1
|
Martínez-López MF, Muslin C, Kyriakidis NC. STINGing Defenses: Unmasking the Mechanisms of DNA Oncovirus-Mediated Immune Escape. Viruses 2024; 16:574. [PMID: 38675916 PMCID: PMC11054469 DOI: 10.3390/v16040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.
Collapse
Affiliation(s)
- Mayra F Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| | - Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito 170503, Ecuador;
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| |
Collapse
|
2
|
Chen Y, Li R, Sun J, Li C, Xiao H, Chen S. Genome-Wide Population Structure and Selection Signatures of Yunling Goat Based on RAD-seq. Animals (Basel) 2022; 12:ani12182401. [PMID: 36139261 PMCID: PMC9495202 DOI: 10.3390/ani12182401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Goats are important domestic animals that provide meat, milk, fur, and other products for humans. The demand for these products has increased in recent years. Disease resistance among goat breeds is different, but the genetic basis of the differences in resistance to diseases is still unclear and needs to be further studied. In this study, many genes and pathways related to immunity and diseases were identified to be under positive selection between Yunling and Nubian goats using RAD-seq technology. This study on the selection signatures of Yunling goats provides the scientific basis and technical support for the breeding of domestic goats for disease resistance, which has important social and economic significance. Abstract Animal diseases impose a huge burden on the countries where diseases are endemic. Conventional control strategies of vaccines and veterinary drugs are to control diseases from a pharmaceutical perspective. Another alternative approach is using pre-existing genetic disease resistance or tolerance. We know that the Yunling goat is an excellent local breed from Yunnan, southwestern China, which has characteristics of strong disease resistance and remarkable adaptability. However, genetic information about the selection signatures of Yunling goats is limited. We reasoned that the genes underlying the observed difference in disease resistance might be identified by investigating selection signatures between two different goat breeds. Herein, we selected the Nubian goat as the reference group to perform the population structure and selection signature analysis by using RAD-seq technology. The results showed that two goat breeds were divided into two clusters, but there also existed gene flow. We used Fst (F-statistics) and π (pi/θπ) methods to carry out selection signature analysis. Eight selected regions and 91 candidate genes were identified, in which some genes such as DOK2, TIMM17A, MAVS, and DOCK8 related to disease and immunity and some genes such as SPEFI, CDC25B, and MIR103 were associated with reproduction. Four GO (Gene Ontology) terms (GO:0010591, GO:001601, GO:0038023, and GO:0017166) were associated with cell migration, signal transduction, and immune responses. The KEGG (Kyoto Encyclopedia of Genes and Genomes) signaling pathways were mainly associated with immune responses, inflammatory responses, and stress reactions. This study preliminarily revealed the genetic basis of strong disease resistance and adaptability of Yunling goats. It provides a theoretical basis for the subsequent genetic breeding of disease resistance of goats.
Collapse
Affiliation(s)
- Yuming Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Rong Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- College of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Jianshu Sun
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Chunqing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
| | - Heng Xiao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
| | - Shanyuan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- Correspondence: ; Tel.: +86-18687122260
| |
Collapse
|
3
|
Wu X, Zhou R, Wang Y, Zhang W, Zheng X, Zhao G, Zhang X, Yin Z, Ding Y. Genome‐wide scan for runs of homozygosity in Asian wild boars and Anqing six‐end‐white pigs. Anim Genet 2022; 53:867-871. [DOI: 10.1111/age.13250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/26/2022] [Accepted: 08/02/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Xudong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences Hefei China
| | - Ren Zhou
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Yuanlang Wang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences Hefei China
| | - Wei Zhang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences Hefei China
| | - Xianrui Zheng
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Guiying Zhao
- College of Animal Science and Technology Yunnan Agricultural University Kunming China
| | - Xiaodong Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Yueyun Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| |
Collapse
|
4
|
Zhang N, Zhang H, Dong Z, Wang W. Molecular Identification of Nocardia seriolae and Comparative Analysis of Spleen Transcriptomes of Hybrid Snakehead ( Channa maculata Female × Channa argus Male) With Nocardiosis Disease. Front Immunol 2022; 13:778915. [PMID: 35154103 PMCID: PMC8828968 DOI: 10.3389/fimmu.2022.778915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Hybrid snakehead (Channa maculata female × Channa argus male) is a new freshwater aquaculture fish species in southern China. During intensive aquaculture, hybrid snakeheads are often infected by Nocardia seriolae. In this study, hybrid snakehead infected suspiciously by N. seriolae in an artificial breeding pond were examined. Diseased hybrid snakeheads swam slowly without food intake, and the clinical symptoms included skin wound, anal swelling and ascites, and white granulomatous in liver, spleen, and kidney of fish. Through bacterial isolation, 16S rDNA sequencing, fluorescence in situ hybridization (FISH) and artificial infection experiment, the pathogen was identified as N. seriolae. Furthermore, the spleen samples from diseased and healthy male hybrid snakeheads in the same pond were used for RNA-Seq analysis. A total of 3,512 unique transcripts (unigenes) were identified as differentially expressed genes (DEGs), and 1,886 of them were up-regulated in diseased fish. The expression patterns of 20 DEGs were verified by quantitative polymerase chain reaction (qPCR). Several immune-related pathways and many immune-related genes were identified. qPCR results showed that the expression patterns of immune-related genes in the liver and kidney of diseased fish were comparable to that in the spleen. This study provides deep-sequencing data of hybrid snakehead spleen and will help understand the immune response of hybrid snakehead to N. seriolae. It is also helpful for the biomarker screening of fish-borne Nocardia spp. and the breeding of nocardiosis-resistant fish species.
Collapse
Affiliation(s)
- Ning Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Hairui Zhang
- Zhongshan Ronghai Aquaculture Co. Ltd., Zhongshan, China
| | - Zhongdian Dong
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Wei Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, China.,Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
5
|
Xiong W, He W, Wang T, He S, Xu F, Wang Z, Wang X, Guo H, Ling J, Zhang H, Liu Y, Xing K, Li M, Zhang H, Li J, Niu N, Xue J, Zhan Q, Liu Z, Bei J, Huang P, Liu J, Xia L, Xia X. Smad4 Deficiency Promotes Pancreatic Cancer Immunogenicity by Activating the Cancer-Autonomous DNA-Sensing Signaling Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103029. [PMID: 35064757 PMCID: PMC8895117 DOI: 10.1002/advs.202103029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Smad4, a key mediator of the transforming growth factor-β signaling, is mutated or deleted in 20% of pancreatic ductal adenocarcinoma (PDAC) cancers and significantly affects cancer development. However, the effect of Smad4 loss on the immunogenicity and tumor immune microenvironment of PDAC is still unclear. Here, a surprising function of Smad4 in suppressing mouse PDAC tumor immunogenicity is identified. Although Smad4 deletion in tumor cells enhances proliferation in vitro, the in vivo growth of Smad4-deficient PDAC tumor is significantly inhibited on immunocompetent C57BL/6 (B6) mice, but not on immunodeficient mice or CD8+ cell-depleted B6 mice. Mechanistically, Smad4 deficiency significantly increases tumor cell immunogenicity by promoting spontaneous DNA damage and stimulating STING-mediated type I interferon signaling,which contributes to the activation of type 1 conventional dendritic cells (cDC1) and subsequent CD8+ T cells for tumor control. Furthermore, retarded tumor growth of Smad4-deficient PDAC cells on B6 mice is largely reversed when Sting is codeleted, or when the cells are implanted into interferon-alpha receptor-deficientmice or cDC1-deficientmice. Accordingly, Smad4 deficiency promotes PDAC immunogenicity by inducing tumor-intrinsic DNA damage-elicited type I interferon signaling.
Collapse
Affiliation(s)
- Wenjing Xiong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- VIP RegionSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Shuai He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Feifei Xu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zining Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hui Guo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jianhua Ling
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Huanling Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Kaili Xing
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Mengyun Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jiahui Li
- College of Food Science and EngineeringDalian Polytechnic UniversityLiaoning116034P. R. China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Qiuyao Zhan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ze‐Xian Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jin‐Xin Bei
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Peng Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jinyun Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Liangping Xia
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- VIP RegionSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
6
|
Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Commun Biol 2022; 5:78. [PMID: 35058555 PMCID: PMC8776997 DOI: 10.1038/s42003-022-03021-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
AbstractDNA transfection is an important technology in life sciences, wherein nuclear entry of DNA is necessary to express exogenous DNA. Non-viral vectors and their transfection reagents are useful as safe transfection tools. However, they have no effect on the transfection of non-proliferating cells, the reason for which is not well understood. This study elucidates the mechanism through which transfected DNA enters the nucleus for gene expression. To monitor the behavior of transfected DNA, we introduce plasmid bearing lacO repeats and RFP-coding sequences into cells expressing GFP-LacI and observe plasmid behavior and RFP expression in living cells. RFP expression appears only after mitosis. Electron microscopy reveals that plasmids are wrapped with nuclear envelope (NE)‒like membranes or associated with chromosomes at telophase. The depletion of BAF, which is involved in NE reformation, delays plasmid RFP expression. These results suggest that transfected DNA is incorporated into the nucleus during NE reformation at telophase.
Collapse
|
7
|
Xu X, Li M, Deng Z, Jiang Z, Li D, Wang S, Hu C. cGASa and cGASb from grass carp (Ctenopharyngodon idellus) play opposite roles in mediating type I interferon response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104233. [PMID: 34403683 DOI: 10.1016/j.dci.2021.104233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) is known as a DNA sensor for the initiation of innate immune responses in human and other mammals. However, the knowledge about fish cGAS is limited. In this study, we identified two paralogs of cGAS genes from grass carp (Ctenopharyngodon idellus), namely, CicGASa and CicGASb. Grass carp cGASa and cGASb share some conservative domains with mammalian cGASs; however, cGASb contains a unique transmembrane domain. Grass carp cGASa and cGASb responded to GCRV and poly (dA:dT) infection, but they played opposite roles in the regulation of type I IFN response, i.e. cGASa served as an activator for ISGs and NF-κB in a dose-dependent manner, while cGASb acted as an inhibitor. We found that cGASa and cGASb interacted with STING. Similarly, cGASa is an activator for IRF7, but cGASb inhibited IRF7 expression. Both cGASa and STING can protect cells from GCRV infection. Grass carp cGASb inhibited cGASa-induced type I IFN response by the competitive interaction with STING, suggesting that cGASb may be a negative regulator of cGASa-STING-IRF7 axis.
Collapse
Affiliation(s)
- Xiaowen Xu
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China.
| | - Meifeng Li
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Zeyin Jiang
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, 344000, China
| | - Shanghong Wang
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
8
|
Oh KI, Lee AR, Choi SR, Go Y, Ryu KS, Kim EH, Lee JH. Systematic Approach to Find the Global Minimum of Relaxation Dispersion Data for Protein-Induced B-Z Transition of DNA. Int J Mol Sci 2021; 22:3517. [PMID: 33805331 PMCID: PMC8037647 DOI: 10.3390/ijms22073517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion spectroscopy is commonly used for quantifying conformational changes of protein in μs-to-ms timescale transitions. To elucidate the dynamics and mechanism of protein binding, parameters implementing CPMG relaxation dispersion results must be appropriately determined. Building an analytical model for multi-state transitions is particularly complex. In this study, we developed a new global search algorithm that incorporates a random search approach combined with a field-dependent global parameterization method. The robust inter-dependence of the parameters carrying out the global search for individual residues (GSIR) or the global search for total residues (GSTR) provides information on the global minimum of the conformational transition process of the Zα domain of human ADAR1 (hZαADAR1)-DNA complex. The global search results indicated that a α-helical segment of hZαADAR1 provided the main contribution to the three-state conformational changes of a hZαADAR1-DNA complex with a slow B-Z exchange process. The two global exchange rate constants, kex and kZB, were found to be 844 and 9.8 s-1, respectively, in agreement with two regimes of residue-dependent chemical shift differences-the "dominant oscillatory regime" and "semi-oscillatory regime". We anticipate that our global search approach will lead to the development of quantification methods for conformational changes not only in Z-DNA binding protein (ZBP) binding interactions but also in various protein binding processes.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Ae-Ree Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Seo-Ree Choi
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Youyeon Go
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Kyoung-Seok Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk 28119, Korea;
| | - Eun-Hee Kim
- Center for Research Equipment, Korea Basic Science Institute, Ochang, Chungbuk 28119, Korea;
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| |
Collapse
|
9
|
Piperno GM, Naseem A, Silvestrelli G, Amadio R, Caronni N, Cervantes-Luevano KE, Liv N, Klumperman J, Colliva A, Ali H, Graziano F, Benaroch P, Haecker H, Hanna RN, Benvenuti F. Wiskott-Aldrich syndrome protein restricts cGAS/STING activation by dsDNA immune complexes. JCI Insight 2020; 5:132857. [PMID: 32721945 PMCID: PMC7526445 DOI: 10.1172/jci.insight.132857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/16/2020] [Indexed: 01/06/2023] Open
Abstract
Dysregulated sensing of self-nucleic acid is a leading cause of autoimmunity in multifactorial and monogenic diseases. Mutations in Wiskott-Aldrich syndrome protein (WASp), a key regulator of cytoskeletal dynamics in immune cells, cause autoimmune manifestations and increased production of type I IFNs by innate cells. Here we show that immune complexes of self-DNA and autoantibodies (DNA-ICs) contribute to elevated IFN levels via activation of the cGAS/STING pathway of cytosolic sensing. Mechanistically, lack of endosomal F-actin nucleation by WASp caused a delay in endolysosomal maturation and prolonged the transit time of ingested DNA-ICs. Stalling in maturation-defective organelles facilitated leakage of DNA-ICs into the cytosol, promoting activation of the TBK1/STING pathway. Genetic deletion of STING and STING and cGAS chemical inhibitors abolished IFN production and rescued systemic activation of IFN-stimulated genes in vivo. These data unveil the contribution of cytosolic self-nucleic acid sensing in WAS and underscore the importance of WASp-mediated endosomal actin remodeling in preventing innate activation.
Collapse
Affiliation(s)
| | - Asma Naseem
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giulia Silvestrelli
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Roberto Amadio
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nicoletta Caronni
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Andrea Colliva
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Hashim Ali
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Francesca Graziano
- Institute Curie Laboratoire Immunité et Cancer - INSERM U932 Transport Intracellulaire et Immunité, Paris, France
| | - Philippe Benaroch
- Institute Curie Laboratoire Immunité et Cancer - INSERM U932 Transport Intracellulaire et Immunité, Paris, France
| | - Hans Haecker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard N Hanna
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Federica Benvenuti
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
10
|
Li W, Yuan S, Sun Q, Liu C. Toxicity of tris(2-chloroethyl) phosphate in Daphnia magna after lifetime exposure: Changes in growth, reproduction, survival and gene transcription. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110769. [PMID: 32460054 DOI: 10.1016/j.ecoenv.2020.110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
In recent years, with the elimination of brominated flame retardants (BFRs), the product volume of tris(2-chloroethyl) phosphate (TCEP), as a main substitute of BFRs, was increasing and frequently detected in natural waters. However, the current toxicological studies on TCEP were mainly focused on the partial life stage assessment of model animals, and thus it might underestimate the impact of TCEP on environmental risks. Therefore, the whole-life-stage effects of TCEP on growth, reproduction, survival and gene transcription in Daphnia magna (D. magna) were studied in this study after exposure to environmentally relevant or greater concentrations (500 or 5000 ng/L). It was found that chronic exposure to TCEP at environmental relevant or greater concentrations promoted growth of D. magna and the expressions of genes involved in the pathways associated with growth were significantly up-regulated. TCEP did not affect reproduction of D. magna, but the expressions of some genes screened in reproduction stage were significantly changed. Furthermore, the expressions of genes involved in two heart disease-related pathways were down-regulated at the death stage of D. magna after TCEP exposure for 62 days, suggesting that TCEP delayed the death of D. magna by retarding their heart senility.
Collapse
Affiliation(s)
- Wen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siliang Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Oh KI, Kim J, Park CJ, Lee JH. Dynamics Studies of DNA with Non-canonical Structure Using NMR Spectroscopy. Int J Mol Sci 2020; 21:E2673. [PMID: 32290457 PMCID: PMC7216225 DOI: 10.3390/ijms21082673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
The non-canonical structures of nucleic acids are essential for their diverse functions during various biological processes. These non-canonical structures can undergo conformational exchange among multiple structural states. Data on their dynamics can illustrate conformational transitions that play important roles in folding, stability, and biological function. Here, we discuss several examples of the non-canonical structures of DNA focusing on their dynamic characterization by NMR spectroscopy: (1) G-quadruplex structures and their complexes with target proteins; (2) i-motif structures and their complexes with proteins; (3) triplex structures; (4) left-handed Z-DNAs and their complexes with various Z-DNA binding proteins. This review provides insight into how the dynamic features of non-canonical DNA structures contribute to essential biological processes.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| | - Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| |
Collapse
|
12
|
Yan G, Sun J, Wang Z, Qian PY, He L. Insights into the Synthesis, Secretion and Curing of Barnacle Cyprid Adhesive via Transcriptomic and Proteomic Analyses of the Cement Gland. Mar Drugs 2020; 18:E186. [PMID: 32244485 PMCID: PMC7230167 DOI: 10.3390/md18040186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Barnacles represent one of the model organisms used for antifouling research, however, knowledge regarding the molecular mechanisms underlying barnacle cyprid cementation is relatively scarce. Here, RNA-seq was used to obtain the transcriptomes of the cement glands where adhesive is generated and the remaining carcasses of Megabalanus volcano cyprids. Comparative transcriptomic analysis identified 9060 differentially expressed genes, with 4383 upregulated in the cement glands. Four cement proteins, named Mvcp113k, Mvcp130k, Mvcp52k and Mvlcp1-122k, were detected in the cement glands. The salivary secretion pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes, implying that the secretion of cyprid adhesive might be analogous to that of saliva. Lysyl oxidase had a higher expression level in the cement glands and was speculated to function in the curing of cyprid adhesive. Furthermore, the KEGG enrichment analysis of the 352 proteins identified in the cement gland proteome partially confirmed the comparative transcriptomic results. These results present insights into the molecular mechanisms underlying the synthesis, secretion and curing of barnacle cyprid adhesive and provide potential molecular targets for the development of environmentally friendly antifouling compounds.
Collapse
Affiliation(s)
- Guoyong Yan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China; (J.S.); (P.-Y.Q.)
| | - Zishuai Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China;
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China; (J.S.); (P.-Y.Q.)
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
| |
Collapse
|
13
|
Xu X, Li M, Deng Z, Hu J, Jiang Z, Liu Y, Chang K, Hu C. Grass Carp ( Ctenopharyngodon idellus) NIMA-Related Kinase 6 Blocks dsRNA-Induced IFN I Response by Targeting IRF3. Front Immunol 2020; 11:597775. [PMID: 33488591 PMCID: PMC7820699 DOI: 10.3389/fimmu.2020.597775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence indicates that mammalian NIMA (never in mitosis, gene A)-related kinase 6 (NEK6) plays potential roles during the course of tumorigenesis, but little is known about NEK6 in lower vertebrates. Herein, we reported a mammalian ortholog of NEK6 in grass carp (Ctenopharyngodon idellus) (CiNEK6). Multiple alignment of amino acid sequences and phylogenetic analysis showed that CiNEK6 shares a high level of sequence similarity with its counterparts in birds. CiNEK6 was ubiquitously expressed in all tested tissues, and its expression level was increased under treatment with GCRV (dsRNA virus) or poly I:C (dsRNA analog). Q-PCR and dual-luciferase assays suggested that CiNEK6 overexpression suppressed IFN I activity in CIK cells treated with poly I:C. Knockdown of CiNEK6 resulted in a higher level of IFN I expression in CIK cells treated with poly I:C compared to those which received PBS. Interestingly, analysis of subcellular localization demonstrated that CiNEK6 protein scattered throughout the cytoplasm is gradually congregated together at the edges of karyotheca upon stimulation with poly I:C. Co-IP and co-localization assays suggested that CiNEK6 interacts with CiIRF3 after poly I:C challenge. In poly I:C-treated cells, the phosphorylation of CiIRF3 was increased by CiNEK6 knockdown, but was suppressed by CiNEK6 overexpression, suggesting that CiNEK6 decreases IFN I expression through inhibiting CiIRF3 activity. Cell viability assay, crystal violet staining, and detection of Vp5 also showed that CiNEK6 plays an inhibitory role in IRF3-mediated antiviral responses.
Collapse
Affiliation(s)
- Xiaowen Xu
- College of Life Science, Nanchang University, Nanchang, China
| | - Meifeng Li
- College of Life Science, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jihuan Hu
- College of Life Science, Nanchang University, Nanchang, China
| | - Zeyin Jiang
- College of Life Science, Nanchang University, Nanchang, China
| | - Yapeng Liu
- College of Life Science, Nanchang University, Nanchang, China
| | - Kaile Chang
- College of Life Science, Nanchang University, Nanchang, China
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang, China
- *Correspondence: Chengyu Hu,
| |
Collapse
|
14
|
Ebersole JL, Kirakodu S, Novak MJ, Orraca L, Stormberg AJ, Gonzalez-Martinez J, Burgos A, Gonzalez OA. Comparative analysis of expression of microbial sensing molecules in mucosal tissues with periodontal disease. Immunobiology 2018; 224:196-206. [PMID: 30470434 DOI: 10.1016/j.imbio.2018.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
Abstract
Host-derived pattern recognition receptors (PRRs) are necessary for effective innate immune engagement of pathogens that express microbial-associated molecular patterns (MAMP) ligands for these PRRs. This study used a nonhuman primate model to evaluate the expression of these sensing molecules in gingival tissues. Macaca mulatta aged 12-24 with a healthy periodontium (n = 13) or periodontitis (n = 11) provided gingival tissues for assessment of naturally-occurring periodontitis. An additional group of animals (12-23 years; n = 18) was subjected to a 5 month longitudinal study examining the initiation and progression of periodontitis, RNA was isolated and microarray analysis conducted for gene expression of the sensing PRRs. The results demonstrated increased expression of various PRRs in naturally-occurring established periodontitis. Selected PRRs also correlated with both bleeding on probing (BOP) and pocket depth (PD) in the animals. The longitudinal model demonstrated multiple TLRs, as well as selected other PRRs that were significantly increased by 2 weeks during initiation of the lesion. While gene expression levels of various PRRs correlated with BOP and PD at baseline and resolution of disease, few correlated with these clinical parameters during initiation and progression of the lesion. These findings suggest that the levels of various PRRs are affected in established periodontitis lesions, and that PRR expression increased most dramatically during the initiation of the disease process, presumably in response to the juxtaposed microbial challenge to the tissues and goal of reestablishing homeostasis.
Collapse
Affiliation(s)
- J L Ebersole
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States.
| | - S Kirakodu
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States
| | - M J Novak
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States
| | - L Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, United States
| | - A J Stormberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - J Gonzalez-Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - A Burgos
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - O A Gonzalez
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States; Division of Periodontics, College of Dentistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
15
|
Thermodynamic Model for B-Z Transition of DNA Induced by Z-DNA Binding Proteins. Molecules 2018; 23:molecules23112748. [PMID: 30355979 PMCID: PMC6278649 DOI: 10.3390/molecules23112748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023] Open
Abstract
Z-DNA is stabilized by various Z-DNA binding proteins (ZBPs) that play important roles in RNA editing, innate immune response, and viral infection. In this review, the structural and dynamics of various ZBPs complexed with Z-DNA are summarized to better understand the mechanisms by which ZBPs selectively recognize d(CG)-repeat DNA sequences in genomic DNA and efficiently convert them to left-handed Z-DNA to achieve their biological function. The intermolecular interaction of ZBPs with Z-DNA strands is mediated through a single continuous recognition surface which consists of an α3 helix and a β-hairpin. In the ZBP-Z-DNA complexes, three identical, conserved residues (N173, Y177, and W195 in the Zα domain of human ADAR1) play central roles in the interaction with Z-DNA. ZBPs convert a 6-base DNA pair to a Z-form helix via the B-Z transition mechanism in which the ZBP first binds to B-DNA and then shifts the equilibrium from B-DNA to Z-DNA, a conformation that is then selectively stabilized by the additional binding of a second ZBP molecule. During B-Z transition, ZBPs selectively recognize the alternating d(CG)n sequence and convert it to a Z-form helix in long genomic DNA through multiple sequence discrimination steps. In addition, the intermediate complex formed by ZBPs and B-DNA, which is modulated by varying conditions, determines the degree of B-Z transition.
Collapse
|
16
|
Gonzalez OA, Kirakodu S, Novak MJ, Stromberg AJ, Orraca L, Gonzalez-Martinez J, Burgos A, Ebersole JL. Comparative analysis of microbial sensing molecules in mucosal tissues with aging. Immunobiology 2018; 223:279-287. [PMID: 29066255 PMCID: PMC5821569 DOI: 10.1016/j.imbio.2017.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Abstract
Host-bacterial interactions at mucosal surfaces require recognition of the bacteria by host cells enabling targeted responses to maintain tissue homeostasis. It is now well recognized that an array of host-derived pattern recognition receptors (PRRs), both cell-bound and soluble, are critical to innate immune engagement of microbes via microbial-associated molecular patterns (MAMP). This report describes the use of a nonhuman primate model to evaluate changes in the expression of these sensing molecules related to aging in healthy gingival tissues. Macaca mulatta aged 3-24 years were evaluated clinically and gingival tissues obtained, RNA isolated and microarray analysis conducted for gene expression of the sensing pattern recognition receptors (PRRs). The results demonstrated increased expression of various PRRs in healthy aging gingiva including extracellular (CD14, CD209, CLEC4E, TLR4), intracellular (NAIP, IFIH1, DAI) and soluble (PTX4, SAA1) PRRs. Selected PRRs were also correlated with both bleeding on probing (BOP) and pocket depth (PD) in the animals. These findings suggest that aged animals express altered levels of various PRRs that could affect the ability of the tissues to interact effectively with the juxtaposed microbial ecology, presumably contributing to an enhanced risk of periodontitis even in clinically healthy oral mucosal tissues with aging.
Collapse
Affiliation(s)
- O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - M J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - A J Stromberg
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, United States
| | - L Orraca
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - J Gonzalez-Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - A Burgos
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - J L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
17
|
Cho SY, Kwon YK, Nam M, Vaidya B, Kim SR, Lee S, Kwon J, Kim D, Hwang GS. Integrated profiling of global metabolomic and transcriptomic responses to viral hemorrhagic septicemia virus infection in olive flounder. FISH & SHELLFISH IMMUNOLOGY 2017; 71:220-229. [PMID: 29017947 DOI: 10.1016/j.fsi.2017.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV) is one of the most serious viral pathogen that infects farmed fish. In this study, we measured the replication of VHSV increased steadily at 9, 24, 72, and 120 h after infection and progression of necrosis was observed at 72 hpi. We performed transcriptomic and metabolomics profiling of kidney tissues collected at each infection time using Illumina HiSeq2000 and ultra-performance liquid chromatography/quadrupole time-of-flight mass spectroscopy to investigate the mechanisms of VHSV infection in the kidneys of olive flounder. A total of 13,862 mRNA molecules and 72 metabolites were selected to identify the mechanisms of infection and they were integrated using KEGG pathway database. Six KEGG metabolic pathways, including carbohydrate metabolism, amino acid metabolism, lipid metabolism, transport and catabolism, metabolism of cofactors and vitamins, and energy metabolism, were significantly suppressed, whereas the immune system was activated by VHSV infection. A decrease in levels of amino acids such as valine, leucine, and isoleucine, as well as in their derivative carnitines, was observed after VHSV infection. In addition, an increase in arachidonic acid level was noted. Integrated analysis of transcriptome and metabolome using KEGG pathway database revealed four types of responses in the kidneys of olive flounder to VHSV infection. Among these, the mechanisms related to the immune system and protein synthesis were activated, whereas ATP synthesis and the antioxidant system activity were suppressed. This is the first study describing the mechanisms of metabolic responses to VHSV infection in olive flounder. The results suggest that the suppression of ATP synthesis and antioxidant systems, such as glutathione and peroxisome signaling, could be the cause of necrosis, whereas the activation of the immune system could result in the inflammation of kidney tissue in VHSV-infected olive flounder.
Collapse
Affiliation(s)
- Se-Young Cho
- Biological Disaster Analysis Team, Korea Basic Science Institute, Daejeon 169-148, Republic of Korea
| | - Yong-Kook Kwon
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bipin Vaidya
- Bioenergy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seok Ryel Kim
- West Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Incheon 400-420, Republic of Korea
| | - Sunghoon Lee
- EONE-DIAGNOMICS Genome Center, Incheon 406-840, Republic of Korea
| | - Joseph Kwon
- Biological Disaster Analysis Team, Korea Basic Science Institute, Daejeon 169-148, Republic of Korea.
| | - Duwoon Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Yıldırım C, Nieuwenhuis S, Teunissen PF, Horrevoets AJ, van Royen N, van der Pouw Kraan TC. Interferon-Beta, a Decisive Factor in Angiogenesis and Arteriogenesis. J Interferon Cytokine Res 2015; 35:411-20. [DOI: 10.1089/jir.2014.0184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Cansu Yıldırım
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sylvia Nieuwenhuis
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul F. Teunissen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J.G. Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Shen YJ, Le Bert N, Chitre AA, Koo CX, Nga XH, Ho SSW, Khatoo M, Tan NY, Ishii KJ, Gasser S. Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep 2015; 11:460-73. [PMID: 25865892 DOI: 10.1016/j.celrep.2015.03.041] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/13/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) induces the expression of type I interferons (IFNs), but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.
Collapse
Affiliation(s)
- Yu J Shen
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Nina Le Bert
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Anuja A Chitre
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Christine Xing'Er Koo
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore; Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation (NIBIO), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Xing H Nga
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Samantha S W Ho
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Muznah Khatoo
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Nikki Y Tan
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation (NIBIO), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFREC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Stephan Gasser
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
20
|
Neeland MR, Elhay MJ, Powell DR, Rossello FJ, Meeusen ENT, de Veer MJ. Transcriptional profile in afferent lymph cells following vaccination with liposomes incorporating CpG. Immunology 2015; 144:518-529. [PMID: 25308816 DOI: 10.1111/imm.12401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/14/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022] Open
Abstract
Vaccine formulations incorporating innate immune stimulants are highly immunogenic; however, the biological signals that originate in the peripheral tissues at the site of injection and are transmitted to the local lymph node to induce immunity remain unclear. By directly cannulating the ovine afferent lymphatic vessels, we have previously shown that it takes 72 hr for mature antigen-loaded dendritic cells and monocytes to appear within afferent lymph following injection of a liposomal formulation containing the Toll-like receptor ligand CpG. In this present study, we characterize the global transcriptional signatures at this time-point in ovine afferent lymph cells as they migrate from the injection site into the lymphatics following vaccination with a liposome antigen formulation incorporating CpG. We show that at 72 hr post vaccination, liposomes alone induce no changes in gene expression and inflammatory profiles within afferent lymph; however, the incorporation of CpG drives interferon, antiviral and cytotoxic gene programmes. This study also measures the expression of key genes within individual cell types in afferent lymph. Antiviral gene signatures are most prominent in lymphocytes, which may play a significant and unexpected role in sustaining the immune response to vaccination at the site of injection. These findings provide a comprehensive analysis of the in vivo immunological pathways that connect the injection site with the local draining lymph node following vaccination.
Collapse
Affiliation(s)
- Melanie R Neeland
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, Vic., Australia
| | - Martin J Elhay
- Zoetis Research and Manufacturing Australia P/L, Parkville, Vic., Australia
| | - David R Powell
- Victorian Bioinformatics Consortium, Monash University, Clayton, Vic., Australia.,Victorian Life Sciences Computation Initiative, Life Sciences Computation Centre, Carlton, Vic., Australia
| | - Fernando J Rossello
- Victorian Bioinformatics Consortium, Monash University, Clayton, Vic., Australia.,Victorian Life Sciences Computation Initiative, Life Sciences Computation Centre, Carlton, Vic., Australia
| | - Els N T Meeusen
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia
| | - Michael J de Veer
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
21
|
Kaposi's sarcoma-associated herpesvirus-encoded replication and transcription activator impairs innate immunity via ubiquitin-mediated degradation of myeloid differentiation factor 88. J Virol 2014; 89:415-27. [PMID: 25320320 DOI: 10.1128/jvi.02591-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus with latent and lytic reactivation cycles. The mechanism by which KSHV evades the innate immune system to establish latency has not yet been precisely elucidated. Toll-like receptors (TLRs) are the first line of defense against viral infections. Myeloid differentiation factor 88 (MyD88) is a key adaptor that interacts with all TLRs except TLR3 to produce inflammatory factors and type I interferons (IFNs), which are central components of innate immunity against microbial infection. Here, we found that KSHV replication and transcription activator (RTA), which is an immediate-early master switch protein of viral cycles, downregulates MyD88 expression at the protein level by degrading MyD88 through the ubiquitin (Ub)-proteasome pathway. We identified the interaction between RTA and MyD88 in vitro and in vivo and demonstrated that RTA functions as an E3 ligase to ubiquitinate MyD88. MyD88 also was repressed at the early stage of de novo infection as well as in lytic reactivation. We also found that RTA inhibited lipopolysaccharide (LPS)-triggered activation of the TLR4 pathway by reducing IFN production and NF-κB activity. Finally, we showed that MyD88 promoted the production of IFNs and inhibited KSHV LANA-1 gene transcription. Taken together, our results suggest that KSHV RTA facilitates the virus to evade innate immunity through the degradation of MyD88, which might be critical for viral latency control. IMPORTANCE MyD88 is an adaptor for all TLRs other than TLR3, and it mediates inflammatory factors and IFN production. Our study demonstrated that the KSHV RTA protein functions as an E3 ligase to degrade MyD88 through the ubiquitin-proteasome pathway and block the transmission of TLRs signals. Moreover, we found that KSHV inhibited MyD88 expression during the early stage of de novo infection as well as in lytic reactivation. These results provide a potential mechanism for the virus to evade innate immunity.
Collapse
|
22
|
Patent Highlights. Pharm Pat Anal 2014. [DOI: 10.4155/ppa.14.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development
Collapse
|
23
|
Le Bert N, Lam AR, Ho SS, Shen YJ, Liu MM, Gasser S. STING-dependent cytosolic DNA sensor pathways regulate NKG2D ligand expression. Oncoimmunology 2014; 3:e29259. [PMID: 25114832 PMCID: PMC4126837 DOI: 10.4161/onci.29259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 12/22/2022] Open
Abstract
The DNA damage response (DDR) upregulates the expression of NKG2D ligands (NKG2DLs).1,2 We have recently reported that the DDR also induces the presence of cytosolic DNA in B-cell lymphoma cells, which leads to the activation of STING-dependent cytosolic DNA sensor pathways and the expression of RAE-1 ligands for NKG2D.3.
Collapse
Affiliation(s)
- Nina Le Bert
- Immunology Programme; Centre of Life Sciences; Department of Microbiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Adeline R Lam
- Immunology Programme; Centre of Life Sciences; Department of Microbiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore ; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | - Samantha Sw Ho
- Immunology Programme; Centre of Life Sciences; Department of Microbiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Yu J Shen
- Immunology Programme; Centre of Life Sciences; Department of Microbiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore ; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | - Mo M Liu
- Immunology Programme; Centre of Life Sciences; Department of Microbiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Stephan Gasser
- Immunology Programme; Centre of Life Sciences; Department of Microbiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore ; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| |
Collapse
|
24
|
Characterisation of cytoplasmic DNA complementary to non-retroviral RNA viruses in human cells. Sci Rep 2014; 4:5074. [PMID: 24875540 PMCID: PMC4038843 DOI: 10.1038/srep05074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/02/2014] [Indexed: 01/24/2023] Open
Abstract
The synthesis and subsequent genomic integration of DNA that is complementary to the genomes of non-retroviral RNA viruses are rarely observed. However, upon infection of various human cell lines and primary fibroblasts with the vesicular stomatitis virus (VSV), we detected DNA complementary to the VSV RNA. The VSV DNA was detected in the cytoplasm as single-stranded DNA fully complementary to the viral mRNA from the poly(A) region to the 7-methyl guanosine cap. The formation of this DNA was cell-dependent. Experimentally, we found that the transduction of cells that do not produce VSV DNA with the long interspersed nuclear element 1 and their infection with VSV could lead to the formation of VSV DNA. Viral DNA complementary to other RNA viruses was also detected in the respective infected human cells. Thus, the genetic information of the non-retroviral RNA virus genome can flow into the DNA of mammalian cells expressing LINE-1-like elements.
Collapse
|
25
|
Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol 2014; 5:115. [PMID: 24904418 PMCID: PMC4035012 DOI: 10.3389/fphar.2014.00115] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/29/2014] [Indexed: 12/30/2022] Open
Abstract
Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prosthetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion, and hemorrhage. The plasma scavenger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavenge heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce reactive oxygen species generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review, we will discuss the mechanisms behind heme-induced cytotoxicity and inflammation and the consequences of these events on different tissues and diseases.
Collapse
Affiliation(s)
- Fabianno F. Dutra
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
26
|
RIOK3 is an adaptor protein required for IRF3-mediated antiviral type I interferon production. J Virol 2014; 88:7987-97. [PMID: 24807708 DOI: 10.1128/jvi.00643-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-β. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3. Importance: The innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection.
Collapse
|
27
|
Lam AR, Bert NL, Ho SS, Shen YJ, Tang LF, Xiong GM, Croxford JL, Koo CX, Ishii KJ, Akira S, Raulet DH, Gasser S. RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma. Cancer Res 2014; 74:2193-2203. [PMID: 24590060 DOI: 10.1158/0008-5472.can-13-1703] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The immunoreceptor NKG2D originally identified in natural killer (NK) cells recognizes ligands that are upregulated on tumor cells. Expression of NKG2D ligands (NKG2DL) is induced by the DNA damage response (DDR), which is often activated constitutively in cancer cells, revealing them to NK cells as a mechanism of immunosurveillance. Here, we report that the induction of retinoic acid early transcript 1 (RAE1) ligands for NKG2D by the DDR relies on a STING-dependent DNA sensor pathway involving the effector molecules TBK1 and IRF3. Cytosolic DNA was detected in lymphoma cell lines that express RAE1 and its occurrence required activation of the DDR. Transfection of DNA into ligand-negative cells was sufficient to induce RAE1 expression. Irf3(+/-);Eμ-Myc mice expressed lower levels of RAE1 on tumor cells and showed a reduced survival rate compared with Irf3(+/+);Eμ-Myc mice. Taken together, our results suggest that genomic damage in tumor cells leads to activation of STING-dependent DNA sensor pathways, thereby activating RAE1 and enabling tumor immunosurveillance.
Collapse
Affiliation(s)
- Adeline R Lam
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, 117456, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore
| | - Nina Le Bert
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, 117456, Singapore
| | - Samantha Sw Ho
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, 117456, Singapore
| | - Yu J Shen
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, 117456, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore
| | - Li Fm Tang
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, 117456, Singapore
| | - Gordon M Xiong
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, 117456, Singapore
| | - John L Croxford
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, 117456, Singapore
| | - Christine X Koo
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, 117456, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore.,Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation (NIBIO), 7-6-8 Saito-Asagi, Ibaraki, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFREC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation (NIBIO), 7-6-8 Saito-Asagi, Ibaraki, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFREC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Shizuo Akira
- WPI Immunology Frontier Research Center (iFREC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - David H Raulet
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200, USA
| | - Stephan Gasser
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, 117456, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore
| |
Collapse
|
28
|
Abstract
The innate immune system detects pathogen-derived nucleic acids (DNA and RNA) and induces type I interferon (IFN) and other cytokines, resulting in the host defense against pathogen. We identified interferon-inducible tripartite-motif (TRIM) 56 as a regulator of double-stranded DNA-mediated type I interferon induction. TRIM56 interacted with STING and targeted it for lysine 63-linked ubiquitination. This modification induced STING dimerization, which was a prerequisite for recruitment of the antiviral kinase TBK1 and subsequent induction of IFN-beta. Taken together, these results show that TRIM56 is an interferon-inducible E3 ubiquitin ligase that modulates STING to confer double-stranded DNA-mediated innate immune responses. It is well known that Toll-like receptor 7 (TLR7) and TLR9 sense viral nucleic acids and induce production of type I interferon (IFN) by plasmacytoid dendritic cells (pDCs) to protect the host from virus infection. We showed that the IFN-inducible antiviral protein Viperin promoted TLR7- and TLR9-mediated production of type I IFN by pDCs. Viperin expression was potently induced after TLR7 or TLR9 stimulation and Viperin localized to the cytoplasmic lipid-enriched compartments, lipid bodies, in pDCs. Viperin interacted with the signal mediators IRAK1 and TRAF6 to recruit them to the lipid bodies and facilitated K63-linked ubiquitination of IRAK1 to induce the nuclear translocation of transcription factor IRF7. Thus, besides direct inhibition of viral replication, this finding reveals that Viperin mediates its antiviral function via the regulation of the TLR7 and TLR9-IRAK1 signaling axis in pDCs.
Collapse
|
29
|
Zhang W, Zhou Q, Xu W, Cai Y, Yin Z, Gao X, Xiong S. DNA-dependent activator of interferon-regulatory factors (DAI) promotes lupus nephritis by activating the calcium pathway. J Biol Chem 2013; 288:13534-50. [PMID: 23553627 DOI: 10.1074/jbc.m113.457218] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Macrophage M2b polarization conferred by self-DNA immunization initiates and propagates lupus nephritis. RESULTS Knockdown of DNA-dependent activator of interferon-regulatory factors (DAI) ameliorates SLE syndrome via blunting macrophage M2b polarization. CONCLUSION DAI functions as a DNA sensor in self-DNA-induced macrophage M2b polarization and lupus nephritis. SIGNIFICANCE We disclose the mechanism by which self-DNA induces macrophage M2b polarization and lupus nephritis DNA-dependent activator of interferon-regulatory factors (DAI) functions as a cytoplasmic DNA sensor that activates the innate immune system. We previously found that activated lymphocyte-derived self-apoptotic DNA (ALD-DNA) immunization led to pathological macrophage activation and M2b polarization, which could initiate and propagate murine lupus nephritis. However, the specific DNA sensor(s) as well as underlying molecular mechanisms involved in ALD-DNA-induced macrophage M2b polarization in systemic lupus erythematosus (SLE) disease remains unknown. In this study, we reported that DAI expression was significantly increased in SLE patients as well as in lupus mice. Gain- and loss-of-function studies revealed that DAI was involved in ALD-DNA-induced macrophage activation and M2b polarization. Moreover, ALD-DNA notably induced dimerization/oligomerization of DAI and consequently activation of nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF3) signaling pathways via calcium signaling, resulting in macrophage activation and M2b polarization. More importantly, blockade of DAI in vivo or selective knockdown of DAI in macrophages could ameliorate SLE syndrome via blunting macrophage M2b polarization and inhibiting inflammatory response in lupus mice. Our results suggest that DAI could function as a DNA sensor and a regulator in ALD-DNA-induced macrophage M2b polarization and lupus nephritis, providing the possible molecular mechanisms involved in ALD-DNA-induced macrophage M2b polarization in SLE disease and making DAI as a potential therapeutic target for the treatment of SLE.
Collapse
Affiliation(s)
- Weijuan Zhang
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
During virus infection, multiple immune signaling pathways are triggered, both within the host cell and bystander cells of an infected tissue. These pathways act in concert to mediate innate antiviral immunity and to initiate the inflammatory response against infection. The RIG-I-like receptor (RLR) family of pattern recognition receptors (PRRs) is a group of cytosolic RNA helicase proteins that can identify viral RNA as nonself via binding to pathogen associated molecular pattern (PAMP) motifs within RNA ligands that accumulate during virus infection. This interaction then leads to triggering of an innate antiviral response within the infected cells through RLR induction of downstream effector molecules such as type I interferon (IFN) and other pro-inflammatory cytokines that serve to induce antiviral and inflammatory gene expression within the local tissue. Cellular regulation of RLR signaling is a critical process that can direct the outcome of infection and is essential for governance of the overall immune response and avoidance of immune toxicity. Mechanisms of positive and negative regulation of RLR signaling have been identified that include signaling crosstalk between RLR pathways and nuclear oligomerization domain (NOD)-like receptor (NLR) pathways and Caspase networks. Furthermore, many viruses have evolved mechanisms to target these pathways to promote enhanced replication and spread within the host. These virus–host interactions therefore carry important consequences for host immunity and viral pathogenesis. Understanding the pivotal role of RLRs in immune regulation and signaling crosstalk in antiviral immunity may provide new insights into therapeutic strategies for the control of virus infection and immunity.
Collapse
Affiliation(s)
- Hilaroi J Ramos
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | |
Collapse
|
31
|
Imran M, Waheed Y, Manzoor S, Bilal M, Ashraf W, Ali M, Ashraf M. Interaction of Hepatitis C virus proteins with pattern recognition receptors. Virol J 2012; 9:126. [PMID: 22726246 PMCID: PMC3538621 DOI: 10.1186/1743-422x-9-126] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/11/2012] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen that causes acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma worldwide. This positive stranded RNA virus is extremely efficient in establishing persistent infection by escaping immune detection or hindering the host immune responses. Recent studies have discovered two important signaling pathways that activate the host innate immunity against viral infection. One of these pathways utilizes members of Toll-like receptor (TLR) family and the other uses the RNA helicase retinoic acid inducible gene I (RIG-I) as the receptors for intracellular viral double stranded RNA (dsRNA), and activation of transcription factors. In this review article, we summarize the interaction of HCV proteins with various host receptors/sensors through one of these two pathways or both, and how they exploit these interactions to escape from host defense mechanisms. For this purpose, we searched data from Pubmed and Google Scholar. We found that three HCV proteins; Core (C), non structural 3/4 A (NS3/4A) and non structural 5A (NS5A) have direct interactions with these two pathways. Core protein only in the monomeric form stimulates TLR2 pathway assisting the virus to evade from the innate immune system. NS3/4A disrupts TLR3 and RIG-1 signaling pathways by cleaving Toll/IL-1 receptor domain-containing adapter inducing IFN-beta (TRIF) and Cardif, the two important adapter proteins of these signaling cascades respectively, thus halting the defense against HCV. NS5A downmodulates the expressions of NKG2D on natural killer cells (NK cells) via TLR4 pathway and impairs the functional ability of these cells. TLRs and RIG-1 pathways have a central role in innate immunity and despite their opposing natures to HCV proteins, when exploited together, HCV as an ever developing virus against host immunity is able to accumulate these mechanisms for near unbeatable survival.
Collapse
Affiliation(s)
- Muhammad Imran
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Yasir Waheed
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sobia Manzoor
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Bilal
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Waseem Ashraf
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Ali
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Ashraf
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
32
|
Jin B, Sun T, Yu XH, Yang YX, Yeo AET. The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol 2012; 2012:836485. [PMID: 22737174 PMCID: PMC3376488 DOI: 10.1155/2012/836485] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/26/2012] [Indexed: 02/07/2023]
Abstract
Invading pathogens have unique molecular signatures that are recognized by Toll-like receptors (TLRs) resulting in either activation of antigen-presenting cells (APCs) and/or costimulation of T cells inducing both innate and adaptive immunity. TLRs are also involved in T-cell development and can reprogram Treg cells to become helper cells. T cells consist of various subsets, that is, Th1, Th2, Th17, T follicular helper (Tfh), cytotoxic T lymphocytes (CTLs), regulatory T cells (Treg) and these originate from thymic progenitor thymocytes. T-cell receptor (TCR) activation in distinct T-cell subsets with different TLRs results in differing outcomes, for example, activation of TLR4 expressed in T cells promotes suppressive function of regulatory T cells (Treg), while activation of TLR6 expressed in T cells abrogates Treg function. The current state of knowledge of regarding TLR-mediated T-cell development and differentiation is reviewed.
Collapse
Affiliation(s)
- Bo Jin
- 1Department of Gastroenterology, The 309th Hospital of The People's Liberation Army, Beijing 100091, China
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
- *Bo Jin: and
| | - Tao Sun
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
- *Tao Sun:
| | - Xiao-Hong Yu
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
| | - Ying-Xiang Yang
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
| | | |
Collapse
|
33
|
Huang TH, Uthe JJ, Bearson SMD, Demirkale CY, Nettleton D, Knetter S, Christian C, Ramer-Tait AE, Wannemuehler MJ, Tuggle CK. Distinct peripheral blood RNA responses to Salmonella in pigs differing in Salmonella shedding levels: intersection of IFNG, TLR and miRNA pathways. PLoS One 2011; 6:e28768. [PMID: 22174891 PMCID: PMC3236216 DOI: 10.1371/journal.pone.0028768] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 11/15/2011] [Indexed: 12/22/2022] Open
Abstract
Transcriptomic analysis of the response to bacterial pathogens has been reported for several species, yet few studies have investigated the transcriptional differences in whole blood in subjects that differ in their disease response phenotypes. Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of Salmonella is an important cause of foodborne illness and zoonotic disease. To investigate gene pathways and biomarkers associated with the variance in Salmonella shedding following experimental inoculation, we initiated the first analysis of the whole blood transcriptional response induced by Salmonella. A population of pigs (n = 40) was inoculated with ST and peripheral blood and fecal Salmonella counts were collected between 2 and 20 days post-inoculation (dpi). Two groups of pigs with either low shedding (LS) or persistent shedding (PS) phenotypes were identified. Global transcriptional changes in response to ST inoculation were identified by Affymetrix Genechip® analysis of peripheral blood RNA at day 0 and 2 dpi. ST inoculation triggered substantial gene expression changes in the pigs and there was differential expression of many genes between LS and PS pigs. Analysis of the differential profiles of gene expression within and between PS and LS phenotypic classes identified distinct regulatory pathways mediated by IFN-γ, TNF, NF-κB, or one of several miRNAs. We confirmed the activation of two regulatory factors, SPI1 and CEBPB, and demonstrated that expression of miR-155 was decreased specifically in the PS animals. These data provide insight into specific pathways associated with extremes in Salmonella fecal shedding that can be targeted for further exploration on why some animals develop a carrier state. This knowledge can also be used to develop rational manipulations of genetics, pharmaceuticals, nutrition or husbandry methods to decrease Salmonella colonization, shedding and spread.
Collapse
Affiliation(s)
- Ting-Hua Huang
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Jolita J. Uthe
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Shawn M. D. Bearson
- National Animal Disease Center, United States Department of Agriculture- Agricultural Research Service, Ames, Iowa, United States of America
| | | | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Susan Knetter
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Curtis Christian
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Amanda E. Ramer-Tait
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | | | - Christopher K. Tuggle
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
34
|
Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med 2011; 17:1585-93. [PMID: 22101768 DOI: 10.1038/nm.2505] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/09/2011] [Indexed: 12/13/2022]
Abstract
Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV infection and intestinal malabsorption were very similar to those of the B cell-deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans.
Collapse
|
35
|
Gao L, Coope H, Grant S, Ma A, Ley SC, Harhaj EW. ABIN1 protein cooperates with TAX1BP1 and A20 proteins to inhibit antiviral signaling. J Biol Chem 2011; 286:36592-602. [PMID: 21885437 PMCID: PMC3196082 DOI: 10.1074/jbc.m111.283762] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Upon virus infection, the innate immune response provides the first line of protection and rapidly induces type I interferons (IFNα/β), which mediate potent antiviral effects. To maintain homeostasis and prevent autoimmunity, IFN production is tightly regulated; however, the mechanisms of negative regulation are poorly understood. Herein, we demonstrate that the A20 binding inhibitor of NF-κB 1 (ABIN1) is a novel negative regulator of antiviral signaling. Overexpression of ABIN1 inhibited IFN-β promoter activation in response to virus infection or poly(I:C) transfection, whereas siRNA-mediated knockdown of ABIN1 enhanced IFN-β production upon virus infection. ABIN1 interacted with the A20 regulatory molecule TAX1BP1 and was essential for the recruitment of TAX1BP1 and A20 to the noncanonical IκB kinases TBK1 and IKKi in response to poly(I:C) transfection. ABIN1 and TAX1BP1 together disrupted the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKKi to attenuate lysine 63-linked polyubiquitination of TBK1/IKKi. Finally, an intact ubiquitin binding domain of ABIN1 was essential for ABIN1 to interact with TBK1/IKKi and inhibit IFN-β production upon poly(I:C) transfection or virus infection. Together, these results suggest that ABIN1 requires its ubiquitin binding domain and cooperates with TAX1BP1 and A20 to restrict antiviral signaling.
Collapse
Affiliation(s)
- Linlin Gao
- From the Department of Microbiology and Immunology, Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida 33136
| | - Helen Coope
- the Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, United Kingdom, and
| | - Susan Grant
- the Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, United Kingdom, and
| | - Averil Ma
- the Department of Medicine, University of California at San Francisco, San Francisco, California 94143
| | - Steven C. Ley
- the Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, United Kingdom, and
| | - Edward W. Harhaj
- From the Department of Microbiology and Immunology, Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida 33136, , To whom correspondence should be addressed: Dept. of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, 1550 NW 10 Ave., Miami, FL 33136. Tel.: 305-243-7893; Fax: 305-243-6410; E-mail:
| |
Collapse
|
36
|
Imai Y. [Pathogenesis of and therapeutic targets for severe respiratory failure mediated by emerging respiratory virus infection]. Nihon Yakurigaku Zasshi 2011; 138:141-5. [PMID: 21986061 DOI: 10.1254/fpj.138.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Bacterial DNA promotes proliferation of rat pancreatic stellate cells thorough toll-like receptor 9: potential mechanisms for bacterially induced fibrosis. Pancreas 2011; 40:823-31. [PMID: 21747311 DOI: 10.1097/mpa.0b013e318224a501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES We hoped to clarify the possible role of CpG DNA as a trigger factor for overt pancreatic inflammation of pancreatic stellate cells (PSCs). METHODS Pancreatic stellate cells were isolated from the male Lewis rat. The expression of Toll-like receptor 9 (TLR9) messenger RNA and protein were evaluated by reverse transcription-polymerase chain reaction and immunofluorescent cytochemistry. Internalization of CpG DNA was analyzed by confocal laser scanning microscopy. Pancreatic stellate cells were incubated with CpG DNA, and then cell proliferation and migration were assessed. RESULTS Constitutive expression of TLR9 occurs at the messenger RNA and protein levels. After several minutes of CpG DNA administration, CpG DNA was observed on the cell membrane surface and in the cytoplasm and found to be translocating into the perinucleus of PSCs. Pancreatic stellate cells migrated and proliferated in dose- and time-dependent manners in response to simulation by CpG DNA. Proliferation of PSCs was observed 3 hours after administration (earlier than platelet-derived growth factor-induced proliferation), suggesting that PSCs respond readily to provide innate immunity. Endosomal acidification inhibitors attenuated CpG DNA-induced signaling, leading to suppression of DNA synthesis by PSCs. CONCLUSIONS Our findings demonstrate that bacterial DNA promotes migration and proliferation of PSCs and suggest that bacterial DNA can initiate and sustain pancreatic inflammation and fibrosis by means of TLR9.
Collapse
|
38
|
Matsuda A, Ogawa M, Yanai H, Naka D, Goto A, Ao T, Tanno Y, Takeda K, Watanabe Y, Honda K, Taniguchi T. Generation of mice deficient in RNA-binding motif protein 3 (RBM3) and characterization of its role in innate immune responses and cell growth. Biochem Biophys Res Commun 2011; 411:7-13. [PMID: 21684257 DOI: 10.1016/j.bbrc.2011.06.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 12/28/2022]
Abstract
The activation of innate immune responses is critical to host defense against microbial infections, wherein nucleic acid-sensing pattern recognition receptors recognize DNA or RNA from viruses or bacteria and activate downstream signaling pathways. In a search for new DNA-sensing molecules that regulate innate immune responses, we identified RNA-binding motif protein 3 (RBM3), whose role has been implicated in the regulation of cell growth. In this study, we generated Rbm3-deficient (Rbm3(-/-)) mice to study the role of RBM3 in immune responses and cell growth. Despite evidence for its interaction with immunogenic DNA in a cell, no overt phenotypic abnormalities were found in cells from Rbm3(-/-) mice for the DNA-mediated induction of cytokine genes. Interestingly, however, Rbm3(-/-) mouse embryonic fibroblasts (MEFs) showed poorer proliferation rates as compared to control MEFs. Further cell cycle analysis revealed that Rbm3(-/-) MEFs have markedly increased number of G2-phase cells, suggesting a hitherto unknown role of RBM3 in the G2-phase control. Thus, these mutant mice and cells may provide new tools with which to study the mechanisms underlying the regulation of cell cycle and oncogenesis.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim HE, Ahn HC, Lee YM, Lee EH, Seo YJ, Kim YG, Kim KK, Choi BS, Lee JH. The Zβ domain of human DAI binds to Z-DNA via a novel B-Z transition pathway. FEBS Lett 2011; 585:772-8. [DOI: 10.1016/j.febslet.2011.01.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 11/26/2022]
|
40
|
Carty M, Bowie AG. Recent insights into the role of Toll-like receptors in viral infection. Clin Exp Immunol 2011; 161:397-406. [PMID: 20560984 DOI: 10.1111/j.1365-2249.2010.04196.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) have a central role in innate immunity as they detect conserved pathogen-associated molecular patterns (PAMPs) on a range of microbes, including viruses, leading to innate immune activation and orchestration of the adaptive immune response. To date, a large number of viruses have been shown to trigger innate immunity via TLRs, suggesting that these receptors are likely to be important in the outcome to viral infection. This suggestion is supported by the observation that many viruses have evolved mechanisms not only to evade the innate immune system, but also to subvert it for the benefit of the virus. In this review we will discuss earlier evidence, mainly from knock-out mice studies, implicating TLRs in the innate immune response to viruses, in light of more recent clinical data demonstrating that TLRs are important for anti-viral immunity in humans.
Collapse
Affiliation(s)
- M Carty
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
41
|
Verma S, Benedict CA. Sources and signals regulating type I interferon production: lessons learned from cytomegalovirus. J Interferon Cytokine Res 2011; 31:211-8. [PMID: 21226618 DOI: 10.1089/jir.2010.0118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type I interferons (IFN-αβ) are pleiotropic cytokines critical for antiviral host defense, and the timing and magnitude of their production involve a complex interplay between host and pathogen factors. Mouse cytomegalovirus (a β-herpesvirus) is a persistent virus that induces a biphasic IFN-αβ response during the first days of infection. The cell types and molecular mechanisms governing these 2 phases are unique, with splenic stromal cells being a major source of initial IFN-αβ, requiring communication with B cells expressing lymphotoxin, a tumor necrosis factor family cytokine. Here we review the factors that regulate this lymphotoxin-IFN-αβ "axis" during cytomegalovirus infection, highlight how stroma-derived IFN-αβ contributes in other models, and discuss how deregulation of this axis can lead to pathology in some settings.
Collapse
Affiliation(s)
- Shilpi Verma
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | | |
Collapse
|
42
|
Engel A, Barton GM. Compartment-Specific Control of Signaling from a DNA-Sensing Immune Receptor. Sci Signal 2010; 3:pe45. [DOI: 10.1126/scisignal.3150pe45] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The endosomal compartment in which TLR9 is activated determines which cytokines are produced.
Collapse
Affiliation(s)
- Alex Engel
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gregory M. Barton
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
43
|
Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, Kawai T, Akira S. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 2010; 33:765-76. [PMID: 21074459 DOI: 10.1016/j.immuni.2010.10.013] [Citation(s) in RCA: 382] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/06/2010] [Accepted: 08/30/2010] [Indexed: 11/15/2022]
Abstract
The innate immune system detects pathogen- and host-derived double-stranded DNA exposed to the cytosol and induces type I interferon (IFN) and other cytokines. Here, we identified interferon-inducible tripartite-motif (TRIM) 56 as a regulator of double-stranded DNA-mediated type I interferon induction. TRIM56 overexpression enhanced IFN-β promoter activation after double-stranded DNA stimulation whereas TRIM56 knockdown abrogated it. TRIM56 interacted with STING and targeted it for lysine 63-linked ubiquitination. This modification induced STING dimerization, which was a prerequisite for recruitment of the antiviral kinase TBK1 and subsequent induction of IFN-β. Taken together, these results indicate that TRIM56 is an interferon-inducible E3 ubiquitin ligase that modulates STING to confer double-stranded DNA-mediated innate immune responses.
Collapse
Affiliation(s)
- Tetsuo Tsuchida
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hayashi T, Nishitsuji H, Takamori A, Hasegawa A, Masuda T, Kannagi M. DNA-dependent activator of IFN-regulatory factors enhances the transcription of HIV-1 through NF-κB. Microbes Infect 2010; 12:937-47. [DOI: 10.1016/j.micinf.2010.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 12/21/2022]
|
45
|
Sweeney TE, Suliman HB, Hollingsworth JW, Piantadosi CA. Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis. PLoS One 2010; 5:e11606. [PMID: 20657826 PMCID: PMC2905396 DOI: 10.1371/journal.pone.0011606] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/21/2010] [Indexed: 12/31/2022] Open
Abstract
The PGC family of transcriptional co-activators (PGC-1alpha [Ppargc1a], PGC-1beta [Ppargc1b], and PRC [Pprc]) coordinates the upregulation of mitochondrial biogenesis, and Ppargc1a is known to be activated in response to mitochondrial damage in sepsis. Therefore, we postulated that the PGC family is regulated by the innate immune system. We investigated whether mitochondrial biogenesis and PGC gene expression are disrupted in an established model of Staphylococcus aureus sepsis both in mice with impaired innate immune function (TLR2-/- and TLR4-/-) and in wild-type controls. We found an early up-regulation of Ppargc1a and Ppargc1b post-infection (at 6 h) in WT mice, but the expression of both genes was concordantly dysregulated in TLR2-/- mice (no increase at 6 h) and in TLR4-/- mice (amplified at 6 h). However, the third family member, PRC, was regulated differently, and its expression increased significantly at 24 h in all three mouse strains (WT, TLR2-/-, and TLR4-/-). In silico analyses showed that Ppargc1a and Ppargc1b share binding sites for microRNA mmu-mir-202-3p. Thus, miRNA-mediated post-transcriptional mRNA degradation could account for the failure to increase the expression of both genes in TLR2-/- mice. The expression of mmu-mir-202-3p was measured by real-time PCR and found to be significantly increased in TLR2-/- but not in WT or TLR4-/- mice. In addition, it was found that mir-202-3p functionally decreases Ppargc1a mRNA in vitro. Thus, both innate immune signaling through the TLRs and mir-202-3p-mediated mRNA degradation are implicated in the co-regulation of Ppargc1a and Ppargc1b during inflammation. Moreover, the identification of mir-202-3p as a potential factor for Ppargc1a and Ppargc1b repression in acute inflammation may open new avenues for mitochondrial research and, potentially, therapy.
Collapse
Affiliation(s)
- Timothy E Sweeney
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | |
Collapse
|
46
|
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
47
|
Manservigi R, Argnani R, Marconi P. HSV Recombinant Vectors for Gene Therapy. Open Virol J 2010; 4:123-56. [PMID: 20835362 DOI: 10.2174/1874357901004030123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/13/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022] Open
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
48
|
Lee-Kirsch MA. Nucleic acid metabolism and systemic autoimmunity revisited. ACTA ACUST UNITED AC 2010; 62:1208-12. [PMID: 20131297 DOI: 10.1002/art.27372] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Douville RN, Hiscott J. The interface between the innate interferon response and expression of host retroviral restriction factors. Cytokine 2010; 52:108-15. [PMID: 20627758 DOI: 10.1016/j.cyto.2010.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/23/2010] [Indexed: 01/02/2023]
Abstract
Inhibition of the expression and replication of human retroviruses by different families of host restriction factors has emerged as an important component of antiviral innate immunity. The term "intrinsic immunity" is used to define this specific arm of innate immunity and suggests that host restriction factors are constitutively present within infected cells. The essential role of the interferon (IFN) signaling pathways in eliciting host restriction factor gene transcription - triggered a consequence of pattern recognition receptor signaling - may be an under-recognized aspect of intrinsic immunity. This review discusses the relevance of innate IFN signaling in the induction of retroviral restriction factors, the mechanisms of action of these factors, as well as the counter-regulation of IFN response that results from the plethora of retrovirus-restriction factor interactions.
Collapse
Affiliation(s)
- Renée N Douville
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Côte Ste-Catherine, Dept. of Microbiology and Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | |
Collapse
|
50
|
Optineurin negatively regulates the induction of IFNbeta in response to RNA virus infection. PLoS Pathog 2010; 6:e1000778. [PMID: 20174559 PMCID: PMC2824764 DOI: 10.1371/journal.ppat.1000778] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 01/19/2010] [Indexed: 01/24/2023] Open
Abstract
The innate immune response provides a critical defense against microbial infections, including viruses. These are recognised by pattern recognition receptors including Toll-like receptors (TLRs) and RIG-I like helicases (RLHs). Detection of virus triggers signalling cascades that induce transcription of type I interferons including IFNbeta, which are pivotal for the initiation of an anti-viral state. Despite the essential role of IFNbeta in the anti-viral response, there is an incomplete understanding of the negative regulation of IFNbeta induction. Here we provide evidence that expression of the Nemo-related protein, optineurin (NRP/FIP2), has a role in the inhibition of virus-triggered IFNbeta induction. Over-expression of optineurin inhibited Sendai-virus (SeV) and dsRNA triggered induction of IFNbeta, whereas depletion of optineurin with siRNA promoted virus-induced IFNbeta production and decreased RNA virus replication. Immunoprecipitation and immunofluorescence studies identified optineurin in a protein complex containing the antiviral protein kinase TBK1 and the ubiquitin ligase TRAF3. Furthermore, mutagenesis studies determined that binding of ubiquitin was essential for both the correct sub-cellular localisation and the inhibitory function of optineurin. This work identifies optineurin as a critical regulator of antiviral signalling and potential target for future antiviral therapy.
Collapse
|