1
|
Domingo M, V Guzman H, Kanduč M, Faraudo J. Electrostatic Interaction between SARS-CoV-2 and Charged Surfaces: Spike Protein Evolution Changed the Game. J Chem Inf Model 2025; 65:240-251. [PMID: 39722544 DOI: 10.1021/acs.jcim.4c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Previous works show the key role of electrostatics in the SARS-CoV-2 virus in aspects such as virus-cell interactions or virus inactivation by ionic surfactants. Electrostatic interactions depend strongly on the variant since the charge of the Spike protein (responsible for virus-environment interactions) evolved across the variants from the highly negative Wild Type (WT) to the highly positive Omicron variant. The distribution of the charge also evolved from diffuse to highly localized. These facts suggest that SARS-CoV-2 should interact strongly with charged surfaces in a way that changed during the virus evolution. This question is studied here by computing the electrostatic interaction between WT, Delta and Omicron Spike proteins with charged surfaces using a new method (based on Debye-Hückel theory) that provides efficiently general results as a function of the surface charge density σ. We found that the interaction of the WT and Delta variant spikes with charged surfaces is dominated by repulsive image forces proportional to σ2 originating at the protein/water interface. On the contrary, the Omicron variant shows a distinct behavior, being strongly attracted to negatively charged surfaces and repelled from positively charged ones. Therefore, the SARS-CoV-2 virus has evolved from being repelled by charged surfaces to being efficiently adsorbing to negatively charged ones.
Collapse
Affiliation(s)
- Marc Domingo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain
| | - Horacio V Guzman
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Matej Kanduč
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana 1000, Slovenia
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain
| |
Collapse
|
2
|
Ma H, Wang Y, Li YX, Xie BK, Hu ZL, Yu RJ, Long YT, Ying YL. Label-Free Mapping of Multivalent Binding Pathways with Ligand-Receptor-Anchored Nanopores. J Am Chem Soc 2024. [PMID: 39180483 DOI: 10.1021/jacs.4c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Understanding single-molecule multivalent ligand-receptor interactions is crucial for comprehending molecular recognition at biological interfaces. However, label-free identifications of these transient interactions during multistep binding processes remains challenging. Herein, we introduce a ligand-receptor-anchored nanopore that allows the protein to maintain structural flexibility and favorable orientations in native states, mapping dynamic multivalent interactions. Using a four-state Markov chain model, we clarify two concentration-dependent binding pathways for the Omicron spike protein (Omicron S) and soluble angiotensin-converting enzyme 2 (sACE2): sequential and concurrent. Real-time kinetic analysis at the single-monomeric subunit level reveals that three S1 monomers of Omicron S exhibit a consistent and robust binding affinity toward sACE2 (-13.1 ± 0.2 kcal/mol). These results highlight the enhanced infectivity of Omicron S compared to other homologous spike proteins (WT S and Delta S). Notably, the preceding binding of sACE2 to Omicron S facilitates the subsequent binding steps, which was previously obscured in bulk measurements. Our single-molecule studies resolve the controversy over the disparity between the measured spike protein binding affinity with sACE2 and the viral infectivity, offering valuable insights for drug design and therapies.
Collapse
Affiliation(s)
- Hui Ma
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yongyong Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ya-Xue Li
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bao-Kang Xie
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zheng-Li Hu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ru-Jia Yu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Nattich-Rak M, Sadowska M, Adamczyk Z, Basinska T, Mickiewicz D, Gadzinowski M. Deposition of Human-Serum-Albumin-Functionalized Spheroidal Particles on Abiotic Surfaces: Reference Kinetic Results for Bioparticles. Molecules 2024; 29:3405. [PMID: 39064983 PMCID: PMC11279952 DOI: 10.3390/molecules29143405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Human serum albumin (HSA) corona formation on polymer microparticles of a spheroidal shape was studied using dynamic light scattering and Laser Doppler Velocimetry (LDV). Physicochemical characteristics of the albumin comprising the zeta potential and the isoelectric point were determined as a function of pH for various ionic strengths. Analogous characteristics of the polymer particles were analyzed. The adsorption of albumin on the particles was in situ monitored by LDV. The stability of the HSA-functionalized particle suspensions under various pHs and their electrokinetic properties were also determined. The deposition kinetics of the particles on mica, silica and gold sensors were investigated by optical microscopy, AFM and quartz microbalance (QCM) under diffusion and flow conditions. The obtained results were interpreted in terms of the random sequential adsorption model that allowed to estimate the range of applicability of QCM for determining the deposition kinetics of viruses and bacteria at abiotic surfaces.
Collapse
Affiliation(s)
- Małgorzata Nattich-Rak
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
| | - Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland; (T.B.); (D.M.); (M.G.)
| | - Damian Mickiewicz
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland; (T.B.); (D.M.); (M.G.)
| | - Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland; (T.B.); (D.M.); (M.G.)
| |
Collapse
|
4
|
Božič A, Podgornik R. Changes in total charge on spike protein of SARS-CoV-2 in emerging lineages. BIOINFORMATICS ADVANCES 2024; 4:vbae053. [PMID: 38645718 PMCID: PMC11031363 DOI: 10.1093/bioadv/vbae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Motivation Charged amino acid residues on the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been shown to influence its binding to different cell surface receptors, its non-specific electrostatic interactions with the environment, and its structural stability and conformation. It is therefore important to obtain a good understanding of amino acid mutations that affect the total charge on the spike protein which have arisen across different SARS-CoV-2 lineages during the course of the virus' evolution. Results We analyse the change in the number of ionizable amino acids and the corresponding total charge on the spike proteins of almost 2200 SARS-CoV-2 lineages that have emerged over the span of the pandemic. Our results show that the previously observed trend toward an increase in the positive charge on the spike protein of SARS-CoV-2 variants of concern has essentially stopped with the emergence of the early omicron variants. Furthermore, recently emerged lineages show a greater diversity in terms of their composition of ionizable amino acids. We also demonstrate that the patterns of change in the number of ionizable amino acids on the spike protein are characteristic of related lineages within the broader clade division of the SARS-CoV-2 phylogenetic tree. Due to the ubiquity of electrostatic interactions in the biological environment, our findings are relevant for a broad range of studies dealing with the structural stability of SARS-CoV-2 and its interactions with the environment. Availability and implementation The data underlying the article are available in the Supplementary material.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana 1000, Slovenia
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
5
|
Restivo E, Pugliese D, Gallichi-Nottiani D, Sammartino JC, Bloise N, Peluso E, Percivalle E, Janner D, Milanese D, Visai L. Effect of Low Copper Doping on the Optical, Cytocompatible, Antibacterial, and SARS-CoV-2 Trapping Properties of Calcium Phosphate Glasses. ACS OMEGA 2023; 8:42264-42274. [PMID: 38024754 PMCID: PMC10652837 DOI: 10.1021/acsomega.3c04293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Calcium phosphate glasses (CPGs) are acquiring great importance in the biomedical field because of their thermomechanical and bioresorbable properties. In this study, optically transparent copper (1 mol %)-doped calcium phosphate glasses (CPGs_Cu) were prepared through the melt-quenching method, and their biocompatibility and antibacterial and antiviral properties were evaluated and compared with undoped CPGs. Biocompatibility was evaluated on murine fibroblast NIH-3T3 cells as a preliminary study of cytocompatibility. The in vitro tests were performed through indirect and direct cytotoxicity analyses by MTT and Alamar Blue assays and supported by electron microscopy observations. Microbiological analyses were performed against the most common Gram-negative and Gram-positive pathogens that cause nosocomial infections: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and the methicillin-resistant Staphylococcus aureus strain. In addition, the bioglass samples were exposed to SARS-CoV-2 to assess their effects on viral survival. The obtained results assessed the biocompatibility of both bioglass types and their ability to reduce the viral load and trap the virus. In addition, Cu2+-doped bioglass was found to be antibacterial despite its low content (1 mol %) of copper, making this a promising candidate material for biomedical applications, e.g., surgery probes, drug delivery, and photodynamic therapy.
Collapse
Affiliation(s)
- Elisa Restivo
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Diego Pugliese
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | | | - José Camilla Sammartino
- Department
of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia27100,Italy
| | - Nora Bloise
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| | - Emanuela Peluso
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Elena Percivalle
- Molecular
Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia27100,Italy
| | - Davide Janner
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | - Daniel Milanese
- Department
of Engineering and Architecture, UdR INSTM, University of Parma, Parma43121,Italy
| | - Livia Visai
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| |
Collapse
|
6
|
Mandal N, Mitra R, Pramanick B. C-MEMS-derived glassy carbon electrochemical biosensors for rapid detection of SARS-CoV-2 spike protein. MICROSYSTEMS & NANOENGINEERING 2023; 9:137. [PMID: 37937185 PMCID: PMC10625972 DOI: 10.1038/s41378-023-00601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 11/09/2023]
Abstract
According to a World Health Organization (WHO) report, the world has experienced more than 766 million cases of positive SARS-CoV-2 infection and more than 6.9 million deaths due to COVID through May 2023. The WHO declared a pandemic due to the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and the fight against this pandemic is not over yet. Important reasons for virus spread include the lack of detection kits, appropriate detection techniques, delay in detection, asymptomatic cases and failure in mass screening. In the last 3 years, several researchers and medical companies have introduced successful test kits to detect the infection of symptomatic patients in real time, which was necessary to monitor the spread. However, it is also important to have information on asymptomatic cases, which can be obtained by antibody testing for the SARS-CoV-2 virus. In this work, we developed a simple, advantageous immobilization procedure for rapidly detecting the SARS-CoV-2 spike protein. Carbon-MEMS-derived glassy carbon (GC) is used as the sensor electrode, and the detection is based on covalently linking the SARS-CoV-2 antibody to the GC surface. Glutaraldehyde was used as a cross-linker between the antibody and glassy carbon electrode (GCE). The binding was investigated using Fourier transform infrared spectroscopy (FTIR) characterization and cyclic voltammetric (CV) analysis. Electrochemical impedance spectroscopy (EIS) was utilized to measure the change in total impedance before and after incubation of the SARS-CoV-2 antibody with various concentrations of SARS-CoV-2 spike protein. The developed sensor can sense 1 fg/ml to 1 µg/ml SARS-CoV-2 spike protein. This detection is label-free, and the chances of false positives are minimal. The calculated LOD was ~31 copies of viral RNA/mL. The coefficient of variation (CV) number is calculated from EIS data at 100 Hz, which is found to be 0.398%. The developed sensor may be used for mass screening because it is cost-effective. A schematic representation of the SARS-CoV-2 spike protein sensing using surface functionalized glassy carbon electrode.
Collapse
Affiliation(s)
- Naresh Mandal
- School of Electrical Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
| | - Raja Mitra
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
| | - Bidhan Pramanick
- School of Electrical Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
- Centre of Excellence in Particulates Colloids and Interfaces, Indian Institute of Technology Goa, 403401 Ponda, Goa India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
| |
Collapse
|
7
|
Matveeva M, Lefebvre M, Chahinian H, Yahi N, Fantini J. Host Membranes as Drivers of Virus Evolution. Viruses 2023; 15:1854. [PMID: 37766261 PMCID: PMC10535233 DOI: 10.3390/v15091854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The molecular mechanisms controlling the adaptation of viruses to host cells are generally poorly documented. An essential issue to resolve is whether host membranes, and especially lipid rafts, which are usually considered passive gateways for many enveloped viruses, also encode informational guidelines that could determine virus evolution. Due to their enrichment in gangliosides which confer an electronegative surface potential, lipid rafts impose a first control level favoring the selection of viruses with enhanced cationic areas, as illustrated by SARS-CoV-2 variants. Ganglioside clusters attract viral particles in a dynamic electrostatic funnel, the more cationic viruses of a viral population winning the race. However, electrostatic forces account for only a small part of the energy of raft-virus interaction, which depends mainly on the ability of viruses to form a network of hydrogen bonds with raft gangliosides. This fine tuning of virus-ganglioside interactions, which is essential to stabilize the virus on the host membrane, generates a second level of selection pressure driven by a typical induced-fit mechanism. Gangliosides play an active role in this process, wrapping around the virus spikes through a dynamic quicksand-like mechanism. Viruses are thus in an endless race for access to lipid rafts, and they are bound to evolve perpetually, combining speed (electrostatic potential) and precision (fine tuning of amino acids) under the selective pressure of the immune system. Deciphering the host membrane guidelines controlling virus evolution mechanisms may open new avenues for the design of innovative antivirals.
Collapse
Affiliation(s)
| | | | | | | | - Jacques Fantini
- Department of Biology, Faculty of Medicine, University of Aix-Marseille, INSERM UMR_S 1072, 13015 Marseille, France; (M.M.); (M.L.); (H.C.); (N.Y.)
| |
Collapse
|
8
|
Guillaume YC, André C. New liquid chromatography columns for highlighting the interaction of ligand candidates with humic acid. J Sep Sci 2023; 46:e2300203. [PMID: 37254734 DOI: 10.1002/jssc.202300203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
Humic acid was the main compound in soil and reduced the availability of some organic compounds in soils. In this work, humic acid was immobilized for the first time on a homemade neutravidin poly(glycidyl methacrylate-co-ethylene dimethacrylate) capillary column with a 20 μm i.d. for the screening of potential ligands to humic acid and the evaluation of their molecular recognition mechanism. This homemade humic acid column enabling it to work at very low backpressure (0.60 MPa at 20 nl/min flow rate), had a long lifetime, excellent repeatability, and negligible non-specific binding sites. The performance of this affinity humic acid column was demonstrated by the evaluation of recognition assay for a series of known ligands of humic acid (a series of rodenticide molecules) which is the heart of the fragment-based drug design. In addition, this column was used successfully for highlighting the binding mechanism to humic acid of the severe acute respiratory syndrome coronavirus-2-spike protein. As well this new humic acid miniaturized liquid chromatography column developed in this work could be used in the feature for another solute molecule-humic acid binding studies or for a separative mode.
Collapse
Affiliation(s)
- Yves Claude Guillaume
- Pôle Chimie Analytique Bioanalytique et Physique, UR 481 LINC, Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Univ. Bourgogne Franche - Comté, Besancon, France
- Pôle Pharmaceutique, University Hospital of Besançon, Besancon, France
| | - Claire André
- Pôle Chimie Analytique Bioanalytique et Physique, UR 481 LINC, Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Univ. Bourgogne Franche - Comté, Besancon, France
| |
Collapse
|
9
|
Papi M, De Spirito M, Palmieri V. Nanotechnology in the COVID-19 era: Carbon-based nanomaterials as a promising solution. CARBON 2023; 210:118058. [PMID: 37151958 PMCID: PMC10148660 DOI: 10.1016/j.carbon.2023.118058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has led to collaboration between nanotechnology scientists, industry stakeholders, and clinicians to develop solutions for diagnostics, prevention, and treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Nanomaterials, including carbon-based materials (CBM) such as graphene and carbon nanotubes, have been studied for their potential in viral research. CBM unique effects on microorganisms, immune interaction, and sensitivity in diagnostics have made them a promising subject of SARS-CoV-2 research. This review discusses the interaction of CBM with SARS-CoV-2 and their applicability, including CBM physical and chemical properties, the known interactions between CBM and viral components, and the proposed prevention, treatment, and diagnostics uses.
Collapse
Affiliation(s)
- Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| |
Collapse
|
10
|
Cotten M, Phan MV. Evolution of increased positive charge on the SARS-CoV-2 spike protein may be adaptation to human transmission. iScience 2023; 26:106230. [PMID: 36845032 PMCID: PMC9937996 DOI: 10.1016/j.isci.2023.106230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and infect individuals. The exterior surface of the SARS-CoV-2 virion is dominated by the spike protein, and the current work examined spike protein biochemical features that have changed during the 3 years in which SARS-CoV-2 has infected humans. Our analysis identified a striking change in spike protein charge, from -8.3 in the original Lineage A and B viruses to -1.26 in most of the current Omicron viruses. We conclude that in addition to immune selection pressure, the evolution of SARS-CoV-2 has also altered viral spike protein biochemical properties, which may influence virion survival and promote transmission. Future vaccine and therapeutic development should also exploit and target these biochemical properties.
Collapse
Affiliation(s)
- Matthew Cotten
- Medical Research Council–University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
- UK Medical Research Council–Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51- 59 Nakiwogo Road, P.O Box 49, Entebbe, Uganda, UK
| | - My V.T. Phan
- UK Medical Research Council–Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51- 59 Nakiwogo Road, P.O Box 49, Entebbe, Uganda, UK
| |
Collapse
|
11
|
Choi J, Poudel K, Nam KS, Piri A, Rivera-Piza A, Ku SK, Hwang J, Kim JO, Byeon JH. Aero-manufacture of nanobulges for an in-place anticoronaviral on air filters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130458. [PMID: 36444810 DOI: 10.1016/j.jhazmat.2022.130458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The interest in removing contagious viruses from indoor air using ventilation and filtration systems is increasing rapidly because people spend most of the day indoors. The development of an effective platform to regenerate the antiviral function of air filters during use and safe abrogation of used filters containing infectious viruses is a challenging task, because an on-demand safe-by-design manufacture system is essential for in-place antiviral coatings, but it has been rarely investigated. With these considerations, an electrically operable dispenser was prepared for decorating continuous ultrafine Fe-Zn, Fe-Ag, or Fe-Cu particles (<5 nm) onto SiO2 nanobeads (ca. 130 nm) to form nanobulges (i.e., nanoroughness for engaging coronavirus spikes) in the aerosol state for 3 min direct deposition on the air filter surfaces. The resulting nanobulges were exposed to human coronaviruses (HCoV; surrogates of SARS-CoV-2) to assess antiviral function. The results were compared with similar-sized individual Zn, Ag, and Cu particles. The nanobulges exhibited comparable antiviral activity to Zn, Ag, and Cu particles while retaining biosafety in both in vitro and in vivo models because of the significantly smaller metallic fractions. This suggests that the bimetallic bulge structures generate reactive oxygen species and Fenton-mediated hydroxyl radicals for inactivating HCoV.
Collapse
Affiliation(s)
- Jisoo Choi
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 38511, Republic of Korea; Wellman Center for Photomedicine, Department of Dermatology, Meassachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Kang Sik Nam
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Amin Piri
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Adriana Rivera-Piza
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38511, Republic of Korea.
| | - Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
12
|
Nattich-Rak M, Sadowska M, Motyczyńska M, Adamczyk Z. Mimicking Pseudo-Virion Interactions with Abiotic Surfaces: Deposition of Polymer Nanoparticles with Albumin Corona. Biomolecules 2022; 12:1658. [PMID: 36359008 PMCID: PMC9687657 DOI: 10.3390/biom12111658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 10/14/2023] Open
Abstract
Adsorption of human serum albumin (HSA) molecules on negatively charged polystyrene microparticles was studied using the dynamic light scattering, the electrophoretic and the solution depletion methods involving atomic force microscopy. Initially, the physicochemical characteristics of the albumin comprising the hydrodynamic diameter, the zeta potential and the isoelectric point were determined as a function of pH. Analogous characteristics of the polymer particles were acquired, including their size and zeta potential. The formation of albumin corona on the particles was investigated in situ by electrophoretic mobility measurements. The size, stability and electrokinetic properties of the particles with the corona were also determined. The particle diameter was equal to 125 nm, which coincides with the size of the SARS-CoV-2 virion. The isoelectric point of the particles appeared at a pH of 5. The deposition kinetics of the particles was determined by atomic force microscopy (AFM) under diffusion and by quartz microbalance (QCM) under flow conditions. It was shown that the deposition rate at a gold sensor abruptly vanished with pH following the decrease in the zeta potential of the particles. It is postulated that the acquired results can be used as useful reference systems mimicking virus adsorption on abiotic surfaces.
Collapse
Affiliation(s)
- Małgorzata Nattich-Rak
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Maja Motyczyńska
- The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| |
Collapse
|
13
|
Żeliszewska P, Wasilewska M, Batys P, Pogoda K, Deptuła P, Bucki R, Adamczyk Z. SARS-CoV-2 Spike Protein (RBD) Subunit Adsorption at Abiotic Surfaces and Corona Formation at Polymer Particles. Int J Mol Sci 2022; 23:ijms232012374. [PMID: 36293231 PMCID: PMC9604293 DOI: 10.3390/ijms232012374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022] Open
Abstract
The adsorption kinetics of the SARS-CoV-2 spike protein subunit with the receptor binding domain at abiotic surfaces was investigated. A combination of sensitive methods was used such as atomic force microscopy yielding a molecular resolution, a quartz microbalance, and optical waveguide lightmode spectroscopy. The two latter methods yielded in situ information about the protein adsorption kinetics under flow conditions. It was established that at pH 3.5-4 the protein adsorbed on mica and silica surfaces in the form of compact quasi-spherical aggregates with an average size of 14 nm. The maximum coverage of the layers was equal to 3 and 1 mg m-2 at pH 4 and 7.4, respectively. The experimental data were successfully interpreted in terms of theoretical results derived from modeling. The experiments performed for flat substrates were complemented by investigations of the protein corona formation at polymer particles carried out using in situ laser Doppler velocimetry technique. In this way, the zeta potential of the protein layers was acquired as a function of the coverage. Applying the electrokinetic model, these primary data were converted to the dependence of the subunit zeta potential on pH. It was shown that a complete acid-base characteristic of the layer can be acquired only using nanomolar quantities of the protein.
Collapse
Affiliation(s)
- Paulina Żeliszewska
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
- Correspondence: (P.Ż.); (Z.A.)
| | - Monika Wasilewska
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
| | - Piotr Batys
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland
| | - Zbigniew Adamczyk
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
- Correspondence: (P.Ż.); (Z.A.)
| |
Collapse
|
14
|
Talebipour A, Ghannad AH, Sharifi E, Pirzadeh M, Hasanzadeh Moghadam H, Saviz M, Badieirostami M, Karimi Reikandeh P, Mobasheri H, Faraji-Dana R. Nonlinear dielectric spectroscopy biosensor for SARS-CoV-2 detection. Sci Rep 2022; 12:17080. [PMID: 36224267 PMCID: PMC9554844 DOI: 10.1038/s41598-022-20961-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 01/04/2023] Open
Abstract
The coronavirus disease caused by the SARS-CoV-2 virus has affected people worldwide for more than two years. Here we present a new diagnostic method based on nonlinear dielectric spectroscopy to detect the presence of the SARS-CoV-2 virus in swab samples. A known current is injected into the virus sample suspension, and the biomarker is the third harmonic detected in the power spectrum of the recorded signal. Computational modeling of harmonic production supports the hypothesis of ion channels (the E-protein) with nonlinear current-voltage characteristics being present on the virus envelope as a possible origin of harmonics. The developed system is able to distinguish between positive and negative samples with 5-10 dBc (decibels relative to the carrier) higher third harmonic ratios in positive samples, in agreement with the computational estimation. Our early results demonstrate that this method can detect the virus in solution. This is the first time harmonic signatures are used to detect SARS-CoV-2 in swab samples.
Collapse
Affiliation(s)
- Ali Talebipour
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Hosein Ghannad
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elham Sharifi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Morteza Pirzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamed Hasanzadeh Moghadam
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrdad Saviz
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
- Biophysics Workgroup, University Consortium of Covid-19, Tehran, Iran.
| | - Majid Badieirostami
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Biophysics Workgroup, University Consortium of Covid-19, Tehran, Iran
| | - Parham Karimi Reikandeh
- Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Mobasheri
- Biophysics Workgroup, University Consortium of Covid-19, Tehran, Iran.
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Reza Faraji-Dana
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Biophysics Workgroup, University Consortium of Covid-19, Tehran, Iran
- Center of Excellence on Applied Electromagnetic Systems, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Wozney AJ, Smith MA, Abdrabbo M, Birch CM, Cicigoi KA, Dolan CC, Gerzema AEL, Hansen A, Henseler EJ, LaBerge B, Leavens CM, Le CN, Lindquist AC, Ludwig RK, O'Reilly MG, Reynolds JH, Sherman BA, Sillman HW, Smith MA, Snortheim MJ, Svaren LM, Vanderpas EC, Voon A, Wackett MJ, Weiss MM, Hati S, Bhattacharyya S. Evolution of Stronger SARS-CoV-2 Variants as Revealed Through the Lens of Molecular Dynamics Simulations. Protein J 2022; 41:444-456. [PMID: 35913554 PMCID: PMC9340756 DOI: 10.1007/s10930-022-10065-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 12/03/2022]
Abstract
Using molecular dynamics simulations, the protein-protein interactions of the receptor-binding domain of the wild-type and seven variants of the severe acute respiratory syndrome coronavirus 2 spike protein and the peptidase domain of human angiotensin-converting enzyme 2 were investigated. These variants are alpha, beta, gamma, delta, eta, kappa, and omicron. Using 100 ns simulation data, the residue interaction networks at the protein-protein interface were identified. Also, the impact of mutations on essential protein dynamics, backbone flexibility, and interaction energy of the simulated protein-protein complexes were studied. The protein-protein interface for the wild-type, delta, and omicron variants contained several stronger interactions, while the alpha, beta, gamma, eta, and kappa variants exhibited an opposite scenario as evident from the analysis of the inter-residue interaction distances and pair-wise interaction energies. The study reveals that two distinct residue networks at the central and right contact regions forge stronger binding affinity between the protein partners. The study provides a molecular-level insight into how enhanced transmissibility and infectivity by delta and omicron variants are most likely tied to a handful of interacting residues at the binding interface, which could potentially be utilized for future antibody constructs and structure-based antiviral drug design.
Collapse
Affiliation(s)
- Alec J Wozney
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Macey A Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Mobeen Abdrabbo
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Cole M Birch
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Kelsey A Cicigoi
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Connor C Dolan
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Audrey E L Gerzema
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Abby Hansen
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Ethan J Henseler
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Ben LaBerge
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Caterra M Leavens
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Christine N Le
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Allison C Lindquist
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Rikaela K Ludwig
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Maggie G O'Reilly
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Jacob H Reynolds
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Brandon A Sherman
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Hunter W Sillman
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Michael A Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Marissa J Snortheim
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Levi M Svaren
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Emily C Vanderpas
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Aidan Voon
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Miles J Wackett
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Moriah M Weiss
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA.
| | - Sudeep Bhattacharyya
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue, Eau Claire, WI, 54701, USA.
| |
Collapse
|
16
|
Varga Z, Madai M, Kemenesi G, Beke-Somfai T, Jakab F. Single-particle detection of native SARS-CoV-2 virions by microfluidic resistive pulse sensing. Colloids Surf B Biointerfaces 2022; 218:112716. [PMID: 35907357 PMCID: PMC9306222 DOI: 10.1016/j.colsurfb.2022.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Microfluidic resistive pulse sensing (MRPS) was used to determine the size -distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on detecting nearly 30,000 single virions. However, the ultrastructure of SARS-CoV-2 is thoroughly described, but ensemble properties of SARS-CoV-2, e.g., its particle size distribution, are sparsely reported. According to the MRPS results, the size distribution of SARS-CoV-2 follows a log-normal function with a mean value of 85.1 nm, which corresponds to an approximate diameter of the viral envelope. This result also confirms the low number (< 50) of spike proteins on the surface of the virions.
Collapse
Affiliation(s)
- Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary.
| | - Mónika Madai
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| | - Tamás Beke-Somfai
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
17
|
Pawłowski PH. Additional Positive Electric Residues in the Crucial Spike Glycoprotein S Regions of the New SARS-CoV-2 Variants. Infect Drug Resist 2021; 14:5099-5105. [PMID: 34880635 PMCID: PMC8647725 DOI: 10.2147/idr.s342068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
The change in the formal charge of 34 SARS-CoV-2 lineages from September 2020 to June 2021 was analyzed according to the monthly evidence of the European agency. The reported point mutations and small insertions are electrically neutral (17), positive (12), or negative (3). They had been found in the spike glycoprotein S, in the RBD and S1/S2 regions, crucial for initiation of viral infection. The most often observed were positive mutations, especially D614G and E484K, located in the region of S1/S2 junction, and in the receptor-binding domain (RBD), respectively. They are related to G and A switching. Positive mutations are stretching equally in both areas, but in the RBD region, they are more dispersed. In the set of analyzed virus variants, the increasing tendency in the number of positively charged residues in spike protein was observed. Furthermore, the well-documented WHO classes show an increase in the COVID-19 percentage case fatality with the positive increase in the spike crucial region’s total charge. The data mining, applying classifier algorithm based on the artificial neuronal network, confirms that the value and the distribution of additional positive charge in S may be important factors enabling virus impact to immunity. This may be promoted by the stronger long-range electrostatic attraction of the virus particle to the host cell, preceding the infection. The estimation of the potential energy for the RBD approaching the angiotensin-converting enzyme (ACE2) was presented.
Collapse
Affiliation(s)
- Piotr H Pawłowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
18
|
Liggieri L, Miller R. Editorial Overview: Hot Topic: COVID-19: Colloid and Interface Aspects of COVID-19. Curr Opin Colloid Interface Sci 2021; 56:101525. [PMID: 34690523 PMCID: PMC8520281 DOI: 10.1016/j.cocis.2021.101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Żeliszewska P, Wasilewska M, Cieśla M, Adamczyk Z. Deposition of Polymer Particles with Fibrinogen Corona at Abiotic Surfaces under Flow Conditions. Molecules 2021; 26:molecules26206299. [PMID: 34684880 PMCID: PMC8538388 DOI: 10.3390/molecules26206299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The deposition kinetics of polymer particles with fibrinogen molecule coronas at bare and poly-L-lysine (PLL) modified mica was studied using the microfluid impinging-jet cell. Basic physicochemical characteristics of fibrinogen and the particles were acquired using dynamic light scattering and the electrophoretic mobility methods, whereas the zeta potential of the substrates was determined using streaming potential measurements. Subsequently, an efficient method for the preparation of the particles with coronas, characterized by a controlled fibrinogen coverage, was developed. This enabled us to carry out measurements, which confirmed that the deposition kinetics of the particles at mica vanished at pH above 5. In contrast, the particle deposition of PLL modified mica was at maximum for pH above 5. It was shown that the deposition kinetics could be adequately analyzed in terms of the mean-field approach, analogously to the ordinary colloid particle behavior. This contrasts the fibrinogen molecule behavior, which efficiently adsorbs at negatively charged substrates for the entire range pHs up to 9.7. These results have practical significance for conducting label-free immunoassays governed by the specific antigen/antibody interactions.
Collapse
Affiliation(s)
- Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
- Correspondence: (P.Ż.); (Z.A.)
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Michał Cieśla
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Stanisława Łojasiewicza 11, 30-348 Krakow, Poland;
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
- Correspondence: (P.Ż.); (Z.A.)
| |
Collapse
|