1
|
Aimulajiang K, Chu W, Liao S, Wen Z, He R, Lu M, Xu L, Song X, Li X, Yan R. Succinate coenzyme A ligase β-like protein from Trichinella spiralis is a potential therapeutic molecule for allergic asthma. Immun Inflamm Dis 2024; 12:e1321. [PMID: 38888451 PMCID: PMC11184933 DOI: 10.1002/iid3.1321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND For decades, studies have demonstrated the anti-inflammatory potential of proteins secreted by helminths in allergies and asthma. Previous studies have demonstrated the immunomodulatory capabilities of Succinate Coenzyme A ligase beta-like protein (SUCLA-β) derived from Trichinella spiralis, a crucial excretory product of this parasite. OBJECTIVE To explore the therapeutic potential of SUCLA-β in alleviating and controlling ovalbumin (OVA)-induced allergic asthma, as well as its influence on host immune modulation. METHODS In this research, we utilized the rTs-SUCLA-β protein derived from T. spiralis to investigate its potential in mitigating airway inflammation in a murine model of asthma induced by OVA sensitization/stimulation, both pre- and post-challenge. The treatment's efficacy was assessed by quantifying the extent of inflammation in the lungs. RESULTS Treatment with rTs-SUCLA-β demonstrated efficacy in ameliorating OVA-induced airway inflammation, as evidenced by a reduction in eosinophil infiltration, levels of OVA-specific Immunoglobulin E, interferon-γ, interleukin (IL)-9, and IL-17A, along with an elevation in IL-10. The equilibrium between Th17 and Treg cells plays a pivotal role in modulating the abundance of inflammatory cells within the organism, thereby ameliorating inflammation and alleviating symptoms associated with allergic asthma. CONCLUSIONS AND CLINICAL RELEVANCE Our data revealed that T. spiralis-derived Ts-SUCLA-β protein may inhibit the allergic airway inflammation by regulating host immune responses.
Collapse
Affiliation(s)
- Kalibixiati Aimulajiang
- Laboratory of Animal Health and Food Safety, MOE Joint International Research, College of Veterinary MedicineNanjing Agricultural UniversityNanjingJiangsuP. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine InstituteThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangP. R. China
| | - Wen Chu
- Laboratory of Animal Health and Food Safety, MOE Joint International Research, College of Veterinary MedicineNanjing Agricultural UniversityNanjingJiangsuP. R. China
| | - Shuyi Liao
- Laboratory of Animal Health and Food Safety, MOE Joint International Research, College of Veterinary MedicineNanjing Agricultural UniversityNanjingJiangsuP. R. China
- Changsha Animal and Plant Disease Control CenterChangshaHunanP. R. China
| | - Zhaohai Wen
- Laboratory of Animal Health and Food Safety, MOE Joint International Research, College of Veterinary MedicineNanjing Agricultural UniversityNanjingJiangsuP. R. China
- Department of Veterinary Medicine, College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangP. R. China
| | - Rongdong He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine InstituteThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangP. R. China
| | - Mingmin Lu
- Laboratory of Animal Health and Food Safety, MOE Joint International Research, College of Veterinary MedicineNanjing Agricultural UniversityNanjingJiangsuP. R. China
| | - Lixin Xu
- Laboratory of Animal Health and Food Safety, MOE Joint International Research, College of Veterinary MedicineNanjing Agricultural UniversityNanjingJiangsuP. R. China
| | - Xiaokai Song
- Laboratory of Animal Health and Food Safety, MOE Joint International Research, College of Veterinary MedicineNanjing Agricultural UniversityNanjingJiangsuP. R. China
| | - Xiangrui Li
- Laboratory of Animal Health and Food Safety, MOE Joint International Research, College of Veterinary MedicineNanjing Agricultural UniversityNanjingJiangsuP. R. China
| | - Ruofeng Yan
- Laboratory of Animal Health and Food Safety, MOE Joint International Research, College of Veterinary MedicineNanjing Agricultural UniversityNanjingJiangsuP. R. China
| |
Collapse
|
2
|
Silva TF, Detoni MB, Concato-Lopes VM, Tomiotto-Pellissier F, Miranda-Sapla MM, Bortoleti BTDS, Gonçalves MD, Rodrigues ACJ, Sanfelice RA, Cruz EMS, Silva MSDS, Carloto ACM, Bidoia DL, Costa IN, Pavanelli WR, Conchon-Costa I. Leishmania amazonensis infection regulates oxidate stress in hyperglycemia and diabetes impairing macrophage's function and immune response. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167078. [PMID: 38364941 DOI: 10.1016/j.bbadis.2024.167078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Leishmaniasis is a group of infectious diseases caused by protozoa of the Leishmania genus and its immunopathogenesis results from an unbalanced immune response during the infection. Diabetes is a chronic disease resulting from dysfunction of the body's production of insulin or the ability to use it properly, leading to hyperglycemia causing tissue damage and impairing the immune system. AIMS The objective of this work was to evaluate the effects of hyperglycemia and diabetes during Leishmania amazonensis infection and how these conditions alter the immune response to the parasite. METHODS An in vitro hyperglycemic stimulus model using THP-1-derived macrophages and an in vivo experimental diabetes with streptozotocin (STZ) in C57BL/6 mice was employed to investigate the impact of diabetes and hyperglicemia in Leishmania amazonensis infection. RESULTS We observed that hyperglycemia impair the leishmanicidal capacity of macrophages derived from THP-1 cells and reverse the resistance profile that C57BL/6 mice have against infection by L. amazonensis, inducing more exacerbated lesions compared to non-diabetic animals. In addition, the hyperglycemic stimulus favored the increase of markers related to the phenotype of M2 macrophages. The induction of experimental diabetes in C57BL/6 mice resulted in a failure in the production of nitric oxide (NO) in the face of infection and macrophages from diabetic animals failed to process and present Leishmania antigens, being unable to activate and induce proliferation of antigen-specific lymphocytes. CONCLUSION Together, these data demonstrate that diabetes and hyperglycemia can impair the cellular immune response, mainly of macrophages, against infection by parasites of the genus Leishmania.
Collapse
Affiliation(s)
- Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil.
| | - Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Virgínia Márcia Concato-Lopes
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil; Department of Medical Pathology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil; Department of Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil; Icahn School of Medicine, Mount Sinai Hospital, New York, NY, United States
| | - Manoela Daiele Gonçalves
- Biotransformation and Phytochemistry Laboratory, Department of Chemistry, State University of Londrina, Londrina, PR, Brazil
| | - Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil; Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR, Brazil
| | - Raquel Arruda Sanfelice
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Ellen Mayara Souza Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Maria Stacy Dos Santos Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Danielle Lazarin Bidoia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
3
|
Zhang XE, Zheng P, Ye SZ, Ma X, Liu E, Pang YB, He QY, Zhang YX, Li WQ, Zeng JH, Guo J. Microbiome: Role in Inflammatory Skin Diseases. J Inflamm Res 2024; 17:1057-1082. [PMID: 38375021 PMCID: PMC10876011 DOI: 10.2147/jir.s441100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
As the body's largest organ, the skin harbors a highly diverse microbiota, playing a crucial role in resisting foreign pathogens, nurturing the immune system, and metabolizing natural products. The dysregulation of human skin microbiota is implicated in immune dysregulation and inflammatory responses. This review delineates the microbial alterations and immune dysregulation features in common Inflammatory Skin Diseases (ISDs) such as psoriasis, rosacea, atopic dermatitis(AD), seborrheic dermatitis(SD), diaper dermatitis(DD), and Malassezia folliculitis(MF).The skin microbiota, a complex and evolving community, undergoes changes in composition and function that can compromise the skin microbial barrier. These alterations induce water loss and abnormal lipid metabolism, contributing to the onset of ISDs. Additionally, microorganisms release toxins, like Staphylococcus aureus secreted α toxins and proteases, which may dissolve the stratum corneum, impairing skin barrier function and allowing entry into the bloodstream. Microbes entering the bloodstream activate molecular signals, leading to immune disorders and subsequent skin inflammatory responses. For instance, Malassezia stimulates dendritic cells(DCs) to release IL-12 and IL-23, differentiating into a Th17 cell population and producing proinflammatory mediators such as IL-17, IL-22, TNF-α, and IFN-α.This review offers new insights into the role of the human skin microbiota in ISDs, paving the way for future skin microbiome-specific targeted therapies.
Collapse
Affiliation(s)
- Xue-Er Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Pai Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Sheng-Zhen Ye
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yao-Bin Pang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Qing-Ying He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yu-Xiao Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Wen-Quan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Jin-Hao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| |
Collapse
|
4
|
Aravindhan V, Yuvaraj S. Immune-endocrine network in diabetes-tuberculosis nexus: does latent tuberculosis infection confer protection against meta-inflammation and insulin resistance? Front Endocrinol (Lausanne) 2024; 15:1303338. [PMID: 38327565 PMCID: PMC10848915 DOI: 10.3389/fendo.2024.1303338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Tuberculosis patients with diabetes, have higher sputum bacillary load, delayed sputum conversion, higher rates of drug resistance, higher lung cavitary involvement and extra-pulmonary TB infection, which is called as "Diabetes-Tuberculosis Nexus". However, recently we have shown a reciprocal relationship between latent tuberculosis infection and insulin resistance, which has not been reported before. In this review, we would first discuss about the immune-endocrine network, which operates during pre-diabetes and incipient diabetes and how it confers protection against LTBI. The ability of IR to augment anti-TB immunity and the immunomodulatory effect of LTBI to quench IR were discussed, under IR-LTB antagonism. The ability of diabetes to impair anti-TB immunity and ability of active TB to worsen glycemic control, were discussed under "Diabetes-Tuberculosis Synergy". The concept of "Fighter Genes" and how they confer protection against TB but susceptibility to IR was elaborated. Finally, we conclude with an evolutionary perspective about how IR and LTBI co-evolved in endemic zones, and have explained the molecular basis of "IR-LTB" Antagonism" and "DM-TB Synergy", from an evolutionary perspective.
Collapse
Affiliation(s)
- Vivekanandhan Aravindhan
- Department of Genetics, Dr Arcot Lakshmanasamy Mudaliyar Post Graduate Institute of Basic Medical Sciences (Dr ALM PG IBMS), University of Madras, Chennai, India
| | | |
Collapse
|
5
|
Abstract
Type 2 immunity mediates protective responses to helminths and pathological responses to allergens, but it also has broad roles in the maintenance of tissue integrity, including wound repair. Type 2 cytokines are known to promote fibrosis, an overzealous repair response, but their contribution to healthy wound repair is less well understood. This review discusses the evidence that the canonical type 2 cytokines, IL-4 and IL-13, are integral to the tissue repair process through two main pathways. First, essential for the progression of effective tissue repair, IL-4 and IL-13 suppress the initial inflammatory response to injury. Second, these cytokines regulate how the extracellular matrix is modified, broken down, and rebuilt for effective repair. IL-4 and/or IL-13 amplifies multiple aspects of the tissue repair response, but many of these pathways are highly redundant and can be induced by other signals. Therefore, the exact contribution of IL-4Rα signaling remains difficult to unravel.
Collapse
Affiliation(s)
- Judith E Allen
- Lydia Becker Institute for Immunology and Inflammation and Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
6
|
Minor BMN, LeMoine D, Seger C, Gibbons E, Koudouovoh J, Taya M, Kurtz D, Xu Y, Hammes SR. Estradiol Augments Tumor-Induced Neutrophil Production to Promote Tumor Cell Actions in Lymphangioleiomyomatosis Models. Endocrinology 2023; 164:bqad061. [PMID: 37042477 PMCID: PMC10164661 DOI: 10.1210/endocr/bqad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/13/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease caused by smooth muscle cell-like tumors containing tuberous sclerosis (TSC) gene mutations and found almost exclusively in females. Patient studies suggest LAM progression is estrogen dependent, an observation supported by in vivo mouse models. However, in vitro data using TSC-null cell lines demonstrate modest estradiol (E2) responses, suggesting E2 effects in vivo may involve pathways independent of direct tumor stimulation. We previously reported tumor-dependent neutrophil expansion and promotion of TSC2-null tumor growth in an E2-sensitive LAM mouse model. We therefore hypothesized that E2 stimulates tumor growth in part by promoting neutrophil production. Here we report that E2-enhanced lung colonization of TSC2-null cells is indeed dependent on neutrophils. We demonstrate that E2 induces granulopoiesis via estrogen receptor α in male and female bone marrow cultures. With our novel TSC2-null mouse myometrial cell line, we show that factors released from these cells drive E2-sensitive neutrophil production. Last, we analyzed single-cell RNA sequencing data from LAM patients and demonstrate the presence of tumor-activated neutrophils. Our data suggest a powerful positive feedback loop whereby E2 and tumor factors induce neutrophil expansion, which in turn intensifies tumor growth and production of neutrophil-stimulating factors, resulting in continued TSC2-null tumor growth.
Collapse
Affiliation(s)
- Briaunna M N Minor
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dana LeMoine
- Division of Comparative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christina Seger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Erin Gibbons
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jules Koudouovoh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Manisha Taya
- Division of Hematology and Oncology, Department of Internal Medicine, UTSW Medical Center, Dallas, TX 75390, USA
| | - Daniel Kurtz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yan Xu
- Divisions of Pulmonary Biology & Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Immune Correlates of Disseminated BCG Infection in IL12RB1-Deficient Mice. Vaccines (Basel) 2022; 10:vaccines10071147. [PMID: 35891311 PMCID: PMC9316795 DOI: 10.3390/vaccines10071147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Interleukin-12 receptor β1 (IL12RB1)-deficient individuals show increased susceptibilities to local or disseminated BCG infection and environmental mycobacteria infection. However, the low clinical penetrance of IL12RB1 deficiency and low recurrence rate of mycobacteria infection suggest that protective immunity still exists in this population. In this study, we investigated the mechanism of tuberculosis suppression using the IL12RB1-deficient mouse model. Our results manifested that Il12rb1−/− mice had significantly increased CFU counts in spleens and lungs, especially when BCG (Danish strain) was inoculated subcutaneously. The innate TNF-a and IFN-γ responses decreased, while the IL-17 responses increased significantly in the lungs of Il12rb1−/− mice. We also found that PPD-specific IFN-γ release was impaired in Il12rb1−/− mice, but the specific TNF-a release was not compromised, and the antibody responses were significantly enhanced. Moreover, correlation analyses revealed that both the innate and PPD-specific IFN-γ responses positively correlated with CFU counts, whereas the innate IL-12a levels negatively correlated with CFU counts in Il12rb1−/− mice lungs. Collectively, these findings proved that the adaptive immunities against mycobacteria are not completely nullified in Il12rb1−/− mice. Additionally, our results imply that IFN-γ responses alone might not be able to contain BCGitis in the setting of IL12RB1 deficiency.
Collapse
|
8
|
Hess HW, Stooks JJ, Baker TB, Chapman CL, Johnson BD, Pryor RR, Basile DP, Monroe JC, Hostler D, Schlader ZJ. Kidney injury risk during prolonged exposure to current and projected wet bulb temperatures occurring during extreme heat events in healthy young men. J Appl Physiol (1985) 2022; 133:27-40. [PMID: 35616302 PMCID: PMC9236880 DOI: 10.1152/japplphysiol.00601.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Wet bulb temperatures (Twet) during extreme heat events are commonly 31°C. Recent predictions indicate that Twet will approach or exceed 34°C. Epidemiological data indicate that exposure to extreme heat events increases kidney injury risk. We tested the hypothesis that kidney injury risk is elevated to a greater extent during prolonged exposure to Twet = 34°C compared with Twet = 31°C. Fifteen healthy men rested for 8 h in Twet = 31 (0)°C and Twet = 34 (0)°C. Insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor of metalloproteinase 2 (TIMP-2), and thioredoxin 1 (TRX-1) were measured from urine samples. The primary outcome was the product of IGFBP7 and TIMP-2 ([IGFBP7·TIMP-2]), which provided an index of kidney injury risk. Plasma interleukin-17a (IL-17a) was also measured. Data are presented at preexposure and after 8 h of exposure and as mean (SD) change from preexposure. The increase in [IGFBP7·TIMP-2] was markedly greater at 8 h in the 34°C [+26.9 (27.1) (ng/mL)2/1,000) compared with the 31°C [+6.2 (6.5) (ng/mL)2/1,000] trial (P < 0.01). Urine TRX-1, a marker of renal oxidative stress, was higher at 8 h in the 34°C [+77.6 (47.5) ng/min] compared with the 31°C [+16.2 (25.1) ng/min] trial (P < 0.01). Plasma IL-17a, an inflammatory marker, was elevated at 8 h in the 34°C [+199.3 (90.0) fg/dL; P < 0.01] compared with the 31°C [+9.0 (95.7) fg/dL] trial. Kidney injury risk is exacerbated during prolonged resting exposures to Twet experienced during future extreme heat events (34°C) compared with that experienced currently (31°C), likely because of oxidative stress and inflammatory processes.NEW AND NOTEWORTHY We have demonstrated that kidney injury risk is increased when men are exposed over an 8-h period to a wet bulb temperature of 31°C and exacerbated at a wet bulb temperature of 34°C. Importantly, these heat stress conditions parallel those that are encountered during current (31°C) and future (34°C) extreme heat events. The kidney injury biomarker analyses indicate both the proximal and distal tubules as the locations of potential renal injury and that the injury is likely due to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hayden W Hess
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Jocelyn J Stooks
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Tyler B Baker
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | | | - Blair D Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Riana R Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - David P Basile
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - Jacob C Monroe
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
9
|
Oishi K, Horiuchi S, Frere J, Schwartz RE, tenOever BR. A diminished immune response underlies age-related SARS-CoV-2 pathologies. Cell Rep 2022; 39:111002. [PMID: 35714615 PMCID: PMC9181267 DOI: 10.1016/j.celrep.2022.111002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Morbidity and mortality in response to SARS-CoV-2 infection are significantly elevated in people of advanced age. To understand the underlying biology of this phenotype, we utilize the golden hamster model to compare how the innate and adaptive immune responses to SARS-CoV-2 infection differed between younger and older animals. We find that while both hamster cohorts showed similar virus kinetics in the lungs, the host response in older animals was dampened, with diminished tissue repair in the respiratory tract post-infection. Characterization of the adaptive immune response also revealed age-related differences, including fewer germinal center B cells in older hamsters, resulting in reduced potency of neutralizing antibodies. Moreover, older animals demonstrate elevated suppressor T cells and neutrophils in the respiratory tract, correlating with an increase in TGF-β and IL-17 induction. Together, these data support that diminished immunity is one of the underlying causes of age-related morbidity.
Collapse
Affiliation(s)
- Kohei Oishi
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Shu Horiuchi
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Justin Frere
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
10
|
Ajendra J, Allen JE. Neutrophils: Friend or Foe in Filariasis? Parasite Immunol 2022; 44:e12918. [DOI: 10.1111/pim.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology University Hospital of Bonn Bonn Germany
| | - Judith E. Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science Center University of Manchester Manchester UK
| |
Collapse
|
11
|
Caslin HL, Abebayehu D, Pinette JA, Ryan JJ. Lactate Is a Metabolic Mediator That Shapes Immune Cell Fate and Function. Front Physiol 2021; 12:688485. [PMID: 34733170 PMCID: PMC8558259 DOI: 10.3389/fphys.2021.688485] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Lactate and the associated H+ ions are still introduced in many biochemistry and general biology textbooks and courses as a metabolic by-product within fast or oxygen-independent glycolysis. However, the role of lactate as a fuel source has been well-appreciated in the field of physiology, and the role of lactate as a metabolic feedback regulator and distinct signaling molecule is beginning to gain traction in the field of immunology. We now know that while lactate and the associated H+ ions are generally immunosuppressive negative regulators, there are cell, receptor, mediator, and microenvironment-specific effects that augment T helper (Th)17, macrophage (M)2, tumor-associated macrophage, and neutrophil functions. Moreover, we are beginning to uncover how lactate and H+ utilize different transporters and signaling cascades in various immune cell types. These immunomodulatory effects may have a substantial impact in cancer, sepsis, autoimmunity, wound healing, and other immunomodulatory conditions with elevated lactate levels. In this article, we summarize the known effects of lactate and H+ on immune cells to hypothesize potential explanations for the divergent inflammatory vs. anti-inflammatory effects.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
12
|
Li L, Shan W, Zhu H, Xue F, Ma Y, Dong L, Feng D, Mao J, Yuan G, Wang X. SJMHE1 Peptide from Schistosoma japonicum Inhibits Asthma in Mice by Regulating Th17/Treg Cell Balance via miR-155. J Inflamm Res 2021; 14:5305-5318. [PMID: 34703270 PMCID: PMC8523811 DOI: 10.2147/jir.s334636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Helminths and their products can regulate immune response and offer new strategies to control and alleviate inflammation, including asthma. We previously found that a peptide named as SJMHE1 from Schistosoma japonicum can suppress asthma in mice. This study mainly investigated the molecular mechanism of SJMHE1 in inhibiting asthma inflammation. Methods SJMHE1 was administered to mice with OVA-induced asthma via subcutaneous injection, and its effects were detected by testing the airway inflammation of mice. The Th cell distribution was analyzed by flow cytometry. Th-related transcription factor and cytokine expression in the lungs of mice were analyzed using quantitative real-time PCR (qRT-PCR). The expression of miR-155 and levels of phosphorylated STAT3 and STAT5 were also determined after SJMHE1 treatment in mice by qRT-PCR and Western blot analysis. The in vitro mouse CD4+ T cells were transfected with lentivirus containing overexpressed or inhibited miR-155, and the proportion of Th17, Treg cells, CD4+p-STAT3+, and CD4+p-STAT5+ cells were analyzed by flow cytometry. Results SJMHE1 ameliorated the airway inflammation of asthmatic mice, upregulated the proportion of Th1 and Treg cells, and the expression of Th1 and Treg-related transcription factor and cytokines. Simultaneously, SJMHE1 treatment reduced the percentage of Th2 and Th17 cells and the expression of Th2 and Th17-related transcription factor and cytokines. SJMHE1 treatment decreased the expression of miR-155 and p-STAT3 but increased p-STAT5 expression. In vitro, the percentage of Th17 and CD4+p-STAT3+ cells increased in CD4+ T cells transfected over-expression of miR-155, but SJMHE1 inhibited the miR-155-mediated increase of Th17 cells. Furthermore, SJMHE1 increased the proportion of Treg and CD4+p-STAT5+ cells after transfected over-expression or inhibition of miR-155. Conclusion SJMHE1 regulated the balance of Th17 and Treg cells by modulating the activation of STAT3 and STAT5 via miR-155 in asthma. SJMHE1 might be a promising treatment for asthma.
Collapse
Affiliation(s)
- Li Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Clinical Laboratory, The Taixing City People's Hospital, Taixing, 225400, People's Republic of China
| | - Wenqi Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Haijin Zhu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Clinical Laboratory, The Taixing City People's Hospital, Taixing, 225400, People's Republic of China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Central Laboratory, Jintan Hospital, Jiangsu University, Jintan, 213200, People's Republic of China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Guoyue Yuan
- Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, People's Republic of China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| |
Collapse
|
13
|
Leal-Silva T, Vieira-Santos F, Oliveira FMS, Padrão LDLS, Kraemer L, da Paixão Matias PH, de Almeida Lopes C, Loiola Ruas AC, de Azevedo IC, Nogueira DS, Rachid MA, Caliari MV, Castro Russo R, Fujiwara RT, Bueno LL. Detrimental role of IL-33/ST2 pathway sustaining a chronic eosinophil-dependent Th2 inflammatory response, tissue damage and parasite burden during Toxocara canis infection in mice. PLoS Negl Trop Dis 2021; 15:e0009639. [PMID: 34324507 PMCID: PMC8354467 DOI: 10.1371/journal.pntd.0009639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/10/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Toxocariasis is a neglected disease that affects people around the world. Humans become infected by accidental ingestion of eggs containing Toxocara canis infective larvae, which upon reaching the intestine, hatch, penetrate the mucosa and migrate to various tissues such as liver, lungs and brain. Studies have indicated that Th2 response is the main immune defense mechanism against toxocariasis, however, there are still few studies related to this response, mainly the IL-33/ST2 pathway. Some studies have reported an increase in IL-33 during helminth infections, including T. canis. By binding to its ST2 receptor, IL-33 stimulating the Th2 polarized immune cell and cytokine responses. Thus, we aimed to investigate the role of the IL-33/ST2 pathway in the context of T. canis larval migration and the immunological and pathophysiological aspects of the infection in the liver, lungs and brain from Wild-Type (WT) BALB/c background and genetically deficient mice for the ST2 receptor (ST2-/-). The most important findings revealed that the IL-33/ST2 pathway is involved in eosinophilia, hepatic and cerebral parasitic burden, and induces the formation of granulomas related to tissue damage and pulmonary dysfunction. However, ST2-/- mice, the immune response was skewed to Th1/Th17 type than Th2, that enhanced the control of parasite burden related to IgG2a levels, tissue macrophages infiltration and reduced lung dysfunction. Collectively, our results demonstrate that the Th2 immune response triggered by IL-33/ST2 pathway mediates susceptibility to T. canis, related to parasitic burden, eosinophilia and granuloma formation in which consequently contributes to tissue inflammation and injury. Toxocariasis is a neglected disease caused by Toxocara canis, which has 19% worldwide seroprevalence, and is associated with socioeconomic, geographic and environmental factors. Humans become infected by accidental ingestion of T. canis eggs present in contaminated food, water or soil. After ingestion, the larvae hatch in the intestine and can reach various tissues such as liver, lung and brain. Helminth infections usually trigger a Th2 immune response in the host, by releasing cytokines such as IL-4, IL-5, IL-13 and IL-33. IL-33 is an alarmin that binds to the ST2 receptor, and some studies have observed an increase in this cytokine in toxocariasis, however there are no studies regarding the IL-33/ST2 role in this infection. Thus, we evaluated the influence of this pathway by analyzing immunological and pathophysiological aspects in T. canis-infected mice. Our results demonstrated that the IL-33/ST2 pathway is related to parasite burden on the liver and brain and also increases the number of eosinophils in the blood and tissues. In addition, it involved with the pulmonary immune response and granulomas with impact in lung function. In conclusion, the IL-33/ST2 pathway governs the host susceptibility to T. canis in mice.
Collapse
Affiliation(s)
- Thaís Leal-Silva
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Post-graduation Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Lima Silva Padrão
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Hemanoel da Paixão Matias
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Loiola Ruas
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Carvalho de Azevedo
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Silva Nogueira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milene Alvarenga Rachid
- Laboratory of Protozooses, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Laboratory of Protozooses, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
14
|
Integrative biology defines novel biomarkers of resistance to strongylid infection in horses. Sci Rep 2021; 11:14278. [PMID: 34253752 PMCID: PMC8275762 DOI: 10.1038/s41598-021-93468-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The widespread failure of anthelmintic drugs against nematodes of veterinary interest requires novel control strategies. Selective treatment of the most susceptible individuals could reduce drug selection pressure but requires appropriate biomarkers of the intrinsic susceptibility potential. To date, this has been missing in livestock species. Here, we selected Welsh ponies with divergent intrinsic susceptibility (measured by their egg excretion levels) to cyathostomin infection and found that their divergence was sustained across a 10-year time window. Using this unique set of individuals, we monitored variations in their blood cell populations, plasma metabolites and faecal microbiota over a grazing season to isolate core differences between their respective responses under worm-free or natural infection conditions. Our analyses identified the concomitant rise in plasma phenylalanine level and faecal Prevotella abundance and the reduction in circulating monocyte counts as biomarkers of the need for drug treatment (egg excretion above 200 eggs/g). This biological signal was replicated in other independent populations. We also unravelled an immunometabolic network encompassing plasma beta-hydroxybutyrate level, short-chain fatty acid producing bacteria and circulating neutrophils that forms the discriminant baseline between susceptible and resistant individuals. Altogether our observations open new perspectives on the susceptibility of equids to strongylid infection and leave scope for both new biomarkers of infection and nutritional intervention.
Collapse
|
15
|
Maza-Lopez J, Contreras-Ochoa CO, Reyes-Guerrero DE, Encarnación-Guevara S, Hernández-Ortíz M, Olmedo-Juárez A, López-Arellano ME. Analysis of the immunomodulatory activity of excreted and secreted products from Haemonchus placei transition infective larvae (xL 3). Vet Parasitol 2021; 298:109512. [PMID: 34271321 DOI: 10.1016/j.vetpar.2021.109512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/24/2022]
Abstract
The excretory/secretory (E/S) products released by infective transitory larvae (xL3) of Haemonchus placei have an important biological function in stimulating immune mechanisms during the invasive process. Our objective was to analyse the modulatory activity of 15 and 70 kDa E/S products from H. placei xL3. Both E/S products were collected from xL3in vitro cultures at 24 and 72 h. Proteins were confirmed by SDS-PAGE, and the corresponding spots were elicited by gel isoelectrofocusing (IEF) and characterised by mass spectrometry. Additionally, flow cytometry of CD4+/γδ+ T cells and immune gene expression were performed by proliferation assays using each E/S product to stimulate lymphocyte and peripheral blood mononuclear cells (PBMCs) from non-infected calves. The IEF results displayed two spots of 7.0 and 5.7 pI for the 15 and 70 kDa products, respectively. Additionally, 29 and 17 peptides from the 15 and 70 kDa E/S products, respectively, were identified with the hypothetical neurotransmitter and enzymatic functions necessary for larval development. The relative expression displayed upregulation of IL4, 5, 6, 8, 10, 13, IFNγ, and FCεR1A genes (from 2.0- to 17.6-fold, p < 0.05) stimulated by the 15 and 70 kDa proteins, indicating specific genes against haemonchosis. Although the percentage of median florescence intensity (MFI%) of CD4+/γδ+ T cells did not change for both E/S products compared to the negative control and concanavalin-A stimulated cells as the positive control (p > 0.05), the 15-kDa protein reduced the levels of both T cells, and the 70-kDa proteins increased the γδ+ cells slightly. Additionally, there was increased PBMCs proliferation by the 70 kDa proteins (p < 0.05), denoting the biological role of other immune cells. The 15 and 70 kDa protein E/S products from H. placei xL3 showed modulation of the immune response, and although more studies are required, they indicate important functions in the host/parasite interaction.
Collapse
Affiliation(s)
- Jocelyn Maza-Lopez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad#1001, Col. Chamilpa, Cuernavaca, Mor., C.P. 62209, Mexico
| | - Carla O Contreras-Ochoa
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad#655, Col. Santa María Ahuacatitlán, Cuernavaca, Mor., C.P. 62100, Mexico
| | - David E Reyes-Guerrero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Carr. Fed. Cuernavaca-Cuautla#8534, Jiutepec, Mor., C.P. 62550, Mexico
| | - Sergio Encarnación-Guevara
- Centro de Ciencias Genómicas. Universidad Nacional Autónoma de México, Campus Morelos, Av. Universidad s/n Co. Chamilpa 62210, Cuernavaca, Mor., C.P. 62100, Mexico
| | - Magdalena Hernández-Ortíz
- Centro de Ciencias Genómicas. Universidad Nacional Autónoma de México, Campus Morelos, Av. Universidad s/n Co. Chamilpa 62210, Cuernavaca, Mor., C.P. 62100, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Carr. Fed. Cuernavaca-Cuautla#8534, Jiutepec, Mor., C.P. 62550, Mexico
| | - Ma Eugenia López-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Carr. Fed. Cuernavaca-Cuautla#8534, Jiutepec, Mor., C.P. 62550, Mexico.
| |
Collapse
|
16
|
Wang Q, Chen S, Li T, Yang Q, Liu J, Tao Y, Meng Y, Chen J, Feng X, Han Z, Shi M, Huang H, Han M, Jiang E. Critical Role of Lkb1 in the Maintenance of Alveolar Macrophage Self-Renewal and Immune Homeostasis. Front Immunol 2021; 12:629281. [PMID: 33968022 PMCID: PMC8100336 DOI: 10.3389/fimmu.2021.629281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/01/2021] [Indexed: 01/27/2023] Open
Abstract
Alveolar macrophages (AMs) are pivotal for maintaining lung immune homeostasis. We demonstrated that deletion of liver kinase b1 (Lkb1) in CD11c+ cells led to greatly reduced AM abundance in the lung due to the impaired self-renewal of AMs but not the impeded pre-AM differentiation. Mice with Lkb1-deficient AMs exhibited deteriorated diseases during airway Staphylococcus aureus (S. aureus) infection and allergic inflammation, with excessive accumulation of neutrophils and more severe lung pathology. Drug-mediated AM depletion experiments in wild type mice indicated a cause for AM reduction in aggravated diseases in Lkb1 conditional knockout mice. Transcriptomic sequencing also revealed that Lkb1 inhibited proinflammatory pathways, including IL-17 signaling and neutrophil migration, which might also contribute to the protective function of Lkb1 in AMs. We thus identified Lkb1 as a pivotal regulator that maintains the self-renewal and immune function of AMs.
Collapse
MESH Headings
- AMP-Activated Protein Kinases
- Animals
- Asthma/enzymology
- Asthma/genetics
- Asthma/immunology
- CD11 Antigens/genetics
- CD11 Antigens/metabolism
- Cell Self Renewal
- Disease Models, Animal
- Homeostasis
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Lung/enzymology
- Lung/immunology
- Lung/microbiology
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration
- Pneumonia, Bacterial/enzymology
- Pneumonia, Bacterial/genetics
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Staphylococcal Infections/enzymology
- Staphylococcal Infections/genetics
- Staphylococcal Infections/immunology
- Staphylococcal Infections/microbiology
- Transcriptome
- Mice
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Song Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tengda Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiongmei Yang
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Jingru Liu
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuan Tao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Meng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiadi Chen
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingxia Shi
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
17
|
Cox JR, Cruickshank SM, Saunders AE. Maintenance of Barrier Tissue Integrity by Unconventional Lymphocytes. Front Immunol 2021; 12:670471. [PMID: 33936115 PMCID: PMC8079635 DOI: 10.3389/fimmu.2021.670471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces, as a first barrier with the environment are especially susceptible to damage from both pathogens and physical trauma. Thus, these sites require tightly regulated repair programs to maintain barrier function in the face of such insults. Barrier sites are also enriched for unconventional lymphocytes, which lack rearranged antigen receptors or express only a limited range of such receptors, such as ILCs (Innate Lymphoid Cells), γδ T Cells and MAIT (Mucosal-Associated Invariant T Cells). Recent studies have uncovered critical roles for unconventional lymphocytes in regulating mucosal barrier function, and, in particular, have highlighted their important involvement in barrier repair. The production of growth factors such as amphiregulin by ILC2, and fibroblast growth factors by γδ T cells have been shown to promote tissue repair at multiple barrier sites. Additionally, MAIT cells have been shown to exhibit pro-repair phenotypes and demonstrate microbiota-dependent promotion of murine skin healing. In this review we will discuss how immune responses at mucosal sites are controlled by unconventional lymphocytes and the ways in which these cells promote tissue repair to maintain barrier integrity in the skin, gut and lungs.
Collapse
Affiliation(s)
- Joshua R Cox
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sheena M Cruickshank
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Amy E Saunders
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
18
|
El-Naccache DW, Haskó G, Gause WC. Early Events Triggering the Initiation of a Type 2 Immune Response. Trends Immunol 2021; 42:151-164. [PMID: 33386241 PMCID: PMC9813923 DOI: 10.1016/j.it.2020.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/11/2023]
Abstract
Type 2 immune responses are typically associated with protection against helminth infections and also with harmful inflammation in response to allergens. Recent advances have revealed that type 2 immunity also contributes to sterile inflammation, cancer, and microbial infections. However, the early events that initiate type 2 immune responses remain poorly defined. New insights reveal major contributions from danger-associated molecular patterns (DAMPs) in the initiation of type 2 immune responses. In this review, we examine the molecules released by the host and pathogens and the role they play in mediating the initiation of mammalian innate type 2 immune responses under a variety of conditions.
Collapse
Affiliation(s)
- Darine W El-Naccache
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ, USA; Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - William C Gause
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ, USA; Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
19
|
Tsugawa-Shimizu Y, Fujishima Y, Kita S, Minami S, Sakaue TA, Nakamura Y, Okita T, Kawachi Y, Fukada S, Namba-Hamano T, Takabatake Y, Isaka Y, Nishizawa H, Ranscht B, Maeda N, Shimomura I. Increased vascular permeability and severe renal tubular damage after ischemia-reperfusion injury in mice lacking adiponectin or T-cadherin. Am J Physiol Endocrinol Metab 2021; 320:E179-E190. [PMID: 33284092 PMCID: PMC8260375 DOI: 10.1152/ajpendo.00393.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adiponectin (APN) is a circulating protein specifically produced by adipocytes. Native APN specifically binds to T-cadherin, a glycosylphosphatidylinositol-anchored protein, mediating the exosome-stimulating effects of APN in endothelial, muscle, and mesenchymal stem cells. It was previously reported that APN has beneficial effects on kidney diseases, but the role of T-cadherin has not been clarified yet. Here, our immunofluorescence study indicated the existence of both T-cadherin and APN protein in pericytes, subsets of tissue-resident mesenchymal stem/progenitor cells positive for platelet-derived growth factor receptor β (PDGFRβ), surrounding peritubular capillaries. In an acute renal ischemia-reperfusion (I/R) model, T-cadherin-knockout (Tcad-KO) mice, similar to APN-KO mice, exhibited the more progressive phenotype of renal tubular damage and increased vascular permeability than wild-type mice. In addition, in response to I/R-injury, the renal PDGFRβ-positive cell area increased in wild-type mice, but opposingly decreased in both Tcad-KO and APN-KO mice, suggesting severe pericyte loss. Mouse primary pericytes also expressed T-cadherin. APN promoted exosome secretion in a T-cadherin-dependent manner. Such exosome production from pericytes may play an important role in maintaining the capillary network and APN-mediated inhibition of renal tubular injury. In summary, our study suggested that APN protected the kidney in an acute renal injury model by binding to T-cadherin.NEW & NOTEWORTHY In the kidney, T-cadherin-associated adiponectin protein existed on peritubular capillary pericytes. In an acute renal ischemia-reperfusion model, deficiency of adiponectin or T-cadherin exhibited the more progressive phenotype of renal tubular damage and increased vascular permeability, accompanied by severe pericyte loss. In vitro, adiponectin promoted exosome secretion from mouse primary pericytes in a T-cadherin-dependent manner. Adiponectin plays an important role in maintaining the capillary network and amelioration of renal tubular injury by binding to T-cadherin.
Collapse
Affiliation(s)
- Yuri Tsugawa-Shimizu
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
- Department of Adipose Management, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Satoshi Minami
- Department of Nephrology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Taka-Aki Sakaue
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Yuto Nakamura
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Tomonori Okita
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Yusuke Kawachi
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Shiro Fukada
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Barbara Ranscht
- Development, Aging and Regeneration Program, NIH-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
20
|
Panova V, Gogoi M, Rodriguez-Rodriguez N, Sivasubramaniam M, Jolin HE, Heycock MWD, Walker JA, Rana BMJ, Drynan LF, Hodskinson M, Pannell R, King G, Wing M, Easton AJ, Oedekoven CA, Kent DG, Fallon PG, Barlow JL, McKenzie ANJ. Group-2 innate lymphoid cell-dependent regulation of tissue neutrophil migration by alternatively activated macrophage-secreted Ear11. Mucosal Immunol 2021; 14:26-37. [PMID: 32457448 PMCID: PMC7790759 DOI: 10.1038/s41385-020-0298-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 02/04/2023]
Abstract
Type-2 immunity is characterised by interleukin (IL)-4, IL-5 and IL-13, eosinophilia, mucus production, IgE, and alternatively activated macrophages (AAM). However, despite the lack of neutrophil chemoattractants such as CXCL1, neutrophils, a feature of type-1 immunity, are observed in type-2 responses. Consequently, alternative mechanisms must exist to ensure that neutrophils can contribute to type-2 immune reactions without escalation of deleterious inflammation. We now demonstrate that type-2 immune-associated neutrophil infiltration is regulated by the mouse RNase A homologue, eosinophil-associated ribonuclease 11 (Ear11), which is secreted by AAM downstream of IL-25-stimulated ILC2. Transgenic overexpression of Ear11 resulted in tissue neutrophilia, whereas Ear11-deficient mice have fewer resting tissue neutrophils, whilst other type-2 immune responses are not impaired. Notably, administration of recombinant mouse Ear11 increases neutrophil motility and recruitment. Thus, Ear11 helps maintain tissue neutrophils at homoeostasis and during type-2 reactions when chemokine-producing classically activated macrophages are infrequently elicited.
Collapse
Affiliation(s)
- Veera Panova
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, NW1 1AT UK
| | - Mayuri Gogoi
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Noe Rodriguez-Rodriguez
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Meera Sivasubramaniam
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Helen E. Jolin
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Morgan W. D. Heycock
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Jennifer A. Walker
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Batika M. J. Rana
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Lesley F. Drynan
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Michael Hodskinson
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Richard Pannell
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Gareth King
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Mark Wing
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Andrew J. Easton
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | | | - David G. Kent
- Stem Cell Institute, Clifford-Allbutt Building, Hills Road, Cambridge, CB2 0AH UK ,grid.5685.e0000 0004 1936 9668Present Address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Padraic G. Fallon
- grid.8217.c0000 0004 1936 9705Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jillian L. Barlow
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK ,grid.5685.e0000 0004 1936 9668Present Address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Andrew N. J. McKenzie
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| |
Collapse
|
21
|
Khashaba SA, Attwa E, Said N, Ahmed S, Khattab F. Serum YKL-40 and IL 17 in Psoriasis: Reliability as prognostic markers for disease severity and responsiveness to treatment. Dermatol Ther 2020; 34:e14606. [PMID: 33249724 DOI: 10.1111/dth.14606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 01/28/2023]
Abstract
YKL-40, a mammalian chitinase 3- like protein that was associated with multiple inflammatory and immune diseases. Previous studies have suggested a role for YKL-40 in psoriasis based on its significantly higher levels in the serum of psoriatic patient compared with healthy controls. The aim of this study was to determine the correlation between serum YKL-40, psoriasis severity using PASI score and serum levels of IL-17 before and after narrow-band UVB therapy. 28 patients with moderate to severe plaque psoriasis, as defined by PASI scores, were enrolled in this prospective cohort study. All cases received NB-UVB phototherapy twice weekly for 3 months. Serum YKL-40 and IL-17 levels were evaluated before and after 3 months of treatment. Clinical photographs were taken both at baseline and after 3 months. There was a statistical positive correlation between serum levels of YKL-40 and serum IL-17 levels as well as PASI score in patients with moderate to severe psoriasis before and after treatment. YKL-40 represents a reliable marker for psoriasis severity estimated by PASI and positively correlated with IL 17 as an inflammatory marker in psoriasis.
Collapse
Affiliation(s)
- Shrook A Khashaba
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Enayat Attwa
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nora Said
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar Ahmed
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Fathia Khattab
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
22
|
Heterogeneity in the initiation, development and function of type 2 immunity. Nat Rev Immunol 2020; 20:603-614. [PMID: 32367051 PMCID: PMC9773851 DOI: 10.1038/s41577-020-0301-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Type 2 immune responses operate under varying conditions in distinct tissue environments and are crucial for protection against helminth infections and for the maintenance of tissue homeostasis. Here we explore how different layers of heterogeneity influence type 2 immunity. Distinct insults, such as allergens or infections, can induce type 2 immune responses through diverse mechanisms, and this can have heterogeneous consequences, ranging from acute or chronic inflammation to deficits in immune regulation and tissue repair. Technological advances have provided new insights into the molecular heterogeneity of different developmental lineages of type 2 immune cells. Genetic and environmental heterogeneity also contributes to the varying magnitude and quality of the type 2 immune response during infection, which is an important determinant of the balance between pathology and disease resolution. Hence, understanding the mechanisms underlying the heterogeneity of type 2 immune responses between individuals and between different tissues will be crucial for treating diseases in which type 2 immunity is an important component.
Collapse
|
23
|
Majer M, Macháček T, Súkeníková L, Hrdý J, Horák P. The peripheral immune response of mice infected with a neuropathogenic schistosome. Parasite Immunol 2020; 42:e12710. [PMID: 32145079 DOI: 10.1111/pim.12710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Trichobilharzia regenti (Schistosomatidae) percutaneously infects birds and mammals and invades their central nervous system (CNS). Here, we characterized the peripheral immune response of infected mice and showed how it was influenced by the parasite-induced inflammation in the skin and the CNS. As revealed by flow cytometry, T cells expanded in the spleen and the CNS-draining lymph nodes 7-14 days post-infection. Both T-bet+ and GATA-3+ T cells were markedly elevated suggesting a mixed type 1/2 immune response. However, it dropped after 7 dpi most likely being unaffected by the neuroinflammation. Splenocytes from infected mice produced a high amount of IFN-γ and, to a lesser extent, IL-10, IL-4 and IL-17 after in vitro stimulation by cercarial homogenate. Nevertheless, it had only a limited capacity to alter the maturation status of bone marrow-derived dendritic cells (BMDCs), contrary to the recombinant T. regenti cathepsin B2, which also strongly augmented expression of Ccl5, Cxcl10, Il12a, Il33 and Il10 by BMDCs. Taken together, mice infected with T. regenti developed the mixed type 1/2 immune response, which was driven by the early skin inflammation rather than the late neuroinflammation. Parasite peptidases might play an active role in triggering the host immune response.
Collapse
Affiliation(s)
- Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Súkeníková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
24
|
Aktaş Karabay E, Aksu Çerman A. Demodex folliculorum infestations in common facial dermatoses: acne vulgaris, rosacea, seborrheic dermatitis. An Bras Dermatol 2020; 95:187-193. [PMID: 32113677 PMCID: PMC7175027 DOI: 10.1016/j.abd.2019.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background Demodex mites are found on the skin of many healthy individuals. Demodex mites in high densities are considered to play a pathogenic role. Objective To investigate the association between Demodex infestation and the three most common facial dermatoses: acne vulgaris, rosacea and seborrheic dermatitis. Methods This prospective, observational case-control study included 127 patients (43 with acne vulgaris, 43 with rosacea and 41 with seborrheic dermatitis) and 77 healthy controls. The presence of demodicosis was evaluated by standardized skin surface biopsy in both the patient and control groups. Results In terms of gender and age, no significant difference was found between the patients and controls (p > 0.05). Demodex infestation rates were significantly higher in patients than in controls (p = 0.001). Demodex infestation rates were significantly higher in the rosacea group than acne vulgaris and seborrheic dermatitis groups and controls (p = 0.001; p = 0.024; p = 0.001, respectively). Demodex infestation was found to be significantly higher in the acne vulgaris and seborrheic dermatitis groups than in controls (p = 0.001 and p = 0.001, respectively). No difference was observed between the acne vulgaris and seborrheic dermatitis groups in terms of demodicosis (p = 0.294). Study limitations Small sample size is a limitation of the study. The lack of an objective scoring system in the diagnosis of Demodex infestation is another limitation. Conclusion The findings of the present study emphasize that acne vulgaris, rosacea and seborrheic dermatitis are significantly associated with Demodex infestation. Standardized skin surface biopsy is a practical tool in the determination of Demodex infestation.
Collapse
Affiliation(s)
- Ezgi Aktaş Karabay
- Department of Dermatology and Venereology, Faculty of Medicine, Bahçeşehir University, Istanbul, Turkey.
| | - Aslı Aksu Çerman
- Department of Dermatology and Venereology, Faculty of Medicine, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
25
|
B Cells Produce the Tissue-Protective Protein RELMα during Helminth Infection, which Inhibits IL-17 Expression and Limits Emphysema. Cell Rep 2019; 25:2775-2783.e3. [PMID: 30517865 PMCID: PMC9413029 DOI: 10.1016/j.celrep.2018.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 07/18/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Emphysema results in destruction of alveolar walls and enlargement of lung airspaces and has been shown to develop during helminth infections through IL-4R-independent mechanisms. We examined whether interleukin 17A (IL-17A) may instead modulate development of emphysematous pathology in mice infected with the helminth parasite Nippostrongylus brasiliensis. We found that transient elevations in IL-17A shortly after helminth infection triggered sub-sequent emphysema that destroyed alveolar structures. Furthermore, lung B cells, activated through IL-4R signaling, inhibited early onset of emphysematous pathology. IL-10 and other regulatory cytokines typically associated with B regulatory cell function did not play a major role in this response. Instead, at early stages of the response, B cells produced high levels of the tissue-protective protein, Resistin-like molecule α (RELMα), which then downregulated IL-17A expression. These studies show that transient elevations in IL-17A trigger emphysema and reveal a helminth-induced immune regulatory mechanism that controls IL-17A and the severity of emphysema. Emphysema causes pathology that can compromise lung function, and mechanisms for reducing disease severity remain unclear. Using a helminth model, Chen et al. show that type 2 immune response triggers lung B cells to produce RELMα, which then downregulates IL-17 production in the lung to limit emphysema. ![]()
Collapse
|
26
|
IL-10 secreting B cells regulate periodontal immune response during periodontitis. Odontology 2019; 108:350-357. [DOI: 10.1007/s10266-019-00470-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
|
27
|
Bullone M, Carriero V, Bertolini F, Folino A, Mannelli A, Di Stefano A, Gnemmi I, Torchio R, Ricciardolo FLM. Elevated serum IgE, oral corticosteroid dependence and IL-17/22 expression in highly neutrophilic asthma. Eur Respir J 2019; 54:1900068. [PMID: 31439682 DOI: 10.1183/13993003.00068-2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/29/2019] [Indexed: 02/03/2023]
Abstract
Information on the clinical traits associated with bronchial neutrophilia in asthma is scant, preventing its recognition and adequate treatment. We aimed to assess the clinical, functional and biological features of neutrophilic asthma and identify possible predictors of bronchial neutrophilia.The inflammatory phenotype of 70 mild-to-severe asthma patients was studied cross-sectionally based on the eosinophilic/neutrophilic counts in their bronchial lamina propria. Patients were classified as neutrophilic or non-neutrophilic. Neutrophilic asthma patients (neutrophil count cut-off: 47.17 neutrophils·mm-2; range: 47.17-198.11 neutrophils·mm-2; median: 94.34 neutrophils·mm-2) were further classified as high (≥94.34 neutrophils·mm-2) or intermediate (47.17- <94.34 neutrophils·mm-2). The effect of smoking ≥10 pack-years was also assessed.Neutrophilic asthma patients (n=38; 36 mixed eosinophilic/neutrophilic) had greater disease severity, functional residual capacity, inhaled corticosteroid (ICS) dose and exacerbations, and lower forced vital capacity (FVC) % pred and forced expiratory volume in 1 s (FEV1) reversibility than non-neutrophilic asthma patients (n=32; 28 eosinophilic and four paucigranulocytic). Neutrophilic asthma patients had similar eosinophil counts, increased bronchial CD8+, interleukin (IL)-17-F+ and IL-22+ cells, and decreased mast cells compared with non-neutrophilic asthma patients. FEV1 and FVC reversibility were independent predictors of bronchial neutrophilia in our cohort. High neutrophilic patients (n=21) had increased serum IgE levels, sensitivity to perennial allergens, exacerbation rate, oral corticosteroid dependence, and CD4+ and IL-17F+ cells in their bronchial mucosa. Excluding smokers revealed increased IL-17A+ and IL-22+ cells in highly neutrophilic patients.We provide new evidence linking the presence of high bronchial neutrophilia in asthma to an adaptive immune response associated with allergy (IgE) and IL-17/22 cytokine expression. High bronchial neutrophilia may discriminate a new endotype of asthma. Further research is warranted on the relationship between bronchoreversibility and bronchial neutrophilia.
Collapse
Affiliation(s)
- Michela Bullone
- Dept of Clinical and Biological Sciences, University of Turin, San Luigi University Hospital, Turin, Italy
| | - Vitina Carriero
- Dept of Clinical and Biological Sciences, University of Turin, San Luigi University Hospital, Turin, Italy
| | - Francesca Bertolini
- Dept of Clinical and Biological Sciences, University of Turin, San Luigi University Hospital, Turin, Italy
| | - Anna Folino
- Dept of Clinical and Biological Sciences, University of Turin, San Luigi University Hospital, Turin, Italy
| | | | - Antonino Di Stefano
- Dept of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Isabella Gnemmi
- Dept of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Roberto Torchio
- Respiratory Function and Sleep Laboratory, San Luigi University Hospital, Turin, Italy
| | - Fabio L M Ricciardolo
- Dept of Clinical and Biological Sciences, University of Turin, San Luigi University Hospital, Turin, Italy
| |
Collapse
|
28
|
Egholm C, Heeb LEM, Impellizzieri D, Boyman O. The Regulatory Effects of Interleukin-4 Receptor Signaling on Neutrophils in Type 2 Immune Responses. Front Immunol 2019; 10:2507. [PMID: 31708926 PMCID: PMC6821784 DOI: 10.3389/fimmu.2019.02507] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin-4 (IL-4) receptor (IL-4R) signaling plays a pivotal role in type 2 immune responses. Type 2 immunity ensures several host-protective processes such as defense against helminth parasites and wound repair, however, type 2 immune responses also drive the pathogenesis of allergic diseases. Neutrophil granulocytes (neutrophils) have not traditionally been considered a part of type 2 immunity. While neutrophils might be beneficial in initiating a type 2 immune response, their involvement and activation is rather unwanted at later stages. This is evidenced by examples of type 2 immune responses where increased neutrophil responses are able to enhance immunity, however, at the cost of increased tissue damage. Recent studies have linked the type 2 cytokines IL-4 and IL-13 and their signaling via type I and type II IL-4Rs on neutrophils to inhibition of several neutrophil effector functions. This mechanism directly curtails neutrophil chemotaxis toward potent intermediary chemoattractants, inhibits the formation of neutrophil extracellular traps, and antagonizes the effects of granulocyte colony-stimulating factor on neutrophils. These effects are observed in both mouse and human neutrophils. Thus, we propose for type 2 immune responses that neutrophils are, as in other immune responses, the first non-resident cells to arrive at a site of inflammation or infection, thereby guiding and attracting other innate and adaptive immune cells; however, as soon as the type 2 cytokines IL-4 and IL-13 predominate, neutrophil recruitment, chemotaxis, and effector functions are rapidly shut off by IL-4/IL-13-mediated IL-4R signaling in neutrophils to prevent them from damaging healthy tissues. Insight into this neutrophil checkpoint pathway will help understand regulation of neutrophilic type 2 inflammation and guide the design of targeted therapeutic approaches for modulating neutrophils during inflammation and neutropenia.
Collapse
Affiliation(s)
- Cecilie Egholm
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Lukas E M Heeb
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | | | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
De Winter FHR, 's Jongers B, Bielen K, Mancuso D, Timbermont L, Lammens C, Van Averbeke V, Boddaert J, Ali O, Kluytmans J, Ruzin A, Malhotra-Kumar S, Jorens PG, Goossens H, Kumar-Singh S. Mechanical Ventilation Impairs IL-17 Cytokine Family Expression in Ventilator-Associated Pneumonia. Int J Mol Sci 2019; 20:ijms20205072. [PMID: 31614857 PMCID: PMC6829394 DOI: 10.3390/ijms20205072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Mechanical ventilation (MV) is the primary risk factor for the development of ventilator-associated pneumonia (VAP). Besides inducing a pro-inflammatory T-helper (Th)-1 cytokine response, MV also induces an anti-inflammatory Th2 cytokine response, marked by increased IL-4 secretion and reduced bacterial phagocytic capacity of rodent lung macrophages. Since IL-4 is known to downregulate both Th1 and Th17 cytokines, the latter is important in mediating mucosal immunity and combating bacterial and fungal growth, we studied and showed here in a rat model of MV that Th17 cytokines (IL-17A, IL-17F, and IL-22) were significantly upregulated in the lung as a response to different MV strategies currently utilized in clinic. To study whether the increased IL-4 levels are associated with downregulation of the anti-bacterial Th17 cytokines, we subsequently challenged mechanically ventilated rats with an intratracheal inoculation of Pseudomonas aeruginosa (VAP model) and showed a dramatic downregulation of IL-17A, IL-17F, and IL-22, compared to animals receiving the same bacterial burden without MV. For the studied Th1 cytokines (IFNγ, TNFα, IL-6, and IL-1β), only IFNγ showed a significant decrease as a consequence of bacterial infection in mechanically ventilated rats. We further studied IL-17A, the most studied IL-17 family member, in intensive care unit (ICU) pneumonia patients and showed that VAP patients had significantly lower levels of IL-17A in the endotracheal aspirate compared to patients entering ICU with pre-existing pneumonia. These translational data, obtained both in animal models and in humans, suggest that a deficient anti-bacterial Th17 response in the lung during MV is associated with VAP development.
Collapse
Affiliation(s)
- Fien H. R. De Winter
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Bart 's Jongers
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Kenny Bielen
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Domenico Mancuso
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Vincent Van Averbeke
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Omar Ali
- Microbial Sciences, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD 20877, USA
| | - Jan Kluytmans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, HP Stratenum 6.131, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Alexey Ruzin
- Microbial Sciences, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD 20877, USA
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital and University of Antwerp, LEMP, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| |
Collapse
|
30
|
Raucci F, Iqbal AJ, Saviano A, Minosi P, Piccolo M, Irace C, Caso F, Scarpa R, Pieretti S, Mascolo N, Maione F. IL-17A neutralizing antibody regulates monosodium urate crystal-induced gouty inflammation. Pharmacol Res 2019; 147:104351. [DOI: 10.1016/j.phrs.2019.104351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/17/2023]
|
31
|
Nagakumar P, Puttur F, Gregory LG, Denney L, Fleming L, Bush A, Lloyd CM, Saglani S. Pulmonary type-2 innate lymphoid cells in paediatric severe asthma: phenotype and response to steroids. Eur Respir J 2019; 54:1801809. [PMID: 31164437 PMCID: PMC6713888 DOI: 10.1183/13993003.01809-2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/26/2019] [Indexed: 12/22/2022]
Abstract
Children with severe therapy-resistant asthma (STRA) have poor control despite maximal treatment, while those with difficult asthma (DA) have poor control from failure to implement basic management, including adherence to therapy. Although recognised as clinically distinct, the airway molecular phenotype, including the role of innate lymphoid cells (ILCs) and their response to steroids in DA and STRA is unknown.Immunophenotyping of sputum and blood ILCs and T-cells from STRA, DA and non-asthmatic controls was undertaken. Leukocytes were analysed longitudinally pre- and post-intramuscular triamcinolone in children with STRA. Cultured ILCs were evaluated to assess steroid responsiveness in vitroAirway eosinophils, type 2 T-helper (Th2) cells and ILC2s were significantly higher in STRA patients compared to DA and disease controls, while IL-17+ lymphoid cells were similar. ILC2s and Th2 cells were significantly reduced in vivo following intramuscular triamcinolone and in vitro with steroids. Furthermore, asthma attacks and symptoms reduced after systemic steroids despite persistence of steroid-resistant IL-17+ cells and eosinophils.Paediatric STRA and DA have distinct airway molecular phenotypes with STRA characterised by elevated type-2 cells. Systemic corticosteroids, but not maintenance inhaled steroids resulted in improved symptom control and exacerbations concomitant with a reduction in functional ILC2s despite persistently elevated IL-17+ lymphoid cells.
Collapse
Affiliation(s)
- Prasad Nagakumar
- National Heart and Lung Institute, Imperial College London, London, UK
- Respiratory Paediatrics, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
- Both authors contributed equally
| | - Franz Puttur
- National Heart and Lung Institute, Imperial College London, London, UK
- Both authors contributed equally
| | - Lisa G Gregory
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Laura Denney
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise Fleming
- Respiratory Paediatrics, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Bush
- Respiratory Paediatrics, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
- Both authors contributed equally
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Respiratory Paediatrics, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
- Both authors contributed equally
| |
Collapse
|
32
|
Efthimiou J, Poll C, Barnes PJ. Dual mechanism of action of T2 inhibitor therapies in virally induced exacerbations of asthma: evidence for a beneficial counter-regulation. Eur Respir J 2019; 54:13993003.02390-2018. [PMID: 31000674 DOI: 10.1183/13993003.02390-2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
Abstract
Biological agents such as omalizumab and monoclonal antibodies (mAbs) that inhibit type 2 (T2) immunity significantly reduce exacerbations, which are mainly due to viral infections, when added to inhaled corticosteroids in patients with severe asthma. The mechanisms for the therapeutic benefit of T2 inhibitors in reducing virally induced exacerbations, however, remain to be fully elucidated. Pre-clinical and clinical evidence supports the existence of a close counter-regulation of the high-affinity IgE receptor and interferon (IFN) pathways, and a potential dual mechanism of action and therapeutic benefit for omalizumab and other T2 inhibitors that inhibit IgE activity, which may enhance the prevention and treatment of virally induced asthma exacerbations. Similar evidence regarding some novel T2 inhibitor therapies, including mAbs and small-molecule inhibitors, suggests that such a dual mechanism of action with enhancement of IFN production working through non-IgE pathways might also exist. The specific mechanisms for this dual effect could be related to the close counter-regulation between T2 and T1 immune pathways, and potential key underlying mechanisms are discussed. Further basic research and better understanding of these underlying counter-regulatory mechanisms could provide novel therapeutic targets for the prevention and treatment of virally induced asthma exacerbations, as well as T2- and non-T2-driven asthma. Future clinical research should examine the effects of T2 inhibitors on IFN responses and other T1 immune pathways, in addition to any effects on the frequency and severity of viral and other infections and related exacerbations in patients with asthma as a priority.
Collapse
Affiliation(s)
| | - Chris Poll
- Independent Respiratory Scientist, Cambridge, UK
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
33
|
Webb LM, Tait Wojno ED. Notch Signaling Orchestrates Helminth-Induced Type 2 Inflammation. Trends Immunol 2019; 40:538-552. [PMID: 31103422 PMCID: PMC6545262 DOI: 10.1016/j.it.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Infection with helminth parasites poses a significant challenge to the mammalian immune system. The type 2 immune response to helminth infection is critical in limiting worm-induced tissue damage and expelling parasites. Conversely, aberrant type 2 inflammation can cause debilitating allergic disease. Recent studies have revealed that key type 2 inflammation-associated immune and epithelial cell types respond to Notch signaling, broadly regulating gene expression programs in cell development and function. Here, we discuss new advances demonstrating that Notch is active in the development, recruitment, localization, and cytokine production of immune and epithelial effector cells during type 2 inflammation. Understanding how Notch signaling controls type 2 inflammatory processes could inform the development of Notch pathway modulators to treat helminth infections and allergies.
Collapse
Affiliation(s)
- Lauren M Webb
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, New York, USA.
| |
Collapse
|
34
|
Abstract
Helminth infections may inhibit the development of allergic diseases, including asthma. On the other hand, some helminth species may induce or worsen symptoms of asthma. This article discusses the impact of helminth infections on asthma as well as the potencial of helminth-derived molecules with regulatory characteristics in the prevention or treatment of this disease. The ability to induce regulation has been observed in animal models of asthma or cells of asthmatic individuals in vitro. Potential future clinical applications of helminth antigens or infection for prevention of asthma merit further translational research.
Collapse
|
35
|
Analysis of interleukin-17 and interleukin-23 for estimating disease activity and predicting the response to treatment in active lupus nephritis patients. Immunol Lett 2019; 210:33-39. [PMID: 31004679 DOI: 10.1016/j.imlet.2019.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022]
Abstract
Renal biopsy is a "gold standard" for establishing the diagnosis and assessing prognosis and monitoring therapy in lupus nephritis (LN) patients, but it is an invasive and inconvenient procedure. Evidences showed that interleukin-17(IL-17) and interleukin-23(IL-23) may be as alternative biomarkers for diagnosing LN, monitoring LN activity and predicting the response to treatment of LN. To analyze the roles of IL-17 and IL-23 in evaluation activity of LN and predicting active LN response to immunosuppressive treatment, by comparison between IL-17, IL-23 and clinical data of LN. Eighty patients with LN and 20 healthy volunteers were enrolled in this study. Plasma levels of IL-17 and IL-23 were detected by ELISA and clinical data were collected in patients with LN. Thirty-seven patients with active LN accepted immunosuppressive therapy and followed up to 6 months. The roles of IL-17 and IL-23 in evaluation the activity of LN and the predictability for active LN response to immunosuppressive treatment were analyzed. The ages or gender rations between LN patients and healthy controls were not significant difference at baseline. Baseline levels of IL-17 and IL-23 were higher in patients with active LN compare to them in patients with inactive LN or controls (P<0.001) and IL-23 in patients with inactive LN was higher than its in controls (P=0.004). IL-17 and IL-23 decreased significantly in active LN patients after 6 months therapy (P<0.001). The baseline level of IL-23 was significantly different in subgroups response to the immunosuppressive treatment in patients with active LN (P=0.0014). Baseline level of IL-23 in complete response group was lower than its in partial response group (P=0.0015) or nonresponse group (P=0.013). IL-17 was negative correlation with C3 (r=-0.44, P<0.001). IL-17 and IL-23 correlated with systemic lupus erythematosus (SLE) disease activity index (P<0.001). The correlation between IL-17 and LN pathological acute index (AI) was higher than the correlation between IL-23 and AI. (r=0.52, P<0.001 vs. r=0.41, P<0.001). Receiver Operation Characteristics (ROC) showed that IL-17 and IL-23 could be used to evaluate SLE disease activity index. IL-17 could be used as biomarker to evaluate pathological AI. IL-23 could be used as a predictor for predicting response to immunosuppressive treatment in patients with active LN. IL-17 and IL-23 may involve and contribute to LN. IL-17 could be used as a biomarker for LN clinical and pathological AI. IL-23 could be used as a predictor for predicting response to immunosuppressive treatment in patients with active LN.
Collapse
|
36
|
Impellizzieri D, Ridder F, Raeber ME, Egholm C, Woytschak J, Kolios AGA, Legler DF, Boyman O. IL-4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation. J Allergy Clin Immunol 2019; 144:267-279.e4. [PMID: 30768990 DOI: 10.1016/j.jaci.2019.01.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Type 2 immunity serves to resist parasitic helminths, venoms, and toxins, but the role and regulation of neutrophils during type 2 immune responses are controversial. Helminth models suggested a contribution of neutrophils to type 2 immunity, whereas neutrophils are associated with increased disease severity during type 2 inflammatory disorders, such as asthma. OBJECTIVE We sought to evaluate the effect of the prototypic type 2 cytokines IL-4 and IL-13 on human neutrophils. METHODS Human neutrophils from peripheral blood were assessed without or with IL-4 or IL-13 for (1) expression of IL-4 receptor subunits, (2) neutrophil extracellular trap (NET) formation, (3) migration toward CXCL8 in vitro and in humanized mice, and (4) CXCR1, CXCR2, and CXCR4 expression, as well as (5) in nonallergic versus allergic subjects. RESULTS Human neutrophils expressed both types of IL-4 receptors, and their stimulation through IL-4 or IL-13 diminished their ability to form NETs and migrate toward CXCL8 in vitro. Likewise, in vivo chemotaxis in NOD-scid-Il2rg-/- mice was reduced in IL-4-stimulated human neutrophils compared with control values. These effects were accompanied by downregulation of the CXCL8-binding chemokine receptors CXCR1 and CXCR2 on human neutrophils on IL-4 or IL-13 stimulation in vitro. Ex vivo analysis of neutrophils from allergic patients or exposure of neutrophils from nonallergic subjects to allergic donor serum in vitro impaired their NET formation and migration toward CXCL8, thereby mirroring IL-4/IL-13-stimulated neutrophils. CONCLUSION IL-4 receptor signaling in human neutrophils affects several neutrophil effector functions, which bears important implications for immunity in type 2 inflammatory disorders.
Collapse
Affiliation(s)
| | - Frederike Ridder
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Miro E Raeber
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Cecilie Egholm
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Janine Woytschak
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | | | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
|
38
|
Burrow HM, Mans BJ, Cardoso FF, Birkett MA, Kotze AC, Hayes BJ, Mapholi N, Dzama K, Marufu MC, Githaka NW, Djikeng A. Towards a new phenotype for tick resistance in beef and dairy cattle: a review. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18487] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
About 80% of the world’s cattle are affected by ticks and tick-borne diseases, both of which cause significant production losses. Cattle host resistance to ticks is the most important factor affecting the economics of tick control, but it is largely neglected in tick-control programs due to technical difficulties and costs associated with identifying individual-animal variation in resistance. The present paper reviews the scientific literature to identify factors affecting resistance of cattle to ticks and the biological mechanisms of host tick resistance, to develop alternative phenotype(s) for tick resistance. If new cost-effective phenotype(s) can be developed and validated, then tick resistance of cattle could be genetically improved using genomic selection, and incorporated into breeding objectives to simultaneously improve cattle productive attributes and tick resistance. The phenotype(s) could also be used to improve tick control by using cattle management. On the basis of the present review, it is recommended that three possible phenotypes (haemolytic analysis; measures of skin hypersensitivity reactions; simplified artificial tick infestations) be further developed to determine their practical feasibility for consistently, cost-effectively and reliably measuring cattle tick resistance in thousands of individual animals in commercial and smallholder farmer herds in tropical and subtropical areas globally. During evaluation of these potential new phenotypes, additional measurements should be included to determine the possibility of developing a volatile-based resistance phenotype, to simultaneously improve cattle resistance to both ticks and biting flies. Because the current measurements of volatile chemistry do not satisfy the requirements of a simple, cost-effective phenotype for use in commercial cattle herds, consideration should also be given to inclusion of potentially simpler measures to enable indirect genetic selection for volatile-based resistance to ticks.
Collapse
|
39
|
Jaiswal AK, Sadasivam M, Hamad ARA. Unexpected alliance between syndecan-1 and innate-like T cells to protect host from autoimmune effects of interleukin-17. World J Diabetes 2018; 9:220-225. [PMID: 30588283 PMCID: PMC6304294 DOI: 10.4239/wjd.v9.i12.220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/23/2018] [Accepted: 11/26/2018] [Indexed: 02/05/2023] Open
Abstract
Innate-like T cells, namely natural killer T (NKT) and γδ T cells, play critical roles in linking innate and adaptive immune responses through rapid production of cytokines. Prominent among these cytokines is interleukin-17 (IL-17), which is a potent proinflammatory cytokine that plays a critical role in host defense against fungi and extracellular bacteria. However, excessive IL-17-production promotes autoimmune diseases, including psoriasis, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. IL-17 has also been implicated in regulating body fat, which is highly relevant given rises in obesity and type 2 diabetes. NKT cells, γδ T cells and mucosal-associated invariant T cells (MAIT) are the major sources of IL-17 involved in protection of mucosal surfaces from opportunistic infections and causing autoimmunity when become dysregulated. Given the pathogenic effects of IL-17, efforts have been directed towards understanding mechanisms that guard against IL-17 overproduction. One novel potent mechanism is mediated by the heparan sulfate proteoglycan, syndecan-1 (sdc1), which is selectively expressed by IL-17-producing subsets of NKT and γδ T cells. This unexpected role for sdc1 is uncovered by analysis of NKT and γδ T cells in sdc1-deficient mice. In this mini-review, we discuss selective expression of sdc1 by these innate T cells and consequences of its absence on IL-17 homeostasis and pathological implications.
Collapse
Affiliation(s)
- Anil Kumar Jaiswal
- Department of Pathobiology, Auburn University, Auburn, AL 36849, United States
| | - Mohanraj Sadasivam
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Abdel Rahim A Hamad
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
40
|
Zeng C, Chen L, Chen B, Cai Y, Li P, Yan L, Zeng D. Th17 cells were recruited and accumulated in the cerebrospinal fluid and correlated with the poor prognosis of anti-NMDAR encephalitis. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1266-1273. [PMID: 30418472 DOI: 10.1093/abbs/gmy137] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Indexed: 12/24/2022] Open
Abstract
Anti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis is an autoimmune disorder characterized by memory deficits, psychiatric symptoms, and autonomic instability. The lack of suitable biomarkers targeting anti-NMDAR encephalitis makes the immunotherapy and prognosis challenging. In this study, we found that the Th17 cells were significantly accumulated in the cerebrospinal fluid (CSF) of anti-NMDAR encephalitis patients than that of control individuals. The concentration of the cytokines and chemokines including interleukin (IL)-1β, IL-17, IL-6, and CXCL-13 were significantly increased in the CSF of anti-NMDAR encephalitis patients. IL-6 and IL-17 were found to promote the differentiation of CD4+ T cells into Th17 lineage. The chemotaxis assay showed that CCL20 and CCL22 play essential roles in the migration of Th17 cells. Notably, the correlation between the expression of IL-17 and the outcome of anti-NMDAR encephalitis patients was analyzed. The data showed that high level of IL-17 was significantly correlated with the limited response to the treatment and relapse of anti-NMDAR encephalitis patients. Our results suggested the potential important involvement of IL-17 in anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Chaosheng Zeng
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lin Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bocan Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yi Cai
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Pengxiang Li
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Limin Yan
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Dehua Zeng
- Department of Neurology, Haikou People’s Hospital, Haikou, China
| |
Collapse
|
41
|
Maione F, Iqbal AJ, Raucci F, Letek M, Bauer M, D'Acquisto F. Repetitive Exposure of IL-17 Into the Murine Air Pouch Favors the Recruitment of Inflammatory Monocytes and the Release of IL-16 and TREM-1 in the Inflammatory Fluids. Front Immunol 2018; 9:2752. [PMID: 30555461 PMCID: PMC6284009 DOI: 10.3389/fimmu.2018.02752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
The infiltration of Th17 cells in tissues and organs during the development of many autoimmune diseases is considered a key step toward the establishment of chronic inflammation. Indeed, the localized and prolonged release of IL-17 in specific tissues has been associated with an increased severity of the inflammatory response that remains sustained over time. The cellular and molecular mechanisms behind these effects are far from being clear. In this study we investigated the effects of two repetitive administration of recombinant IL-17 into the murine air pouch to simulate a scenario where IL-17 is released over time in a pre-inflamed tissue. Consistent with our previous observations, mice receiving a single dose of IL-17 showed a transitory influx of neutrophils into the air pouch that peaked at 24 h and declined at 48 h. Conversely, mice receiving a double dose of the cytokine—one at time 0 and the second after 24 h—showed a more dramatic inflammatory response with almost 2-fold increase in the number of infiltrated leukocytes and significant higher levels of TNF-α and IL-6 in the inflammatory fluids. Further analysis of the exacerbated inflammatory response of double-injected IL-17 mice showed a unique cellular and biochemical profile with inflammatory monocytes as the second main population emigrating to the pouch and IL-16 and TREM-1 as the most upregulated cytokines found in the inflammatory fluids. Most interestingly, mice receiving a double injection of IL-1β did not show any change in the cellular or biochemical inflammatory response compared to those receiving a single injection or just vehicle. Collectively these results shed some light on the function of IL-17 as pro-inflammatory cytokine and provide possible novel ways to target therapeutically the pathogenic effects of IL-17 in autoimmune conditions.
Collapse
Affiliation(s)
- Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Michal Letek
- Health Science Research Centre, Department of Life Science, University of Roehampton, London, United Kingdom
| | - Martina Bauer
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Health Science Research Centre, Department of Life Science, University of Roehampton, London, United Kingdom
| |
Collapse
|
42
|
Yap GS, Gause WC. Helminth Infections Induce Tissue Tolerance Mitigating Immunopathology but Enhancing Microbial Pathogen Susceptibility. Front Immunol 2018; 9:2135. [PMID: 30386324 PMCID: PMC6198046 DOI: 10.3389/fimmu.2018.02135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 01/17/2023] Open
Abstract
Helminths are ubiquitous and have chronically infected vertebrates throughout their evolution. As such helminths have likely exerted considerable selection pressure on our immune systems. The large size of multicellular helminths and their limited replicative capacity in the host necessarily elicits different host protective mechanisms than the immune response evoked by microbial pathogens such as bacteria, viruses and intracellular parasites. The cellular damage resulting from helminth migration through tissues is a major trigger of the type 2 and regulatory immune responses, which activates wound repair mechanisms that increases tissue tolerance to injury and resistance mechanisms that enhance resistance to further colonization with larval stages. While these wound healing and anti-inflammatory responses may be beneficial to the helminth infected host, they may also compromise the host's ability to mount protective immune responses to microbial pathogens. In this review we will first describe helminth-induced tolerance mechanisms that develop in specific organs including the lung and the intestine, and how adaptive immunity may contribute to these responses through differential activation of T cells in the secondary lymphoid organs. We will then integrate studies that have examined how the immune response is modulated in these specific tissues during coinfection of helminths with viruses, protozoa, and bacteria.
Collapse
Affiliation(s)
- George S Yap
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
43
|
Regulation of neutrophils in type 2 immune responses. Curr Opin Immunol 2018; 54:115-122. [PMID: 30015087 DOI: 10.1016/j.coi.2018.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023]
Abstract
Type 2 immune responses contribute to the resistance to helminths and toxins as well as several physiological processes. Although they usually do not participate in type 2 immune responses, neutrophils have been shown in mice to enhance the anti-helminth response, but they also contribute to increased target tissue damage. Increased pathology and morbidity is also observed in type 2 immune-mediated disorders, such as allergic asthma, when neutrophils become a predominant subset of the infiltrate. How neutrophil recruitment is regulated during type 2 immune responses is now starting to become clear, with recent data showing that signaling via the prototypic type 2 cytokine interleukin-4 receptor mediates direct and indirect inhibitory actions on neutrophils in mice and humans.
Collapse
|
44
|
Lloyd CM, Snelgrove RJ. Type 2 immunity: Expanding our view. Sci Immunol 2018; 3:eaat1604. [PMID: 29980619 DOI: 10.1126/sciimmunol.aat1604] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
The classical vision of type 2 immune reactions is that they are characterized by a distinct cellular and cytokine repertoire that is critical for host resistance against helminthic worm infections but, when dysregulated, may cause atopic reactions that result in conditions such as asthma, rhinitis, dermatitis, and anaphylaxis. In this traditional view, the type 2 response is categorized as an adaptive immune response with differentiated T helper cells taking center stage, driving eosinophil recruitment and immunoglobulin production via the secretion of a distinct repertoire of cytokines that include interleukin-4 (IL-4), IL-5, and IL-13. The recent discovery of a group of innate cells that has the capacity to secrete copious amounts of type 2 cytokines, potentially in the absence of adaptive immunity, has reignited interest in type 2 biology. The discovery that these innate lymphoid cells and type 2 cytokines are involved in diverse biological processes-including wound healing, control of metabolic homeostasis, and temperature-has considerably changed our view of type 2 responses and the cytokines, chemokines, and receptors that regulate these responses.
Collapse
Affiliation(s)
- Clare M Lloyd
- Imperial College London, Sir Alexander Fleming Building, South Kensington NHLI, Campus, London SW7 2AZ, UK.
| | - Robert J Snelgrove
- Imperial College London, Sir Alexander Fleming Building, South Kensington NHLI, Campus, London SW7 2AZ, UK
| |
Collapse
|
45
|
Absence of IL-17A in Litomosoides sigmodontis-infected mice influences worm development and drives elevated filarial-specific IFN-γ. Parasitol Res 2018; 117:2665-2675. [PMID: 29931394 PMCID: PMC6061040 DOI: 10.1007/s00436-018-5959-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/05/2018] [Indexed: 01/12/2023]
Abstract
Lymphatic filariasis, onchocerciasis and loiasis are widespread neglected tropical diseases causing serious public health problems and impacting the socio-economic climate in endemic communities. More than 100 million people currently suffer from filarial infections but disease-related symptoms and infection-induced immune mechanisms are still ambiguous. Although most infected individuals have dominant Th2 and regulatory immune responses leading to a homeostatic regulated state, filarial-induced overt pathology like lymphedema, dermal pathologies or blindness can occur. Interestingly, besides dominant Th2 and regulatory T cell activation, increased Th17-induced immune responses were associated with filarial infection and overt helminth-induced pathology in humans. However, the immunological mechanisms of Th17 cells and the release of IL-17A during filarial infections remain unclear. To decipher the role of IL-17A during filarial infection, we naturally infected IL-17A-/- and wildtype C57BL/6 mice with the rodent filariae Litomosoides sigmodontis and analysed parasite development and immune alterations. Our study reveals that infected IL-17A-deficient C57BL/6 mice present reduced worm burden on days 7 and 28 p.i. but had longer adult worms on day 28 p.i. in the thoracic cavity (TC), the site of infection. In addition, infiltration of CD4+ T cells, CD4+Foxp3+ regulatory T and functional CD4+Rorγt+pStat3+ Th17 cells in the TC was reduced in IL-17A-deficient mice accompanied by reduced eotaxin-1 and CCL17 levels. Furthermore, mediastinal lymph node cells isolated from IL-17A-/- mice showed increased filarial-specific IFN-γ but not IL-4, IL-6, or IL-21 secretion. This study shows that Th17 signalling is important for host immune responses against filarial infection but appears to facilitate worm growth in those that reach the TC.
Collapse
|
46
|
Abstract
Normal tissue injury from irradiation is an unfortunate consequence of radiotherapy. Technologic improvements have reduced the risk of normal tissue injury; however, toxicity causing treatment breaks or long-term side effects continues to occur in a subset of patients. The molecular events that lead to normal tissue injury are complex and span a variety of biologic processes, including oxidative stress, inflammation, depletion of injured cells, senescence, and elaboration of proinflammatory and profibrogenic cytokines. This article describes selected recent advances in normal tissue radiobiology.
Collapse
Affiliation(s)
- Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
47
|
Scheffold A, Schwarz C, Bacher P. Fungus-Specific CD4 T Cells as Specific Sensors for Identification of Pulmonary Fungal Infections. Mycopathologia 2017; 183:213-226. [PMID: 29168073 DOI: 10.1007/s11046-017-0229-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022]
Abstract
Patients with cystic fibrosis (CF) suffer from chronic lung infections, caused by bacterial, viral or fungal pathogens, which determine morbidity and mortality. The contribution of individual pathogens to chronic disease and acute lung exacerbations is often difficult to determine due to the complex composition of the lung microbiome in CF. In particular, the relevance of fungal pathogens in CF airways remains poorly understood due to limitations of current diagnostics to identify the presence of fungal pathogens and to resolve the individual host-pathogen interaction status. T-lymphocytes play an essential role in host defense against pathogens, but also in inappropriate immune reactions such as allergies. They have the capacity to specifically recognize and discriminate the different pathogens and orchestrate a diverse array of effector functions. Thus, the analysis of the fungus-specific T cell status of an individual can in principle provide detailed information about the identity of the fungal pathogen(s) encountered and the actual fungus-host interaction status. This may allow to classify patients, according to appropriate (protective) or inappropriate (pathology-associated) immune reactions against individual fungal pathogens. However, T cell-based diagnostics are currently not part of the clinical routine. The identification and characterization of fungus-specific T cells in health and disease for diagnostic purposes are associated with significant challenges. Recent technological developments in the field of fungus-specific T helper cell detection provide new insights in the host T cell-fungus interaction. In this review, we will discuss basic principles and the potential of T cell-based diagnostics, as well as the perspectives and further needs for use of T cells for improved clinical diagnostics of fungal diseases.
Collapse
Affiliation(s)
- Alexander Scheffold
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany.
| | - Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Centre Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
48
|
Sharma P, Sharma A, Srivastava M. In vivo neutralization of α4 and β7 integrins inhibits eosinophil trafficking and prevents lung injury during tropical pulmonary eosinophilia in mice. Eur J Immunol 2017; 47:1501-1512. [PMID: 28736941 DOI: 10.1002/eji.201747086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/27/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
Abstract
Integrins regulate leukocyte trafficking during homeostasis and inflammatory conditions. However, the role of α4 and β7 integrins in guiding eosinophil transmigration into the lungs during filarial manifestation of Tropical Pulmonary Eosinophilia (TPE) has not been explored. In this study, mice exhibiting TPE manifestations were administered with in vivo neutralizing antibodies against integrins α4 and β7 or their combination and immuno-pathological parameters were evaluated. Results show an intact lung barrier, significantly lower lung inflammation and reduced eosinophil counts in the Bronchoalveolar lavage fluid and lungs of mice receiving anti-α4+ β7 treatment. Reduced eosinophil peroxidase and β-hexosaminidase activity, downregulation of inflammatory genes, lower production of inflammatory lipid intermediates like prostaglandins E2 and D2, leukotriene B4 and cysteinyl leukotrienes were also noted in anti-α4+ β7 treated mice. Reduced accumulation of central memory, effector memory, regulatory T cells and lower production of IL-4, IL-5, and TGF-β were other cardinal features of anti-α4+ β7 treated mice lungs. Flow cytometry-sorted lung eosinophils from anti-α4+ β7 treated mice showed higher apoptotic potential, downregulated anti-apoptotic gene Bcl-2, and exhibited reduced F-actin polymerization and calcium influx as compared to IgG controls. In summary, neutralization of α4+ β7 integrins impairs the transmigration, activation and survival of eosinophils and reduces TPE induced pathology in mice lungs.
Collapse
Affiliation(s)
- Pankaj Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Aditi Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Mrigank Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
49
|
Corridoni D, Rodriguez-Palacios A, Di Stefano G, Di Martino L, Antonopoulos DA, Chang EB, Arseneau KO, Pizarro TT, Cominelli F. Genetic deletion of the bacterial sensor NOD2 improves murine Crohn's disease-like ileitis independent of functional dysbiosis. Mucosal Immunol 2017; 10:971-982. [PMID: 27848951 PMCID: PMC5433921 DOI: 10.1038/mi.2016.98] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
Although genetic polymorphisms in NOD2 (nucleotide-binding oligomerization domain-containing 2) have been associated with the pathogenesis of Crohn's disease (CD), little is known regarding the role of wild-type (WT) NOD2 in the gut. To date, most murine studies addressing the role of WT Nod2 have been conducted using healthy (ileitis/colitis-free) mouse strains. Here, we evaluated the effects of Nod2 deletion in a murine model of spontaneous ileitis, i.e., the SAMP1Yit/Fc (SAMP) strain, which closely resembles CD. Remarkably, Nod2 deletion improved both chronic cobblestone ileitis (by 50% assessed, as the % of abnormal mucosa at 24 wks of age), as well as acute dextran sodium sulfate (DSS) colitis. Mechanistically, Th2 cytokine production and Th2-transcription factor activation (i.e., STAT6 phosphorylation) were reduced. Microbiologically, the effects of Nod2 deletion appeared independent of fecal microbiota composition and function, assessed by 16S rRNA and metatranscriptomics. Our findings indicate that pharmacological blockade of NOD2 signaling in humans could improve health in Th2-driven chronic intestinal inflammation.
Collapse
Affiliation(s)
- D Corridoni
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - A Rodriguez-Palacios
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - G Di Stefano
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - L Di Martino
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - D A Antonopoulos
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - E B Chang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - K O Arseneau
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - T T Pizarro
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - F Cominelli
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
50
|
Yang F, Feng C, Zhang X, Lu J, Zhao Y. The Diverse Biological Functions of Neutrophils, Beyond the Defense Against Infections. Inflammation 2017; 40:311-323. [PMID: 27817110 DOI: 10.1007/s10753-016-0458-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymorphonuclear neutrophils are among the first defense against infection and closely involved in the initiation of inflammatory response. It is well recognized that this function of neutrophils was mainly mediated by phagocytosis, intracellular degradation, releasing of granules, and formation of neutrophil extracellular traps after sensing dangerous stress. However, accumulating data showed that neutrophils had a variety of important biological functions in both innate and adaptive immunities, far beyond cytotoxicity against pathogens. Neutrophils can differentially switch phenotypes and display distinct subpopulations under different microenvironments. Neutrophils can produce a large variety of cytokines and chemokines upon stimulation. Furthermore, neutrophils directly interact with dendritic cells (DCs), macrophages, natural killer cells, T cells, and B cells so as to either potentiate or down-modulate both innate and adaptive immunity. In the present review, we summarize the recent progress on the functional plasticity and the regulatory ability on immunity of neutrophils in physiological and pathological situations.
Collapse
Affiliation(s)
- Fan Yang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Chang Feng
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Lu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|