1
|
Zhang L, Shen Y, Zhang T, Jiang X, Wang L, Wang B, Lan X, Tian J, Zhang X. pH responsive and zwitterionic micelle for enhanced cellular uptake and antitumor performance. BIOMATERIALS ADVANCES 2024; 167:214082. [PMID: 39486242 DOI: 10.1016/j.bioadv.2024.214082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
The side effects of small molecule chemotherapeutic drugs (SMCD) have brought great pain to the cancer patients. Many nanodrug carriers can relieve the shortcomings of SMCD, but they have complex synthesis processes and lack biodegradability. To overcome both problems, we synthesized a pH responsive biodegradable zwitterionic molecules (EK-D) by linking zwitterionic polypeptide (EK7) and dodecyl acrylate through a simple click reaction. Subsequently, doxorubicin (DOX) was physically encapsulated within the EK-D micelles to produce EK-D-DOX micelles, and polyethylene glycol monooleate (POO) employed as a comparative group for the preparation of POO-DOX micelles. The results show that EK-D-DOX micelles have good aqueous stability and anti-protein non-specific adsorption performance at pH 7.4, but EK-D-DOX micelles aggregate under the condition of pH = 5.5 due to the biodegradability of EK-D. The tumor cell uptake rate of EK-D-DOX micelles is higher than that of POO-DOX micelles and free DOX, which makes EK-D-DOX micelles the highest cytotoxic. Additionally, EK-D-DOX micelles release more DOX in a slightly acidic environment than at pH 7.4, and the release of DOX reaches a significant cumulative value of 75.20 % under pH conditions of 5.5. More importantly, EK-D-DOX micelles exhibit superior in vivo tumor inhibitory efficacy compared to free DOX, resulting in a remarkable tumor inhibition rate of 95.7 %. EK-D-DOX micelles not only have lower biological toxicity to normal tissues than free DOX, but also have a longer blood circulation time in mice. The method of EK-D-DOX micelles preparation represents a new method to prepare biodegradable zwitterionic nanodrug.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Yue Shen
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Tiantian Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Xiaohua Jiang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| | - Bin Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xifa Lan
- First Hospital of Qinhuangdao, Qinhuangdao, China.
| | - Jingrui Tian
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China.
| | - Xiaoyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
An J, Zhang Z, Zhang J, Zhang L, Liang G. Research progress in tumor therapy of carrier-free nanodrug. Biomed Pharmacother 2024; 178:117258. [PMID: 39111083 DOI: 10.1016/j.biopha.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024] Open
Abstract
Carrier-free nanodrugs are a novel type of drug constructed by the self-assembly of drug molecules without carrier involvement. They have the characteristics of small particle size, easy penetration of various barriers, targeting tumors, and efficient release. In recent years, carrier-free nanodrugs have become a hot topic in tumor therapy as they solve the problems of low drug loading, poor biocompatibility, and low uptake efficiency of carrier nanodrugs. A series of recent studies have shown that carrier-free nanodrugs play a vital role in the treatment of various tumors, with similar or better effects than carrier nanodrugs. Based on the literature published in the past decades, this paper first summarizes the recent progress in the assembly modes of carrier-free nanodrugs, then describes common therapeutic modalities of carrier-free nanodrugs in tumor therapy, and finally depicts the existing challenges along with future trends of carrier-free nanodrugs. We hope that this review can guide the design and application of carrier-free nanodrugs in the future.
Collapse
Affiliation(s)
- Junling An
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Zequn Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Jinrui Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Lingyang Zhang
- Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China; Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
3
|
Chelimela N, Alavala RR, Satla SR. Curcumin - Bioavailability Enhancement by Prodrug Approach and Novel Formulations. Chem Biodivers 2024; 21:e202302030. [PMID: 38401117 DOI: 10.1002/cbdv.202302030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Curcumin is a diverse natural pharmacological agent involved in various signal transduction mechanisms. Therapeutically, this potent molecule faces different challenges and issues related to low bioavailability due to its poor aqueous solubility, less permeability, faster elimination and clearance. Experts in synthetic chemistry and pharmaceuticals are continuously sparing their efforts to overcome these pharmacokinetic challenges by using different structural modification strategies and developing novel drug delivery systems. In this mini-review article, we are focusing on development of curcumin derivatives by different possible routes like conjugation with biomolecules, natural polymers, synthetic polymers, natural products, metal conjugates and co- administration with natural metabolic inhibitors. In addition to that, it was also focused on the preparation of modified formulations such as micelles, microemulsions, liposomes, complexes with phospholipids, micro and nanoemulsions, solid lipid nanoparticles, nano lipid carriers, biopolymer nanoparticles and microgels to improve the pharmacokinetic properties of the curcumin without altering its pharmacodynamics activity. This review helps to understand the problems associated with curcumin and different strategies to improve its pharmacokinetic profile.
Collapse
Affiliation(s)
- Narsaiah Chelimela
- Centre for Pharmaceutical Sciences, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500085, India
| | - Rajasekhar Reddy Alavala
- Shobhaben Pratapbhai Patel School of Pharmacy &, Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Shobha Rani Satla
- Centre for Pharmaceutical Sciences, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500085, India
| |
Collapse
|
4
|
Alkhafaji E, Dmour I, Al-Essa MK, Alshaer W, Aljaberi A, Khalil EA, Taha MO. Preparation of novel shell-ionotropically crosslinked micelles based on hexadecylamine and tripolyphosphate for cancer drug delivery. Pharm Dev Technol 2024; 29:322-338. [PMID: 38502578 DOI: 10.1080/10837450.2024.2332457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
AIMS Micellar systems have the advantage of being easily prepared, cheap, and readily loadable with bioactive molecular cargo. However, their fundamental pitfall is poor stability, particularly under dilution conditions. We propose to use simple quaternary ammonium surfactants, namely, hexadecylamine (HDA) and hexadecylpyridinium (HDAP), together with tripolyphosphate (TPP) anion, to generate ionotropically stabilized micelles capable of drug delivery into cancer cells. METHODS optimized mixed HDA/HDAP micelles were prepared and stabilized with TPP. Curcumin was used as a loaded model drug. The prepared nanoparticles were characterized by dynamic light scattering, infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry. Moreover, their cellular uptake was assessed using flow cytometry and confocal fluorescence microscopy. RESULTS The prepared nanoparticles were found to be stable under dilution and at high temperatures and to have a size range from 139 nm to 580 nm, depending on pH (4.6-7.4), dilution (up to 100 times), and temperature (25 - 80 °C). They were effective at delivering their load into cancer cells. Additionally, flow cytometry indicated the resulting stabilized micellar nanoparticles to be non-cytotoxic. CONCLUSIONS The described novel stabilized micelles are simple to prepare and viable for cancer delivery.
Collapse
Affiliation(s)
- Enas Alkhafaji
- Department of Pharmaceutical Sciences, Jerash University, Jerash, Jordan
| | - Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, The Hashemite University, Zarqa, Jordan
| | - Mohamed K Al-Essa
- Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ahmad Aljaberi
- Department of Pharmaceutical Sciences and Pharmaceutics, Applied Science Private University, Amman, Jordan
| | - Enam A Khalil
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Drug Design and Discovery Unit, Amman, Jordan
| |
Collapse
|
5
|
Junyaprasert VB, Thummarati P. Innovative Design of Targeted Nanoparticles: Polymer-Drug Conjugates for Enhanced Cancer Therapy. Pharmaceutics 2023; 15:2216. [PMID: 37765185 PMCID: PMC10537251 DOI: 10.3390/pharmaceutics15092216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Polymer-drug conjugates (PDCs) have shown great promise in enhancing the efficacy and safety of cancer therapy. These conjugates combine the advantageous properties of both polymers and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for cancer therapy. First, various types of polymers used in these conjugates are discussed, including synthetic polymers, such as poly(↋-caprolactone) (PCL), D-α-tocopheryl polyethylene glycol (TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are explored, including covalent bonding, which enables a stable linkage between the polymer and the drug, ensuring controlled release and minimizing premature drug release. The use of polymers can extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a versatile and effective approach to cancer therapy. Their ability to combine the advantages of polymers and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby improving the overall efficacy and safety of cancer therapies. Further research and development in this field has great potential to advance personalized cancer treatment options.
Collapse
|
6
|
Akanda M, Getti G, Douroumis D. In vivo evaluation of nanostructured lipid carrier systems (NLCs) in mice bearing prostate cancer tumours. Drug Deliv Transl Res 2023; 13:2083-2095. [PMID: 34845679 PMCID: PMC10315352 DOI: 10.1007/s13346-021-01095-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Nanostructure lipid carriers (NLCs) were developed for the delivery of curmumin (CRN), a potent anticancer agent with low bioavailability, for the treatment of prostate cancer. NLCs prepared using high pressure homogenization (HPH) with around 150 nm particle size, - 40 V ζ-potential and excellent long-term stability. Cellular uptake of CRN-SLN showed nanoparticle localization in the cytoplasm around the nucleus. CRN-NLCs were assessed using flow cytometry and found to cause early and late apoptotic events at 100 μg/ml CRN concentrations. CRN-NLC nanoparticles were administrated to nude mice with LNCaP prostate cancer xenografts and demonstrated substantial tumour volume suppression (40%) with no weight loss compared to pure CRN (ethanolic solution). Overall, NLCs were proved a suitable carrier for passive drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Mushfiq Akanda
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, ME4 4TB, UK
- Centre for Innovation & Process Engineering Research, Chatam Maritime, Kent, ME4 4TB, UK
| | - Giulia Getti
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, ME4 4TB, UK
| | - Dennis Douroumis
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, ME4 4TB, UK.
- Centre for Innovation & Process Engineering Research, Chatam Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
7
|
Arno MC, Simpson JD, Blackman LD, Brannigan RP, Thurecht KJ, Dove AP. Enhanced drug delivery to cancer cells through a pH-sensitive polycarbonate platform. Biomater Sci 2023; 11:908-915. [PMID: 36533676 PMCID: PMC9890502 DOI: 10.1039/d2bm01626e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Polymer-drug conjugates are widely investigated to enhance the selectivity of therapeutic drugs to cancer cells, as well as increase circulation lifetime and solubility of poorly soluble drugs. In order to direct these structures selectively to cancer cells, targeting agents are often conjugated to the nanoparticle surface as a strategy to limit drug accumulation in non-cancerous cells and therefore reduce systemic toxicity. Here, we report a simple procedure to generate biodegradable polycarbonate graft copolymer nanoparticles that allows for highly efficient conjugation and intracellular release of S-(+)-camptothecin, a topoisomerase I inhibitor widely used in cancer therapy. The drug-polymer conjugate showed strong efficacy in inhibiting cell proliferation across a range of cancer cell lines over non-cancerous phenotypes, as a consequence of the increased intracellular accumulation and subsequent drug release specifically in cancer cells. The enhanced drug delivery towards cancer cells in vitro demonstrates the potential of this platform for selective treatments without the addition of targeting ligands.
Collapse
Affiliation(s)
- Maria C Arno
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joshua D Simpson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lewis D Blackman
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK
| | - Ruairí P Brannigan
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Pei Z, Chen S, Ding L, Liu J, Cui X, Li F, Qiu F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J Control Release 2022; 352:211-241. [PMID: 36270513 DOI: 10.1016/j.jconrel.2022.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
The limitations of traditional cancer treatments are driving the creation and development of new nanomedicines. At present, with the rapid increase of research on nanomedicine in the field of cancer, there is a lack of intuitive analysis of the development trend, main authors and research hotspots of nanomedicine in the field of cancer, as well as detailed elaboration of possible research hotspots. In this review, data collected from the Web of Science Core Collection database between January 1st, 2000, and December 31st, 2021, were subjected to a bibliometric analysis. The co-authorship, co-citation, and co-occurrence of countries, institutions, authors, literature, and keywords in this subject were examined using VOSviewer, Citespace, and a well-known online bibliometrics platform. We collected 19,654 published papers, China produced the most publications (36.654%, 7204), followed by the United States (29.594%, 5777), and India (7.780%, 1529). An interesting fact is that, despite China having more publications than the United States, the United States still dominates this field, having the highest H-index and the most citations. Acs Nano, Nano Letters, and Biomaterials are the top three academic publications that publish articles on nanomedicine for cancer out of a total of 7580 academic journals. The most significant increases were shown for the keywords "cancer nanomedicine", "tumor microenvironment", "nanoparticles", "prodrug", "targeted nanomedicine", "combination", and "cancer immunotherapy" indicating the promising area of research. Meanwhile, the development prospects and challenges of nanomedicine in cancer are also discussed and provided some solutions to the major obstacles.
Collapse
Affiliation(s)
- Zerong Pei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuting Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liqin Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinyi Cui
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
9
|
Guo Z, Sui J, Li Y, Wei Q, Wei C, Xiu L, Zhu R, Sun Y, Hu J, Li JL. GE11 peptide-decorated acidity-responsive micelles for improved drug delivery and enhanced combination therapy of metastatic breast cancer. J Mater Chem B 2022; 10:9266-9279. [PMID: 36342458 DOI: 10.1039/d2tb01816k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nanotechnology-mediated drug delivery systems suffer from insufficient retention in tumor tissues and unreliable drug release at specific target sites. Herein, we developed an epidermal growth factor receptor-targeted multifunctional micellar nanoplatform (GE11-DOX+CEL-M) by encapsulating celecoxib into polymeric micelles based on the conjugate of GE11-poly(ethylene glycol)-b-poly(trimethylene carbonate) with doxorubicin to suppress tumor growth and metastasis. The polymeric micelles maintained stable nanostructures under physiological conditions but quickly disintegrated in a weakly acidic environment, which is conducive to controlled drug release. Importantly, GE11-DOX+CEL-M micelles effectively delivered the drug combination to tumor sites and enhanced tumor cell uptake through GE11-mediated active tumor targeting. Subsequently, GE11-DOX+CEL-M micelles dissociated in response to intracellular slightly acidic microenvironmental stimuli, resulting in rapid release of celecoxib and doxorubicin to synergistically inhibit the proliferation and migration of tumor cells. Systemic administration of GE11-DOX+CEL-M micelles into mice bearing subcutaneous 4T1 tumor models resulted in higher tumor growth suppression and decreased lung metastasis of tumor cells compared with micelles without GE11 decoration or delivering only doxorubicin. Furthermore, the micelles effectively reduced the systemic toxicity of the chemotherapy drugs. This nanotherapeutic system provides a promising strategy for safe and effective cancer therapy.
Collapse
Affiliation(s)
- Zhihao Guo
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China. .,National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China. .,Center for Molecular Science and Engineering, College of Science, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
| | - Junhui Sui
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China. .,College of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Yumei Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Qinchuan Wei
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Cailing Wei
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Linyun Xiu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Ruohua Zhu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
| | - Ji-Liang Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China. .,Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, 325000, China.
| |
Collapse
|
10
|
Thummarati P, Suksiriworapong J, Sakchaisri K, Nawroth T, Langguth P, Roongsawang B, Junyaprasert VB. Comparative study of dual delivery of gemcitabine and curcumin using CD44 targeting hyaluronic acid nanoparticles for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Yakub G, Manolova NE, Rashkov IB, Markova N, Toshkova R, Georgieva A, Mincheva R, Toncheva A, Raquez JM, Dubois P. Pegylated Curcumin Derivative: Water-Soluble Conjugates with Antitumor and Antibacterial Activity. ACS OMEGA 2022; 7:36403-36414. [PMID: 36278048 PMCID: PMC9583079 DOI: 10.1021/acsomega.2c04173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
During the past years, the synthesis of polymer prodrug structures, based on natural phytochemical compounds with a great range of valuable biological properties, has become a promising solution in cancer prevention, imaging, and detection. Curcumin (Curc) remains one of the most studied natural products, due to the impressive palette of biological properties and the possibility to be easily loaded in various micro- and nanostructures and chemically modified. In this study, pegylated curcumin derivatives were prepared by a direct esterification reaction between poly(ethylene glycol)diacid (PEG of 600 g/mol molar mass, PEG600) and Curc in the presence of N,N'-dicyclohexylcarbodiimide (PEG600-Curc). The successful reaction resulted in a water-soluble stable product that was characterized by infrared spectroscopy (Fourier transform infrared (FT-IR)) and proton (1H) and carbon (13C) NMR. The effect of the pH values of buffer solutions on PEG600-Curc spectral properties (absorption and photoluminescence) was investigated by UV-vis and fluorescence spectrophotometry. Based on the biological tests, it was confirmed that PEG600-Curc exhibits cytotoxic activity against Graffi cell lines, as a function of the Curc concentration in the conjugate and the incubation time. PEG600-Curc antibacterial activity was validated in microbiological tests against pathogenic microorganisms such as Staphylococcus aureus. Most importantly, despite the covalent attachment of Curc to PEG and the slight reduction in the therapeutic index of the conjugate, both the anticancer and antimicrobial activities remain the highest reported, thus opening the gate for further, more clinically oriented studies.
Collapse
Affiliation(s)
- Guldjan Yakub
- Laboratory
of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
| | - Nevena E. Manolova
- Laboratory
of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
| | - Iliya B. Rashkov
- Laboratory
of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
| | - Nadya Markova
- Institute
of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 26, BG-1113Sofia, Bulgaria
| | - Reneta Toshkova
- Institute
of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, 1113Sofia, Bulgaria
| | - Ani Georgieva
- Institute
of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, 1113Sofia, Bulgaria
| | - Rosica Mincheva
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| | - Antoniya Toncheva
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| | - Jean-Marie Raquez
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| | - Philippe Dubois
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| |
Collapse
|
12
|
Pulmonary delivery of liposomes co-loaded with SN38 prodrug and curcumin for the treatment of lung cancer. Eur J Pharm Biopharm 2022; 179:156-165. [PMID: 36064084 DOI: 10.1016/j.ejpb.2022.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
A co-delivery system of SN38 (7-ethyl-10-hydroxyl camptothecin) prodrug and CUR (curcumin) was designed for the treatment of lung cancer by pulmonary delivery. SN38 was linked to cell-penetrating peptide (CPP) TAT via a polyethylene glycol (PEG) linker to form the SN38 prodrug (TAT-PEG-SN38). Liposomes co-loaded with amphiphilic TAT-PEG-SN38 and curcumin (Lip-TAT-PEG-SN38/CUR) were successfully prepared by a microfluidic method for the treatment of lung cancer via pulmonary delivery. Lip-TAT-PEG-SN38/CUR showed nanometer-sized sphericity and a particle size of 171.21 nm. Besides, Lip-TAT-PEG-SN38/CUR exhibited enhanced antiproliferative effect, increased cell apoptosis induction and improved cell cycle arrest compared to the single agents in vitro. The combination induced significant tumor inhibition in a BALB/c mouse lung cancer model. These results indicated that our SN38 prodrug and curcumin co-delivery system was a promising candidate for lung cancer treatment.
Collapse
|
13
|
Farhoudi L, Kesharwani P, Majeed M, Johnston TP, Sahebkar A. Polymeric nanomicelles of curcumin: Potential applications in cancer. Int J Pharm 2022; 617:121622. [PMID: 35227805 DOI: 10.1016/j.ijpharm.2022.121622] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023]
|
14
|
Zhang Y, Cui H, Zhang R, Zhang H, Huang W. Nanoparticulation of Prodrug into Medicines for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101454. [PMID: 34323373 PMCID: PMC8456229 DOI: 10.1002/advs.202101454] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Indexed: 05/28/2023]
Abstract
This article provides a broad spectrum about the nanoprodrug fabrication advances co-driven by prodrug and nanotechnology development to potentiate cancer treatment. The nanoprodrug inherits the features of both prodrug concept and nanomedicine know-how, attempts to solve underexploited challenge in cancer treatment cooperatively. Prodrugs can release bioactive drugs on-demand at specific sites to reduce systemic toxicity, this is done by using the special properties of the tumor microenvironment, such as pH value, glutathione concentration, and specific overexpressed enzymes; or by using exogenous stimulation, such as light, heat, and ultrasound. The nanotechnology, manipulating the matter within nanoscale, has high relevance to certain biological conditions, and has been widely utilized in cancer therapy. Together, the marriage of prodrug strategy which shield the side effects of parent drug and nanotechnology with pinpoint delivery capability has conceived highly camouflaged Trojan horse to maneuver cancerous threats.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huaguang Cui
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Ruiqi Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-00520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-00520, Finland
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
15
|
Brzeziński M, Kost B, Gonciarz W, Krupa A, Socka M, Rogala M. Nanocarriers based on block copolymers of l-proline and lactide: The effect of core crosslinking versus its pH-sensitivity on their cellular uptake. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Qiu N, Du X, Ji J, Zhai G. A review of stimuli-responsive polymeric micelles for tumor-targeted delivery of curcumin. Drug Dev Ind Pharm 2021; 47:839-856. [PMID: 34033496 DOI: 10.1080/03639045.2021.1934869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite a potential drug with multiple pharmacological activities, curcumin has disadvantages of the poor water solubility, rapid metabolism, low bioavailability, which considerably limit its clinical application. Currently, polymeric micelles (PMs) have gained widespread concern due to their advantageous physical and chemical properties, easy preparation, and biocompatibility. They can be used to improve drug solubility, prolong blood circulation time, and allow passive targeted drug delivery to tumor through enhanced penetration and retention effect. Moreover, studies focused on tumor microenvironment offer alternatives to design stimulus-responsive smart PMs based on low pH, high levels of glutathione, altered enzyme expression, increased reactive oxygen species production, and hypoxia. There are various external stimuli, such as light, ultrasound, and temperature. These endogenous/exogenous stimuli can be used for the research of intelligent micelles. Intelligent PMs can effectively load curcumin with improved solubility, and intelligently respond to release the drug at a controlled rate at targeted sites such as tumors to avoid early release, which markedly improves the bioavailability of curcumin. The present review is aimed to discuss and summarize recent developments in research of curcumin-loaded intelligent PMs based on endogenous and exogenous stimuli, and facilitates the development of novel delivery systems for future research.
Collapse
Affiliation(s)
- Na Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Xiyou Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| |
Collapse
|
17
|
Hershberger KK, Gauger AJ, Bronstein LM. Utilizing Stimuli Responsive Linkages to Engineer and Enhance Polymer Nanoparticle-Based Drug Delivery Platforms. ACS APPLIED BIO MATERIALS 2021; 4:4720-4736. [PMID: 35007022 DOI: 10.1021/acsabm.1c00351] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The devastating nature of cancer continues to be one of the leading causes of death in the world. Chemotherapy is among the most common forms of cancer treatment but comes with a host of adverse effects caused by the therapeutic agents damaging healthy tissue and organs. To limit these side effects, scientists have been designing stimuli responsive drug delivery vessels for targeted release. This Review focuses on the incorporation of stimuli responsive linkages in targeted drug delivery systems to enhance therapeutic efficiency. These platforms are primarily employed to control the distribution of anticancer agents in the body to reduce the adverse side effects caused by their toxicities. We will outline how drug delivery vessels are constructed so that exposure to select environmental and external stimuli releases the enclosed drug only at the target site. Stimuli responsive components are integrated within drug delivery vessels in the form of cross-linkers, polymers, and surface modifications. The changes, these moieties undergo upon stimuli exposure, cascade into larger scale alterations to the platforms, resulting in complete disassembly, reversible morphological variations, and enhanced cellular uptake. The ability for these modes of delivery to be initiated exclusively under stimuli exposure allows for release of toxic therapeutic agents to be confined only to the affected area.
Collapse
Affiliation(s)
- Kian K Hershberger
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States
| | - Andrew J Gauger
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States
| | - Lyudmila M Bronstein
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States.,A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991 Russia.,King Abdulaziz University, Faculty of Science, Department of Physics, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332:127-147. [PMID: 33609621 DOI: 10.1016/j.jconrel.2021.02.016] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
In recent years, polymeric micelles have been extensively utilized in pre-clinical studies for delivering poorly soluble chemotherapeutic agents in cancer. Polymeric micelles are formed via self-assembly of amphiphilic polymers in facile manners. The wide availability of hydrophobic and, to some extent, hydrophilic polymeric blocks allow researchers to explore various polymeric combinations for optimum loading, stability, systemic circulation, and delivery to the target cancer tissues. Moreover, polymeric micelles could easily be tailor-made by increasing and decreasing the number of monomers in each polymeric chain. Some of the widely accepted hydrophobic polymers are poly(lactide) (PLA), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), polyesters, poly(amino acids), lipids. The hydrophilic polymers used to wrap the hydrophobic core are poly(ethylene glycol), poly(oxazolines), chitosan, dextran, and hyaluronic acids. Drugs could be conjugated to polymers at the distal ends to prepare pharmacologically active polymeric systems that impart enhanced solubility and stability of the conjugates and provide an opportunity for combination drug delivery. Their nano-size enables them to accumulate to the tumor microenvironment via the Enhanced Permeability and Retention (EPR) effect. Moreover, the stimuli-sensitive breakdown provides the micelles an effective means to deliver the therapeutic cargo effectively. The tumor micro-environmental stimuli are pH, hypoxia, and upregulated enzymes. Externally applied stimuli to destroy micellar disassembly to release the payload include light, ultrasound, and temperature. This article delineates the current trend in developing polymeric micelles combining various block polymeric scaffolds. The development of stimuli-sensitive micelles to achieve enhanced therapeutic activity are also discussed.
Collapse
Affiliation(s)
- Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| |
Collapse
|
19
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarises stimulus-cleavable linkers from various research areas and their cleavage mechanisms, thus provides an insightful guideline to extend their potential applications to controlled drug release from nanomaterials.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton
- Victoria 3168
- Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| |
Collapse
|
20
|
Zhang H, Chen B, Zhu Y, Sun C, Adu-Frimpong M, Deng W, Yu J, Xu X. Enhanced oral bioavailability of self-assembling curcumin–vitamin E prodrug-nanoparticles by co-nanoprecipitation with vitamin E TPGS. Drug Dev Ind Pharm 2020; 46:1800-1808. [DOI: 10.1080/03639045.2020.1821049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Huiyun Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Baoding Chen
- Department of Ultrasound, The Affiliated Hospital of Jiangsu University, Zhenjiang, PR China
| | - Yuan Zhu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| | - Congyong Sun
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
21
|
Curcumin Diglutaric Acid, a Prodrug of Curcumin Reduces Pain Hypersensitivity in Chronic Constriction Injury of Sciatic Nerve Induced-Neuropathy in Mice. Pharmaceuticals (Basel) 2020; 13:ph13090212. [PMID: 32867013 PMCID: PMC7558758 DOI: 10.3390/ph13090212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The drug treatment for neuropathic pain remains a challenge due to poor efficacy and patient satisfaction. Curcumin has been reported to alleviate neuropathic pain, but its clinical application is hindered by its low solubility and poor oral bioavailability. Curcumin diglutaric acid (CurDG) is a curcumin prodrug with improved water solubility and in vivo antinociceptive effects. In this study, we investigated the anti-inflammatory mechanisms underlying the analgesic effect of CurDG in the chronic constriction injury (CCI)-induced neuropathy mouse model. Repeated oral administration of CurDG at a low dose equivalent to 25 mg/kg/day produced a significant analgesic effect in this model, both anti-allodynic activity and anti-hyperalgesic activity appearing at day 3 and persisting until day 14 post-CCI surgery (p < 0.001) while having no significant effect on the motor performance. Moreover, the repeated administration of CurDG diminished the increased levels of the pro-inflammatory cytokines: TNF-α and IL-6 in the sciatic nerve and the spinal cord at the lowest tested dose (equimolar to 25 mg/kg curcumin). This study provided pre-clinical evidence to substantiate the potential of pursuing the development of CurDG as an analgesic agent for the treatment of neuropathic pain.
Collapse
|
22
|
Xu Y, Hu B, Xu J, Wu J, Ye B. Preparation of Biodegradable Polymeric Nanocapsules for Treatment of Malignant Tumor Using Coaxial Capillary Microfluidic Device. Cancer Biother Radiopharm 2020; 35:570-580. [PMID: 32196366 DOI: 10.1089/cbr.2019.3412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: Nanocapsules play a role in the targeted delivery of chemotherapy drugs. However, the traditional technology for preparation of nanocapsules is relatively complex with poor controllability, leading to large differences batch to batch. This study aimed to evaluate the quality of drugs-loaded nanocapsules (Drugs-NCs) fabricated by coaxial capillary microfluidic device, and inhibitory effect on malignant tumors. Materials and Methods: In this study, oxaliplatin, irinotecan, and 5-fluorouracil were selected as chemotherapy drugs, and Drugs-NCs were prepared by coaxial glass capillary microfluidic device. Next, transmission electron microscope was utilized to characterize surface morphology and particle size distribution of Drugs-NCs. Then, high performance liquid chromatography was used to determine the drug loading and encapsulation efficiency. Dialysis method was performed to measure the drug release of Drugs-NCs in vitro. To study the effects of Drugs + NCs on tumor growth in vivo, BALB/c (nu/nu) nude mice were used in vivo experiments. Results: The Drugs-NCs were spherical and uniform in size (103.4 nm). Besides, the encapsulation efficiencies of oxaliplatin, irinotecan, and 5-fluorouracil were 97.0%, 95.7%, and 15.6%, respectively. Moreover, drugs encapsulated in the nanocapsules released less and was pH-dependent, with more rapid release being observed at pH 5.5 group compared with pH 7.4 group. MTT assay and in vivo experiments indicated the inhibitory effect of Drugs-NCs on malignant tumors. Conclusion: The prepared nanocapsules had potential tumor targeting. Furthermore, coaxial capillary microfluidic device could be used as a promising microfluidic technology to fabricate multiple Drug-NCs.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Bingren Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jiong Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jianzhang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, PR China
| | - Bailiang Ye
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
23
|
Liu M, Wang B, Guo C, Hou X, Cheng Z, Chen D. Novel multifunctional triple folic acid, biotin and CD44 targeting pH-sensitive nano-actiniaes for breast cancer combinational therapy. Drug Deliv 2020; 26:1002-1016. [PMID: 31571501 PMCID: PMC6781222 DOI: 10.1080/10717544.2019.1669734] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this study, novel multifunctional folic acid, biotin, and CD44 receptors targeted and pH-sensitive “nano-actiniaes” were fabricated with icariin (ICA) and curcumin (Cur) as loaded model drugs for breast cancer therapy. The newly synthesized polymer oligomeric hyaluronic acid-hydrazone bond-folic acid-biotin (Bio-oHA-Hyd-FA) was characterized by 1H NMR spectrogram (proton nuclear magnetic resonance). The obtained drug carrier Bio-oHA-Hyd-FA self-assembled into nanomicelles, named as “nano-actiniaes”, in aqueous media with hydrodynamic diameter of 162.7 ± 5 nm. The size, surface zeta potential, and morphology of the “nano-actiniaes” were observed via TEM. The in vitro release experiment indicated that much more encapsulated icariin (ICA) and curcumin (Cur) were released from the Bio-oHA-Hyd-FA micelles (nano-actiniaes) in the acidic environment. Additionally, the cytotoxicity research demonstrated that the Bio-oHA-Hyd-FA carrier material was completely nontoxic, and the ICA&Cur “nano-actiniaes” had greater cytotoxicity compared with other control groups. In addition, the “nano-actiniaes” were found to significantly inhibit cancer cell invasion by Transwell assay. Moreover, in vivo evaluation of anti-tumor effect illustrated that the ICA and Cur “nano-actiniaes” possessed inhibitory effect on tumors. Consequently, the multi-targeted pH-sensitive “nano-actiniaes” can realize significant tumor targeting and effectively inhibit tumor growth.
Collapse
Affiliation(s)
- Mengna Liu
- School of Pharmacy, Yantai University , Yantai , PR China
| | - Bingjie Wang
- School of Pharmacy, Yantai University , Yantai , PR China
| | - Chunjing Guo
- School of Pharmacy, Yantai University , Yantai , PR China
| | - Xiaoya Hou
- School of Pharmacy, Yantai University , Yantai , PR China
| | - Ziting Cheng
- School of Pharmacy, Yantai University , Yantai , PR China
| | - Daquan Chen
- School of Pharmacy, Yantai University , Yantai , PR China
| |
Collapse
|
24
|
Chen S, Li Q, Li H, Yang L, Yi JZ, Xie M, Zhang LM. Long-circulating zein-polysulfobetaine conjugate-based nanocarriers for enhancing the stability and pharmacokinetics of curcumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110636. [PMID: 32228909 DOI: 10.1016/j.msec.2020.110636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Though curcumin has potential treatment value for most chronic diseases, it exerts little potency in the clinic because of its low aqueous solubility, high chemical instability and poor pharmacokinetics. To enhance its potency, we developed a zein-based micelle as a nanocarrier to encapsulate curcumin. Herein, superhydrophilic zwitterionic polymers, poly(sulfobetaine methacrylate) (PSBMA), were conjugated to zein to obtain an amphiphilic zein-PSBMA conjugate. These conjugates could self-assemble into micelles composed of antifouling PSBMA shells and zein cores. The results from the cytokine secretion assay showed that the micelles induced a low level of macrophage activation. Moreover, the results from the in vivo fluorescence imaging experiment confirmed their long-circulating property, exceeding 72 h in mice. In comparison with native curcumin, micelle-encapsulated curcumin had a 230-fold increase in stability in vitro, and its half-life was 22-fold longer, according to a pharmacokinetic study on mice. Overall, this work presents a zein-PSBMA micelle with a long circulation time as a useful nanocarrier for effective curcumin delivery.
Collapse
Affiliation(s)
- Shanshan Chen
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Quanming Li
- Department of Otorhinolaryngology Head and Neck Surgery, Zhuhai City People's Hospital, Jinan University, Zhuhai 519000, China
| | - Hailiang Li
- Department of Otorhinolaryngology Head and Neck Surgery, Zhuhai City People's Hospital, Jinan University, Zhuhai 519000, China
| | - Liqun Yang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Ju-Zhen Yi
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Minqiang Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Zhuhai City People's Hospital, Jinan University, Zhuhai 519000, China
| | - Li-Ming Zhang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
25
|
Mohammadi H, Shokrzadeh M, Darvish M, Dashti A, Jafari Sabet M, Kavoosian S, Ataee R. Effect of curcumin nano-micelle on of 1,2, dimethylhydrazine-induced rat colon carcinogenesis in comparison with 5FU. AIMS MEDICAL SCIENCE 2020. [DOI: 10.3934/medsci.2020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Yu Z, Li H, Jia Y, Qiao Y, Wang C, Zhou Q, He X, Yu S, Yang T, Wu H. Ratiometric co-delivery of doxorubicin and docetaxel by covalently conjugating with mPEG-poly(β-malic acid) for enhanced synergistic breast tumor therapy. Polym Chem 2020. [DOI: 10.1039/d0py01130d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ratiometric codelivery of doxorubicin and docetaxel through an engineered nanoconjugate based on mPEG-PMLA facilitates the accumulation of drugs at the tumor site and enhances synergistic antitumor response.
Collapse
|
27
|
Zhang W, Huang Z, Pu X, Chen X, Yin G, Wang L, Zhang F, Gao F. Fabrication of doxorubicin and chlorotoxin-linked Eu-Gd2O3 nanorods with dual-model imaging and targeted therapy of brain tumor. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Zhou Y, Zhou C, Zou Y, Jin Y, Han S, Liu Q, Hu X, Wang L, Ma Y, Liu Y. Multi pH-sensitive polymer–drug conjugate mixed micelles for efficient co-delivery of doxorubicin and curcumin to synergistically suppress tumor metastasis. Biomater Sci 2020; 8:5029-5046. [DOI: 10.1039/d0bm00840k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multi pH-responsive polymer-drug conjugate mixed micelles were fabricated to co-deliver doxorubicin and curcumin for synergistic suppression tumor metastasis via inhibiting the invasion, migration, intravasation and extravasation of tumor cells.
Collapse
|
29
|
Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1864-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Ali A, Ahmad U, Akhtar J, Badruddeen, Khan MM. Engineered nano scale formulation strategies to augment efficiency of nutraceuticals. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103554] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
31
|
Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
33
|
Wu W, Wu J, Fu Q, Jin C, Guo F, Yan Q, Yang Q, Wu D, Yang Y, Yang G. Elaboration and characterization of curcumin-loaded Tri-CL-mPEG three-arm copolymeric nanoparticles by a microchannel technology. Int J Nanomedicine 2019; 14:4683-4695. [PMID: 31308653 PMCID: PMC6615023 DOI: 10.2147/ijn.s198217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose: Clinical applications of curcumin (Cur) have been greatly restricted due to its low solubility and poor systemic bioavailability. Three-arm amphiphilic copolymer tricarballylic acid-poly (ε-caprolactone)-methoxypolyethylene glycol (Tri-CL-mPEG) nanoparticles (NPs) were designed to improve the solubility and bioavailability of Cur. The present study adopted a microchannel system to precisely control the preparation of self-assembly polymeric NPs via liquid flow-focusing and gas displacing method. Methods: The amphiphilic three-arm copolymer Tri-CL-mPEG was synthesized and self-assembled into nearly spherical NPs, yielding Cur encapsulated into NP cores (Cur-NPs). The obtained NPs were evaluated for physicochemical properties, morphology, toxicity, cellular uptake by A549 cells, release in vitro, biodistribution, and pharmacokinetics in vivo. Results: Rapidly fabricated and isodispersed Cur-NPs prepared by this method had an average diameter of 116±3 nm and a polydispersity index of 0.197±0.008. The drug loading capacity and entrapment efficiency of Cur-NPs were 5.58±0.23% and 91.42±0.39%, respectively. In vitro release experiments showed sustained release of Cur, with cumulative release values of 40.1% and 66.1% at pH 7.4 and pH 5.0, respectively, after 10 days post-incubation. The results of cellular uptake, biodistribution, and in vivo pharmacokinetics experiments demonstrated that Cur-NPs exhibited better biocompatibility and bioavailability, while additionally enabling greater cellular uptake and prolonged circulation with possible spleen, lung, and kidney targeting effects when compared to the properties of free Cur. Conclusion: These results indicate that Tri-CL-mPEG NPs are promising in clinical applications as a controllable delivery system for hydrophobic drugs.
Collapse
Affiliation(s)
- Wenchao Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiangqing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qiafan Fu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chenhao Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qinying Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Danjun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
34
|
Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1476-1487. [DOI: 10.1080/21691401.2019.1601104] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Guangping Yu
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Zhongcheng Mo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Henyang, China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
35
|
Carboxymethyl chitosan-based nanogels via acid-labile ortho ester linkages mediated enhanced drug delivery. Int J Biol Macromol 2019; 129:477-487. [DOI: 10.1016/j.ijbiomac.2019.02.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
|
36
|
Rani S, Mishra S, Sharma M, Nandy A, Mozumdar S. Solubility and stability enhancement of curcumin in Soluplus® polymeric micelles: a spectroscopic study. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1592687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Swati Rani
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sushil Mishra
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Manisha Sharma
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Abhishek Nandy
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Subho Mozumdar
- Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
37
|
Gumireddy A, Christman R, Kumari D, Tiwari A, North EJ, Chauhan H. Preparation, Characterization, and In vitro Evaluation of Curcumin- and Resveratrol-Loaded Solid Lipid Nanoparticles. AAPS PharmSciTech 2019; 20:145. [PMID: 30887133 DOI: 10.1208/s12249-019-1349-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/23/2019] [Indexed: 12/16/2022] Open
Abstract
Curcumin and resveratrol are natural compounds with significant anticancer activity; however, their bioavailability is limited due to poor solubility. This study aimed to overcome the solubility problem by means of solid lipid nanoparticles (SLN). 2-Hydroxypropyl β-cyclodextrin (HPβCD) was selected from a range of polymers based on miscibility and molecular interactions. SLNs were obtained by probe sonication and freeze-drying curcumin-resveratrol with/without HPβCD incorporated in gelucire 50/13. SLNs were characterized by dynamic light scattering (DLS), zeta potential, powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and physical stability. The in vitro release of drugs from the SLNs was performed by the direct dispersion method and analyzed using a validated UV-visible method. In vitro efficacy was tested using a colorectal cancer cell line. Curcumin-resveratrol-gelucire 50/13-HPβCD (CRG-CD) and curcumin-resveratrol-gelucire 50/13(CRG) SLNs showed a particle size from 100 to 150 nm and were not in the crystalline state per PXRD results. MDSC results complimented PXRD results by the absence of melting endotherm of curcumin; TGA showed no weight loss, confirming the absence of organic solvent residual, and the shape of the SLNs was confirmed as spherical by SEM. CRG SLNs were stable for 21 days with respect to particle size and zeta potential. MTT assay indicated better IC50 value for CRG as compared to CRG-CD. Hence, novel SLNs of curcumin and resveratrol incorporated in gelucire 50/13 and HPβCD were prepared and characterized to improve their bioavailability and anticancer activity.
Collapse
|
38
|
Yang Y, Wang Z, Peng Y, Ding J, Zhou W. A Smart pH-Sensitive Delivery System for Enhanced Anticancer Efficacy via Paclitaxel Endosomal Escape. Front Pharmacol 2019; 10:10. [PMID: 30733675 PMCID: PMC6353802 DOI: 10.3389/fphar.2019.00010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Micelles are highly attractive nano-drug delivery systems for targeted cancer therapy. While they have been demonstrated to significantly alleviate the side-effects of their cargo drugs, the therapy outcomes are usually suboptimal partially due to ineffective drug release and endosome entrapment. Stimulus-responsive nanoparticles have allowed controlled drug release in a smart fashion, and we want to use this concept to design novel micelles. Herein, we reported pH-sensitive paclitaxel (PTX)-loaded poly (ethylene glycol)-phenylhydrazone-dilaurate (PEG-BHyd-dC12) micelles (PEG-BHyd-dC12/PTX). The micelles were spherical, with an average particle size of ∼135 nm and a uniform size distribution. The pH-responsive properties of the micelles were certified by both colloidal stability and drug release profile, where the particle size was strikingly increased accompanied by faster drug release as pH decreased from 7.4 to 5.5. As a result, the micelles exhibited much stronger cytotoxicity than the pH-insensitive counterpart micelles against various types of cancer cells due to the hydrolysis of the building block polymers and subsequent rapid PTX release. Overall, these results demonstrate that the PEG-BHyd-dC12 micelle is a promising drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Yihua Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmaceutical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China
| | - Ying Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
39
|
Nair RS, Morris A, Billa N, Leong CO. An Evaluation of Curcumin-Encapsulated Chitosan Nanoparticles for Transdermal Delivery. AAPS PharmSciTech 2019; 20:69. [PMID: 30631984 DOI: 10.1208/s12249-018-1279-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Curcumin-loaded chitosan nanoparticles were synthesised and evaluated in vitro for enhanced transdermal delivery. Zetasizer® characterisation of three different formulations of curcumin nanoparticles (Cu-NPs) showed the size ranged from 167.3 ± 3.8 nm to 251.5 ± 5.8 nm, the polydispersity index (PDI) values were between 0.26 and 0.46 and the zeta potential values were positive (+ 18.1 to + 20.2 mV). Scanning electron microscopy (SEM) images supported this size data and confirmed the spherical shape of the nanoparticles. All the formulations showed excellent entrapment efficiency above 80%. FTIR results demonstrate the interaction between chitosan and sodium tripolyphosphate (TPP) and confirm the presence of curcumin in the nanoparticle. Differential scanning calorimetry (DSC) studies of Cu-NPs indicate the presence of curcumin in a disordered crystalline or amorphous state, suggesting the interaction between the drug and the polymer. Drug release studies showed an improved drug release at pH 5.0 than in pH 7.4 and followed a zero order kinetics. The in vitro permeation studies through Strat-M® membrane demonstrated an enhanced permeation of Cu-NPs compared to aqueous curcumin solution (p ˂ 0.05) having a flux of 0.54 ± 0.03 μg cm-2 h-1 and 0.44 ± 0.03 μg cm-2 h-1 corresponding to formulations 5:1 and 3:1, respectively. The cytotoxicity assay on human keratinocyte (HaCat) cells showed enhanced percentage cell viability of Cu-NPs compared to curcumin solution. Cu-NPs developed in this study exhibit superior drug release and enhanced transdermal permeation of curcumin and superior percentage cell viability. Further ex vivo and in vivo evaluations will be conducted to support these findings.
Collapse
|
40
|
Yang Y, Huang Z, Pu X, Yin G, Wang L, Gao F. Fabrication of magnetic nanochains linked with CTX and curcumin for dual modal imaging detection and limitation of early tumour. Cell Prolif 2018; 51:e12486. [PMID: 30133050 PMCID: PMC6528879 DOI: 10.1111/cpr.12486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/02/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Five-year survival rate at early lung tumour was about 70%; however, its early diagnosis rate was still at a low level, so the enhancement of diagnosis level for early lung tumour is the key factor to increase the survival rate. Diagnosis and therapy of early lung tumour are still challenged. METHODS The magnetic nanochains (NCs) with biocompatibility and transverse relaxivity (r2 = 231 Fe mmol l-1 s-1 ) were fabricated through a co-precipitation method in the assistance of dextran, and then, linked with chlorotoxin (CTX) and curcumin (Cur) via the PEGylation and carbodiimide technique (named as CTX-NCs-Cur). RESULTS The results of cell test indicated that CTX-conjugated NCs could obviously target non-small-cell lung cancer cells and limit their growth. The in vivo results of magnetic resonance imaging and fluorescence imaging indicated that the CTX-NCs-Cur significantly targeted the tumour site and enhanced images contrast of the small-size tumour. Moreover, the results of everyday tail-vein injection confirmed that CTX-NCs-Cur could significantly limit the growth of early tumour, due to blocking Cl ion channels from CTX-NCs-Cur-MMP-2 composite and intracellular ROS increase from Cur treatment. CONCLUSIONS We provided a mechanism about the effect of CTX-NCs-Cur on the targeting and limiting early tumour, and these results indicated the application foreground of CTX-NCs-Cur in tumour diagnosis and therapy.
Collapse
Affiliation(s)
- Yuedi Yang
- College of Materials Science and EngineeringSichuan UniversityChengduChina
| | - Zhongbing Huang
- College of Materials Science and EngineeringSichuan UniversityChengduChina
| | - Ximing Pu
- College of Materials Science and EngineeringSichuan UniversityChengduChina
| | - Guangfu Yin
- College of Materials Science and EngineeringSichuan UniversityChengduChina
| | - Lei Wang
- Department of RadiologyMolecular Imaging CenterWest China Hospital of Sichuan UniversityChengduChina
| | - Fabao Gao
- Department of RadiologyMolecular Imaging CenterWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
41
|
Arno MC, Brannigan RP, Policastro GM, Becker ML, Dove AP. pH-Responsive, Functionalizable Spyrocyclic Polycarbonate: A Versatile Platform for Biocompatible Nanoparticles. Biomacromolecules 2018; 19:3427-3434. [PMID: 29927242 DOI: 10.1021/acs.biomac.8b00744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymeric nanoparticles are widely investigated to enhance the selectivity of therapeutics to targeted sites, as well as to increase circulation lifetime and water solubility of poorly soluble drugs. In contrast to the encapsulation of the cargo into the nanostructures, the conjugation directly to the polymer backbone allows better control on the loading and selective triggered release. In this work we report a simple procedure to create biodegradable polycarbonate graft copolymer nanoparticles via a ring opening polymerization and subsequent postpolymerization modification strategies. The polymer, designed with both pH-responsive acetal linkages and a norbornene group, allows for highly efficient postpolymerization modifications through a range of chemistries to conjugate imaging agents and solubilizing arms to direct self-assembly. To demonstrate the potential of this approach, polycarbonate-based nanoparticles were tested for biocompatibility and their ability to be internalized in A549 and IMR-90 cell lines.
Collapse
Affiliation(s)
- Maria C Arno
- School of Chemistry , University of Birmingham , Edgbaston, Birmingham , B15 2TT , United Kingdom
| | - Ruairí P Brannigan
- Department of Chemistry , The University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | | | | | - Andrew P Dove
- School of Chemistry , University of Birmingham , Edgbaston, Birmingham , B15 2TT , United Kingdom
| |
Collapse
|
42
|
Panahi Y, Fazlolahzadeh O, Atkin SL, Majeed M, Butler AE, Johnston TP, Sahebkar A. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J Cell Physiol 2018; 234:1165-1178. [PMID: 30073647 DOI: 10.1002/jcp.27096] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Curcumin, a natural polyphenolic and yellow pigment obtained from the spice turmeric, has strong antioxidative, anti-inflammatory, and antibacterial properties. Due to these properties, curcumin has been used as a remedy for the prevention and treatment of skin aging and disorders such as psoriasis, infection, acne, skin inflammation, and skin cancer. Curcumin has protective effects against skin damage caused by chronic ultraviolet B radiation. One of the challenges in maximizing the therapeutic potential of curcumin is its low bioavailability, limited aqueous solubility, and chemical instability. In this regard, the present review is focused on recent studies concerning the use of curcumin for the treatment of skin diseases, as well as offering new and efficient strategies to optimize its pharmacokinetic profile and increase its bioavailability.
Collapse
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Omid Fazlolahzadeh
- Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, Tehran, Iran
| | | | | | - Alexandra E Butler
- Life Sciences Research Division, Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Tao R, Gao M, Liu F, Guo X, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Alleviating the Liver Toxicity of Chemotherapy via pH-Responsive Hepatoprotective Prodrug Micelles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21836-21846. [PMID: 29897226 DOI: 10.1021/acsami.8b04192] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocarriers have been extensively utilized to enhance the anti-tumor performance of chemotherapy, but it is very challenging to eliminate the associated hepatotoxicity. This was due to the significant liver accumulation of cytotoxic drug-loaded nanocarriers as a consequence of systemic biodistribution. To address this, we report a novel type of nanocarrier that was made of hepatoprotective compound (oleanolic acid/OA) with a model drug (methotrexate/MTX) being physically encapsulated. OA was covalently connected with methoxy poly(ethylene glycol) (mPEG) via a hydrazone linker, generating amphiphilic mPEG-OA prodrug conjugate that could self-assemble into pH-responsive micelles (ca. 100 nm), wherein the MTX loading was ca. 5.1% (w/w). The micelles were stable at pH 7.4 with a critical micelle concentration of 10.5 μM. At the acidic endosome/lysosome microenvironment, the breakdown of hydrazone induced the micelle collapse and fast release of payloads (OA and MTX). OA also showed adjunctive anti-tumor effect with a low potency, which was proved in 4T1 cells. In the mouse 4T1 breasttumor model, MTX-loaded mPEG-OA micelles demonstrated superior capability regarding in vivo tumorgrowth inhibition because of the passive tumor targeting of nanocarriers. Unsurprisingly, MTX induced significant liver toxicity, which was evidenced by the increased liver mass and increased levels of alanine transaminase, aspartate transaminase, and lactate dehydrogenase in serum as well as in liver homogenate. MTX-induced hepatotoxicity was also accompanied with augmented oxidative stress, for example, the increase of the malondialdehyde level and the reduction of glutathione peroxidase and superoxide dismutase concentration in the liver. As expected, mPEG-OA micelles significantly reduced the liver toxicity induced by MTX because of the hepatoprotective action of OA, which was supported by the reversal of all the above biomarkers and qualitative histological analysis of liver tissue. This work offers an efficient approach for reducing the liver toxicity associated with chemotherapy, which can be applied to various antitumor drugs and hepatoprotective materials.
Collapse
Affiliation(s)
- Ran Tao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Min Gao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Fang Liu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Xuliang Guo
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Aiping Fan
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | | | | | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
44
|
Zhang D, Wang L, Zhang X, Bao D, Zhao Y. Polymeric micelles for pH-responsive lutein delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Cho S, Heo GS, Khan S, Huang J, Hunstad DA, Elsabahy M, Wooley KL. A Vinyl Ether-Functional Polycarbonate as a Template for Multiple Postpolymerization Modifications. Macromolecules 2018; 51:3233-3242. [PMID: 29915431 PMCID: PMC6002957 DOI: 10.1021/acs.macromol.8b00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly-reactive vinyl ether-functionalized aliphatic polycarbonate and its block copolymer were developed as templates for multiple post-polymerization conjugation chemistries. The vinyl ether-functional six-membered cyclic carbonate monomer was synthesized by a well-established two-step procedure starting from 2,2-bis(hydroxymethyl)propionic acid. An organobase-catalyzed ring-opening polymerization of the synthesized monomer afforded polycarbonates with pendant vinyl ether functionalities (PMVEC). The vinyl ether moieties on the resulting polymers were readily conjugated with hydroxyl- or thiol-containing compounds via three different post-polymerization modification chemistries - acetalization, thio-acetalization, and thiol-ene reaction. Acetal-functionalized polycarbonates were studied in depth to exploit their acid-labile acetal functionalities. Acetalization of the amphiphilic diblock copolymer of poly(ethylene glycol) methyl ether (mPEG) and PMVEC, mPEG113-b-PMVEC13, with the model hydroxyl compound 4- methylbenzyl alcohol resulted in a maximum of 42% acetal and 58% hydroxyl side chain groups. Nonetheless, the amphiphilicity of the block polymer allowed for its self-assembly in water to afford nanostructures, as characterized via dynamic light scattering and transmission electron microscopy. The kinetics of acetal cleavage within the block polymer micelles were examined in acidic buffered solutions (pH 4 and 5). In addition, mPEG-b-PMVEC and its hydrolyzed polymer mPEG-b-PMHEC (i.e., after full cleavage of acetals) exhibited minimal cytotoxicity to RAW 264.7 mouse macrophages, indicating that this polymer system represents a biologically non-hazardous material with pH-responsive activity.
Collapse
Affiliation(s)
- Sangho Cho
- Department of Chemistry, Department of Chemical Engineering,
Department of Materials Science & Engineering, and Laboratory for
Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255
TAMU, College Station, Texas 77842-3012, United States
- Materials Architecturing Research Center, Korea Institute of
Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology, KIST
School, Korea University of Science and Technology, Seoul 02792, Republic of
Korea
| | - Gyu Seong Heo
- Department of Chemistry, Department of Chemical Engineering,
Department of Materials Science & Engineering, and Laboratory for
Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255
TAMU, College Station, Texas 77842-3012, United States
- Mallinckrodt Institute of Radiology
| | - Sarosh Khan
- Department of Chemistry, Department of Chemical Engineering,
Department of Materials Science & Engineering, and Laboratory for
Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255
TAMU, College Station, Texas 77842-3012, United States
| | - Jessica Huang
- Department of Chemistry, Department of Chemical Engineering,
Department of Materials Science & Engineering, and Laboratory for
Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255
TAMU, College Station, Texas 77842-3012, United States
| | - David A. Hunstad
- Departments of Pediatrics and Molecular Microbiology,
Washington University, St. Louis, Missouri 63110, United States
| | - Mahmoud Elsabahy
- Department of Chemistry, Department of Chemical Engineering,
Department of Materials Science & Engineering, and Laboratory for
Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255
TAMU, College Station, Texas 77842-3012, United States
- Department of Pharmaceutics, Faculty of Pharmacy and Assiut
International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University,
71515 Assiut, Egypt
| | - Karen L. Wooley
- Department of Chemistry, Department of Chemical Engineering,
Department of Materials Science & Engineering, and Laboratory for
Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255
TAMU, College Station, Texas 77842-3012, United States
| |
Collapse
|
46
|
Abstract
Incorporating labile bonds inside polymer backbone and side chains yields interesting polymer materials that are responsive to change of environmental stimuli. Drugs can be conjugated to various polymers through different conjugation linkages and spacers. One of the key factors influencing the release profile of conjugated drugs is the hydrolytic stability of the conjugated linkage. Generally, the hydrolysis of acid-labile linkages, including acetal, imine, hydrazone, and to some extent β-thiopropionate, are relatively fast and the conjugated drug can be completely released in the range of several hours to a few days. The cleavage of ester linkages are usually slow, which is beneficial for continuous and prolonged release. Another key structural factor is the water solubility of polymer-drug conjugates. Generally, the release rate from highly water-soluble prodrugs is fast. In prodrugs with large hydrophobic segments, the hydrophobic drugs are usually located in the hydrophobic core of micelles and nanoparticles, which limits the access to the water, hence lowering significantly the hydrolysis rate. Finally, self-immolative polymers are also an intriguing new class of materials. New synthetic pathways are needed to overcome the fact that much of the small molecules produced upon degradation are not active molecules useful for biomedical applications.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| |
Collapse
|
47
|
Xu J, Qin B, Luan S, Qi P, Wang Y, Wang K, Song S. Acid-labile poly(ethylene glycol) shell of hydrazone-containing biodegradable polymeric micelles facilitating anticancer drug delivery. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911517715658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biodegradable pH-sensitive amphiphilic block polymer (mPEG-Hyde-PLGA) was synthesized via ring-opening polymerization, initiated from a hydrazone-containing macro-initiator. In this way, a pH-sensitive hydrazone bond was inserted into the backbone of block copolymer, linking hydrophilic poly(ethylene glycol) segment and hydrophobic poly(lactic-co-glycolic acid) segment. The copolymer self-assembled to form stable micelles with mean diameters below 100 nm and served as a drug delivery system for doxorubicin, with drug loading content of 5.3%. pH sensitivity of the hydrazone-containing micelles was investigated by changes in diameter and size distribution observed by dynamic light scattering measurements when the micelles were encountered to acidic medium. Small pieces and larger aggregates were found by transmission electron microscopy resulting from the disassociation of the micelles in acidic conditions. It was also noted that doxorubicin release from the pH-sensitive micelles is significantly faster at pH 4.0 and pH 5.0 compared to pH 7.4, while almost no difference was detected in the case of pH non-sensitive micelles. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays on HepG-2 and MCF-7 cells revealed that doxorubicin-loaded pH-sensitive micelles had higher antitumor activity than pH-insensitive ones. This pH-sensitive drug delivery system based on hydrazone-containing block copolymer has been proved as a promising drug formulation for cancer therapy.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Pharmacy, Henan University, Kaifeng, China
| | - Benkai Qin
- Institute of Pharmacy, Henan University, Kaifeng, China
| | - Shujuan Luan
- Institute of Pharmacy, Henan University, Kaifeng, China
| | - Peilan Qi
- Institute of Pharmacy, Henan University, Kaifeng, China
| | - Yingying Wang
- Institute of Pharmacy, Henan University, Kaifeng, China
| | - Kai Wang
- Institute of Pharmacy, Henan University, Kaifeng, China
| | - Shiyong Song
- Institute of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
48
|
Ratnatilaka Na Bhuket P, El-Magboub A, Haworth IS, Rojsitthisak P. Enhancement of Curcumin Bioavailability Via the Prodrug Approach: Challenges and Prospects. Eur J Drug Metab Pharmacokinet 2018; 42:341-353. [PMID: 27683187 DOI: 10.1007/s13318-016-0377-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Curcumin is a natural product with many interesting pharmacological properties. However, these are offset by the particularly poor biopharmaceutical properties. The oral bioavailability of curcumin in humans is very low, mainly due to low solubility, poor stability, and extensive metabolism. This has led to multiple approaches to improve bioavailability, including administration of curcumin with metabolism inhibitors, formulation into nanoparticles, modification of the curcumin structure, and development of curcumin prodrugs. In this paper, we focus on the pharmacokinetic outcomes of these approaches. Pharmacokinetic parameters of curcumin after release from prodrugs are dependent on the linker between curcumin and the promoiety, and the release itself may depend on the physiological and enzymatic environment at the site of cleavage. This is an area in which more data are required for rational design of improved linkers. Cytotoxicity of curcumin prodrugs seems to correlate well with cellular uptake in vitro, but the in vivo relevance is uncertain. We conclude that improved experimental and theoretical models of absorption of curcumin prodrugs, development of accurate analytical methods for simultaneous measurement of plasma levels of prodrug and released curcumin, and acquisition of more pharmacokinetic data in animal models for dose prediction in humans are required to facilitate movement of curcumin prodrugs into clinical trials.
Collapse
Affiliation(s)
- Pahweenvaj Ratnatilaka Na Bhuket
- Biomedicinal Chemistry Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Asma El-Magboub
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ian S Haworth
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
49
|
Sauraj, Kumar SU, Kumar V, Priyadarshi R, Gopinath P, Negi YS. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr Polym 2018. [PMID: 29525163 DOI: 10.1016/j.carbpol.2018.02.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the present study, novel pH-responsive prodrug nanoparticles based on xylan-curcumin (xyl-cur) conjugate were developed to enhance the therapeutic efficacy of curcumin in cancer therapy. The synthesis of xyl-cur conjugate (prodrug) was confirmed by FT-IR, 1H NMR, UV-vis and fluorescence spectroscopy. The xyl-cur prodrug was subsequently self-assembled in to nanoparticles (xyl-cur prodrug NPs) in an aqueous medium with the average particle size 253 nm and the zeta potential of -18.76 mV. The xyl-cur prodrug NPs were highly pH-sensitive in nature and most of the drug was released at lower pH. The interaction of the xyl-cur prodrug NPs with blood components was tested by hemolysis study. The cytotoxic activity of the xyl-cur prodrug NPs against human colon cancer cells (HT-29, HCT-15) demonstrated that the prodrug NPs exhibits greater cytotoxic effect than curcumin. Therefore, these results reveal that xyl-cur prodrug NPs could be a promising candidate for improving the intracellular delivery of curcumin in cancer therapy.
Collapse
Affiliation(s)
- Sauraj
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - S Uday Kumar
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Vinay Kumar
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Ruchir Priyadarshi
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - P Gopinath
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Yuvraj Singh Negi
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India.
| |
Collapse
|
50
|
Kheirandish S, Ghaedi M, Dashtian K, Pourebrahim F, Jannesar R, Pezeshkpour V. In vitro curcumin delivery and antibacterial activity of RuS
2
and RuO
2
nanoparticles loaded chitosan biopolymer. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Mehrorang Ghaedi
- Department of ChemistryYasouj University Yasouj 75918‐74831 Iran
| | - Kheibar Dashtian
- Department of ChemistryYasouj University Yasouj 75918‐74831 Iran
| | | | - Ramin Jannesar
- Department of PathologyYasuj University of Medical Sciences Yasuj Iran
- Dena Pathobiology Laboratory Yasouj IR Iran
| | - Vahid Pezeshkpour
- Department of PathologyYasuj University of Medical Sciences Yasuj Iran
- Dena Pathobiology Laboratory Yasouj IR Iran
| |
Collapse
|