [PMID: 34152761 DOI: 10.1021/acs.inorgchem.1c00893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficient synthesis of quantum materials is becoming a research hotspot as it determines their successful application in the fields of biomedicine, illumination, energy, sensors, information, and communication. Among the quantum materials, it is still a challenge to synthesize quantum wires (QWs) with surfactants due to the inevitable radial growth of QWs in the soft template method. In this paper, amphipathic graphene oxide (GO) was adopted as a macromolecular surfactant to limit the radial growth instead of the commonly used surfactant. GO could roll up under its electrostatic interaction with a cuprous oxide (Cu2O) quantum dot (QD) and then form a tubular template for the growth of the Cu2O QW, which was named herein as the nanoparticle-induced graphene oxide rolling (NIGOR) procedure. The NIGOR procedure was confirmed by the molecular dynamics results by simulating systems consisting of GO and Cu2O nanoparticles. An intermediate with a necklace morphology corresponding to the simulation result was also observed experimentally during the formation of the QW. Meanwhile, the formation mechanism of the QW was demonstrated rationally. Furthermore, increasing the dosage of the reactant, reaction time, and temperature altered the diameter of the QW from 2 to 4 nm and also changed the morphology of the final products from a QD to a QW and then to a bundle of QWs. This was attributed to the aggregation of materials for the lowest surface energy in the system. Additionally, the universality of NIGOR was manifested via the synthesis of other metal oxides as well. The NIGOR strategy provided an alternative, convenient, and mass production method for synthesizing QWs.
Collapse
Affiliation(s)
- Xiangyi Zhu
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yi Ou
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yongcai Guo
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yong He
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Shaowei Jin
- Application and Promotion Department, National Supercomputing Center in Shenzhen, Shenzhen, Guangdong 518055, People's Republic of China
| | - Yong Zhou
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
36
|
Sirisathitkul Y, Sarmphim P, Sirisathitkul C. Surface coverage and size analysis of redispersed nanoparticles by image processing. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2020.1758260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yaowarat Sirisathitkul
- School of Informatics, Walailak University, Nakhon Si Thammarat, Thailand
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
| | - Pharunee Sarmphim
- Division of Physics, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
- Department of General Education, Faculty of Liberal Arts, Rajamangala University of Technology Srivijaya, Songkhla, Thailand
| | - Chitnarong Sirisathitkul
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
- Division of Physics, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
37
|
Kwak TJ, Jung H, Allen BD, Demirel MC, Chang WJ. Dielectrophoretic separation of randomly shaped protein particles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Arlt CR, Brekel D, Neumann S, Rafaja D, Franzreb M. Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2040-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractThe size fractionation of magnetic nanoparticles is a technical problem, which until today can only be solved with great effort. Nevertheless, there is an important demand for nanoparticles with sharp size distributions, for example for medical technology or sensor technology. Using magnetic chromatography, we show a promising method for fractionation of magnetic nanoparticles with respect to their size and/or magnetic properties. This was achieved by passing magnetic nanoparticles through a packed bed of fine steel spheres with which they interact magnetically because single domain ferro-/ferrimagnetic nanoparticles show a spontaneous magnetization. Since the strength of this interaction is related to particle size, the principle is suitable for size fractionation. This concept was transferred into a continuous process in this work using a so-called simulated moving bed chromatography. Applying a suspension of magnetic nanoparticles within a size range from 20 to 120 nm, the process showed a separation sharpness of up to 0.52 with recovery rates of 100%. The continuous feed stream of magnetic nanoparticles could be fractionated with a space-time-yield of up to 5 mg/(L∙min). Due to the easy scalability of continuous chromatography, the process is a promising approach for the efficient fractionation of industrially relevant amounts of magnetic nanoparticles.
Collapse
|
39
|
Characterization of Nanoparticle Adsorption on Polydimethylsiloxane-Based Microchannels. SENSORS 2021; 21:s21061978. [PMID: 33799754 PMCID: PMC7998103 DOI: 10.3390/s21061978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022]
Abstract
Nanoparticles (NPs) are used in various medicinal applications. Exosomes, bio-derived NPs, are promising biomarkers obtained through separation and concentration from body fluids. Polydimethylsiloxane (PDMS)-based microchannels are well-suited for precise handling of NPs, offering benefits such as high gas permeability and low cytotoxicity. However, the large specific surface area of NPs may result in nonspecific adsorption on the device substrate and thus cause sample loss. Therefore, an understanding of NP adsorption on microchannels is important for the operation of microfluidic devices used for NP handling. Herein, we characterized NP adsorption on PDMS-based substrates and microchannels by atomic force microscopy to correlate NP adsorptivity with the electrostatic interactions associated with NP and dispersion medium properties. When polystyrene NP dispersions were introduced into PDMS-based microchannels at a constant flow rate, the number of adsorbed NPs decreased with decreasing NP and microchannel zeta potentials (i.e., with increasing pH), which suggested that the electrostatic interaction between the microchannel and NPs enhanced their repulsion. When exosome dispersions were introduced into PDMS-based microchannels with different wettabilities at constant flow rates, exosome adsorption was dominated by electrostatic interactions. The findings obtained should facilitate the preconcentration, separation, and sensing of NPs by PDMS-based microfluidic devices.
Collapse
|
40
|
Kagan CR, Bassett LC, Murray CB, Thompson SM. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chem Rev 2020; 121:3186-3233. [DOI: 10.1021/acs.chemrev.0c00831] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Facile synthesis of nanogels modified Fe 3O 4@Ag NPs for the efficient adsorption of bovine & human serum albumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111390. [PMID: 33254996 DOI: 10.1016/j.msec.2020.111390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
This article describes the preparation of Fe3O4 nanoparticles and its decoration with a layer of tiny Ag nanoparticles at room temperature. Later on, the synthesized Fe3O4@Ag heterostructures were protected with Silica and finally modified with Poly(N-isopropyl acrylamide) (PNIPA) nanogels through post-synthesis method to get multifunctional (superparamagnetic, plasmonic and thermosensitive) nanocomposite. The structural characteristics of Fe3O4@Ag@SiO2-PNIPA nanogels composite were investigated by instrumental techniques such as Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Vibrating Sample Magnetometer (VSM). The average particles diameter was calculated from XRD data through Scherer formula and it was found as 14 nm. The Fe3O4@Ag@SiO2-PNIPA polymeric composites were assessed for the adsorption of Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) proteins from aqueous media. The adsorption data of BSA and HSA were best explained by Langmuir isotherm model with maximum adsorption capacities of 322 and 166 (mg/g) respectively showing mono-layer adsorption. The kinetics data for both the proteins were fairly interpreted by pseudo-second-order model. Thermodynamics studies revealed that the adsorption phenomena of BSA and HSA on the surface of Fe3O4@Ag@SiO2-PNIPA nanogels composite are spontaneous and exothermic.
Collapse
|
42
|
Bose P, Chakraborty P, Mohanty JS, Ray Chowdhuri A, Khatun E, Ahuja T, Mahendranath A, Pradeep T. Atom transfer between precision nanoclusters and polydispersed nanoparticles: a facile route for monodisperse alloy nanoparticles and their superstructures. NANOSCALE 2020; 12:22116-22128. [PMID: 33118573 DOI: 10.1039/d0nr04033a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Reactions between atomically precise noble metal nanoclusters (NCs) have been studied widely in the recent past, but such processes between NCs and plasmonic nanoparticles (NPs) have not been explored earlier. For the first time, we demonstrate spontaneous reactions between an atomically precise NC, Au25(PET)18 (PET = 2-phenylethanethiol), and polydispersed silver NPs with an average diameter of 4 nm and protected with PET, resulting in alloy NPs under ambient conditions. These reactions were specific to the nature of the protecting ligands as no reaction was observed between the Au25(SBB)18 NC (SBB = 4-(tert-butyl)benzyl mercaptan) and the very same silver NPs. The mechanism involves an interparticle exchange of the metal and ligand species where the metal-ligand interface plays a vital role in controlling the reaction. The reaction proceeds through transient Au25-xAgx(PET)n alloy cluster intermediates as observed in time-dependent electrospray ionization mass spectrometry (ESI MS). High-resolution transmission electron microscopy (HRTEM) analysis of the resulting dispersion showed the transformation of polydispersed silver NPs into highly monodisperse gold-silver alloy NPs which assembled to form 2-dimensional superlattices. Using NPs of other average sizes (3 and 8 nm), we demonstrated that size plays an important role in the reactivity as observed in ESI MS and HRTEM.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cybulski O, Dygas M, Mikulak-Klucznik B, Siek M, Klucznik T, Choi SY, Mitchell RJ, Sobolev YI, Grzybowski BA. Concentric liquid reactors for chemical synthesis and separation. Nature 2020; 586:57-63. [PMID: 32999483 DOI: 10.1038/s41586-020-2768-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 08/12/2020] [Indexed: 11/09/2022]
Abstract
Recent years have witnessed increased interest in systems that are capable of supporting multistep chemical processes without the need for manual handling of intermediates. These systems have been based either on collections of batch reactors1 or on flow-chemistry designs2-4, both of which require considerable engineering effort to set up and control. Here we develop an out-of-equilibrium system in which different reaction zones self-organize into a geometry that can dictate the progress of an entire process sequence. Multiple (routinely around 10, and in some cases more than 20) immiscible or pairwise-immiscible liquids of different densities are placed into a rotating container, in which they experience a centrifugal force that dominates over surface tension. As a result, the liquids organize into concentric layers, with thicknesses as low as 150 micrometres and theoretically reaching tens of micrometres. The layers are robust, yet can be internally mixed by accelerating or decelerating the rotation, and each layer can be individually addressed, enabling the addition, sampling or even withdrawal of entire layers during rotation. These features are combined in proof-of-concept experiments that demonstrate, for example, multistep syntheses of small molecules of medicinal interest, simultaneous acid-base extractions, and selective separations from complex mixtures mediated by chemical shuttles. We propose that 'wall-less' concentric liquid reactors could become a useful addition to the toolbox of process chemistry at small to medium scales and, in a broader context, illustrate the advantages of transplanting material and/or chemical systems from traditional, static settings into a rotating frame of reference.
Collapse
Affiliation(s)
- Olgierd Cybulski
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Miroslaw Dygas
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Mikulak-Klucznik
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Siek
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Tomasz Klucznik
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Seong Yeol Choi
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Robert J Mitchell
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yaroslav I Sobolev
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Bartosz A Grzybowski
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea. .,Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea. .,Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
44
|
Tottori N, Muramoto Y, Sakai H, Nisisako T. Nanoparticle Separation through Deterministic Lateral Displacement Arrays in Poly(dimethylsiloxane). JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.19we160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Naotomo Tottori
- Institute of Innovative Research, Tokyo Institute of Technology
| | | | | | - Takasi Nisisako
- Institute of Innovative Research, Tokyo Institute of Technology
| |
Collapse
|
45
|
Liang X, Yang Y, Zou C, Chen W, Zou HX, Yang Y. Au decahedra with High yield for the improved synthesis of Au nanobipyramids. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Süβ S, Bartsch K, Wasmus C, Damm C, Segets D, Peukert W. Chromatographic property classification of narrowly distributed ZnS quantum dots. NANOSCALE 2020; 12:12114-12125. [PMID: 32484198 DOI: 10.1039/d0nr03890c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although optimized synthesis methods for nanoparticles (NPs) on small scale can lead to narrow particle size distributions (PSDs) and thus defined optical properties, in particular during scale-up, an additional classification step must be applied to adjust the particle properties according to the needs of the later application. NP chromatography is a promising separation method, which can be potentially transferred to preparative and industrial scale. Herein, we demonstrate that remarkable classification of ZnS quantum dots (QDs) with respect to the fundamental band gap energy is achieved by chromatography although the PSD of the feed material is already very narrow (1.5-3.0 nm). We investigated the interactions of ZnS QDs with stationary and mobile phase materials in order to select a proper material couple so that irreversible NP adhesion, agglomeration, decomposition or dissolution of the ZnS QDs during the chromatographic experiments are avoided and highly reproducible chromatograms are obtained. Using a fraction collector, the already narrowly size distributed feed material was separated into coarse and fine fractions with distinct band gap energies. For characterization of the chromatographic fractionation, quantities known from particle technology, i.e. separation efficiency, cut size and yield, were adapted to the band gap energy distributions accessible from UV/Vis spectroscopy. The optimization of process conditions (flow rate, temperature, switching time of the fraction collector) allows fine-tuning of the property classification and therefore of the optical properties within the narrow distribution of the ZnS QDs. Our study shows the strength and high potential of chromatography for preparative and continuous separation of NPs even in case of narrow size-distributed sub-10 nm semiconductor QDs.
Collapse
Affiliation(s)
- Sebastian Süβ
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - Katja Bartsch
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany.
| | - Christina Wasmus
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany.
| | - Cornelia Damm
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - Doris Segets
- Process Technology for Electrochemical Functional Materials, and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE), Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| |
Collapse
|
47
|
Improving the Size Homogeneity of Multicore Superparamagnetic Iron Oxide Nanoparticles. Int J Mol Sci 2020; 21:ijms21103476. [PMID: 32423113 PMCID: PMC7279037 DOI: 10.3390/ijms21103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 11/30/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely explored for use in many biomedical applications. Methods for synthesis of magnetic nanoparticle (MNP), however, typically yield multicore structures with broad size distribution, resulting in suboptimal and variable performance in vivo. In this study, a new method for sorting SPIONs by size, labeled diffusive magnetic fractionation (DMF), is introduced as an improvement over conventional magnetic field flow fractionation (MFFF). Unlike MFFF, which uses a constant magnetic field to capture particles, DMF utilizes a pulsed magnetic field approach that exploits size-dependent differences in the diffusivity and magnetic attractive force of SPIONs to yield more homogenous particle size distributions. To compare both methods, multicore SPIONs with a broad size distribution (polydispersity index (PdI) = 0.24 ± 0.05) were fractionated into nine different-sized SPION subpopulations, and the PdI values were compared. DMF provided significantly improved size separation compared to MFFF, with eight out of the nine fractionations having significantly lower PdI values (p value < 0.01). Additionally, the DMF method showed a high particle recovery (>95%), excellent reproducibility, and the potential for scale-up. Mathematical models were developed to enable optimization, and experimental results confirmed model predictions (R2 = 0.98).
Collapse
|
48
|
Abdallah BB, Zhang X, Andreu I, Gates BD, El Mokni R, Rubino S, Landoulsi A, Chatti A. Differentiation of Nanoparticles Isolated from Distinct Plant Species Naturally Growing in a Heavy Metal Polluted Site. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121644. [PMID: 31810808 DOI: 10.1016/j.jhazmat.2019.121644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/24/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Leaves harvested from the plants of two different species (Dittrichia viscosa and Cichorium intybus) grown in their autogenous environment near a steel manufacturing company were characterized for naturally accumulated nanoparticles. These plant species are known to accumulate heavy metals. It was, however, unknown if these species would also accumulate these heavy metals in the form of nanoparticles. The isolated solid fractions were analyzed using dynamic light scattering, X-ray fluorescence, and transmission electron microscopy. These analyses revealed the presence of nanoparticles within the plants. The composition of nanoparticles found in each plant species is distinct: (i) for Dittrichia viscosa, the nanoparticle composition matched the heavy metal pollution anticipated from the surrounding industries; (ii) for Cichorium intybus, the nanoparticle composition was similar to the most abundant elements in the soil. The different behavior is a reflection of the phytoaccumulator characteristics of both species. This study provides the first evidence of sequestration of heavy metals in the form of nanoparticles by plants grown autogenously in polluted areas and will have implications in waste management of phytoremediation systems and in understanding the heavy metal life-cycle in the environment.
Collapse
Affiliation(s)
- Bouchra Belhaj Abdallah
- Biochemistry and Molecular Biology Unit, Faculty of Science of Bizerte, Carthage University, Jarzouna, 7021, Tunisia; Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Xin Zhang
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Irene Andreu
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Byron D Gates
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Ridha El Mokni
- Department of Pharmaceutical Sciences "A", Laboratory of Botany, Cryptogamy and plant Biology, Faculty of Pharmacy of Monastir, Avenue Avicenna, 5000- Monastir, University of Monastir, Tunisia
| | - Stefano Rubino
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Ahmed Landoulsi
- Biochemistry and Molecular Biology Unit, Faculty of Science of Bizerte, Carthage University, Jarzouna, 7021, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Treatment and Valorization of Wastewater, Water Research and Technology Center CERTE, Technopole Borj Cedria, 8020, Soliman, Tunisia
| |
Collapse
|
49
|
In situ synthesis and preconcentration of cetylpyridinium complexed hexaiodo platinum nanoparticles from spent automobile catalytic converter leachate using cloud point extraction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Hähsler M, Landers J, Nowack T, Salamon S, Zimmermann M, Heißler S, Wende H, Behrens S. Magnetic Properties and Mössbauer Spectroscopy of Fe 3O 4/CoFe 2O 4 Nanorods. Inorg Chem 2020; 59:3677-3685. [PMID: 32090551 DOI: 10.1021/acs.inorgchem.9b03267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fe3O4/CoFe2O4 nanorods were obtained via a simple seed-mediated synthesis. Nanorods were used as seeds to grow CoFe2O4 by thermal codecomposition of the cobalt(II) and iron(III) acetylacetonate precursors. The growth process was monitored by electron microscopy (SEM, TEM), and the resulting nanorods were characterized by powder X-ray diffraction analysis and IR and Raman spectroscopy. Magnetometry and AC susceptometry studies revealed a distribution of Néel relaxation times with an average blocking temperature of 140 K and a high-field magnetization of 42 Am2/kg. Complementarily recorded 57Fe-Mössbauer spectra were consistent with the Fe3O4/CoFe2O4 spinel structure and exhibited considerable signs of spin frustration, which was correlated to the internal and surface structure of the nanorods.
Collapse
Affiliation(s)
- Martin Hähsler
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany.,Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Joachim Landers
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| | - Tim Nowack
- Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Soma Salamon
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| | - Michael Zimmermann
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Stefan Heißler
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Heiko Wende
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| | - Silke Behrens
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany.,Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|