1
|
Huang X, Wu J, Xing X, Wang Y, Wu C, Li S, Wang S. Ultrabright aggregation-induced materials for the highly sensitive detection of Ag + and T-2 toxin. Food Chem 2025; 471:142838. [PMID: 39818095 DOI: 10.1016/j.foodchem.2025.142838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag+ detection, with a limit of detection (LOD) of 0.0318 μM. Meanwhile, a large amount of hydrophobic TPPE molecules were loaded into the amphiphilic block copolymer F127 to form ultrabright fluorescent microspheres (TPPENPs). Lateral flow immunochromatography (LFIA) based on immunoprobe (TPPENPs-Ab) has been successfully developed. The LOD of TPPENPs-LFIA for T-2 toxin was 0.13 μg/L, which was 13.31-fold and 8.62-fold more sensitive than that of gold nanoparticles-based LFIA and ordinary fluorescent microspheres-based LFIA, respectively. TPPENPs-LFIA was employed to detect T-2 toxin in actual grain samples, with a spiked recovery rate of 71.69 - 111.13 %. This assay offers a promising strategy and new idea for multi-target detection.
Collapse
Affiliation(s)
- Xufang Huang
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Xiaorui Xing
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Changzheng Wu
- Foshan Haitian (Gaoming) Flavoring and Food Limited Liability Company, Guangdong 528511, China.
| | - Shijie Li
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Shuo Wang
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Haq FU, Batool A, Niazi S, Khan IM, Raza A, Ning D, Zhang Y, Wang Z. Development of novel FRET aptasensor based on the quenching ability of iron oxide-gold nanostars for the detection of aflatoxin M1. Food Chem 2025; 464:141575. [PMID: 39471562 DOI: 10.1016/j.foodchem.2024.141575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 11/01/2024]
Abstract
Detecting Aflatoxin M1 (AFM1) in food products is crucial due to its high toxicity and health risks. This study introduced a fluorescence donor material using Rhodamine-B-Isothiocyanate (RBITC)-doped silica nanoparticles (RDSN) combined with iron oxide‑gold nanostars (IOGNS) as a quencher. The composite aptasensor (RDSN/IOGNS) served as a Förster Resonance Energy Transfer (FRET) nanoprobe for sensitive and selective AFM1 detection. The fluorescence of aptamer-conjugated RDSN (apt-RDSN) was effectively quenched by complementary DNA-conjugated IOGNS (cDNA-IOGNS). Upon AFM1 introduction, apt-RDSN dissociated from the IOGNS surface, restoring the fluorescence signal. The fluorescence intensity correlated linearly with AFM1 concentration, achieving a detection limit of 0.15 ng/mL. Compared to conventional enzyme-linked immunosorbent assay (ELISA), this FRET aptasensor showed excellent recovery rate and relative standard deviation (RSD) in milk samples, highlighting its potential for practical AFM1 detection applications.
Collapse
Affiliation(s)
- Faizan Ul Haq
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Wuxi 214122, China
| | - Aasma Batool
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sobia Niazi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Wuxi 214122, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Ali Raza
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Wuxi 214122, China
| | - Ding Ning
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Wuxi 214122, China.
| |
Collapse
|
3
|
Suchowilska E, Wiwart M, Sulyok M, Kandler W, Krska R. Mycotoxin profiles and plumpness of Tritordeum grain after artificial spike inoculation with Fusarium culmorum W.G. Smith. Int J Food Microbiol 2025; 427:110963. [PMID: 39509843 DOI: 10.1016/j.ijfoodmicro.2024.110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
The responses to artificial spike inoculation with Fusarium culmorum were compared in 11 Tritordeum lines, two durum wheat cultivars and one naked barley cultivar. Inoculation of Tritordeum spikes led to a significant decrease in spike weight, kernel weight per spike, and kernel weight (by 18, 28, and 16 %, respectively). Durum wheat responded most strongly to inoculation, particularly with regard to spike weight and kernel weight per spike (decrease of 42 % and 53 %, respectively). Inoculation induced a significant increase in the total concentration of trichothecenes (9902 vs 558 μg/kg in non-inoculated control) and other Fusarium toxins (40,207 vs 3250 μg/kg in non-inoculated control) in Tritordeum grain. The content of three Alternaria toxins was not significantly modified by inoculation. The principal component analysis (PCA) of all fungal metabolites supported the discrimination of control and inoculated grain, and the results were used to divide the examined Tritordeum lines into two groups with different mycotoxin profiles. The first group (five lines) was more similar to naked barley, whereas the second group (six lines) showed greater similarity to durum wheat. The analyzed Tritordeum lines responded differently to inoculation, which suggests that lines with a low propensity to accumulate Fusarium toxins in grain can be selected from the existing gene pool. The study also demonstrated that Tritordeum grain accumulates significantly smaller amounts of mycotoxins than durum wheat grain.
Collapse
Affiliation(s)
- Elżbieta Suchowilska
- Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland
| | - Marian Wiwart
- Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland.
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Wolfgang Kandler
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
4
|
Guo M, Si E, Hou J, Yao L, Wang J, Meng Y, Ma X, Li B, Wang H. Pgmiox mediates stress response and plays a critical role for pathogenicity in Pyrenophora graminea, the agent of barley leaf stripe. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112308. [PMID: 39490446 DOI: 10.1016/j.plantsci.2024.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Barley leaf stripe is an important disease caused by Pyenophora graminea that affects barley yields in the world. Ascorbic acid (AsA) interacts with key elements of a complex network orchestrating plant defense mechanisms, thereby influencing the outcome of plant-pathogen interaction. Myo-inositol oxygenase (MIOX) is a pivotal enzyme involved in plants development and environmental stimuli. However, MIOX has described functions in plants but has not been characterized in fungi. In this study, we characterized the Pgmiox gene in P. graminea pathogenesis through annotated on the metabolic pathway of ascorbic acid aldehyde. Our analysis suggested that the Pgmiox protein had a typical conserved MIOX domain. Multiple alignment analysis indicated that the P. graminea MIOX orthologue clustered with MIOX proteins of Pyrenophora species. RNA interference successfully reduced transcript abundance of Pgmiox in six transformant lines compared to wild type, and the transformants were further less virulent on the host plant barley. Transformants of Pgmiox had significant reductions in vegetative growth and pathogenicity, which had increased resistance to tebuconazole and carbendazim. In addition, Pgmiox is associated with ionic, drought, osmotic, oxidative, and heavy metal stress tolerance in P. graminea. In conclusion, our findings reveal that Pgmiox may be widely utilized by fungi to enhance pathogenesis and holds significant potential for the development of durable P. graminea resistance through genetic modifications.
Collapse
Affiliation(s)
- Ming Guo
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Erjing Si
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingjing Hou
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Yao
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Juncheng Wang
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baochun Li
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huajun Wang
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Llorens P, Juan-García A, Pardo O, Arjona-Mudarra P, Martí-Quijal FJ, Esteve-Turrillas FA, Barba FJ, Chiacchio MF, Vitaglione P, Moltó JC, Juan C. Bioavailability study of OTA, ZEN, and AFB1 along with bioactive compounds from tiger nut beverage and its by-products. Food Res Int 2025; 200:115458. [PMID: 39779105 DOI: 10.1016/j.foodres.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Mycotoxins pose significant health risks due to their prevalence in food products and severe health implications, including carcinogenicity. This study investigates the bioavailability of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) individually and combined, in the presence of identified polyphenols from tiger nut beverage (TNB) and tiger nut by-product (TNBP) using the in vitro model Caco-2 cells, which simulates the human intestinal barrier. The objective is to understand how bioactive compounds from TNBP can mitigate the effects of AFB1, OTA and ZEN (and their combination) by bioavailability interference, contributing to safer food products and innovative food safety strategies. In vitro gastrointestinal digestion was simulated using the INFOGEST protocol, followed by a bioavailability assessment through transepithelial transport assays in differentiated Caco-2 cells. OTA bioavailability significantly increased in the presence of TNB and TNBP, suggesting interactions that enhance its intestinal absorption. AFB1 maintained high bioavailability across all conditions (up to 83%), while ZEN showed a general decrease (up to 24%), thus indicating a potential protective effect of TNB and TNBP against ZEN toxicity. Regarding the effect of mycotoxins on the bioavailability of polyphenols from TNB and TNBP, a general enhancement was observed for TNB consistently showing higher bioavailability than for TNBP. Notably, OTA and ZEN significantly increased polyphenols bioavailability, reaching up to 79.2% in TNB. Individual polyphenol generally showed a notable reduction in trans-ferulic acid and an increase in trans-cinnamic acid in the presence of mycotoxins. For TNBP, individual mycotoxins generally enhanced polyphenol bioavailability, with AFB1 showing the most significant increase. In conclusion, tiger nut products show promise as sources of bioactive compounds for mitigating mycotoxin toxicity in food products. However, further studies are necessary to clarify these interactions and optimize the conditions of use for their safe and effective application in the food industry.
Collapse
Affiliation(s)
- P Llorens
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - A Juan-García
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.
| | - O Pardo
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Spain
| | - P Arjona-Mudarra
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Spain
| | - F J Martí-Quijal
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | - F A Esteve-Turrillas
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Spain
| | - F J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | - M F Chiacchio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - P Vitaglione
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | - J C Moltó
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - C Juan
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| |
Collapse
|
6
|
Ahmad MS, Alanazi YA, Alrohaimi Y, Shaik RA, Alrashidi S, Al-Ghasham YA, Alkhalifah YS, Ahmad RK. Infant nutrition at risk: a global systematic review of ochratoxin A in human breast milk-human health risk assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1611-1624. [PMID: 39292700 DOI: 10.1080/19440049.2024.2401976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Human breast milk is the optimal source of nutrition for newborns, but the potential transfer of contaminants like mycotoxins, particularly ochratoxin A (OTA), from maternal blood to milk remains a concern. This systematic review aims to provide a comprehensive analysis of global OTA levels in human breast milk and assess the associated health risks. We conducted a thorough search of scientific databases, including Web of Science, ScienceDirect, Scopus, Google Scholar and PubMed, using keywords related to OTA in human breast milk. A total of 39 studies met the inclusion criteria for this review. OTA levels compared to limits, estimated infant intake at various ages and health risks assessed using Margin of Exposures (MOEs) and Hazard quotient (HQ). Our findings reveal the widespread presence of OTA in breast milk across different regions, with notably higher levels detected in Africa compared to Asia, South America and Europe. The higher concentrations observed in warmer, humid climates suggest that environmental factors significantly influence OTA contamination. Mature breast milk samples generally exhibited greater OTA exposure. The neoplastic and non-neoplastic effects demonstrate generally low risks globally. The regional differences in OTA levels and associated health risk assessments underscore the need for continued research into the health impacts of OTA exposure in infants. This includes further investigation into multiple sources of exposure, such as infant formula, within the broader context of the exposome framework.
Collapse
Affiliation(s)
- Mohammad Shakil Ahmad
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Yousef Abud Alanazi
- Department of Paediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Yousef Alrohaimi
- Department of Paediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Riyaz Ahamed Shaik
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Sami Alrashidi
- Department of Paediatrics, Maternity and Children Hospital, Qassim, Saudi Arabia
| | - Yazeed A Al-Ghasham
- Department of Paediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yasir S Alkhalifah
- Department of Paediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ritu Kumar Ahmad
- Department of Applied Medical Science, Buraydah Private Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
7
|
Nguyen T, Chen X, Ma L, Feng Y. Mycotoxin Biodegradation by Bacillus Bacteria-A Review. Toxins (Basel) 2024; 16:478. [PMID: 39591233 PMCID: PMC11598562 DOI: 10.3390/toxins16110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various types of fungi that are known to contaminate various food products; their presence in the food chain poses significant risks to human and animal health and leads to enormous economic losses in the food and feed industry worldwide. Ensuring food safety and quality by detoxifying mycotoxin is therefore of paramount importance. Several procedures to control fungal toxins have been extensively investigated, such as preventive measures, physical and chemical methods, and biological strategies. In recent years, microbial degradation of mycotoxins has attracted much attention due to its reliability, efficiency, and cost-effectiveness. Notably, bacterial species from the Bacillus genus have emerged as promising candidates for mycotoxin decontamination owing to their diverse metabolic capabilities and resilience in harsh environmental conditions. This review manuscript aims to provide a summary of recent studies on the biodegradation of fungal toxins by Bacillus bacteria, thereby illustrating their potential applications in the development of mycotoxin-degrading products.
Collapse
Affiliation(s)
- Thanh Nguyen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
| | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, Brisbane, QLD 4110, Australia;
| | - Linlin Ma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
8
|
Hassan HF, Zgheib K, Iskandar CF, Chalak A, Alwan N, Abiad MG. Exposure to mycotoxins from the consumption of corn-based breakfast cereals in the United Arab Emirates. Sci Rep 2024; 14:25761. [PMID: 39468151 PMCID: PMC11519516 DOI: 10.1038/s41598-024-74529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Corn-based breakfast cereals, known as cornflakes, have become a common breakfast choice worldwide, recognized for their convenience and versatility. However, mycotoxins can contaminate these products, adversely affecting human health. This study assessed the occurrence of major mycotoxins (AFB1, OTA, DON, ZEA, and FUM) in cornflake stock-keeping units (SKUs) marketed in the United Arab Emirates (UAE). It also evaluated the effect of different independent variables (country of origin, temperature on the production day, storage time, presence of chocolate, bran, and nut ingredients) and estimated the exposure levels of the UAE population to these mycotoxins and the associated risk factors. Seventy-six distinct cornflake SKUs were identified through a market screening and tested for mycotoxins using the Enzyme-Linked Immunosorbent Assay (ELISA) technique. AFB1, OTA, ZEA, FUM, and DON were detected in 23.7, 48.7, 27.6, 9.2 and 88.2% of the samples, respectively. The mean concentrations among positive samples were 2.0, 1.0, 10.14, 584.9, and 90.6 μg/kg, respectively. Except for AFB1, the average mycotoxin levels in samples were below the established limits by the European Union (EU). Among positive samples, none exceeded the US FDA limits for all mycotoxins, and only one exceeded the CODEX limit for FUM. On the other hand, four (5.3%), one (1.3%), one (1.3%), and one (1.3%) SKU exceeded EU limits for AFB1, OTA, FUM, and ZEA, respectively. The country of origin (developing vs. developed countries) exhibited a significant effect on AFB1 presence (p < 0.0001). Furthermore, higher temperature on the production day was associated with significantly higher AFB1 occurrence (p = 0.009). Moreover, the presence of chocolate ingredient had a borderline significant effect on AFB1 (p = 0.05) and a significant effect on OTA (p = 0.002), with higher percentages observed in SKUs containing chocolate. However, no significant effects were found for storage time or the presence of bran and nut ingredients in the cornflakes. On the other hand, the HQ values were below 1 for all mycotoxins, indicating low risk. MoE values exceeded 10,000 among regular cornflake consumers, except for FUM, suggesting minimal risk. Liver cancer risk was 0.0032 cases per 100,000 people per year. Weekly OTA exposure was 0.133 ng/kg BW, below PTWI (Provisional Tolerable Weekly Intake).
Collapse
Affiliation(s)
- Hussein F Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Karen Zgheib
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Christelle F Iskandar
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Ali Chalak
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Nisreen Alwan
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
| | - Mohamad G Abiad
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon.
- Laboratories for the Environment, Agriculture, and Food (LEAF), Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
9
|
Venslovas E, Kochiieru Y, Janavičienė S, Merkevičiūtė-Venslovė L, Almogdad M, Bartkevics V, Bērziņa Z, Pavlenko R. Impact of Harvest Delay and Barley Variety on Grain Nutritional Composition and Mycotoxin Contamination. J Fungi (Basel) 2024; 10:738. [PMID: 39590658 PMCID: PMC11595418 DOI: 10.3390/jof10110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigated the effects of delayed harvesting, varying meteorological conditions, and barley variety on Fusarium spp. infection rates, nutritional composition, and mycotoxin contamination in barley grains. Field experiments were conducted from 2020 to 2022 and involved two barley varieties: 'Laureate' for malting and 'Luokė' for feed. The results indicated that the dominant Fusarium species isolated were F. avenaceum, F. culmorum, F. poae, F. sporotrichioides, F. tricinctum, and F. equiseti. These tended to increase in number with delayed harvest times and were more prevalent during harvest periods of higher precipitation (p < 0.05). Malting barley had higher starch and lower protein content compared to feed barley (p < 0.05). Delayed harvesting generally increased dry matter, crude fat, and crude ash contents while decreasing crude protein, zinc, and iron contents (p < 0.05). Mycotoxin analysis revealed significant differences under specific weather conditions. HT-2 toxin levels were higher under slightly warmer and wetter conditions during flowering, with harvest conditions similar to the long-term average. Zearalenone levels increased with dry, warm growing seasons followed by rainy harvests. Nivalenol and enniatin levels increased with rainy growing seasons and dry, warm harvests. Deoxynivalenol concentrations did not reach the limit of quantification throughout the study. No consistent trend was observed for higher contamination in any specific barley variety (p > 0.05). The strongest correlations between mycotoxins and nutritional value indicators were observed with less-studied mycotoxins, such as nivalenol and enniatins, which exhibited negative correlations with crude protein (p < 0.01), crude fat (p < 0.05), and zinc (p < 0.01), and positive correlations with crude ash (p < 0.05) and phosphorus (p < 0.01).
Collapse
Affiliation(s)
- Eimantas Venslovas
- Lithuanian Research Centre for Agriculture and Forestry, Kėdainiai Distr., LT-58344 Akademija, Lithuania; (Y.K.); (S.J.); (M.A.)
| | - Yuliia Kochiieru
- Lithuanian Research Centre for Agriculture and Forestry, Kėdainiai Distr., LT-58344 Akademija, Lithuania; (Y.K.); (S.J.); (M.A.)
| | - Sigita Janavičienė
- Lithuanian Research Centre for Agriculture and Forestry, Kėdainiai Distr., LT-58344 Akademija, Lithuania; (Y.K.); (S.J.); (M.A.)
| | - Lauksmė Merkevičiūtė-Venslovė
- Lithuanian Research Centre for Agriculture and Forestry, Kėdainiai Distr., LT-58344 Akademija, Lithuania; (Y.K.); (S.J.); (M.A.)
| | - Mohammad Almogdad
- Lithuanian Research Centre for Agriculture and Forestry, Kėdainiai Distr., LT-58344 Akademija, Lithuania; (Y.K.); (S.J.); (M.A.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, LV-1076 Riga, Latvia; (V.B.); (Z.B.); (R.P.)
| | - Zane Bērziņa
- Institute of Food Safety, Animal Health and Environment “BIOR”, LV-1076 Riga, Latvia; (V.B.); (Z.B.); (R.P.)
| | - Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment “BIOR”, LV-1076 Riga, Latvia; (V.B.); (Z.B.); (R.P.)
| |
Collapse
|
10
|
Fan C, Xu Y, Li Y, Yang M, Han J, Pang X. DNA metabarcoding uncovers fungal communities in Zingiberis Rhizoma. CHINESE HERBAL MEDICINES 2024; 16:679-685. [PMID: 39606262 PMCID: PMC11589332 DOI: 10.1016/j.chmed.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 11/29/2024] Open
Abstract
Objective Zingiberis Rhizoma (ZR, Ganjiang in Chinese), also known as dried ginger, is a popular spice and medicinal herb that has been used for several thousand years. However, ZR is easily contaminated by fungi and mycotoxin under suitable conditions, and might be hazardous to the health and safety of consumers, thus concerns about the herb's safety have been raised. The aim of this study was to investigate the fungal community and the effects of collection areas and processing methods on the fungal community in ZR. Methods A total of 18 ZR samples were collected from four provinces of China, and the samples were divided into four groups based on collecting sites. Meanwhile, the samples collected in Sichuan Province, China were divided into three groups based on the processing methods. We employed the Illumina MiSeq PE300 platform and targeted the internal transcribed spacer 2 (ITS2) sequences to investigate fungal contamination in ZR samples, and the difference in fungal community among the groups of different collection sites and processing methods. Results All 18 samples were contaminated with fungi. Ascomycota was the dominant phyla, accounting for 34.46%-100% of the fungal reads. At the genus level, Candida, Diutina, and Aspergillus were the most dominant genera, with relative abundances of 0-98.37%, 0-99.82%, and 0-79.08%, respectively. Meanwhile, four potential toxigenic fungi and seven human pathogens were found. Furthermore, differences in the community composition of ZR samples from four collecting sites and three processing methods were observed. Conclusion DNA metabarcoding provides a novel insight into fungal community diversity in ZR samples, providing references to ensure the sustainable utilization and quality research of ZR.
Collapse
Affiliation(s)
- Chune Fan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yanan Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yufeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaohui Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
11
|
Pavicich MA, Roose L, Meerpoel C, Raes K, De Saeger S. Unraveling the fate of mycotoxins during the production of legume protein and other derived products. NPJ Sci Food 2024; 8:59. [PMID: 39231995 PMCID: PMC11375180 DOI: 10.1038/s41538-024-00303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Consumers are increasingly looking for healthier and sustainable diets. Plant-based diets rich in legumes satisfy this demand. Legumes contain protein, dietary fibers and starch. Technological processes can separate these fractions, which can be used as supplements, or as ingredients. Nonetheless, legumes are susceptible to fungal infection, causing a potential health concern, since some fungi can produce mycotoxins: toxic secondary metabolites. The aim of this work was to analyze the fate of mycotoxins during different stages of the production process of legume derived products from the raw materials to final products. An extraction followed by liquid chromatography-tandem mass spectrometry was used for the analysis, revealing the presence of enniatin B (ENN B), alternariol monomethyl ether (AME), deoxynivalenol, T2-toxin, nivalenol, fumonisin B1 and sterigmatocystin in raw materials, intermediate products and side streams. The alkaline solubilization steps, were effective in reducing ENN B; however, AME was found in one of the final products.
Collapse
Affiliation(s)
- María Agustina Pavicich
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, B-9000, Belgium.
| | - Lief Roose
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, B-9000, Belgium
| | - Celine Meerpoel
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, B-9000, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Faculty of Bioscience Engineering, Ghent University, Kortrijk, B-8500, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, B-9000, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| |
Collapse
|
12
|
Al-Harthi HF. Mycobiota, Total Aflatoxins, And Ochratoxin A of Black And Green Cumin. Foodborne Pathog Dis 2024. [PMID: 39229759 DOI: 10.1089/fpd.2024.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Because of the medical importance of cumin as well as it being one of the food additives to many Saudi dishes, there was a need to study the fungal load of this type of spice. This study aimed to determine the mycological profile of the retail black and green cumin distributed in different markets at western region, Saudi Arabia, using the dilution plat method on dichloran 18% glycerol (DG18) agar and incubation at 25°C. Using morphological criteria and molecular markers (internal transcribed spacer sequence), 39 species belonging to 18 genera were collected from different black cumin (33 species belonging to 17 genera) and green cumin (25 species belonging to 9 genera). Alternaria alternata, Aspergillus flavus, A. niger, A. ochraceus, Cladosporium cladosporioides, and Stemphylium botryosum were the most prevalent. Black cumin harbors fungal counts reaching 545 colony-forming units (CFU)/g, while green cumin included 500 CFU/g. Also, the natural occurrence of aflatoxins and ochratoxin A was also measured. Seventy-two cumin samples (90% of tested samples) showed toxin contamination. Aflatoxins and ochratoxin A ranged from 9.35 to 3.9 PPB in black cumin samples and from 4.08 to 5.75 PPB in green cumin samples.
Collapse
Affiliation(s)
- Helal F Al-Harthi
- Biology Department, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
13
|
Ning X, Du R, Ye Y, Ji J, Jin S, Li J, Liu T, Chen P, Cao J, Sun X. Eco-friendly one-step egg white gel preparation for sensitive detection of 13 trichothecenes in oats using UHPLC-MS/MS. Anal Bioanal Chem 2024; 416:4999-5012. [PMID: 39093417 DOI: 10.1007/s00216-024-05438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Oat products have gained widespread recognition as a health food due to their rich and balanced nutritional profile and convenience. However, the unique matrix composition of oats, which differs significantly from other cereals, presents specific challenges for mycotoxin analysis. This study presents an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method enhanced with an innovative egg white gel pretreatment for the simultaneous analysis of 13 regulated and unregulated trichothecenes in oats. The method demonstrated excellent performance with high accuracy (> 87.5%), repeatability (< 5.7%), and reproducibility (< 8.1%). Analysis of 100 commercial oat products revealed a concerning detection rate (78%) for at least one of the 11 trichothecenes investigated. Notably, deoxynivalenol, exceeding the standard limit in 2% of samples, exhibited the highest detection rate (62%). Additionally, concerning co-occurrence patterns and positive correlations were observed, highlighting potential synergistic effects. The first-time detection of unregulated mycotoxins (T-2 triol, 4,15-diacetoxyscirpenol, 15-acetoxyscirpenol, and neosolaniol) underscores the need for comprehensive monitoring. This method, while developed for oats, shows potential for broader application to other cereals, though further investigation and confirmation are necessary. These findings suggest a potentially underestimated risk of trichothecenes in oats, necessitating continuous monitoring to ensure consumer safety.
Collapse
Affiliation(s)
- Xiao Ning
- School of Food Science and Technology, International Joint Laboratory On Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Ranran Du
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100020, People's Republic of China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory On Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory On Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Shaoming Jin
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute for Food and Drug Control, Beijing, 100050, China
| | - Jingyun Li
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute for Food and Drug Control, Beijing, 100050, China
| | - Tongtong Liu
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute for Food and Drug Control, Beijing, 100050, China
| | - Po Chen
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute for Food and Drug Control, Beijing, 100050, China
| | - Jin Cao
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute for Food and Drug Control, Beijing, 100050, China.
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory On Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
14
|
Rangel-Grimaldo M, Earp CE, Raja HA, Wood JS, Mardiana L, Ho KL, Longcake A, Williamson RT, Palatinus L, Hall MJ, Probert MR, Oberlies NH. Wheldone Revisited: Structure Revision Via DFT-GIAO Chemical Shift Calculations, 1,1-HD-ADEQUATE NMR Spectroscopy, and X-ray Crystallography Studies. JOURNAL OF NATURAL PRODUCTS 2024; 87:2095-2100. [PMID: 39039966 PMCID: PMC11348420 DOI: 10.1021/acs.jnatprod.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Wheldone is a fungal metabolite isolated from the coculture of Aspergillus fischeri and Xylaria flabelliformis, displaying cytotoxic activity against breast, melanoma, and ovarian cancer cell lines. Initially, its structure was characterized as an unusual 5-methyl-bicyclo[5.4.0]undeca-3,5-diene scaffold with a 2-hydroxy-1-propanone side chain and a 3-(2-(1-hydroxyethyl)-2-methyl-2,5-dihydrofuran-3-yl)acrylic acid moiety. Upon further examination, minor inconsistencies in the data suggested the need for the structure to be revisited. Thus, the structure of wheldone has been revised using an orthogonal experimental-computational approach, which combines 1,1-HD-ADEQUATE NMR experiments, DFT-GIAO chemical shift calculations, and single-crystal X-ray diffraction (SCXRD) analysis of a semisynthetic p-bromobenzylamide derivative, formed via a Steglich-type reaction. The summation of these data now permits the unequivocal assignment of both the structure and absolute configuration of the natural product.
Collapse
Affiliation(s)
- Manuel Rangel-Grimaldo
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Cody E. Earp
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Jared S. Wood
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Lina Mardiana
- Indicatrix
Crystallography Ltd, Newcastle University, Newcastle NE1 7RU, U.K.
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
- Department
of Chemistry, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia
| | - Kin Lok Ho
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Alexandra Longcake
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Lukáš Palatinus
- Department
of Structure Analysis, Institute of Physics
of the Czech Academy of Sciences, Na Slovance 2, Prague 18221, Czech Republic
| | - Michael J. Hall
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Michael R. Probert
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
15
|
Frangiamone M, Lázaro Á, Cimbalo A, Font G, Manyes L. In vitro and in vivo assessment of AFB1 and OTA toxic effects and the beneficial role of bioactive compounds. A systematic review. Food Chem 2024; 447:138909. [PMID: 38489879 DOI: 10.1016/j.foodchem.2024.138909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
The purpose of this review was to investigate the current knowledge about aflatoxin B1 (AFB1) and ochratoxin A (OTA) toxicity and the possible beneficial role of bioactive compounds by using in vitro and in vivo models. Although AFB1 and OTA were tested in a similar percentage, the majority of studies focused on nephrotoxicity, hepatotoxicity, immune toxicity and neurotoxicity in which oxidative stress, inflammation, structural damage and apoptosis were the main mechanisms of action reported. Conversely, several biological compounds were assayed in order to modulate mycotoxins damage mainly in the liver, brain, kidney and immune system. Among them, pumpkin, curcumin and fermented whey were the most employed. Although a clear progress has been made by using in vivo models, further research is needed to assess not only the toxicity of multiple mycotoxins contamination but also the effect of functional compounds mixture, thereby reproducing more realistic situations for human health risk assessment.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Álvaro Lázaro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
16
|
Nazareth TDM, Soriano Pérez E, Luz C, Meca G, Quiles JM. Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies. Foods 2024; 13:1920. [PMID: 38928866 PMCID: PMC11203094 DOI: 10.3390/foods13121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (E.S.P.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
17
|
Lapris M, Errico M, Rocchetti G, Gallo A. The Potential of Multi-Screening Methods and Omics Technologies to Detect Both Regulated and Emerging Mycotoxins in Different Matrices. Foods 2024; 13:1746. [PMID: 38890974 PMCID: PMC11171533 DOI: 10.3390/foods13111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Mycotoxins are well-known secondary metabolites produced by several fungi that grow and occur in different crops during both pre-harvest and post-harvest conditions. The contamination and occurrence of mycotoxins currently represent some of the major issues in the entire agri-food system. The quantification of mycotoxins in different feeds and foodstuffs is extremely difficult because of the low concentration ranges; therefore, both sample collection and preparation are essential to providing accurate detection and reliable quantification. Currently, several analytical methods are available for the detection of mycotoxins in both feed and food products, and liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) represents the most reliable instrumental approach. In particular, the fast development of high-throughput methods has made it possible to screen and analyze, in the same analytical run and with high accuracy, multiple mycotoxins, such as those regulated, masked, or modified, and emerging ones. Therefore, the aim of this review is to provide an overview of the state of the art of mycotoxins occurrence, health-related concerns, and analyses, discussing the need to perform multi-screening approaches combined with omics technologies to simultaneously analyze several mycotoxins in different feed and food matrices. This approach is expected to provide more comprehensive information about the profile and distribution of emerging mycotoxins, thus enhancing the understanding of their co-occurrence and impact on the entire production chain.
Collapse
Affiliation(s)
| | | | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (M.L.); (M.E.); (A.G.)
| | | |
Collapse
|
18
|
Nava-Ramírez MJ, Maguey-González JA, Gómez-Rosales S, Hernández-Ramírez JO, Latorre JD, Du X, López-Coello C, Hargis BM, Téllez-Isaías G, Vázquez-Durán A, Méndez-Albores A. Efficacy of powdered alfalfa leaves to ameliorate the toxic effects of aflatoxin B 1 in turkey poults. Mycotoxin Res 2024; 40:269-277. [PMID: 38421516 PMCID: PMC11043150 DOI: 10.1007/s12550-024-00527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
This experiment was conducted to determine the effect of an adsorbent material based on powdered alfalfa leaves added in the aflatoxin B1 (AFB1)-contaminated diet of turkey poults on production parameters, blood cell count, serum biochemistry, liver enzymes, and liver histology. For this purpose, three hundred and fifty female Nicholas-700 poults were randomly assigned into five treatments: (1) Control, AFB1-free diet; (2) AF, diet contaminated with 250 ng AFB1/g; (3) Alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; (4) AF+alfalfa, diet contaminated with 250 ng AFB1/g + 0.5% (w/w) adsorbent, and (5) AF+ yeast cell wall (YCW), diet contaminated with 250 ng AFB1/g + 0.5% (w/w) of yeast cell wall (a commercial mycotoxin binder used as reference material). The in vivo efficacy of powdered alfalfa leaves was assessed during a 28-day period. In general, the addition of powdered alfalfa leaves in the AFB1-free diet gave the best performance results (body weight, body weight gain, and feed intake) and improved the values of total protein, glucose, calcium, creatinine, and blood urea nitrogen. Moreover, the addition of powdered alfalfa leaves in the AFB1-contaminated diet enhanced body weight and body weight gain and significantly reduced the feed intake, compared to the AF and AF+YCW groups. Additionally, significant alterations in serum parameters were observed in poults intoxicated with the AFB1, compared to the Control group. Furthermore, typical histopathological lesions were observed in the liver of the AF group, which were significantly ameliorated with the addition of powdered alfalfa leaves. Conclusively, these results pointed out that low inclusion of powdered alfalfa leaves in the contaminated feed counteracted the adverse effects of AFB1 in turkey poults.
Collapse
Affiliation(s)
- M J Nava-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, 54714, Mexico
| | - J A Maguey-González
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - S Gómez-Rosales
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km 1 Carretera a Colon Ajuchitlán, Querétaro, 76280, Mexico
| | - J O Hernández-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, 54714, Mexico
| | - J D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Xiangwei Du
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - C López-Coello
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, 04510, Mexico
| | - B M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - G Téllez-Isaías
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - A Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, 54714, Mexico
| | - A Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, 54714, Mexico.
| |
Collapse
|
19
|
Açar Y, Akbulut G. Evaluation of Aflatoxins Occurrence and Exposure in Cereal-Based Baby Foods: An Update Review. Curr Nutr Rep 2024; 13:59-68. [PMID: 38282161 PMCID: PMC10923960 DOI: 10.1007/s13668-024-00519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW The first stages of human life, which include the fetal period, infancy, and early childhood, are the most critical for human growth and development. This is the most vulnerable phase to health challenges due to the immature immune system and rapid development. Mycotoxins such as aflatoxins, ochratoxin A, patulin, fumonisins, zearalenone, and deoxynivalenol are secondary metabolites secreted by various fungal species, primarily Aspergillus, Fusarium, Penicillium, and Alternaria. Aflatoxins are one of the major mycotoxins produced in cereals and cereal-based foods by several species of Aspergillus, mainly Aspergillus flavus. In this context, this review provides a brief overview of the occurrence, exposure, legal regulations, and health effects of aflatoxins (B1, B2, G1, G2, and M1) in cereal-based baby foods and breast milk. RECENT FINDINGS Human aflatoxin exposure in utero and through breast milk, infant formulas, cereals, and cereal-based foods has been linked to various health consequences, including adverse birth outcomes, impaired growth and development, immune system suppression, and hepatic dysfunction. Recent evidence suggests that especially infants and children are more susceptible to aflatoxins due to their lower body weight, lowered capacity to detoxify harmful substances, more restrictive diet, immature metabolism and elimination, and faster rates of growth and development. It is essential for both food safety and infant and child health that aflatoxins in cereal and cereal-based products are precisely detected, detoxified, and managed.
Collapse
Affiliation(s)
- Yasemin Açar
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey.
| | - Gamze Akbulut
- Department of Nutrition and Dietetics, Istanbul Kent University, Istanbul, Turkey
| |
Collapse
|
20
|
Lázaro Á, Frangiamone M, Maietti A, Cimbalo A, Vila-Donat P, Manyes L. Allium sativum L. var. Voghiera Reduces Aflatoxin B1 Bioaccessibility and Cytotoxicity In Vitro. Foods 2024; 13:487. [PMID: 38338622 PMCID: PMC10855818 DOI: 10.3390/foods13030487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The present work focuses on the evaluation of AFB1's bioaccessibility and cytotoxicity in vitro using bread (naturally contaminated) enriched or not enriched with fresh Voghiera garlic (2%). Two different experiments were carried out: experiment 1 (E1), with low-AFB1-concentration breads (1.6-1.7 mg/kg); and experiment 2 (E2), with high-AFB1-concentration breads (96.4-102.7 mg/kg). Eight breads were prepared, four for E1 (experiment 1) and another four for E2 (experiment 2), with each experiment having a control group (C), a garlic-enriched group (2%) (G), an AFB1 group (A), and an AFB1 + garlic group (A + G). Simulated digestion was performed on each type of bread, and gastric and intestinal digests were obtained. AFB1 content in flours, baked bread, and gastric and intestinal digests was measured by High-Performance Liquid Chromatography coupled to Fluorescence Detection. The results demonstrate dose-dependent AFB1 bioaccessibility and that the presence of garlic contributed to its reduction in both doses (7-8%). Moreover, garlic's presence in AFB1-contaminated bread increased cell viability (9-18%) in differentiated Caco-2 cells and mitigated the arrest of S and G2/M phases provoked by AFB1 on Jurkat T cells and reduced apoptosis/necrosis, cellular reactive oxygen species (ROS), and mitochondrial ROS by 16%, 71%, and 24% respectively. The inclusion of garlic as a functional ingredient helped relieve the presence and effects of AFB1.
Collapse
Affiliation(s)
- Álvaro Lázaro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Annalisa Maietti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| |
Collapse
|
21
|
Zheng Y, Gao B, Wu J, Wang X, Han B, Tao H, Liu J, Wang Z, Wang J. Degradation of deoxynivalenol by a microbial consortia C1 from duck intestine. Mycotoxin Res 2024; 40:147-158. [PMID: 38064000 DOI: 10.1007/s12550-023-00511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/02/2024]
Abstract
Deoxynivalenol (DON), one of the most widespread mycotoxins in food and feed, poses a persistent health threat to humans and farm animals, and is difficult to eliminate. The utilization of the biotransformation mechanism by microorganisms to detoxify DON is a promising strategy. Although individual strains are capable of DON degradation, their isolation and purification are challenging and time-consuming. Recently, the microbial consortia concept has been proposed, owing to their ability to perform more complex tasks and are more tolerant to environmental changes than individual strains or species. In this study, the novel microbial consortia C1 that could efficiently convert DON to de-epoxy DON (DOM-1) was screened from the cecum contents of ducks. After 24 h anaerobic incubation, 100 μg/ml DON was completely degraded by C1. In vitro, C1 can effectively degrade DON in corn steep liquor (CSL) with an efficiency of 49.44% within 14 days. Furthermore, C1 effectively alleviated the DON poisoning in mice. After C1 treatment, the serum DON level decreased by 40.39%, and the reduction in serum total protein and albumin levels were mitigated. Additionally, C1 is effective in protecting the mouse liver against 5 mg/kg DON. These findings suggest that C1 could be a promising DON biological detoxifier and provide novel microbial resources for preventing DON contamination.
Collapse
Affiliation(s)
- Yunduo Zheng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Boquan Gao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jianwen Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bing Han
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Hui Tao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jie Liu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
22
|
Wang Y, Shang J, Cai M, Liu Y, Yang K. Detoxification of mycotoxins in agricultural products by non-thermal physical technologies: a review of the past five years. Crit Rev Food Sci Nutr 2023; 63:11668-11678. [PMID: 35791798 DOI: 10.1080/10408398.2022.2095554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins produced by Aspergillus spp., Penicillium spp. and Fusarium spp. with small molecular weight and thermal stability, are highly toxic and carcinogenic secondary metabolites. Mycotoxins have caused widespread concern regarding food safety internationally because of their adverse effects on the health of humans and animals, and the major economic losses they cause. There is an urgent need to find ways to reduce or eliminate the impact of mycotoxins in food and feed without introducing new safety issues, or reducing nutritional quality. Non-thermal physical technology is the basis for new techniques to degrade mycotoxins, with great potential for practical detoxification applications in the food industry. Compared with conventional thermal treatments, non-thermal physical detoxification technologies are easier to apply and effective, with less adverse impact on the nutritional value of agricultural products. The advantages, limitations and development prospects of these new detoxification technologies are discussed. Further studies are recommended to standardize the treatment conditions for each detoxification technology, evaluate the safety of the degradation products, and to combine different detoxification technologies to achieve synergistic effects. This will facilitate realization of the great potential of the new technologies and the development of practical applications.
Collapse
Affiliation(s)
- Yan Wang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Jie Shang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Ming Cai
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/South China Food Safety Research Center, Foshan, Guangdong, P. R. China
| | - Kai Yang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
23
|
Günal-Köroğlu D, Erskine E, Ozkan G, Capanoglu E, Esatbeyoglu T. Applications and safety aspects of bioactives obtained from by-products/wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:213-261. [PMID: 37898541 DOI: 10.1016/bs.afnr.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Due to the negative impacts of food loss and food waste on the environment, economy, and social contexts, it is a necessity to take action in order to reduce these wastes from post-harvest to distribution. In addition to waste reduction, bioactives obtained from by-products or wastes can be utilized by new end-users by considering the safety aspects. It has been reported that physical, biological, and chemical safety features of raw materials, instruments, environment, and processing methods should be assessed before and during valorization. It has also been indicated that meat by-products/wastes including collagen, gelatin, polysaccharides, proteins, amino acids, lipids, enzymes and chitosan; dairy by-products/wastes including whey products, buttermilk and ghee residue; fruit and vegetable by-products/wastes such as pomace, leaves, skins, seeds, stems, seed oils, gums, fiber, polyphenols, starch, cellulose, galactomannan, pectin; cereal by-products/wastes like vitamins, dietary fibers, fats, proteins, starch, husk, and trub have been utilized as animal feed, food supplements, edible coating, bio-based active packaging systems, emulsifiers, water binders, gelling, stabilizing, foaming or whipping agents. This chapter will explain the safety aspects of bioactives obtained from various by-products/wastes. Additionally, applications of bioactives obtained from by-products/wastes have been included in detail by emphasizing the source, form of bioactive compound as well as the effect of said bioactive compound.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Ezgi Erskine
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde, Hannover, Germany.
| |
Collapse
|
24
|
Hassan HF, Tashani H, Ballouk F, Daou R, El Khoury A, Abiad MG, AlKhatib A, Hassan M, El Khatib S, Dimassi H. Aflatoxins and Ochratoxin A in Tea Sold in Lebanon: Effects of Type, Packaging, and Origin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6556. [PMID: 37623142 PMCID: PMC10454378 DOI: 10.3390/ijerph20166556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023]
Abstract
Tea is among the oldest and most-known beverages around the world, and it has many flavors and types. Tea can be easily contaminated in any of its production steps, especially with mycotoxins that are produced particularly in humid and warm environments. This study aims to examine the level of ochratoxin A (OTA) and total aflatoxin (AF) contamination in black and green tea sold in Lebanon, evaluate its safety compared to international standards, and assess the effect of different variables on the levels of OTA and AFs. For this, the Lebanese market was screened and all tea brands (n = 37; 24 black and 13 green) were collected twice. The Enzyme-Linked Immunoassay (ELISA) method was used to determine OTA and AFs in the samples. AFs and OTA were detected in 28 (75.7%) and 31 (88.6%) samples, respectively. The average of AFs in the positive (above detection limit: 1.75 μg/kg) samples was 2.66 ± 0.15 μg/kg, while the average of OTA in the positive (above detection limit: 1.6 μg/kg) samples was 3.74 ± 0.72 μg/kg. The mean AFs in black and green tea were 2.65 ± 0.55 and 2.54 ± 0.40 μg/kg, respectively, while for OTA, the mean levels were 3.67 ± 0.96 and 3.46 ± 1.09 μg/kg in black and green tea samples, respectively. Four brands (10.8%) contained total aflatoxin levels above the EU limit (4 μg/kg). As for OTA, all samples had OTA levels below the Chinese limit (5 μg/kg). No significant association (p > 0.05) was found between OTA and tea type, level of packaging, country of origin, country of packing, and country of distribution. However, AF contamination was significantly (p < 0.05) higher in unpacked tea, and in brands where the country of origin, packing, and distributor was in Asia. The results showed that the tea brands in Lebanon are relatively safe in terms of AFs and OTA.
Collapse
Affiliation(s)
- Hussein F. Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Hadeel Tashani
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Farah Ballouk
- Department of Nutrition and Food Sciences, School of Arts and Sciences, Lebanese International University, Beirut P.O. Box 146404, Lebanon
| | - Rouaa Daou
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculty of Sciences, Campus of Sciences and Technologies, Saint Joseph University of Beirut, Mar Roukoz P.O. Box 17-5208, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculty of Sciences, Campus of Sciences and Technologies, Saint Joseph University of Beirut, Mar Roukoz P.O. Box 17-5208, Lebanon
| | - Mohamad G. Abiad
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Laboratories for the Environment, Agriculture, and Food (LEAF), Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Ali AlKhatib
- Department of Nutrition and Food Sciences, School of Arts and Sciences, Lebanese International University, Beirut P.O. Box 146404, Lebanon
| | - Mahdi Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Sami El Khatib
- Department of Food Sciences and Technology, School of Arts and Sciences, Lebanese International University, Bekaa P.O. Box 146404, Lebanon;
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, P.O. Box 7207, Hawally 32093, Kuwait
| | - Hani Dimassi
- School of Pharmacy, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
25
|
Lu Y, Chen R, Dong Y, Zhao W, Ruan S, Yang W, Chen Y, Wang C. Magnetic relaxation switching immunoassay based on "limited-magnitude" particles for sensitive quantification of aflatoxin B 1. Anal Chim Acta 2023; 1266:341329. [PMID: 37244666 DOI: 10.1016/j.aca.2023.341329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/29/2023]
Abstract
Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic chemical substance that endangers food safety and human health. Magnetic relaxation switching (MRS) immunosensors are utilized in a variety of applications in food analysis due to its resistance to matrix interferences, but they often suffer from magnetic separation-based multi-washing steps and low sensitivity. Herein, we propose novel MRS strategy for the sensitive detection of AFB1 using "Limited-Magnitude" size particles: a single millimeter sized polystyrene spheres (PSmm) and 150 nm superparamagnetic nanoparticles (MNP150). Only a single PSmm is used as the microreactor to enhance all of the magnetic signal on its surface in high concentration by an immune competitive response, successfully preventing signal dilution, which can be transferred by pipette, simplifying the process of separation and washing. The established single polystyrene sphere magnetic relaxation switch biosensor (SMRS) was able to quantify AFB1 from 0.02 to 200 ng/mL with a detection limit of 14.3 pg/mL. SMRS biosensor has been successfully used for the detection of AFB1 in wheat and maize samples, and the results in agreement with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Benefiting from high sensitivity and convenient operation, the simple and enzyme-free method is promising in trace small molecules applications.
Collapse
Affiliation(s)
- Yingying Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rui Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yongzhen Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Weiqi Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shilong Ruan
- Daye Public Inspection and Test Center, Daye, 435100, Hubei, China
| | - Weihai Yang
- Qingdao Customs District PR China, Qingdao, 266005, Shandong, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Shenzhen Institute of Food Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
26
|
Kos J, Anić M, Radić B, Zadravec M, Janić Hajnal E, Pleadin J. Climate Change-A Global Threat Resulting in Increasing Mycotoxin Occurrence. Foods 2023; 12:2704. [PMID: 37509796 PMCID: PMC10379110 DOI: 10.3390/foods12142704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
During the last decade, scientists have given increasingly frequent warnings about global warming, linking it to mycotoxin-producing moulds in various geographical regions across the world. In the future, more pronounced climate change could alter host resilience and host-pathogen interaction and have a significant impact on the development of toxicogenic moulds and the production of their secondary metabolites, known as mycotoxins. The current climate attracts attention and calls for novel diagnostic tools and notions about the biological features of agricultural cultivars and toxicogenic moulds. Since European climate environments offer steadily rising opportunities for Aspergillus flavus growth, an increased risk of cereal contamination with highly toxic aflatoxins shall be witnessed in the future. On top of that, the profile (representation) of certain mycotoxigenic Fusarium species is changing ever more substantially, while the rise in frequency of Fusarium graminearum contamination, as a species which is able to produce several toxic mycotoxins, seen in northern and central Europe, is becoming a major concern. In the following paper, a high-quality approach to a preventative strategy is tailored to put a stop to the toxicogenic mould- and mycotoxin-induced contamination of foods and feeds in the foreseeable future.
Collapse
Affiliation(s)
- Jovana Kos
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Mislav Anić
- Croatian Meteorological and Hydrological Service, Ravnice 48, 10000 Zagreb, Croatia
| | - Bojana Radić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Manuela Zadravec
- Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| | - Elizabet Janić Hajnal
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelka Pleadin
- Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Fan K, Qian S, Zhang Z, Huang Q, Hu Z, Nie D, Meng J, Guo W, Zhao Z, Han Z. Recent advances in the combinations of plant-sourced natural products for the prevention of mycotoxin contamination in food. Crit Rev Food Sci Nutr 2023; 64:10626-10642. [PMID: 37357923 DOI: 10.1080/10408398.2023.2227260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Mycotoxins, secondary metabolites produced by mycotoxigenic fungi, are a major problem affecting food safety and security, because of their adverse health effects, their socio-economic impact and the difficulty of degradation or removal by conventional food processing methods. Plant-sourced natural products are a novel and effective control method for fungal infestation and mycotoxin production, with the advantages of biodegradability and acceptability for food use. However, development of resistance, low and inconsistent efficacy, and a limited range of antifungal activities hinder the effective application of single plant natural products for controlling mycotoxin contamination. To overcome these limitations, combinations of plant natural products have been tested extensively and found to increase efficacy, often synergistically. However, this extensive and promising research area has seen little development of practical applications. This review aims to provide up-to-date information on the antifungal, anti-mycotoxigenic and synergistic effects of combinations of plant natural products, as well as their mechanisms of action, to provide a reference source for future research and encourage application development.
Collapse
Affiliation(s)
- Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shenan Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
28
|
Ji X, Jin C, Xiao Y, Deng M, Wang W, Lyu W, Chen J, Li R, Li Y, Yang H. Natural Occurrence of Regulated and Emerging Mycotoxins in Wheat Grains and Assessment of the Risks from Dietary Mycotoxins Exposure in China. Toxins (Basel) 2023; 15:389. [PMID: 37368690 DOI: 10.3390/toxins15060389] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Wheat grains are susceptible to contamination with various natural mycotoxins including regulated and emerging mycotoxins. This study surveyed the natural presence of regulated mycotoxins, such as deoxynivalenol (DON) and zearalenone (ZEN), and emerging mycotoxins such as beauvericin (BEA), enniatins (ENNs such as ENA, ENA1, ENB, ENB1) and Alternaria mycotoxins (i.e., alternariol monomethyl ether (AME), alternariol (AOH), tenuazonic acid (TeA), tentoxin (TEN), and altenuene (ALT)) in wheat grains randomly collected from eight provinces across China in 2021. The results revealed that each wheat grain sample was detected with at least one type of mycotoxin. The detection rates of these mycotoxins ranged from 7.1% to 100%, with the average occurrence level ranging from 1.11 to 921.8 µg/kg. DON and TeA were the predominant mycotoxins with respect to both prevalence and concentration. Approximately 99.7% of samples were found to contain more than one toxin, and the co-occurrence of ten toxins (DON + ZEN + ENA + ENA1 + ENB + ENB1 + AME + AOH + TeA + TEN) was the most frequently detected combination. The dietary exposure to different mycotoxins among Chinese consumers aged 4-70 years was as follows: 0.592-0.992 µg/kg b.w./day for DON, 0.007-0.012 µg/kg b.w./day for ZEN, 0.0003-0.007 µg/kg b.w./day for BEA and ENNs, 0.223-0.373 µg/kg b.w./day for TeA, and 0.025-0.041 µg/kg b.w./day for TEN, which were lower than the health-based guidance values for each mycotoxin, with the corresponding hazard quotient (HQ) being far lower than 1, implying a tolerable health risk for Chinese consumers. However, the estimated dietary exposure to AME and AOH was in the range of 0.003-0.007 µg/kg b.w./day, exceeding the Threshold of Toxicological Concern (TTC) value of 0.0025 µg/kg b.w./day, demonstrating potential dietary risks for Chinese consumers. Therefore, developing practical control and management strategies is essential for controlling mycotoxins contamination in the agricultural systems, thereby ensuring public health.
Collapse
Affiliation(s)
- Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Canghong Jin
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meihua Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiapeng Chen
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Rui Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
29
|
Lou H, Yang C, Gong Y, Li Y, Li Y, Tian S, Zhao Y, Zhao R. Edible fungi efficiently degrade aflatoxin B 1 in cereals and improve their nutritional composition by solid-state fermentation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131139. [PMID: 36921416 DOI: 10.1016/j.jhazmat.2023.131139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) is extremely harmful to human and livestock. Laccase, a green catalyst, has been shown to effectively degrade AFB1 and can be obtained from edible fungi. The objective of this study was to screen edible fungi with high laccase activity and determine their effects on the degradation of AFB1 in cereals and the nutritional composition of the cereals through solid-state fermentation. Results from plate assays confirmed that 51 of the 55 tested edible fungi could secrete laccase. Submerged fermentation results showed that 17 of the 51 edible fungi had maximum laccase activity exceeding 100 U/L. The growth of different edible fungi varied significantly in corn, rice and wheat. More importantly, 6 edible fungi with high laccase activity and good growth could efficiently degrade AFB1 in cereals. We found for the first time that Ganoderma sinense could not only secrete highly active laccase and efficiently degrade AFB1 in corn by 92.91%, but also improve the nutritional quality of corn. These findings reveal that solid-state fermentation of cereals with edible fungi is an environmentally friendly and efficient approach for degrading AFB1 in cereals and improving the nutritional composition of cereals.
Collapse
Affiliation(s)
- Haiwei Lou
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Department of Grain Science and Industry, Kansas State University, Manhattan 66506, USA
| | - Chuangming Yang
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Gong
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Li
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan 66506, USA
| | - Shuangqi Tian
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yu Zhao
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
30
|
Hobé RG, van Asselt ED, van den Heuvel L, Hoek-van den Hil EF, van der Fels-Klerx HJ. Methodology for risk-based monitoring of contaminants in food - A case study in cereals and fish. Food Res Int 2023; 168:112791. [PMID: 37120237 DOI: 10.1016/j.foodres.2023.112791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 05/01/2023]
Abstract
In this study, a methodology was developed that can be used as input for risk-based monitoring plans for chemical contaminants in food products. The novel methodology was applied to a case study in which cereals and fish were evaluated simultaneously for the possible presence of mycotoxins and heavy metals. The methodology was based on hazard quotients that were estimated by dividing the daily intake - using concentrations of the contaminants in the different food products and consumption of the respective products combined per product group - by the health based guidance value (HBGV) or reference points used for assessing potential health concerns (RPHC). The most relevant hazard-product combinations were further ranked based on the volume of import of the ingredients, per import country and a defined contaminant prevalence level per country. For fish, the hazard quotients were around ten times lower compared to the highest hazard quotients in cereals. Consumption of molluscs, mackerel-type fish and herring-type fish contaminated with mercury contributed most to the HBGV or RPHC. The top 25 hazard-product combinations for various age groups included: aflatoxin B1 in combination with wheat, rice (products), maize (products), and pasta, zearalenone in combination with wheat (products), T2/HT2-toxin in combination with rice (products), and DON in combination with wheat (products). The methodology presented showed to be useful in identifying the most relevant hazard-food-age group combinations and the most relevant import countries linked to these that should be included in the monitoring. As such, the method can help risk managers in establishing risk-based monitoring programs.
Collapse
Affiliation(s)
- R G Hobé
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands.
| | - E D van Asselt
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - L van den Heuvel
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - E F Hoek-van den Hil
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| |
Collapse
|
31
|
Stranska M, Prusova N, Behner A, Dzuman Z, Lazarek M, Tobolkova A, Chrpova J, Hajslova J. Influence of pulsed electric field treatment on the fate of Fusarium and Alternaria mycotoxins present in malting barley. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Giannioti Z, Albero B, Hernando MD, Bontempo L, Pérez RA. Determination of Regulated and Emerging Mycotoxins in Organic and Conventional Gluten-Free Flours by LC-MS/MS. Toxins (Basel) 2023; 15:155. [PMID: 36828469 PMCID: PMC9966797 DOI: 10.3390/toxins15020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Gluten-free cereal products have grown in popularity in recent years as they are perceived as "healthier" alternatives and can be safely consumed by celiac patients, and people with gluten intolerance or wheat allergies. Molds that produce mycotoxins contaminate cereal crops, posing a threat to global food security. Maximum levels have been set for certain mycotoxins in cereal flours; however, little is known about the levels of emerging mycotoxins in these flours. The aim of this study was to develop an efficient, sensitive, and selective method for the detection of four emerging (beauvericin and enniatins A1, B, and B1) and three regulated (aflatoxin B1, zearalenone, and deoxynivalenol) mycotoxins in gluten-free flours. Ultrasound-assisted matrix solid-phase dispersion was used in the extraction of these mycotoxins from flour samples. The validated method was utilized for the LC-MS/MS analysis of conventional and organic wholegrain oat and rice flours. Six of the seven target mycotoxins were detected in these samples. Multi-mycotoxin contamination was found in all flour types, particularly in conventional wholegrain oat flour. Despite the low detection frequency in rice flour, one sample was found to contain zearalenone at a concentration of 83.2 μg/kg, which was higher than the level set by the European Commission for cereal flours. The emerging mycotoxins had the highest detection frequencies; enniatin B was present in 53% of the samples at a maximum concentration of 56 μg/kg, followed by enniatin B1 and beauvericin, which were detected in 46% of the samples, and at levels reaching 21 μg/kg and 10 μg/kg, respectively. These results highlight the need to improve the current knowledge and regulations on the presence of mycotoxins, particularly emerging ones, in gluten-free flours and cereal-based products.
Collapse
Affiliation(s)
- Zoe Giannioti
- Traceability Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, TN, Italy
- Centre for Agriculture, Food and Environment (C3A), University of Trento and Fondazione Edmund Mach Via E. Mach 1, 38098 San Michele all’Adige, TN, Italy
| | - Beatriz Albero
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - María Dolores Hernando
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Luana Bontempo
- Traceability Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, TN, Italy
| | - Rosa Ana Pérez
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
33
|
Advantages of Multiplexing Ability of the Orbitrap Mass Analyzer in the Multi-Mycotoxin Analysis. Toxins (Basel) 2023; 15:toxins15020134. [PMID: 36828448 PMCID: PMC9965799 DOI: 10.3390/toxins15020134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
In routine measurements, the length of the analysis time and nfumber of samples analysed during a time unit are crucial parameters, which are especially important for the food analysis, particularly in the case of mycotoxin determinations. High-resolution equipment, including time-of-flight or Orbitrap analyzators, can provide stable instrumental background for high-throughput analyses. In this report, a short, 1 min MS-based multi-mycotoxin method was developed with the application of a short column as a reduced chromatographic separation, taking advantages of the multiplexing and high-resolution capability of the QExactive Orbitrap MS possessing sub-1 ppm mass accuracy. The performance of the method was evaluated regarding selectivity, LOD, LOQ, linearity, matrix effect, and recovery, and compared to a UHPLC-MS/MS method. The final multiplexing method was able to quantify 11 mycotoxins in defined ranges (aflatoxins (corn, 2.8-600 μg/kg; wheat, 1.5-350 μg/kg), deoxynivalenol (corn, 640-9600 μg/kg; wheat, 128-3500 μg/kg), fumonisins (corn, 20-1500 μg/kg; wheat, 30-3500 μg/kg), HT-2 (corn, 64-5200 μg/kg; wheat, 61-3500 μg/kg), T-2 (corn, 10-800 μg/kg; wheat, 4-250 μg/kg), ochratoxin (corn, 4.7-600 μg/kg; wheat, 1-1000 μg/kg), zearalenone (corn, 64-4800 μg/kg; wheat, 4-500 μg/kg)) within one minute in corn and wheat matrices at the MRL levels stated by the European Union.
Collapse
|
34
|
Pocar P, Grieco V, Aidos L, Borromeo V. Endocrine-Disrupting Chemicals and Their Effects in Pet Dogs and Cats: An Overview. Animals (Basel) 2023; 13:ani13030378. [PMID: 36766267 PMCID: PMC9913107 DOI: 10.3390/ani13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Over the past few decades, several pollutants classified as environmental endocrine-disrupting chemicals (EDCs) have become a matter of significant public health concern. Companion animals play a major role in human society, and pet ownership is substantially increasing worldwide. These intimate human-pet relationships imply sharing much of the same environment, thus including exposure to similar levels of EDCs in daily routine. Here, we review the current knowledge on the sources and routes of exposure to EDCs in domestic indoor and outdoor environments and discuss whether endocrine disruption is a health concern in pets. We summarize the phenomenon of endocrine disruption, providing examples of EDCs with a known impact on dog and cat health. Then, we propose an overview of the literature on the adverse effects of EDCs in domestic pets, with a special focus on the health of reproductive and thyroid systems. Finally, we explore the potential role of companion animals as unintentional sentinels of environmental exposure to EDCs and the implications for public health risk assessment in a "shared risk" scenario. Overall, this review supports the need for an integrated approach considering humans, animals, and the environment as a whole for a comprehensive assessment of the impact of EDCs on human and animal health.
Collapse
|
35
|
Khairullina A, Micic N, Jørgensen HJL, Bjarnholt N, Bülow L, Collinge DB, Jensen B. Biocontrol Effect of Clonostachys rosea on Fusarium graminearum Infection and Mycotoxin Detoxification in Oat ( Avena sativa). PLANTS (BASEL, SWITZERLAND) 2023; 12:500. [PMID: 36771583 PMCID: PMC9918947 DOI: 10.3390/plants12030500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/01/2023]
Abstract
Oat (Avena sativa) is susceptible to Fusarium head blight (FHB). The quality of oat grain is threatened by the accumulation of mycotoxins, particularly the trichothecene deoxynivalenol (DON), which also acts as a virulence factor for the main pathogen Fusarium graminearum. The plant can defend itself, e.g., by DON detoxification by UGT-glycosyltransferases (UTGs) and accumulation of PR-proteins, even though these mechanisms do not deliver effective levels of resistance. We studied the ability of the fungal biocontrol agent (BCA) Clonostachys rosea to reduce FHB and mycotoxin accumulation. Greenhouse trials showed that C. rosea-inoculation of oat spikelets at anthesis 3 days prior to F. graminearum inoculation reduced both the amount of Fusarium DNA (79%) and DON level (80%) in mature oat kernels substantially. DON applied to C. rosea-treated spikelets resulted in higher conversion of DON to DON-3-Glc than in mock treated plants. Moreover, there was a significant enhancement of expression of two oat UGT-glycosyltransferase genes in C. rosea-treated oat. In addition, C. rosea treatment activated expression of genes encoding four PR-proteins and a WRKY23-like transcription factor, suggesting that C. rosea may induce resistance in oat. Thus, C. rosea IK726 has strong potential to be used as a BCA against FHB in oat as it inhibits F. graminearum infection effectively, whilst detoxifying DON mycotoxin rapidly.
Collapse
Affiliation(s)
- Alfia Khairullina
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Nikola Micic
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Hans J. Lyngs Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Nanna Bjarnholt
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
36
|
Conjugated type A trichothecenes in oat-based products: Occurrence data and estimation of the related risk. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
An NN, Shang N, Zhao X, Tie XY, Guo WB, Li D, Wang LJ, Wang Y. Occurrence, Regulation, and Emerging Detoxification Techniques of Aflatoxins in Maize: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nan-nan An
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Nan Shang
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Xia Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Xiao-yu Tie
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Wen-bo Guo
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
38
|
Liu Y, Liu Y, Zhao W, Li M, Liu N, Bian K. Reduction of Aflatoxin B1 and Zearalenone Contents in Corn Using Power Ultrasound and Its Effects on Corn Quality. Toxins (Basel) 2022; 14:834. [PMID: 36548731 PMCID: PMC9787775 DOI: 10.3390/toxins14120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The degradation of aflatoxin B1 (AFB1) and zearalenone (ZEA) is investigated using power ultrasound to identify suitable methods to reduce the mycotoxin content of corn. AFB1 and ZEA in corn are simultaneously degraded via power ultrasound; thus, this method has a significant effect on corn quality. The power intensity, solid-liquid ratio, and ultrasonic treatment modes significantly affect the degradation rates of AFB1 and ZEA. The dissolution of AFB1 and ZEA in water also facilitates their degradation. At the initial stage of ultrasonic treatment, power ultrasound promotes the dissolution of mycotoxins in water, whereupon they are partially oxidized by free radicals. With a treatment time of 10 min, the reduction rates decreased owing to the dissolution of combined-state mycotoxins. After ultrasonic treatment, the contents of the essential amino acids, the total number of amino acids, and the fatty acids in corn decreased; however, ΔH values decreased during starch gelatinization. In contrast, the amylose content and viscosity of corn significantly increased during gelatinization. Therefore, this method is potentially suitable for the reduction of AFB1 and ZEA contents in corn.
Collapse
Affiliation(s)
- Yuanfang Liu
- Department of Chemistry, Zhengzhou Normal University, No. 6, Yingcai Street, Huiji District, Zhengzhou 450044, China
| | - Yuanxiao Liu
- College of Grain and Oil Food, Henan University of Technology, No. 100, Lianhua Street, Gaoxin District, Zhengzhou 450001, China
| | - Wenbo Zhao
- Department of Chemistry, Zhengzhou Normal University, No. 6, Yingcai Street, Huiji District, Zhengzhou 450044, China
| | - Mengmeng Li
- College of Grain and Oil Food, Henan University of Technology, No. 100, Lianhua Street, Gaoxin District, Zhengzhou 450001, China
| | - Na Liu
- Department of Chemistry, Zhengzhou Normal University, No. 6, Yingcai Street, Huiji District, Zhengzhou 450044, China
| | - Ke Bian
- College of Grain and Oil Food, Henan University of Technology, No. 100, Lianhua Street, Gaoxin District, Zhengzhou 450001, China
| |
Collapse
|
39
|
Fumonisin B Series Mycotoxins' Dose Dependent Effects on the Porcine Hepatic and Pulmonary Phospholipidome. Toxins (Basel) 2022; 14:toxins14110803. [PMID: 36422977 PMCID: PMC9696778 DOI: 10.3390/toxins14110803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male weaned piglets n = 6/group were fed Fumonisin B1+2+3 (FBs) mycotoxins at 0, 15, or 30 mg/kg diet for 3 weeks to assess the fatty acid (FA) composition of membrane lipid classes, lipid peroxidation, and histomorphological changes in the liver and lung. Growth performance and lipid peroxidation were unaltered, but histomorphological lesion scores increased in the liver. Linear dose-response was detected in liver phosphatidylcholines for C16:1n7, C18:1n9, and total monounsaturation and in lungs for C22:6n3, total n-3 and n-3:n-6, in pulmonary phosphatidylserines C20:0 and C24:0. Alterations associated with the highest FBs dose were detected in sphingomyelins (liver: total saturation ↓, total monounsaturation ↑), phosphatidylcholines (liver: total n-6 ↓, n-6:n-3 ↑; in lungs: total monounsaturation ↑, total polyunsaturation ↑), phosphatidylethanolamines (liver: total n-3 ↓; in lungs: total monounsaturation ↑ and n-6:n-3 ↑), phosphatidylserines (liver: n-6:n-3 ↑; in lungs: total saturation ↓, total polyunsatuartion ↑, and total n-6 and its ratio to n-3 ↑), and phosphatidylinositol (n-6:n-3 ↑; lungs: C22:1n9 ↑, C22:6n3 ↓, total saturation ↓, total monounsaturaion ↑). In conclusion, FBs exposures neither impaired growth nor induced substantial lipid peroxidation, but hepatotoxicity was proven with histopathological alterations at the applied exposure period and doses. FA results imply an enzymatic disturbance in FA metabolism, agreeing with earlier findings in rats.
Collapse
|
40
|
Zhao Z, Zhang Z, Zhang H, Liang Z. Small Peptides in the Detection of Mycotoxins and Their Potential Applications in Mycotoxin Removal. Toxins (Basel) 2022; 14:toxins14110795. [PMID: 36422969 PMCID: PMC9698726 DOI: 10.3390/toxins14110795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins pose significant risks to humans and livestock. In addition, contaminated food- and feedstuffs can only be discarded, leading to increased economic losses and potential ecological pollution. Mycotoxin removal and real-time toxin level monitoring are effective approaches to solve this problem. As a hot research hotspot, small peptides derived from phage display peptide libraries, combinatorial peptide libraries, and rational design approaches can act as coating antigens, competitive antigens, and anti-immune complexes in immunoassays for the detection of mycotoxins. Furthermore, as a potential approach to mycotoxin degradation, small peptides can mimic the natural enzyme catalytic site to construct artificial enzymes containing oxidoreductases, hydrolase, and lyase activities. In summary, with the advantages of mature synthesis protocols, diverse structures, and excellent biocompatibility, also sharing their chemical structure with natural proteins, small peptides are widely used for mycotoxin detection and artificial enzyme construction, which have promising applications in mycotoxin degradation. This paper mainly reviews the advances of small peptides in the detection of mycotoxins, the construction of peptide-based artificial enzymes, and their potential applications in mycotoxin control.
Collapse
Affiliation(s)
- Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737055
| |
Collapse
|
41
|
Does Deoxynivalenol Affect Amoxicillin and Doxycycline Absorption in the Gastrointestinal Tract? Ex Vivo Study on Swine Jejunum Mucosa Explants. Toxins (Basel) 2022; 14:toxins14110743. [PMID: 36355993 PMCID: PMC9697695 DOI: 10.3390/toxins14110743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
The presence of deoxynivalenol (DON) in feed may increase intestinal barrier permeability. Disturbance of the intestinal barrier integrity may affect the absorption of antibiotics used in animals. Since the bioavailability of orally administered antibiotics significantly affects their efficacy and safety, it was decided to evaluate how DON influences the absorption of the most commonly used antibiotics in pigs, i.e., amoxicillin (AMX) and doxycycline (DOX). The studies were conducted using jejunal explants from adult pigs. Explants were incubated in Ussing chambers, in which a buffer containing DON (30 µg/mL), AMX (50 µg/mL), DOX (30 µg/mL), a combination of AMX + DON, or a combination of DOX + DON was used. Changes in transepithelial electrical resistance (TEER), the flux of transcellular and intracellular transport markers, and the flux of antibiotics across explants were measured. DON increased the permeability of small intestine explants, expressed by a reduction in TEER and an intensification of transcellular marker transport. DON did not affect AMX transport, but it accelerated DOX transport by approximately five times. The results suggest that DON inhibits the efflux transport of DOX to the intestinal lumen, and thus significantly changes its absorption from the gastrointestinal tract.
Collapse
|
42
|
Luo D, Guan J, Dong H, Chen J, Liang M, Zhou C, Xian Y, Xu X. Simultaneous determination of twelve mycotoxins in edible oil, soy sauce and bean sauce by PRiME HLB solid phase extraction combined with HPLC-Orbitrap HRMS. Front Nutr 2022; 9:1001671. [PMID: 36245528 PMCID: PMC9555343 DOI: 10.3389/fnut.2022.1001671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A solid phase extraction-high-performance liquid chromatography-tandem Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS) method was established for the determination of 12 mycotoxins (ochratoxin A, ochratoxin B, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, HT-2 toxin, sterigmatocystin, diacetoxysciroenol, penicillic acid, mycophenolic acid, and citreoviridin) in edible oil, soy sauce, and bean sauce. Samples were extracted by 80:20 (v:v) acetonitrile-water solution, purified by PRiME HLB column, separated by aQ C18 column with mobile phase consisting of 0.5 mmol/L ammonium acetate-0.1% formic acid aqueous solution and methanol. The results showed that the limits of detection (LODs) and limits of quantification (LOQs) of 12 mycotoxins were 0.12–1.2 μg/L and 0.40–4.0 μg/L, respectively. The determination coefficients of 12 mycotoxins in the range of 0.20–100 μg/L were > 0.998. The average recoveries in soy sauce and bean sauce were 78.4–106.8%, and the relative standard deviations (RSDs) were 1.2–9.7% under three levels, including LOQ, 2× LOQ and 10 × LOQ. The average recoveries in edible oil were 78.3–115.6%, and the precision RSD (n = 6) was 0.9–8.6%. A total of 24 edible oils, soy sauce and bean sauce samples were analyzed by this method. AFB1, AFB2, sterigmatocystin and mycophenolic acid were detected in several samples at concentrations ranging from 1.0 to 22.1 μg/kg. The method is simple, sensitive, and rapid and can be used for screening and quantitative analysis of mycotoxin contamination in edible oil, soy sauce, and bean sauce.
Collapse
Affiliation(s)
- Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou, China
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Hao Dong
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Sciences, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Hao Dong
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Chunxia Zhou
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
- Xiaofei Xu
| |
Collapse
|
43
|
Santos AR, Carreiró F, Freitas A, Barros S, Brites C, Ramos F, Sanches Silva A. Mycotoxins Contamination in Rice: Analytical Methods, Occurrence and Detoxification Strategies. Toxins (Basel) 2022; 14:647. [PMID: 36136585 PMCID: PMC9504649 DOI: 10.3390/toxins14090647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
The prevalence of mycotoxins in the environment is associated with potential crop contamination, which results in an unavoidable increase in human exposure. Rice, being the second most consumed cereal worldwide, constitutes an important source of potential contamination by mycotoxins. Due to the increasing number of notifications reported, and the occurrence of mycotoxins at levels above the legislated limits, this work intends to compile the most relevant studies and review the main methods used in the detection and quantification of these compounds in rice. The aflatoxins and ochratoxin A are the predominant mycotoxins detected in rice grain and these data reveal the importance of adopting safety storage practices that prevent the growth of producing fungi from the Aspergillus genus along all the rice chain. Immunoaffinity columns (IAC) and QuECHERS are the preferred methods for extraction and purification and HPLC-MS/MS is preferred for quantification purposes. Further investigation is still required to establish the real exposition of these contaminants, as well as the consequences and possible synergistic effects due to the co-occurrence of mycotoxins and also for emergent and masked mycotoxins.
Collapse
Affiliation(s)
- Ana Rita Santos
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Filipa Carreiró
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Sílvia Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, 4501-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
44
|
Prevalence, Identification and Mycotoxigenic Potential of Fungi in Common Spices Used in Local Malaysian Cuisines. Foods 2022; 11:foods11172548. [PMID: 36076734 PMCID: PMC9455050 DOI: 10.3390/foods11172548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Spices are widely used in various cuisines in Malaysia to enhance the flavour and aroma. However, spices are susceptible to fungal infection, leading to mycotoxin contamination if the storage conditions are favourable for fungal growth. Thus, this study aimed to identify fungal species in spices commonly used in local Malaysian cuisines and determine their prevalence and mycotoxigenic potential. A total of 110 spice samples consisting of cumin, fennel, coriander, peppers (black pepper and white pepper), chillies (dried chilli, chilli paste and chilli powder), cinnamon, star anise, cloves, curry powder and korma powder were randomly purchased from retail markets in Penang. The samples were analysed for the total fungal count (ground spices) and the incidence of fungal infection (whole spices). The fungal species isolated from spices were identified based on morphological and molecular approaches, and the mycotoxigenic potential was determined using the Coconut Cream Agar method. The results showed that coriander seeds (ground) recorded the highest total fungal count (ADM 3.08 log CFU/g; DG18 3.14 log CFU/g), while black pepper (whole) recorded the highest incidence of fungal infection (94%). Interestingly, star anise and cloves were free from fungal contamination. The mycotoxigenic fungi of A. flavus and A. niger recorded the highest isolation frequency in ground and whole spices. These findings indicate the risk of mycotoxin exposure to consumers due to the high consumption of spices in local Malaysian cuisine.
Collapse
|
45
|
Yan J, Lv Y, Ma S. Wheat bran enrichment for flour products: Challenges and Solutions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingyao Yan
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Yiming Lv
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| |
Collapse
|
46
|
Lanubile A, De Michele R, Loi M, Fakhari S, Marocco A, Paciolla C. Cell death induced by mycotoxin fumonisin B 1 is accompanied by oxidative stress and transcriptional modulation in Arabidopsis cell culture. PLANT CELL REPORTS 2022; 41:1733-1750. [PMID: 35751667 PMCID: PMC9304057 DOI: 10.1007/s00299-022-02888-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Fumonisin B1 induces rapid programmed cell death in Arabidopsis cells, oxidative and nitrosative bursts, and differentially modulates cell death responsive genes. Glutathione is the main antioxidant involved in the stress response. Fumonisin B1 (FB1) is a fungal toxin produced by Fusarium spp. able to exert pleiotropic toxicity in plants. FB1 is known to be a strong inducer of the programmed cell death (PCD); however, the exact mechanism underling the plant-toxin interactions and the molecular events that lead to PCD are still unclear. Therefore, in this work, we provided a comprehensive investigation of the response of the model organism Arabidopsis thaliana at the nuclear, transcriptional, and biochemical level after the treatment with FB1 at two different concentrations, namely 1 and 5 µM during a time-course of 96 h. FB1 induced oxidative and nitrosative bursts and a rapid cell death in Arabidopsis cell cultures, which resembled a HR-like PCD event. Different genes involved in the regulation of PCD, antioxidant metabolism, photosynthesis, pathogenesis, and sugar transport were upregulated, especially during the late treatment time and with higher FB1 concentration. Among the antioxidant enzymes and compounds studied, only glutathione appeared to be highly induced in both treatments, suggesting that it might be an important stress molecule induced during FB1 exposure. Collectively, these findings highlight the complexity of the signaling network of A. thaliana and provide information for the understanding of the physiological, molecular, and biochemical responses to counteract FB1-induced toxicity.
Collapse
Affiliation(s)
- Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Roberto De Michele
- Institute of Biosciences and Bioresources, National Research Council of Italy, corso Calatafimi 414, 90129, Palermo, Italy.
| | - Martina Loi
- Institute of Sciences of Food Production, National Research Council of Italy, via Amendola 122/0, 70126, Bari, Italy
| | - Safieh Fakhari
- Institute of Biosciences and Bioresources, National Research Council of Italy, corso Calatafimi 414, 90129, Palermo, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Costantino Paciolla
- Department of Biology, Università degli Studi di Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
47
|
Multi-Mycotoxin Long-Term Monitoring Survey on North-Italian Maize over an 11-Year Period (2011-2021): The Co-Occurrence of Regulated, Masked and Emerging Mycotoxins and Fungal Metabolites. Toxins (Basel) 2022; 14:toxins14080520. [PMID: 36006184 PMCID: PMC9416020 DOI: 10.3390/toxins14080520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Maize is considered one of the most susceptible crops to mycotoxin-producing fungi throughout the world, mainly belonging to the Fusarium spp. and Aspergillus spp. Maize is mainly used as animal feeds in Italy, as well as for human consumption, being essential for all the protected designation of origin (DOP) products. Our study investigated the occurrence of regulated mycotoxins in 3769 maize grain samples collected from 88 storage centers by the National Monitoring Network over an 11-year period (2011–2021). Moreover, an in-depth survey over a 4-year period, characterized by extremely different meteorological conditions, was conducted to investigate the co-occurrence of regulated, masked, and emerging mycotoxins. The survey confirmed that Fusarium spp. was the most frequent fungi and fumonisins were the main mycotoxins that were constantly detected in the different years and areas. Moreover, the areas characterized by high fumonisin levels were also the most prone to contamination by emerging mycotoxins produced by the same Fusarium species of the Liseola section. On the other hand, as a result of climatic changes, maize grains have also been affected by the increased frequency of aflatoxin accumulation. Deoxynivalenol, zearalenone, and other emerging mycotoxins produced by the same Fusarium species as the Discolor section occurred more abundantly in some areas in Northern Italy and in years characterized by predisposing meteorological conditions.
Collapse
|
48
|
Zhao H, Li M, Liu X, Yang J, Li X, Chen J, Dai X, Simal-Gandara J, Kong Z, Li Z. Simultaneous determination of succinate-dehydrogenase-inhibitor fungicide traces in cereals by QuEChERS preparation and UPLC-MS/MS analysis. Food Chem 2022; 396:133708. [PMID: 35878445 DOI: 10.1016/j.foodchem.2022.133708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
A method for the simultaneous determination of 19 succinate dehydrogenase inhibitor (SDHI) fungicide residues in 8 kinds of cereals was established by combining UHPLC-MS/MS with the improved QuEChERS method. MgSO4 and octadecylsilane (C18) were used as the dispersive-solid phase extraction sorbent. The proposed method had good linearity in the range of 10-100 µg/L with correlation coefficients (R2 > 0.99). The limit of quantification of 19 fungicides was 10 µg/L, which is the minimum addition level of the method. The fortified recoveries of 19 SDHI fungicides at three levels were ranged from 79.57 % to 126.25 %. The developed method was utilized for the analysis of 45 real cereal samples, only 5 samples were detected with SDHI fungicides. The contents of the fungicides detected in the real samples are far lower than the MRL. The results indicated that the proposed method is reliable for detecting SDHI fungicides in cereals.
Collapse
Affiliation(s)
- Haoran Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaowei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiajie Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College Life Science & Technology, Xinjiang University, 830046 Shengli Road, Urumqi, China
| | - Xueyao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Zhizhong Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
49
|
Khairullina A, Tsardakas Renhuldt N, Wiesenberger G, Bentzer J, Collinge DB, Adam G, Bülow L. Identification and Functional Characterisation of Two Oat UDP-Glucosyltransferases Involved in Deoxynivalenol Detoxification. Toxins (Basel) 2022; 14:toxins14070446. [PMID: 35878183 PMCID: PMC9318758 DOI: 10.3390/toxins14070446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oat is susceptible to several Fusarium species that cause contamination with different trichothecene mycotoxins. The molecular mechanisms behind Fusarium resistance in oat have yet to be elucidated. In the present work, we identified and characterised two oat UDP-glucosyltransferases orthologous to barley HvUGT13248. Overexpression of the latter in wheat had been shown previously to increase resistance to deoxynivalenol (DON) and nivalenol (NIV) and to decrease disease the severity of both Fusarium head blight and Fusarium crown rot. Both oat genes are highly inducible by the application of DON and during infection with Fusarium graminearum. Heterologous expression of these genes in a toxin-sensitive strain of Saccharomyces cerevisiae conferred high levels of resistance to DON, NIV and HT-2 toxins, but not C4-acetylated trichothecenes (T-2, diacetoxyscirpenol). Recombinant enzymes AsUGT1 and AsUGT2 expressed in Escherichia coli rapidly lost activity upon purification, but the treatment of whole cells with the toxin clearly demonstrated the ability to convert DON into DON-3-O-glucoside. The two UGTs could therefore play an important role in counteracting the Fusarium virulence factor DON in oat.
Collapse
Affiliation(s)
- Alfia Khairullina
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
- Correspondence:
| | - Nikos Tsardakas Renhuldt
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| | - Gerlinde Wiesenberger
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 24, 3430 Tulln, Austria; (G.W.); (G.A.)
| | - Johan Bentzer
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Gerhard Adam
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 24, 3430 Tulln, Austria; (G.W.); (G.A.)
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| |
Collapse
|
50
|
Fusilier K, Chilvers MI, Limay-Rios V, Singh MP. Mycotoxin Co-Occurrence in Michigan Harvested Maize Grain. Toxins (Basel) 2022; 14:431. [PMID: 35878169 PMCID: PMC9324039 DOI: 10.3390/toxins14070431] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi that, depending on the type and exposure levels, can be a threat to human and animal health. When multiple mycotoxins occur together, their risk effects on human and animal health can be additive or synergistic. Little information is known about the specific types of mycotoxins or their co-occurrence in the state of Michigan and the Great Lakes region of the United States. To understand the types, incidences, severities, and frequency of co-occurrence of mycotoxins in maize grain (Zea mays L.), samples were collected from across Michigan over two years and analyzed for 20 different mycotoxins. Every sample was contaminated with at least four and six mycotoxins in 2017 and 2018, respectively. Incidence and severity of each mycotoxin varied by year and across locations. Correlations were found between mycotoxins, particularly mycotoxins produced by Fusarium spp. Environmental differences at each location played a role in which mycotoxins were present and at what levels. Overall, data from this study demonstrated that mycotoxin co-occurrence occurs at high levels in Michigan, especially with mycotoxins produced by Fusarium spp., such as deoxynivalenol.
Collapse
Affiliation(s)
- Katlin Fusilier
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; (K.F.); (M.I.C.)
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; (K.F.); (M.I.C.)
| | - Victor Limay-Rios
- Ridgetown Campus, University of Guelph, Ridgetown, ON NOP 2CO, Canada;
| | - Maninder P. Singh
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; (K.F.); (M.I.C.)
| |
Collapse
|