1
|
Zhang W, Ren C, Yang Y, Xu J, Tong F, Wu X, Yang Y. Ginseng aconitum decoction (Shenfu Tang) provides neuroprotection by ameliorating impairment of blood-brain barrier in cerebral ischemia-reperfusion injury. Brain Res 2024; 1842:149098. [PMID: 38942350 DOI: 10.1016/j.brainres.2024.149098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Ischemic stroke (IS) remains one of the most serious threats to human life. Early blood-brain barrier damage (BBB) is the cause of parenchymal cell damage. Repair of the structure and function of the BBB is beneficial for the treatment of IS. The traditional prescription ginseng aconitum decoction (GAD) has a long history in the treatment of cardiovascular and cerebrovascular diseases, however, the effect of GAD on the BBB disruption and underlying mechanisms remains largely unknown. To address these issues, in vitro models of BBB were established with brain endothelial cells (bEnd.3). We found that GAD reduced the leakage of the fluorescent probe FITC-dextran (P < 0.01) and increased the expression of tight junction proteins (Claudin-5, ZO-1) (P < 0.05) in the BBB model in vitro. Furthermore, to investigate the BBB protective effects of GAD in vivo. A total of 25 male C57/BL6 mice (20 - 22 g) were randomly divided into 5 groups (n = 5 per group): (1) Sham group (saline), (2) MCAO group (saline), (3) MCAO + CG group (Chinese ginseng 8 mg/kg/day), (4) MCAO + AC group (aconite 8 mg/kg/day), (5) MCAO + GAD group (GAD 8 mg/kg/day).We constructed IS model in mice and found that GAD treatment reduced IgG leakage (P < 0.05), up-regulated the expression of tight junction proteins Claudin-5, Occludin, and ZO-1 (P < 0.05). Further mechanism study showed that fatty acid oxidation (FAO) of vascular endothelial cells is involved in the protection of the BBB after IS, and GAD regulates FAO (P < 0.05) to protect BBB. In addition, we found the effect of GAD was stronger than that of Chinese ginseng (CG) (P < 0.05) and aconite (AC) (P < 0.01) alone. We concluded that GAD ameliorated the BBB dysfunction by regulating FAO involving vascular endothelial cells after IS. At the same time, the prescription is more effective than single traditional Chinese medicine.
Collapse
Affiliation(s)
- Wei Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Yu Yang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Xu
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Fang Tong
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaodan Wu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Yang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Çakır B, Uzun Çakır AD, Yalın Sapmaz Ş, Bilaç Ö, Taneli F, Kandemir H. Cognitive functioning of adolescents using Methamphetamine: The impact of inflammatory and oxidative processes. APPLIED NEUROPSYCHOLOGY. CHILD 2024:1-10. [PMID: 38447149 DOI: 10.1080/21622965.2024.2323643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND Methamphetamine is a substance that causes neurotoxicity and its use is increasing in recent years. Literature highlights cognitive impairment resulting from Methamphetamine use. The aim of the present study is to evaluate the relationship between cognitive impairment and inflammatory processes in adolescents with Methamphetamine use disorder. METHODS The study included 69 adolescents aged 15-19 years, comprising 37 participants with Methamphetamine Use Disorder and 32 healthy controls. Central Nervous System Vital Signs was used to detect cognitive impairment. Childhood Trauma Questionnaire-33 and The Children's Depression Inventory scales were used. In addition, venous blood was collected from the volunteers. Biochemical parameters (IL-1beta, IL-6, TNF-a, BDNF, FAM19A5, TAS, TOS) were analyzed. RESULTS Our study showed that (I) IL-6 and TNF-a levels of Methamphetamine users were lower than the healthy group; (II) BDNF levels of Methamphetamine users were higher than the healthy group; (III) mean Neurocognitive Index in cognitive tests of Methamphetamine using adolescents was negatively correlated with duration of Methamphetamine use and BDNF levels. CONCLUSIONS Our study suggests that Methamphetamine use may have a negative effect on cognitive functions.
Collapse
Affiliation(s)
- Burak Çakır
- Child and Adolescent Psychiatry, Usak University, Uşak, Turkey
| | | | - Şermin Yalın Sapmaz
- Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| | - Öznur Bilaç
- Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| | - Fatma Taneli
- Department of Clinical Biochemistry, Manisa Celal Bayar University School of Medicine, Manisa, Turkey
| | - Hasan Kandemir
- Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
3
|
Kho J, Polak U, Jiang MM, Odom JD, Hunter JV, Ali SM, Burrage LC, Nagamani SC, Pautler RG, Thompson HP, Urayama A, Jin Z, Lee B. Argininosuccinate lyase deficiency causes blood-brain barrier disruption via nitric oxide-mediated dysregulation of claudin expression. JCI Insight 2023; 8:e168475. [PMID: 37490345 PMCID: PMC10544197 DOI: 10.1172/jci.insight.168475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
Nitric oxide (NO) is a critical signaling molecule that has been implicated in the pathogenesis of neurocognitive diseases. Both excessive and insufficient NO production have been linked to pathology. Previously, we have shown that argininosuccinate lyase deficiency (ASLD) is a novel model system to investigate cell-autonomous, nitric oxide synthase-dependent NO deficiency. Humans with ASLD are at increased risk for developing hyperammonemia due to a block in ureagenesis. However, natural history studies have shown that individuals with ASLD have multisystem disease including neurocognitive deficits that can be independent of ammonia. Here, using ASLD as a model of NO deficiency, we investigated the effects of NO on brain endothelial cells in vitro and the blood-brain barrier (BBB) in vivo. Knockdown of ASL in human brain microvascular endothelial cells (HBMECs) led to decreased transendothelial electrical resistance, indicative of increased cell permeability. Mechanistically, treatment with an NO donor or inhibition of Claudin-1 improved barrier integrity in ASL-deficient HBMECs. Furthermore, in vivo assessment of a hypomorphic mouse model of ASLD showed increased BBB leakage, which was partially rescued by NO supplementation. Our results suggest that ASL-mediated NO synthesis is required for proper maintenance of brain microvascular endothelial cell functions as well as BBB integrity.
Collapse
Affiliation(s)
- Jordan Kho
- Department of Molecular and Human Genetics and
| | | | | | | | - Jill V. Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | | | - Lindsay C. Burrage
- Department of Molecular and Human Genetics and
- Texas Children’s Hospital, Houston, Texas, USA
| | - Sandesh C.S. Nagamani
- Department of Molecular and Human Genetics and
- Texas Children’s Hospital, Houston, Texas, USA
| | - Robia G. Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah P. Thompson
- Department of Neurology, University of Texas Health Science Center, Houston, Texas, USA
| | - Akihiko Urayama
- Department of Neurology, University of Texas Health Science Center, Houston, Texas, USA
| | - Zixue Jin
- Department of Molecular and Human Genetics and
| | - Brendan Lee
- Department of Molecular and Human Genetics and
- Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
4
|
Mantecón-Oria M, Rivero MJ, Diban N, Urtiaga A. On the quest of reliable 3D dynamic in vitro blood-brain barrier models using polymer hollow fiber membranes: Pitfalls, progress, and future perspectives. Front Bioeng Biotechnol 2022; 10:1056162. [PMID: 36483778 PMCID: PMC9723404 DOI: 10.3389/fbioe.2022.1056162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 09/10/2024] Open
Abstract
With the increasing concern of neurodegenerative diseases, the development of new therapies and effective pharmaceuticals targeted to central nervous system (CNS) illnesses is crucial for ensuring social and economic sustainability in an ageing world. Unfortunately, many promising treatments at the initial stages of the pharmaceutical development process, that is at the in vitro screening stages, do not finally show the expected results at the clinical level due to their inability to cross the human blood-brain barrier (BBB), highlighting the inefficiency of in vitro BBB models to recapitulate the real functionality of the human BBB. In the last decades research has focused on the development of in vitro BBB models from basic 2D monolayer cultures to 3D cell co-cultures employing different system configurations. Particularly, the use of polymeric hollow fiber membranes (HFs) as scaffolds plays a key role in perfusing 3D dynamic in vitro BBB (DIV-BBB) models. Their incorporation into a perfusion bioreactor system may potentially enhance the vascularization and oxygenation of 3D cell cultures improving cell communication and the exchange of nutrients and metabolites through the microporous membranes. The quest for developing a benchmark 3D dynamic in vitro blood brain barrier model requires the critical assessment of the different aspects that limits the technology. This article will focus on identifying the advantages and main limitations of the HFs in terms of polymer materials, microscopic porous morphology, and other practical issues that play an important role to adequately mimic the physiological environment and recapitulate BBB architecture. Based on this study, we consider that future strategic advances of this technology to become fully implemented as a gold standard DIV-BBB model will require the exploration of novel polymers and/or composite materials, and the optimization of the morphology of the membranes towards thinner HFs (<50 μm) with higher porosities and surface pore sizes of 1-2 µm to facilitate the intercommunication via regulatory factors between the cell co-culture models of the BBB.
Collapse
Affiliation(s)
- Marián Mantecón-Oria
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - María J. Rivero
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| | - Nazely Diban
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ane Urtiaga
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|
5
|
Hongjin W, Han C, Baoxiang J, Shiqi Y, Xiaoyu X. Reconstituting neurovascular unit based on the close relations between neural stem cells and endothelial cells: an effective method to explore neurogenesis and angiogenesis. Rev Neurosci 2021; 31:143-159. [PMID: 31539363 DOI: 10.1515/revneuro-2019-0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
The discovery of neural stem cells (NSCs) and their microenvironment, the NSC niche, brought new therapeutic strategies through neurogenesis and angiogenesis for stroke and most neurodegenerative diseases, including Alzheimer's disease. Based on the close links between NSCs and endothelial cells, the integration of neurogenesis and angiogenesis of the NSC niche is also a promising area to the neurovascular unit (NVU) modeling and is now offering a powerful tool to advance our understanding of the brain. In this review, critical aspects of the NVU and model systems are discussed. First, we briefly describe the interaction of each part in the NSC niche. Second, we introduce the co-culture system, microfluidic platforms, and stem cell-derived 3D reconstitution used in NVU modeling based on the close relations between NSCs and endothelial cells, and various characteristics of cell interactions in these systems are also described. Finally, we address the challenges in modeling the NVU that can potentially be overcome by employing strategies for advanced biomaterials and stem cell co-culture use. Based on these approaches, researchers will continue to develop predictable technologies to control the fate of stem cells, achieve accurate screening of drugs for the nervous system, and advance the clinical application of NVU models.
Collapse
Affiliation(s)
- Wang Hongjin
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Chen Han
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Jiang Baoxiang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Yu Shiqi
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Xu Xiaoyu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| |
Collapse
|
6
|
Hartl N, Adams F, Merkel OM. From adsorption to covalent bonding: Apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood-brain barrier. ADVANCED THERAPEUTICS 2021; 4:2000092. [PMID: 33542947 PMCID: PMC7116687 DOI: 10.1002/adtp.202000092] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) is composed of brain endothelial cells, pericytes, and astrocytes, which build a tight cellular barrier. Therapeutic (macro)molecules are not able to transit through the BBB in their free form. This limitation is bypassed by apolipoprotein E (ApoE)-functionalized polymeric nanoparticles (NPs) that are able to transport drugs (e.g. dalargin, loperamide, doxorubicin, nerve growth factor) across the BBB via low density lipoprotein (LDL) receptor mediated transcytosis. Coating with polysorbate 80 or poloxamer 188 facilitates ApoE adsorption onto polymeric NPs enabling recognition by LDL receptors of brain endothelial cells. This effect is even enhanced when NPs are directly coated with ApoE without surfactant anchor. Similarly, covalent coupling of ApoE to NPs that bear reactive groups on their surface leads to significantly improved brain uptake while avoiding the use of surfactants. Several in vitro BBB models using brain endothelial cells or co-cultures with astrocytes/pericytes/glioma cells are described which provide first insights regarding the ability of a drug delivery system to cross this barrier. In vivo models are employed to simulate central nervous system-relevant diseases such as Alzheimer's or Parkinson's disease and cerebral cancer.
Collapse
Affiliation(s)
| | | | - Olivia M. Merkel
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
7
|
Uzu M, Takezawa T. Novel microvascular endothelial model utilizing a collagen vitrigel membrane and its advantages for predicting histamine-induced microvascular hyperpermeability. J Pharmacol Toxicol Methods 2020; 106:106916. [DOI: 10.1016/j.vascn.2020.106916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
|
8
|
Niu J, Wang L, Yuan M, Zhang J, Chen H, Zhang Y. Dual-targeting nanocarrier based on glucose and folic acid functionalized pluronic P105 polymeric micelles for enhanced brain distribution. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Shi Y, Sun L, Wang M, Liu J, Zhong S, Li R, Li P, Guo L, Fang A, Chen R, Ge WP, Wu Q, Wang X. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol 2020; 18:e3000705. [PMID: 32401820 PMCID: PMC7250475 DOI: 10.1371/journal.pbio.3000705] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 05/26/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Modeling the processes of neuronal progenitor proliferation and differentiation to produce mature cortical neuron subtypes is essential for the study of human brain development and the search for potential cell therapies. We demonstrated a novel paradigm for the generation of vascularized organoids (vOrganoids) consisting of typical human cortical cell types and a vascular structure for over 200 days as a vascularized and functional brain organoid model. The observation of spontaneous excitatory postsynaptic currents (sEPSCs), spontaneous inhibitory postsynaptic currents (sIPSCs), and bidirectional electrical transmission indicated the presence of chemical and electrical synapses in vOrganoids. More importantly, single-cell RNA-sequencing analysis illustrated that vOrganoids exhibited robust neurogenesis and that cells of vOrganoids differentially expressed genes (DEGs) related to blood vessel morphogenesis. The transplantation of vOrganoids into the mouse S1 cortex resulted in the construction of functional human-mouse blood vessels in the grafts that promoted cell survival in the grafts. This vOrganoid culture method could not only serve as a model to study human cortical development and explore brain disease pathology but also provide potential prospects for new cell therapies for nervous system disorders and injury. This study establishes a method to generate vascularized cortical organoids. This shows that in addition to reducing hypoxia and cell death, the vascular system promotes neural development in organoids. When transplanting these organoids into host mice, a graft-host vascular system could be reconstructed.
Collapse
Affiliation(s)
- Yingchao Shi
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jianwei Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Rui Li
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Peng Li
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lijie Guo
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ai Fang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ruiguo Chen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Woo-Ping Ge
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- * E-mail: (QW); (XW)
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- * E-mail: (QW); (XW)
| |
Collapse
|
10
|
González-Nieto D, Fernández-Serra R, Pérez-Rigueiro J, Panetsos F, Martinez-Murillo R, Guinea GV. Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows. Cells 2020; 9:E1074. [PMID: 32357544 PMCID: PMC7291200 DOI: 10.3390/cells9051074] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Brain Plasticity Group, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Established and Emerging Strategies for Drug Delivery Across the Blood-Brain Barrier in Brain Cancer. Pharmaceutics 2019; 11:pharmaceutics11050245. [PMID: 31137689 PMCID: PMC6572140 DOI: 10.3390/pharmaceutics11050245] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022] Open
Abstract
Brain tumors are characterized by very high mortality and, despite the continuous research on new pharmacological interventions, little therapeutic progress has been made. One of the main obstacles to improve current treatments is represented by the impermeability of the blood vessels residing within nervous tissue as well as of the new vascular net generating from the tumor, commonly referred to as blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), respectively. In this review, we focused on established and emerging strategies to overcome the blood-brain barrier to increase drug delivery for brain cancer. To date, there are three broad strategies being investigated to cross the brain vascular wall and they are conceived to breach, bypass, and negotiate the access to the nervous tissue. In this paper, we summarized these approaches highlighting their working mechanism and their potential impact on the quality of life of the patients as well as their current status of development.
Collapse
|
12
|
Bioengineering an Artificial Human Blood⁻Brain Barrier in Rodents. Bioengineering (Basel) 2019; 6:bioengineering6020038. [PMID: 31052208 PMCID: PMC6630638 DOI: 10.3390/bioengineering6020038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Our group has recently created a novel in-vivo human brain organoid vascularized with human iPSC-derived endothelial cells. In this review article, we discuss the challenges of creating a perfused human brain organoid model in an immunosuppressed rodent host and discuss potential applications for neurosurgical disease modeling.
Collapse
|
13
|
Dubey SK, Ram MS, Krishna KV, Saha RN, Singhvi G, Agrawal M, Ajazuddin, Saraf S, Saraf S, Alexander A. Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer's Disease. Cell Mol Neurobiol 2019; 39:181-209. [PMID: 30671696 DOI: 10.1007/s10571-019-00653-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Globally, the central nervous system (CNS) disorders appear as the most critical pathological threat with no proper cure. Alzheimer's disease (AD) is one such condition frequently observed with the aged population and sometimes in youth too. Most of the research utilizes different animal models for in vivo study of AD pathophysiology and to investigate the potency of the newly developed therapy. These in vivo models undoubtably provide a powerful investigation tool to study human brain. Although, it sometime fails to mimic the exact environment and responses as the human brain owing to the distinctive genetic and anatomical features of human and rodent brain. In such condition, the in vitro cell model derived from patient specific cell or human cell lines can recapitulate the human brain environment. In addition, the frequent use of animals in research increases the cost of study and creates various ethical issues. Instead, the use of in vitro cellular models along with animal models can enhance the translational values of in vivo models and represent a better and effective mean to investigate the potency of therapeutics. This strategy also limits the excessive use of laboratory animal during the drug development process. Generally, the in vitro cell lines are cultured from AD rat brain endothelial cells, the rodent models, human astrocytes, human brain capillary endothelial cells, patient derived iPSCs (induced pluripotent stem cells) and also from the non-neuronal cells. During the literature review process, we observed that there are very few reviews available which describe the significance and characteristics of in vitro cell lines, for AD investigation. Thus, in the present review article, we have compiled the various in vitro cell lines used in AD investigation including HBMEC, BCECs, SHSY-5Y, hCMEC/D3, PC-2 cell line, bEND3 cells, HEK293, hNPCs, RBE4 cells, SK-N-MC, BMVECs, CALU-3, 7W CHO, iPSCs and cerebral organoids cell lines and different types of culture media such as SCM, EMEM, DMEM/F12, RPMI, EBM and 3D-cell culture.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Munnangi Siva Ram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
- Hemchand Yadav University, Durg, Chhattisgarh, 491 001, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India.
| |
Collapse
|
14
|
de Aquino CC, Leitão RA, Oliveira Alves LA, Coelho-Santos V, Guerrant RL, Ribeiro CF, Malva JO, Silva AP, Oriá RB. Effect of Hypoproteic and High-Fat Diets on Hippocampal Blood-Brain Barrier Permeability and Oxidative Stress. Front Nutr 2019; 5:131. [PMID: 30687711 PMCID: PMC6333637 DOI: 10.3389/fnut.2018.00131] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/06/2018] [Indexed: 01/20/2023] Open
Abstract
Worldwide, millions of people are exposed to dietary imbalance that impacts in health and quality of life. In developing countries, like in Brazil, in poor settings, dietary habits, traditionally hypoproteic, are changing rapidly to western-type high-fat foods. These rapidly changing dietary habits are imposing new challenges to human health and there are many questions in the field that remain to be answered. Accordingly, we currently do not know if chronic consumption of hypoproteic (regional basic diet, RBD) or high-fat diets (HFD) may impact the brain physiology, contributing to blood-brain barrier (BBB) dysfunction and neuroinflammatory events. To address this issue, mice were challenged by breastfeeding from dams receiving standard, RBD or HFD from suckling day 10 until weaning. Immediately after weaning, mice continued under the same diets until post-natal day 52. Herein, we show that both RBD and HFD cause not only a peripheral but also a consistent central neuroinflammatory response, characterized by an increased production of Reactive Oxygen Species (ROS) and pro-inflammatory cytokines. Additionally, BBB hyperpermeability, accounted by an increase in hippocampal albumin content, a decrease in claudin-5 protein levels and collagen IV immunostaining, was also observed together with an upregulation of vascular cell adhesion molecule 1 (VCAM-1). Interestingly, we also identified a significant astrogliosis, manifested by upregulation of GFAP and S100β levels and an intensification of arbor complexity of these glial cells. In sum, our data show that dietary imbalance, related with hypoproteic or high-fat content, impairs BBB properties potentially favoring the transmigration of peripheral immune cells and induces both a peripheral and central neuroinflammatory status. Noteworthy, neuroinflammatory events in the hippocampus may cause neuronal malfunction leading to cognitive deficits and long-term persistence of this phenomenon may contribute to age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Cristhyane Costa de Aquino
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Ricardo A Leitão
- Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Luís A Oliveira Alves
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Vanessa Coelho-Santos
- Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Center for Global Health, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Carlos F Ribeiro
- Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - João O Malva
- Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Ana P Silva
- Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Reinaldo B Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
15
|
Kuo YC, Tsai HC. Rosmarinic acid- and curcumin-loaded polyacrylamide-cardiolipin-poly(lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β-amyloid-insulted neurons. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:445-457. [PMID: 30033276 DOI: 10.1016/j.msec.2018.05.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/25/2018] [Accepted: 05/17/2018] [Indexed: 01/07/2023]
Abstract
Polymeric nanoparticles (NPs) combined with lipids can have profound effects on treatment efficacy in patients with neurological disorders such as Alzheimer's disease (AD). We developed polyacrylamide (PAAM)-cardiolipin (CL)-poly(lactide-co-glycolide) (PLGA) NPs grafted with surface 83-14 monoclonal antibody (MAb) to carry rosmarinic acid (RA) and curcumin (CUR). This drug delivery system was used to cross the blood-brain barrier (BBB) and enhance the viability of SK-N-MC cells insulted with β-amyloid (Aβ) deposits. Experimental evidence revealed that an increase in the concentration of 83-14 MAb enhanced the permeability coefficient of RA and CUR using the nanocarriers. The levels of phosphorylated p38 and phosphorylated tau protein at serine 202 in degenerated SK-N-MC cells were in the order: Aβ > (Aβ + RA-CUR) > (Aβ + 83-14 MAb-RA-CUR-PAAM-PLGA NPs) > (Aβ + 83-14 MAb-RA-CUR-PAAM-CL-PLGA NPs) ≈ control. The viability of SK-N-MC cells reduced with time and CL in 83-14 MAb-RA-CUR-PAAM-CL-PLGA NPs advantaged Aβ-targeted delivery of RA-CUR. These results evidenced that the current 83-14 MAb-RA-CUR-PAAM-CL-PLGA NPs can be a promising pharmacotherapy to permeate the BBB and reduce the fibrillar Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China.
| | - He-Cheng Tsai
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China
| |
Collapse
|
16
|
Puech C, Hodin S, Forest V, He Z, Mismetti P, Delavenne X, Perek N. Assessment of HBEC-5i endothelial cell line cultivated in astrocyte conditioned medium as a human blood-brain barrier model for ABC drug transport studies. Int J Pharm 2018; 551:281-289. [PMID: 30240829 DOI: 10.1016/j.ijpharm.2018.09.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022]
Abstract
Endothelial cells are main components of the Blood-Brain Barrier (BBB) and form a tight monolayer that regulates the passage of molecules, with the ATP-Binding Cassette (ABC) transporters efflux pumps. We have developed a human in vitro model of HBEC-5i endothelial cells cultivated alone or with human astrocytes conditioned medium on insert. HBEC-5i cells showed a tight monolayer within 14 days, expressing ZO-1 and claudin 5, a low apparent permeability to small molecules, with a TEER stability during five days. The P-gp, BCRP, MRPs transporters were well expressed and functional. Accumulation and efflux ratio measurement with different ABC transporters substrates (Rhodamine 123, BCECF AM, Hoechst 33342) and inhibitors (verapamil, Ko143, probenecid and cyclosporin A) were conducted. At barrier level, the functionality of ABC transporters was three-fold enhanced in astrocyte conditioned medium. We validated our model by the transport of pharmacological substrates: caffeine, rivaroxaban, and methotrexate. The rivaroxaban and methotrexate were released with an efflux ratio >3 and were decreased by more than half with inhibitors. HBEC-5i model could be used as relevant tool in preclinical studies for assessing the permeability of therapeutic molecules to cross human BBB.
Collapse
Affiliation(s)
- Clémentine Puech
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France.
| | - Sophie Hodin
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Zhiguo He
- Université de Lyon, Saint-Etienne, F-42023, France; EA 2521 Biologie, Ingénierie et Imagerie de la Greffe de Cornée (BIIGC), Saint-Etienne, France
| | - Patrick Mismetti
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France; Unité de Recherche Clinique Innovation et Pharmacologie, CHU de Saint-Etienne, F-42055 Saint Etienne, France
| | - Xavier Delavenne
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France; Laboratoire de Pharmacologie Toxicologie, CHU Saint-Etienne, F-42055 Saint-Etienne, France
| | - Nathalie Perek
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France
| |
Collapse
|
17
|
A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing. Sci Rep 2018; 8:8784. [PMID: 29884831 PMCID: PMC5993789 DOI: 10.1038/s41598-018-26480-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/08/2018] [Indexed: 01/10/2023] Open
Abstract
Blood brain barrier (BBB) cells play key roles in the physiology and pathology of the central nervous system (CNS). BBB dysfunction is implicated in many neurodegenerative diseases, including Alzheimer’s disease (AD). The BBB consists of capillary endothelial cells, pericytes encircling the endothelium and surrounding astrocytes extending their processes towards it. Although there have been many attempts to develop in vitro BBB models, the complex interaction between these cell types makes it extremely difficult to determine their individual contribution to neurotoxicity in vivo. Thus, we developed and optimised an in vitro multicellular co-culture model within the Kirkstall Quasi Vivo System. The main aim was to determine the optimal environment to culture human brain primary endothelial cells, pericytes and astrocytes whilst maintaining cellular communication without formation of a barrier in order to assess the contribution of each cell type to the overall response. As a proof of concept for the present system, the effects of amyloid-beta 25-35 peptide (Aβ25-35), a hallmark of AD, were explored. This multicellular system will be a valuable tool for future studies on the specific roles of individual BBB cell type (while making connection with each other through medium) in CNS disorders as well as in cytotoxicity tests.
Collapse
|
18
|
Use of functionalized liposomes loaded with antioxidants to permeate the blood–brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Regulation of human brain vascular pericytes and human astrocytes in a blood–brain barrier model using human brain microvascular endothelial cells: Expression of TGF-β1, VEGF, MMP-9 and P-gp. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Kuo YC, Rajesh R. Targeted delivery of rosmarinic acid across the blood-brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E. Int J Pharm 2017; 528:228-241. [PMID: 28549973 DOI: 10.1016/j.ijpharm.2017.05.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023]
Abstract
Rosmarinic acid-loaded polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles (RA-PAAM-CH-PLGA NPs) were grafted with cross-reacting material 197 (CRM197) and apolipoprotein E (ApoE) for targeting of the blood-brain barrier (BBB) and rescuing degenerated neurons. The polymeric nanocarriers were prepared by microemulsion, solvent diffusion, grafting, and surface modification, and CRM197-ApoE-RA-PAAM-CH-PLGA NPs were used to treat human brain-microvascular endothelial cells, RWA264.7 cells, and Aβ-insulted SK-N-MC cells. Experimental results revealed that an increase in the weight percentage of PAAM decreased the particle size, zeta potential, and grafting efficiency of CRM197 and ApoE. In addition, surface DSPE-PEG(2000) could protect CRM197-ApoE-RA-PAAM-CH-PLGA NPs against uptake by RWA264.7 cells. An increase in the concentration of CRM197 and ApoE decreased the transendothelial electrical resistance and increased the ability of propidium iodide and RA to cross the BBB. The order in the viability of apoptotic SK-N-MC cells was CRM197-ApoE-RA-PAAM-CH-PLGA NPs > CRM197-RA-PAAM-CH-PLGA NPs > RA. Thus, CRM197-ApoE-RA-PAAM-CH-PLGA NPs can be a promising formulation to deliver RA to Aβ-insulted neurons in the pharmacotherapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan, ROC.
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan, ROC
| |
Collapse
|
21
|
Anti-melanotransferrin and apolipoprotein E on doxorubicin-loaded cationic solid lipid nanoparticles for pharmacotherapy of glioblastoma multiforme. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Kuo YC, Wang IH. Using catanionic solid lipid nanoparticles with wheat germ agglutinin and lactoferrin for targeted delivery of etoposide to glioblastoma multiforme. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Kuo YC, Tsao CW. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin. Int J Nanomedicine 2017; 12:2857-2869. [PMID: 28435263 PMCID: PMC5391167 DOI: 10.2147/ijn.s132472] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A drug delivery system of quercetin (QU)-encapsulated liposomes (LS) grafted with RMP-7, a bradykinin analog, and lactoferrin (Lf) was developed to permeate the blood-brain barrier (BBB) and rescue degenerated neurons, acting as an Alzheimer's disease (AD) pharmacotherapy. This colloidal formulation of QU-encapsulated LS grafted with RMP-7 and Lf (RMP-7-Lf-QU-LS) was used to traverse human brain microvascular endothelial cells (HBMECs) regulated by human astrocytes (HAs) and to treat SK-N-MC cells after an insult with cytotoxic β-amyloid (Aβ) fibrils. We found that surface RMP-7 and Lf enhanced the ability of QU to cross the BBB without inducing strong toxicity and damaging the tight junction. In addition, RMP-7-Lf-QU-LS significantly reduced Aβ-induced neurotoxicity and improved the viability of SK-N-MC cells. Compared with free QU, RMP-7-Lf-QU-LS could also significantly inhibit the expression of phosphorylated c-Jun N terminal kinase, phosphorylated p38, and phosphorylated tau protein at serine 202 by SK-N-MC cells, indicating an important role of RMP-7, Lf, and LS in protecting neurons against apoptosis. RMP-7-Lf-QU-LS is a promising carrier targeting the BBB to prevent Aβ-insulted neurodegeneration and may have potential in managing AD in future clinical applications.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Chien-Wei Tsao
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
24
|
Kuo YC, Lin CY, Li JS, Lou YI. Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer's disease treatment. Int J Nanomedicine 2017; 12:1757-1774. [PMID: 28280340 PMCID: PMC5340244 DOI: 10.2147/ijn.s128396] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Curcumin (CRM) and nerve growth factor (NGF) were entrapped in liposomes (LIP) with surface wheat germ agglutinin (WGA) to downregulate the phosphorylation of kinases in Alzheimer’s disease (AD) therapy. Cardiolipin (CL)-conjugated LIP carrying CRM (CRM-CL/LIP) and also carrying NGF (NGF-CL/LIP) were used with AD models of SK-N-MC cells and Wistar rats after an insult with β-amyloid peptide (Aβ). We found that CRM-CL/LIP inhibited the expression of phosphorylated p38 (p-p38), phosphorylated c-Jun N-terminal kinase (p-JNK), and p-tau protein at serine 202 and prevented neurodegeneration of SK-N-MC cells. In addition, NGF-CL/LIP could enhance the quantities of p-neurotrophic tyrosine kinase receptor type 1 and p-extracellular signal-regulated kinase 5 for neuronal rescue. Moreover, WGA-grafted CRM-CL/LIP and WGA-grafted NGF-CL/LIP significantly improved the permeation of CRM and NGF across the blood–brain barrier, reduced Aβ plaque deposition and the malondialdehyde level, and increased the percentage of normal neurons and cholinergic activity in the hippocampus of AD rats. Based on the marker expressions and in vivo evidence, current LIP carriers can be promising drug delivery systems to protect nervous tissue against Aβ-induced apoptosis in the brain during the clinical management of AD.
Collapse
Affiliation(s)
| | | | - Jay-Shake Li
- Department of Psychology, National Chung Cheng University, Chia-Yi
| | - Yung-I Lou
- Department of Accounting, Providence University, Taichung, Taiwan, Republic of China
| |
Collapse
|
25
|
A Simple Adaptable Blood-Brain Barrier Cell Model for Screening Matrix Metalloproteinase Inhibitor Functionality. Methods Mol Biol 2017; 1579:287-296. [PMID: 28299744 DOI: 10.1007/978-1-4939-6863-3_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The blood-brain barrier is a multicellular and basement membrane unit that regulates molecular transport between the blood and central nervous system. Many cerebral pathologies, such as acute stroke and chronic vascular dementia, result in a disrupted blood-brain barrier, increasing its permeability and allowing the entry of potentially neurotoxic molecules. The activation of matrix metalloproteinases mediates further blood-brain barrier damage. The inhibition of matrix metalloproteinases is a potential strategy for stroke therapy. As inhibitors are developed, efficient context-specific screening methods will be required. Models of the blood-brain barrier have been extensively used to study neuropathologies and the effect of various treatment options.Herein, we describe a co-culture model of the blood-brain barrier composed of brain microvascular endothelial cells and astrocytes grown on an artificial basement membrane-coated membrane insert. Our cell model forms a barrier and is a simple first approximation of blood-brain barrier integrity. As currently developed, the model may be applied to testing the effect of matrix metalloproteinases and matrix metalloproteinase inhibitors on blood-brain barrier physiology and pathophysiology. The model is a quick and effective evaluation tool for generating nonclinical data in a living cell system before proceeding to animal models.
Collapse
|
26
|
Kuo YC, Lee YJ. Rescuing cholinergic neurons from apoptotic degeneration by targeting of serotonin modulator-and apolipoprotein E-conjugated liposomes to the hippocampus. Int J Nanomedicine 2016; 11:6809-6824. [PMID: 28008255 PMCID: PMC5170675 DOI: 10.2147/ijn.s123442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
β-Amyloid (Aβ)-targeting liposomes (LIP) with surface serotonin modulator (SM) and apolipoprotein E (ApoE) were utilized to facilitate the delivery of nerve growth factor (NGF) across the blood-brain barrier (BBB) for neuroprotection in the hippocampus. The therapeutic efficacy of SM- and ApoE-grafted LIP carrying NGF (NGF-SM-ApoE-LIP) was assessed by an in vitro Alzheimer's disease (AD) model of degenerated SK-N-MC cells and an in vivo AD model of Aβ-insulted Wistar rats. The experimental evidences revealed that the modified SM and ApoE on the surface of LIP increased the permeation of NGF across the BBB without serious damage to structural integrity of tight junction. When compared with free NGF, NGF-SM-ApoE-LIP upregulated the expression of phosphorylated neurotrophic tyrosine kinase receptor type 1 on cholinergic neurons and significantly improved their survival. In addition, NGF-SM-ApoE-LIP could reduce the secretion of acetylcholinesterase and malondialdehyde and rescue hippocampal neurons from apoptosis in rat brains. The synergistic effect of SM and ApoE is promising in the induction of NGF to inhibit the neurotoxicity of Aβ and NGF-SM-ApoE-LIP can be a potent antiapoptotic pharmacotherapy for clinical care of patients with AD.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Yin-Jung Lee
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
27
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
28
|
Aparicio-Blanco J, Martín-Sabroso C, Torres-Suárez AI. In vitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials 2016; 103:229-255. [PMID: 27392291 DOI: 10.1016/j.biomaterials.2016.06.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier accounts for the high attrition rate of the treatments of most brain disorders, which therefore remain one of the greatest health-care challenges of the twenty first century. Against this background of hindrance to brain delivery, nanomedicine takes advantage of the assembly at the nanoscale of available biomaterials to provide a delivery platform with potential to raising brain levels of either imaging or therapeutic agents. Nevertheless, to prevent later failure due to ineffective drug levels at the target site, researchers have been endeavoring to develop a battery of in vitro screening procedures that can predict earlier in the drug discovery process the ability of these cutting-edge drug delivery platforms to cross the blood-brain barrier for biomedical purposes. This review provides an in-depth analysis of the currently available in vitro blood-brain barrier models (both cell-based and non-cell-based) with the focus on their suitability for understanding the biological brain distribution of forthcoming nanomedicines. The relationship between experimental factors and underlying physiological assumptions that would ultimately lead to a more predictive capacity of their in vivo performance, and those methods already assayed for the evaluation of the brain distribution of nanomedicines are comprehensively discussed.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Ana-Isabel Torres-Suárez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain; University Institute of Industrial Pharmacy, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
29
|
Delivery of doxorubicin to glioblastoma multiforme in vitro using solid lipid nanoparticles with surface aprotinin and melanotransferrin antibody for enhanced chemotherapy. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip. PLoS One 2016; 11:e0150360. [PMID: 26930059 PMCID: PMC4773137 DOI: 10.1371/journal.pone.0150360] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/12/2016] [Indexed: 12/12/2022] Open
Abstract
Neurovascular inflammation is a major contributor to many neurological disorders, but modeling these processes in vitro has proven to be difficult. Here, we microengineered a three-dimensional (3D) model of the human blood-brain barrier (BBB) within a microfluidic chip by creating a cylindrical collagen gel containing a central hollow lumen inside a microchannel, culturing primary human brain microvascular endothelial cells on the gel’s inner surface, and flowing medium through the lumen. Studies were carried out with the engineered microvessel containing endothelium in the presence or absence of either primary human brain pericytes beneath the endothelium or primary human brain astrocytes within the surrounding collagen gel to explore the ability of this simplified model to identify distinct contributions of these supporting cells to the neuroinflammatory response. This human 3D BBB-on-a-chip exhibited barrier permeability similar to that observed in other in vitro BBB models created with non-human cells, and when stimulated with the inflammatory trigger, tumor necrosis factor-alpha (TNF-α), different secretion profiles for granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed depending on the presence of astrocytes or pericytes. Importantly, the levels of these responses detected in the 3D BBB chip were significantly greater than when the same cells were co-cultured in static Transwell plates. Thus, as G-CSF and IL-6 have been reported to play important roles in neuroprotection and neuroactivation in vivo, this 3D BBB chip potentially offers a new method to study human neurovascular function and inflammation in vitro, and to identify physiological contributions of individual cell types.
Collapse
|
31
|
Wang Y, Wang N, Cai B, Wang GY, Li J, Piao XX. In vitro model of the blood-brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells. Neural Regen Res 2016; 10:2011-7. [PMID: 26889191 PMCID: PMC4730827 DOI: 10.4103/1673-5374.172320] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drugs for the treatment and prevention of nervous system diseases must permeate the blood-brain barrier to take effect. In vitro models of the blood-brain barrier are therefore important in the investigation of drug permeation mechanisms. However, to date, no unified method has been described for establishing a blood-brain barrier model. Here, we modified an in vitro model of the blood-brain barrier by seeding brain microvascular endothelial cells and astrocytes from newborn rats on a polyester Transwell cell culture membrane with 0.4-µm pores, and conducted transepithelial electrical resistance measurements, leakage tests and assays for specific blood-brain barrier enzymes. We show that the permeability of our model is as low as that of the blood-brain barrier in vivo. Our model will be a valuable tool in the study of the mechanisms of action of neuroprotective drugs.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Ning Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Biao Cai
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Guang-Yun Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jing Li
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Xing-Xing Piao
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
32
|
Dual targeting of solid lipid nanoparticles grafted with 83-14 MAb and anti-EGF receptor for malignant brain tumor therapy. Life Sci 2016; 146:222-31. [DOI: 10.1016/j.lfs.2016.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/23/2022]
|
33
|
Kuo YC, Wang IH. Enhanced delivery of etoposide across the blood–brain barrier to restrain brain tumor growth using melanotransferrin antibody- and tamoxifen-conjugated solid lipid nanoparticles. J Drug Target 2016; 24:645-54. [DOI: 10.3109/1061186x.2015.1132223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - I-Hsin Wang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
34
|
Bischel LL, Coneski PN, Lundin JG, Wu PK, Giller CB, Wynne J, Ringeisen BR, Pirlo RK. Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood-brain barrier tissue. J Biomed Mater Res A 2016; 104:901-9. [PMID: 26650896 DOI: 10.1002/jbm.a.35624] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 12/16/2022]
Abstract
Gaining a greater understanding of the blood-brain barrier (BBB) is critical for improvement in drug delivery, understanding pathologies that compromise the BBB, and developing therapies to protect the BBB. In vitro human tissue models are valuable tools for studying these issues. The standard in vitro BBB models use commercially available cell culture inserts to generate bilayer co-cultures of astrocytes and endothelial cells (EC). Electrospinning can be used to produce customized cell culture substrates with optimized material composition and mechanical properties with advantages over off-the-shelf materials. Electrospun gelatin is an ideal cell culture substrate because it is a natural polymer that can aid cell attachment and be modified and degraded by cells. Here, we have developed a method to produce cell culture inserts with electrospun gelatin "biopaper" membranes. The electrospun fiber diameter and cross-linking method were optimized for the growth of primary human endothelial cell and primary human astrocyte bilayer co-cultures to model human BBB tissue. BBB co-cultures on biopaper were characterized via cell morphology, trans-endothelial electrical resistance (TEER), and permeability to FITC-labeled dextran and compared to BBB co-cultures on standard cell culture inserts. Over longer culture periods (up to 21 days), cultures on the optimized electrospun gelatin biopapers were found to have improved TEER, decreased permeability, and permitted a smaller separation between co-cultured cells when compared to standard PET inserts.
Collapse
Affiliation(s)
- Lauren L Bischel
- American Society for Engineering Education Postdoctoral Fellow at the U.S. Naval Research Laboratory, Washington, DC
| | - Peter N Coneski
- American Society for Engineering Education Postdoctoral Fellow at the U.S. Naval Research Laboratory, Washington, DC
| | - Jeffrey G Lundin
- U.S. Naval Research Laboratory, Chemistry Division, Washington, DC
| | - Peter K Wu
- Department of Physics, Southern Oregon University, Ashland, Oregon
| | - Carl B Giller
- Contractor at the U.S. Naval Research Laboratory, Leidos, Washington, DC
| | - James Wynne
- U.S. Naval Research Laboratory, Chemistry Division, Washington, DC
| | - Brad R Ringeisen
- U.S. Naval Research Laboratory, Chemistry Division, Washington, DC
| | - Russell K Pirlo
- U.S. Naval Research Laboratory, Chemistry Division, Washington, DC
| |
Collapse
|
35
|
Kuo YC, Chao IW. Conjugation of melanotransferrin antibody on solid lipid nanoparticles for mediating brain cancer malignancy. Biotechnol Prog 2015; 32:480-90. [PMID: 26701338 DOI: 10.1002/btpr.2214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/28/2015] [Indexed: 12/12/2022]
Abstract
Solid lipid nanoparticles (SLNs) comprising complex internal lipids were conjugated with melanotransferrin antibody (MA) to carry anticancer etoposide across the blood-brain barrier (BBB) for managing glioblastoma multiforme (GBM). MA was crosslinked on the surface of etoposide-loaded SLNs (ETP-SLNs) to target human brain-microvascular endothelial cells (HBMECs) and U87MG cells. The experimental evidences showed that an increase in the tripalmitin weight percentage in lipids enhanced the particle size and viability of U87MG cells, however decreased the etoposide loading efficiency, MA conjugation efficiency, and permeability coefficient for etoposide across the BBB. A high level of MA on the particle surface increased the atomic ratio of nitrogen to phosphorus and permeability coefficient for propidium iodide and etoposide across the BBB, however reduced the MA conjugation efficiency, transendothelial electrical resistance, and viability of U87MG cells. Based on immunochemical staining, we found that MA on ETP-SLNs triggered the melanotransferrin-mediated transcytosis and promoted the growth-inhibitory efficacy to U87MG cells. MA-conjugated ETP-SLNs can be a promising colloidal delivery system for malignant GBM pharmacotherapy. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:480-490, 2016.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Dept. of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, 62102, Republic of China
| | - In-Wei Chao
- Dept. of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, 62102, Republic of China
| |
Collapse
|
36
|
Kuo YC, Cheng SJ. Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. Int J Pharm 2015; 499:10-19. [PMID: 26721730 DOI: 10.1016/j.ijpharm.2015.12.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/09/2015] [Accepted: 12/19/2015] [Indexed: 02/01/2023]
Abstract
Solid lipid nanoparticles (SLNs) conjugated with tamoxifen (TX) and lactoferrin (Lf) were applied to carry anticancer carmustine (BCNU) across the blood-brain barrier (BBB) for enhanced antiproliferation against glioblastoma multiforme (GBM). BCNU-loaded SLNs with modified TX and Lf (TX-Lf-BCNU-SLNs) were used to penetrate a monolayer of human brain-microvascular endothelial cells (HBMECs) and human astrocytes and to target malignant U87MG cells. The surface TX and Lf on TX-Lf-BCNU-SLNs improved the characteristics of sustained release for BCNU. When compared with BCNU-loaded SLNs, TX-Lf-BCNU-SLNs increased the BBB permeability coefficient for BCNU about ten times. In addition, TX-BCNU-SLNs considerably promoted the fluorescent intensity of intracellular acetomethoxy derivative of calcein (calcein-AM) in HBMECs via endocytosis. However, the conjugated Lf could only slightly increase the fluorescence of calcein-AM. Moreover, the order of formulation in the inhibition to U87MG cells was TX-Lf-BCNU-SLNs>TX-BCNU-SLNs>Lf-BCNU-SLNs>BCNU-SLNs. TX-Lf-BCNU-SLNs can be effective in infiltrating the BBB and delivering BCNU to GBM for future chemotherapy application.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China.
| | - Shih-Jue Cheng
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| |
Collapse
|
37
|
Paradis A, Leblanc D, Dumais N. Optimization of an in vitro human blood-brain barrier model: Application to blood monocyte transmigration assays. MethodsX 2015; 3:25-34. [PMID: 26865992 PMCID: PMC4710797 DOI: 10.1016/j.mex.2015.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
The blood–brain barrier (BBB) is a selectively permeable barrier that separates the circulating blood from the extracellular fluid of the brain and is an essential component in brain homeostasis. In vitro BBB models are valuable supporting tools that can precede and complement animal and human studies of the development and progression of the central nervous system diseases. At present, mono-, co-, and tri-culture models that use porcine, murine, or human cells have been developed. We have optimized a two-dimensional model of the human BBB using primary human brain microvascular endothelial cells and normal human astrocytes. We have validated the effectiveness of our model with transmigration assays of human blood monocytes toward CCL19, a natural ligand of the chemokine receptor CCR7. This model offers the following advantages:It is simple, convenient, and requires small quantities of material, reagents, and primary cells. It can be used to monitor cell migration through the BBB. It can be used to assess brain capillary permeability in the presence of xenobiotic, pro-inflammatory, or other substances.
Collapse
Affiliation(s)
- Alexandre Paradis
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1 K 2R1
| | - David Leblanc
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1 K 2R1
| | - Nancy Dumais
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1 K 2R1
| |
Collapse
|
38
|
Coelho-Santos V, Leitão RA, Cardoso FL, Palmela I, Rito M, Barbosa M, Brito MA, Fontes-Ribeiro CA, Silva AP. The TNF-α/NF-κB signaling pathway has a key role in methamphetamine-induced blood-brain barrier dysfunction. J Cereb Blood Flow Metab 2015; 35:1260-71. [PMID: 25899299 PMCID: PMC4528012 DOI: 10.1038/jcbfm.2015.59] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/17/2015] [Accepted: 03/13/2015] [Indexed: 01/09/2023]
Abstract
Methamphetamine (METH) is a psychostimulant that causes neurologic and psychiatric abnormalities. Recent studies have suggested that its neurotoxicity may also result from its ability to compromise the blood-brain barrier (BBB). Herein, we show that METH rapidly increased the vesicular transport across endothelial cells (ECs), followed by an increase of paracellular transport. Moreover, METH triggered the release of tumor necrosis factor-alpha (TNF-α), and the blockade of this cytokine or the inhibition of nuclear factor-kappa B (NF-κB) pathway prevented endothelial dysfunction. Since astrocytes have a crucial role in modulating BBB function, we further showed that conditioned medium obtained from astrocytes previously exposed to METH had a negative impact on barrier properties also via TNF-α/NF-κB pathway. Animal studies corroborated the in vitro results. Overall, we show that METH directly interferes with EC properties or indirectly via astrocytes through the release of TNF-α and subsequent activation of NF-κB pathway culminating in barrier dysfunction.
Collapse
Affiliation(s)
- Vanessa Coelho-Santos
- 1] Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal [2] Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ricardo A Leitão
- 1] Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal [2] Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Filipa L Cardoso
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Palmela
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Manuel Rito
- Neurosurgery Service, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Marcos Barbosa
- 1] Neurosurgery Service, Coimbra Hospital and University Centre, Coimbra, Portugal [2] Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria A Brito
- 1] Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal [2] Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos A Fontes-Ribeiro
- 1] Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal [2] Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana P Silva
- 1] Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal [2] Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
39
|
Kuo YC, Lee CH. Inhibition Against Growth of Glioblastoma Multiforme In Vitro Using Etoposide-Loaded Solid Lipid Nanoparticles with ρ-Aminophenyl-α-D-Manno-Pyranoside and Folic Acid. J Pharm Sci 2015; 104:1804-14. [DOI: 10.1002/jps.24388] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/14/2015] [Accepted: 01/23/2015] [Indexed: 12/19/2022]
|
40
|
Kuo YC, Lin CC. Rescuing apoptotic neurons in Alzheimer's disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin. Int J Nanomedicine 2015; 10:2653-72. [PMID: 25878499 PMCID: PMC4388084 DOI: 10.2147/ijn.s79528] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Liposomes with cardiolipin (CL) and wheat germ agglutinin (WGA) were developed to permeate the blood–brain barrier and treat Alzheimer’s disease. WGA-conjugated and CL-incorporated liposomes (WGA-CL-liposomes) were used to transport nerve growth factor (NGF) and curcumin (CUR) across a monolayer of human brain-microvascular endothelial cells regulated by human astrocytes and to protect SK-N-MC cells against apoptosis induced by β-amyloid1–42 (Aβ1–42) fibrils. An increase in the CL mole percentage in lipids increased the liposomal diameter, absolute zeta potential value, entrapment efficiency of NGF and CUR, release of NGF, biocompatibility, and viability of SK-N-MC cells with Aβ1–42, but decreased the atomic ratio of nitrogen to phosphorus and release of CUR. In addition, an increase in the WGA concentration for grafting enhanced the liposomal diameter, atomic ratio of nitrogen to phosphorus, and permeability of NGF and CUR across the blood–brain barrier, but reduced the absolute zeta potential value and biocompatibility. WGA-CL-liposomes carrying NGF and CUR could be promising colloidal delivery carriers for future clinical application in targeting the blood–brain barrier and inhibiting neurotoxicity.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Ching-Chun Lin
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
41
|
Odijk M, van der Meer AD, Levner D, Kim HJ, van der Helm MW, Segerink LI, Frimat JP, Hamilton GA, Ingber DE, van den Berg A. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. LAB ON A CHIP 2015; 15:745-52. [PMID: 25427650 DOI: 10.1039/c4lc01219d] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Trans-epithelial electrical resistance (TEER) measurements are widely used as real-time, non-destructive, and label-free measurements of epithelial and endothelial barrier function. TEER measurements are ideal for characterizing tissue barrier function in organs-on-chip studies for drug testing and investigation of human disease models; however, published reports using this technique have reported highly conflicting results even with identical cell lines and experimental setups. The differences are even more dramatic when comparing measurements in conventional Transwell systems with those obtained in microfluidic systems. Our goal in this work was therefore to enhance the fidelity of TEER measurements in microfluidic organs-on-chips, specifically using direct current (DC) measurements of TEER, as this is the most widely used method reported in the literature. Here we present a mathematical model that accounts for differences measured in TEER between microfluidic chips and Transwell systems, which arise from differences in device geometry. The model is validated by comparing TEER measurements obtained in a microfluidic gut-on-a-chip device versus in a Transwell culture system. Moreover, we show that even small gaps in cell coverage (e.g., 0.4%) are sufficient to cause a significant (~80%) drop in TEER. Importantly, these findings demonstrate that TEER measurements obtained in microfluidic systems, such as organs-on-chips, require special consideration, specifically when results are to be compared with measurements obtained from Transwell systems.
Collapse
Affiliation(s)
- Mathieu Odijk
- BIOS/Lab-on-Chip Group, MESA+ Institute for Nanotechnology & MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hopkins AM, DeSimone E, Chwalek K, Kaplan DL. 3D in vitro modeling of the central nervous system. Prog Neurobiol 2015; 125:1-25. [PMID: 25461688 PMCID: PMC4324093 DOI: 10.1016/j.pneurobio.2014.11.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/12/2014] [Accepted: 11/15/2014] [Indexed: 12/15/2022]
Abstract
There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here.
Collapse
Affiliation(s)
- Amy M Hopkins
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - Elise DeSimone
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - Karolina Chwalek
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
43
|
Qin J, Yang X, Zhang RX, Luo YX, Li JL, Hou J, Zhang C, Li YJ, Shi J, Lu L, Wang JX, Zhu WL. Monocyte mediated brain targeting delivery of macromolecular drug for the therapy of depression. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:391-400. [DOI: 10.1016/j.nano.2014.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/30/2014] [Accepted: 09/22/2014] [Indexed: 12/25/2022]
|
44
|
Kuo YC, Chen YC. Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles. Int J Pharm 2015; 479:138-49. [DOI: 10.1016/j.ijpharm.2014.12.070] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/11/2014] [Accepted: 12/30/2014] [Indexed: 12/11/2022]
|
45
|
Kuo YC, Wang CC. Carmustine-loaded catanionic solid lipid nanoparticles with serotonergic 1B receptor subtype antagonist for in vitro targeted delivery to inhibit brain cancer growth. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Qin J, Yang X, Mi J, Wang J, Hou J, Shen T, Li Y, Wang B, Li X, Zhu W. Enhanced antidepressant-like effects of the macromolecule trefoil factor 3 by loading into negatively charged liposomes. Int J Nanomedicine 2014; 9:5247-57. [PMID: 25419129 PMCID: PMC4235500 DOI: 10.2147/opth.s69335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Immunocytes, mainly neutrophils and monocytes, exhibit an intrinsic homing property, enabling them to migrate to sites of injury and inflammation. They can thus act as Trojan horses carrying concealed drug cargoes while migrating across impermeable barriers to sites of disease, especially the blood–brain barrier (BBB). In this study, to target circulating phagocytic cells, we formulated negatively charged nanosize liposomes and loaded trefoil factor 3 (TFF3) into liposomes by the pH-gradient method. According to the optimized formulation (5:1.5 of lipid to cholesterol, 10:1 of lipid to drug, 10 mg/mL of lipid concentration, and 10 mmol/L of phosphate-buffered saline), 44.47% entrapment efficiency was obtained for TFF3 liposomes with 129.6 nm particle size and −36.6 mV zeta potential. Compared with neutrally charged liposomes, the negatively charged liposomes showed a strong binding capacity with monocytes and were effectively carried by monocytes to cross the BBB in vitro. Furthermore, enhanced antidepressant-like effects were found in the tail-suspension and forced-swim tests in mice, as measured by decreased immobility time, as well as increased swimming time and reduced immobility in rats. These results suggested that negatively charged liposomes could improve the behavioral responses of TFF3, and our study opens up a new way for the development of effective therapies for brain disease by increasing the permeability of the BBB.
Collapse
Affiliation(s)
- Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, People's Republic of China
| | - Xu Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, People's Republic of China ; Department of Pharmaceutics, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China ; Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Jia Mi
- Binzhou Medical University, Yantai, People's Republic of China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, People's Republic of China
| | - Jia Hou
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, People's Republic of China ; Department of Pharmaceutics, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Teng Shen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, People's Republic of China
| | - Yongji Li
- Department of Pharmaceutics, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Bin Wang
- Binzhou Medical University, Yantai, People's Republic of China
| | - Xuri Li
- Binzhou Medical University, Yantai, People's Republic of China
| | - Weili Zhu
- National Institute on Drug Dependence, Peking University, Beijing, People's Republic of China
| |
Collapse
|
47
|
Kuo YC, Lin CY. Targeting delivery of liposomes with conjugated p-aminophenyl-α-d-manno-pyranoside and apolipoprotein E for inhibiting neuronal degeneration insulted with β-amyloid peptide. J Drug Target 2014; 23:147-58. [PMID: 25268274 DOI: 10.3109/1061186x.2014.965716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Liposomes with conjugated p-aminophenyl-α-d-manno-pyranoside (APMP) and apolipoprotein E (ApoE) (APMP-ApoE-liposomes) were employed to carry neuron growth factor (NGF) across the blood-brain barrier (BBB) and enhance the survival of degenerated neurons. APMP-ApoE-liposomes were used to deliver NGF across a monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes (HAs) for rescuing SK-N-MC cells from an insult of β-amyloid peptide 1-42 (Aβ1-42). An increase in the APMP concentration enhanced the particle size, HBMEC and HA viability, permeability for propidium iodide (PI), and permeability for NGF, however, reduced the absolute value of zeta potential, APMP conjugation efficiency and transendothelial electrical resistance (TEER). In addition, an increase in the ApoE concentration increased the particle size, absolute value of zeta potential, HBMEC and HA viability, permeability for PI, permeability for NGF and SK-N-MC cell viability, however, decreased the ApoE conjugation efficiency and TEER. APMP and ApoE on liposomes can be promising surface moieties to carry NGF across the BBB, target degenerated neurons and inhibit Aβ1-42-induced neurotoxicity in Alzheimer's disease.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University , Chia-Yi, Taiwan , Republic of China
| | | |
Collapse
|
48
|
Wang LF, Li X, Gao YB, Wang SM, Zhao L, Dong J, Yao BW, Xu XP, Chang GM, Zhou HM, Hu XJ, Peng RY. Activation of VEGF/Flk-1-ERK Pathway Induced Blood–Brain Barrier Injury After Microwave Exposure. Mol Neurobiol 2014; 52:478-91. [DOI: 10.1007/s12035-014-8848-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/31/2014] [Indexed: 12/14/2022]
|
49
|
Kuo YC, Chou PR. Neuroprotection against degeneration of sk-N-mc cells using neuron growth factor-encapsulated liposomes with surface cereport and transferrin. J Pharm Sci 2014; 103:2484-97. [PMID: 25041794 DOI: 10.1002/jps.24081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 11/06/2022]
Abstract
Liposomes with Cereport (RMP-7) and transferrin (Tf) (RMP-7/Tf/liposomes) were employed to target the blood-brain barrier (BBB) and to inhibit the degeneration of neurons insulted with fibrillar β-amyloid peptide 1-42 (Aβ1-42). Neuron growth factor (NGF)-encapsulated RMP-7/Tf/liposomes (RMP-7/Tf/NGF-liposomes) were used to permeate a monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes (HAs) and to treat Aβ1-42 -attacked SK-N-MC cells. An increase in RMT-7 concentration increased the particle size, zeta potential, propidium iodide (PI) permeability, and NGF permeability, but decreased the cross-linking efficiency of RMT-7, viability of HBMECs and HAs, and transendothelial electrical resistance (TEER). In addition, an increase in Tf concentration enhanced the particle size, viability of HBMECs, HAs, and SK-N-MC cells, PI permeability, and NGF permeability, but reduced the zeta potential, cross-linking efficiency of RMT-7 and Tf, and TEER. RMP-7/Tf/NGF-liposomes can transport NGF across the BBB and improve the neuroprotection for Alzheimer's disease therapy in preclinical trials.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, 62102, Republic of China
| | | |
Collapse
|
50
|
Kuo YC, Liu YC. Cardiolipin-incorporated liposomes with surface CRM197 for enhancing neuronal survival against neurotoxicity. Int J Pharm 2014; 473:334-44. [PMID: 24999054 DOI: 10.1016/j.ijpharm.2014.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022]
Abstract
CRM197-grafted liposomes containing cardiolipin (CL) (CRM197/CL-liposomes) were used to enhance the permeability of neuron growth factor (NGF) across the blood-brain barrier (BBB) for promoting the neuroprotective effect of NGF. CRM197/CL-liposoms were incubated with a monolayer of human astrocyte (HA)-regulated human brain-microvascular endothelial cells (HBMECs) and employed to rescue SK-N-MC cells with insult of fibrillar β-amyloid peptide (1-42) (Aβ1-42). An increase in the CL mole percentage enhanced the particle size, absolute value of zeta potential, NGF entrapment efficiency, CRM197 grafting efficiency, viability of HBMECs, HAs, and SK-N-MC cells, and BBB permeability of propidium iodide (PI) and NGF, and reduced the transendothelial electrical resistance (TEER). In addition, an increase in the CRM197 weight percentage increased the particle size, absolute value of zeta potential, viability of HBMECs and HAs, and BBB permeability of PI and NGF, and decreased the CRM197 grafting efficiency and TEER. CRM197/CL-liposomes have the ability to target the BBB and to reduce neurotoxicity of Aβ142 and can be promising formulations for treating Alzheimer's disease in future medicinal application.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan
| | - Yu-Chuan Liu
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| |
Collapse
|