1
|
Devasvaran K, Alallam B, Lee C, Yong YK, Lim V. Clinacanthus nutans crude polysaccharide extract as a green platform for microwave-assisted synthesis of silver nanoparticles: Optimization, characterization, and evaluation of bioactivities. Int J Biol Macromol 2024; 278:134893. [PMID: 39168213 DOI: 10.1016/j.ijbiomac.2024.134893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Clinacanthus nutans (C. nutans) is a plant in tropical Asia with proven biological activities. The optimized extraction method of C. nutans crude polysaccharide (CNP) uses water in the presence of an ultrasound-assisted mechanical method (UL_CNP). However, the use of UL_CNP for the synthesis and optimization of silver nanoparticles (AgNP), particularly their anticancer and photocatalytic properties, remains unexplored. Hence, this research aimed to employ a green method using UL_CNP and silver nitrate to produce AgNP (UL_AgNP) with a small size and assess its potential toxicity, anticancer, and photocatalytic activities. The synthesis condition was optimized using the Box-Behnken design method. The synthesized UL_AgNP showed the surface plasmon resonance peak at 458 nm. The optimized synthesis condition produced spherically shaped UL_AgNP with a size of 5.21 ± 1.92 nm and a zeta potential of -26.33 ± 0.93 mV. An X-ray diffraction analysis exhibited intense Bragg's reflection peaks at (111), (200), (220), and (311), having a face-centered cubic structure of AgNP. Attenuated total reflectance-Fourier-transform infrared spectroscopy and energy-dispersive X-ray spectroscopy further confirmed the presence of silver in the synthesized UL_AgNP. The brine shrimp lethality test of UL_AgNP reported a lethal concentration 50 value of <7.8 μg/mL after 24 h. The UL_AgNP exhibited antiproliferative activity against MCF-7 cells with a half-maximal inhibitory concentration value of 4.96 ± 0.31 μg/mL by inducing S-phase cell cycle arrest, apoptotic effect, and reduction of cell migration. Furthermore, UL_AgNP proved its efficient photocatalytic activity against methylene blue dye (50.22 % ± 0.06 %, after 10 min at a concentration of 50 μg/mL). Therefore, the UL_AgNP exhibited promising antiproliferative activity against MCF-7 cells, highlighting their potential as a therapeutic agent. Further investigations are needed to elucidate the precise mechanism of their action.
Collapse
Affiliation(s)
- Kogilavanee Devasvaran
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Batoul Alallam
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Carmen Lee
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia.
| | - Yoke Keong Yong
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Vuanghao Lim
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Liu D, Tian Z, Tusong K, Mamat H, Luo Y. Expression, purification and characterization of CTP synthase PyrG in Staphylococcusaureus. Protein Expr Purif 2024; 221:106520. [PMID: 38833752 DOI: 10.1016/j.pep.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
Staphylococcus aureus (S. aureus) presents a significant challenge in both nosocomial and community settings due to its pathogenicity. The emergence of drug-resistant strains exacerbates S. aureus infections, leading to increased mortality rates. PyrG, a member of the cytidine triphosphate (CTP) synthase family, serves as a crucial therapeutic target against S. aureus due to the pivotal role of CTP in cellular metabolism. However, the structural and mechanistic details of S. aureus PyrG remains unknown. Here, we successfully expressed and purified monomeric PyrG. Mutational experiments were conducted based on the results of molecular docking. Based on the results of the molecular docking, we carried out mutation experiments and found that Q386A dramatically decreased the CTP synthase activity compared to the wild-type protein, while Y54A almost completely abolished the activity. Exposure of S. aureus to the kinase inhibitor crizotinib increased expression of gene pyrG. Our results identify the two key sites on PyrG for the CTP synthase activity, and present PyrG gene expression increased during the treatment of crizotinib, which may eventually provide valuable guidance for the development of new drugs against S. aureus infections.
Collapse
Affiliation(s)
- Dafeng Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China; School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Zhu Tian
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Kuerban Tusong
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Hayrinsa Mamat
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Yihan Luo
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| |
Collapse
|
3
|
Oćwieja M, Barbasz A, Wasilewska M, Smoleń P, Duraczyńska D, Napruszewska BD, Kozak M, Węgrzynowicz A. Surface Charge-Modulated Toxicity of Cysteine-Stabilized Silver Nanoparticles. Molecules 2024; 29:3629. [PMID: 39125033 PMCID: PMC11314351 DOI: 10.3390/molecules29153629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The toxicity of silver nanoparticles (AgNPs) depends on their physicochemical properties. The ongoing research aims to develop effective methods for modifying AgNPs using molecules that enable control over the processes induced by nanoparticles in both normal and cancerous cells. Application of amino acid-stabilized nanoparticles appears promising, exhibiting tunable electrokinetic properties. Therefore, this study focused on determining the influence of the surface charge of cysteine (CYS)-stabilized AgNPs on their toxicity towards human normal B (COLO-720L) and T (HUT-78) lymphocyte cell lines. CYS-AgNPs were synthesized via the chemical reduction. Transmission electron microcopy (TEM) imaging revealed that they exhibited a quasi-spherical shape with an average size of 18 ± 3 nm. CYS-AgNPs remained stable under mild acidic (pH 4.0) and alkaline (7.4 and 9.0) conditions, with an isoelectric point observed at pH 5.1. Following a 24 h treatment of lymphocytes with CYS-AgNPs, concentration-dependent alterations in cell morphology were observed. Positively charged CYS-AgNPs notably decreased lymphocyte viability. Furthermore, they exhibited grater genotoxicity and more pronounced disruption of biological membranes compared to negatively charged CYZ-AgNPs. Despite both types of AgNPs interacting similarly with fetal bovine serum (FBS) and showing comparable profiles of silver ion release, the biological assays consistently revealed that the positively charged CYS-AgNPs exerted stronger effects at all investigated cellular levels. Although both types of CYS-AgNPs have the same chemical structure in their stabilizing layers, the pH-induced alterations in their surface charge significantly affect their biological activity.
Collapse
Affiliation(s)
- Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (P.S.); (D.D.); (B.D.N.)
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorazych 2, 30-084 Krakow, Poland;
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (P.S.); (D.D.); (B.D.N.)
| | - Piotr Smoleń
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (P.S.); (D.D.); (B.D.N.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (P.S.); (D.D.); (B.D.N.)
| | - Bogna D. Napruszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (P.S.); (D.D.); (B.D.N.)
| | - Mikołaj Kozak
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Adam Węgrzynowicz
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland;
| |
Collapse
|
4
|
Wei Z, Xu T, Wang C, Liu S, Zhang W, Sun J, Yu H, Shi H, Song Y. A hydrogel-functionalized silver nanocluster for bacterial-infected wound healing. NANOSCALE 2024; 16:10656-10662. [PMID: 38758021 DOI: 10.1039/d4nr01447b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The ever-growing challenges of traditional antibiotic therapy and chronic wound healing have created a hot topic for the development and application of new antimicrobial agents. Silver nanoclusters (Ag NCs) with ultrasmall sizes (<2 nm) and antibacterial effects are promising candidates for next-generation antibiotics, particularly against multi-drug resistant strains. However, the biosafety in the clinical application of Ag NCs remains suboptimal despite some existing studies of Ag NCs for biomedical applications. Considering this, an ultrasmall Ag NC with excellent water solubility was synthesized by a two-phase ligand-exchange method, which exhibits broad-spectrum antibacterial performance. The minimum inhibitory concentrations of Ag NCs against MRSA, S. aureus, P. aeruginosa and E. coli were evaluated as 50, 80, 5 and 5 μg mL-1, respectively. Furthermore, a carbomer hydrogel was prepared to be incorporated into the Ag NCs for achieving excellent biocompatibility and biosafety. In vitro experiments demonstrate that the Ag NC-gel exhibits good antibacterial properties with lower cytotoxicity. Finally, in vivo experiments suggest that this ultrasmall Ag NC functionalized with the hydrogel can serve as an effective and safe antimicrobial agent to aid in wound healing.
Collapse
Affiliation(s)
- Zhezhen Wei
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Tingting Xu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Cong Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Shuai Liu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Wenjing Zhang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Jianan Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Huan Yu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Hui Shi
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Yongbo Song
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
5
|
Bansal R, Barshilia HC, Pandey KK. Nanotechnology in wood science: Innovations and applications. Int J Biol Macromol 2024; 262:130025. [PMID: 38340917 DOI: 10.1016/j.ijbiomac.2024.130025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Application of nanomaterials is gaining tremendous interest in the field of wood science and technology for value addition and enhancing performance of wood and wood-based composites. This review focuses on the use of nanomaterials in improving the properties of wood and wood-based materials and protecting them from weathering, biodegradation, and other deteriorating agents. UV-resistant, self-cleaning (superhydrophobic) surfaces with anti-microbial properties have been developed using the extraordinary features of nanomaterials. Scratch-resistant nano-coatings also improve durability and aesthetic appeal of wood. Moreover, nanomaterials have been used as wood preservatives for increasing the resistance against wood deteriorating agents such as fungi, termites and borers. Wood can be made more resistant to ignition and slower to burn by introducing nano-clays or nanoparticles of metal-oxides. The use of nanocellulose and lignin nanoparticles in wood-based products has attracted huge interest in developing novel materials with improved properties. Nanocellulose and lignin nanoparticles derived/synthesized from woody biomass can enhance the mechanical properties such as strength and stiffness and impart additional functionalities to wood-based products. Cellulose nano-fibres/crystals find application in wide areas of materials science like reinforcement for composites. Incorporation of nanomaterials in resin has been used to enhance specific properties of wood-based composites. This review paper highlights some of the advancements in the use of nanotechnology in wood science, and its potential impact on the industry.
Collapse
Affiliation(s)
- Richa Bansal
- Institute of Wood Science and Technology, 18th Cross Malleswaram, Bengaluru 560003, India
| | - Harish C Barshilia
- CSIR-National Aerospace Laboratories, HAL Airport Road, Bangalore 560017, India
| | - Krishna K Pandey
- Institute of Wood Science and Technology, 18th Cross Malleswaram, Bengaluru 560003, India.
| |
Collapse
|
6
|
Chicea D, Nicolae-Maranciuc A, Chicea LM. Silver Nanoparticles-Chitosan Nanocomposites: A Comparative Study Regarding Different Chemical Syntheses Procedures and Their Antibacterial Effect. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1113. [PMID: 38473584 DOI: 10.3390/ma17051113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Nanocomposites based on silver nanoparticles and chitosan present important advantages for medical applications, showing over time their role in antibacterial evaluation. This work presents the comparative study of two chemical synthesis procedures of nanocomposites, based on trisodium citrate dihydrate and sodium hydroxide, using various chitosan concentrations for a complex investigation. The nanocomposites were characterized by AFM and DLS regarding their dimensions, while FT-IR and UV-VIS spectrometry were used for the optical properties and to reveal the binding of silver nanoparticles with chitosan. Their antibacterial effect was determined using a disk diffusion method on two bacteria strains, E. coli and S. aureus. The results indicate that, when using both methods, the nanocomposites obtained were below 100 nm, yet the antibacterial effect proved to be stronger for the nanocomposites obtained using sodium hydroxide. Furthermore, the antibacterial effect can be related to the nanocomposites' sizes, since the smallest dimension nanocomposites exhibited the best bacterial growth inhibition on both bacteria strains we tested and for both types of silver nanocomposites.
Collapse
Affiliation(s)
- Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Liana-Maria Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
7
|
Constantinescu S, Niculescu AG, Hudiță A, Grumezescu V, Rădulescu D, Bîrcă AC, Irimiciuc SA, Gherasim O, Holban AM, Gălățeanu B, Oprea OC, Ficai A, Vasile BȘ, Grumezescu AM, Bolocan A, Rădulescu R. Silver/Graphene Oxide Nanostructured Coatings for Modulating the Microbial Susceptibility of Fixation Devices Used in Knee Surgery. Int J Mol Sci 2023; 25:246. [PMID: 38203420 PMCID: PMC10779033 DOI: 10.3390/ijms25010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Exploring silver-based and carbon-based nanomaterials' excellent intrinsic antipathogenic effects represents an attractive alternative for fabricating anti-infective formulations. Using chemical synthesis protocols, stearate-conjugated silver (Ag@C18) nanoparticles and graphene oxide nanosheets (nGOs) were herein obtained and investigated in terms of composition and microstructure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations revealed the formation of nanomaterials with desirable physical properties, while X-ray diffraction (XRD) analyses confirmed the high purity of synthesized nanomaterials. Further, laser-processed Ag@C18-nGO coatings were developed, optimized, and evaluated in terms of biological and microbiological outcomes. The highly biocompatible Ag@C18-nGO nanostructured coatings proved suitable candidates for the local modulation of biofilm-associated periprosthetic infections.
Collapse
Affiliation(s)
- Sorin Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Dragoș Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Stefan Andrei Irimiciuc
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, District 5, 77206 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Alexandra Bolocan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Radu Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| |
Collapse
|
8
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
9
|
Usul SK, Lüleci HB, Ergüden B, Aslan A. Antimicrobial Properties of Azole Functional Silica Nanocomposites. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202303059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/30/2023] [Indexed: 07/26/2024]
Abstract
AbstractSilica nanoparticles have become more attractive due to their surface characteristics, versatility, biocompatibility, and morphological and physicochemical properties. For this reason, their use in biological applications has been expanding in recent years. In this study, after functionalizing silica nanoparticles with glycidyl methacrylate monomer, nanocomposites were formed by attaching 1,2,4‐Triazole, 3‐Amino‐1,2,4‐Triazole, and 5‐Aminotetrazole particles to the surface. Notably, the thermal degradation temperature of all nanocomposites was determined to surpass 200 °C. However, it is worth mentioning that despite the favorable water uptake rates observed for MT(7.64 %) and M3(5.98 %) nanocomposites, MT did not exhibit resistance against Fenton chemicals and experienced degradation. It is important to note that the material loss in M3 nanocomposites is minimal, measuring less than 1 %. In order to reveal the antifungal and antibacterial activity of the synthesized nanoparticles, Minimum inhibitory concentration(MIC), as well as Minimum Fungicidal Concentration(MFC) against the yeast strain Saccharomyces cerevisiae, and Minimum Bactericidal Concentration(MBC) values against bacteria strains, Staphylococcus aureus, Enterococcus faecalis and Escherichia coli were determined. The findings of the study indicated that MP, M3, and M5 nanocomposites displayed a moderate level of antibacterial activity. It is noteworthy, however, that the antibacterial activity diminished when triazole was combined with MP at concentrations exceeding 100 mg/mL.
Collapse
Affiliation(s)
- Sedef Kaptan Usul
- Department of Bioengineering Gebze Technical University Kocaeli Turkey
| | | | - Bengü Ergüden
- Department of Bioengineering Gebze Technical University Kocaeli Turkey
| | - Ayşe Aslan
- Department of Bioengineering Gebze Technical University Kocaeli Turkey
- Institute of Energy Technologies Gebze Technical University Kocaeli Turkey
| |
Collapse
|
10
|
Lúcio M, Giannino N, Barreira S, Catita J, Gonçalves H, Ribeiro A, Fernandes E, Carvalho I, Pinho H, Cerqueira F, Biondi M, Lopes CM. Nanostructured Lipid Carriers Enriched Hydrogels for Skin Topical Administration of Quercetin and Omega-3 Fatty Acid. Pharmaceutics 2023; 15:2078. [PMID: 37631292 PMCID: PMC10459668 DOI: 10.3390/pharmaceutics15082078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic skin exposure to external hostile agents (e.g., UV radiation, microorganisms, and oxidizing chemicals) may increase oxidative stress, causing skin damage and aging. Because of their well-known skincare and protective benefits, quercetin (Q) and omega-3 fatty acids (ω3) have attracted the attention of the dermocosmetic and pharmaceutical sectors. However, both bioactives have inherent properties that limit their efficient skin delivery. Therefore, nanostructured lipid carriers (NLCs) and enriched PFC® hydrogels (HGs) have been developed as a dual-approach vehicle for Q and/or ω3 skin topical administration to improve bioactives' stability and skin permeation. Two NLC formulations were prepared with the same lipid composition but differing in surfactant composition (NLC1-soy lecithin and poloxamer 407; NLC2-Tween® 80 and dioctyl sodium sulfosuccinate (DOSS)), which have an impact on physicochemical properties and pharmaceutical and therapeutic performance. Despite both NLCs presenting high Q loading capacity, NLC2's physicochemical properties make them more suitable for topical skin administration and ensure longer colloidal stability. Additionally, NLC2 demonstrated a more sustained Q release, indicating higher bioactive storage while improving permeability. The occlusive effect of NLCs-enriched HGs also has a positive impact on skin permeability. Q-loaded NLC2, with or without ω3, -enriched HGs demonstrated efficacy as antioxidant and photoprotective formulations as well as effective reduction in S. aureus growth, indicating that they constitute a promising approach for topical skin administration to prevent skin aging and other damaging cutaneous processes.
Collapse
Affiliation(s)
- Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal;
- CBMA, Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Nicole Giannino
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Sérgio Barreira
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
| | - José Catita
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Paralab, SA, 4420-392 Valbom, Portugal;
| | | | - Artur Ribeiro
- CEB, Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga, Portugal; (A.R.); (I.C.)
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduarda Fernandes
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Isabel Carvalho
- CEB, Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga, Portugal; (A.R.); (I.C.)
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Hugo Pinho
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
| | - Fátima Cerqueira
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Marco Biondi
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Carla M. Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Liu D, Jiang L, Chen J, Chen Z, Yuan C, Lin D, Huang M. Monomer and Oligomer Transition of Zinc Phthalocyanine Is Key for Photobleaching in Photodynamic Therapy. Molecules 2023; 28:4639. [PMID: 37375194 PMCID: PMC10305241 DOI: 10.3390/molecules28124639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Photodynamic therapy (PDT) is recognized as a powerful method to inactivate cells. However, the photosensitizer (PS), a key component of PDT, has suffered from undesired photobleaching. Photobleaching reduces reactive oxygen species (ROS) yields, leading to the compromise of and even the loss of the photodynamic effect of the PS. Therefore, much effort has been devoted to minimizing photobleaching in order to ensure that there is no loss of photodynamic efficacy. Here, we report that a type of PS aggregate showed neither photobleaching nor photodynamic action. Upon direct contact with bacteria, the PS aggregate was found to fall apart into PS monomers and thus possessed photodynamic inactivation against bacteria. Interestingly, the disassembly of the bound PS aggregate in the presence of bacteria was intensified by illumination, generating more PS monomers and leading to an enhanced antibacterial photodynamic effect. This demonstrated that on a bacterial surface, the PS aggregate photo-inactivated bacteria via PS monomer during irradiation, where the photodynamic efficiency was retained without photobleaching. Further mechanistic studies showed that PS monomers disrupted bacterial membranes and affected the expression of genes related to cell wall synthesis, bacterial membrane integrity, and oxidative stress. The results obtained here are applicable to other types of PSs in PDT.
Collapse
Affiliation(s)
- Dafeng Liu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Cai Yuan
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
12
|
Vasiliev G, Kubo AL, Vija H, Kahru A, Bondar D, Karpichev Y, Bondarenko O. Synergistic antibacterial effect of copper and silver nanoparticles and their mechanism of action. Sci Rep 2023; 13:9202. [PMID: 37280318 DOI: 10.1038/s41598-023-36460-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023] Open
Abstract
Bacterial infections are one of the leading causes of death worldwide. In the case of topical bacterial infections such as wound infections, silver (Ag) has historically been one of the most widely used antibacterials. However, scientific publications have demonstrated the adverse effects of silver on human cells, ecotoxicity and insufficient antibacterial effect for the complete elimination of bacterial infections. The use of Ag in the form of nanoparticles (NPs, 1-100 nm) allows to control the release of antibacterial Ag ions but is still not sufficient to eliminate infection and avoid cytotoxicity. In this study, we tested the potency of differently functionalized copper oxide (CuO) NPs to enhance the antibacterial properties of Ag NPs. The antibacterial effect of the mixture of CuO NPs (CuO, CuO-NH2 and CuO-COOH NPs) with Ag NPs (uncoated and coated) was studied. CuO and Ag NP combinations were more efficient than Cu or Ag (NPs) alone against a wide range of bacteria, including antibiotic-resistant strains such as gram-negative Escherichia coli and Pseudomonas aeruginosa as well as gram-positive Staphylococcus aureus, Enterococcus faecalis and Streptococcus dysgalactiae. We showed that positively charged CuO NPs enhanced the antibacterial effect of Ag NPs up to 6 times. Notably, compared to the synergy of CuO and Ag NPs, the synergy of respective metal ions was low, suggesting that NP surface is required for the enhanced antibacterial effect. We also studied the mechanisms of synergy and showed that the production of Cu+ ions, faster dissolution of Ag+ from Ag NPs and lower binding of Ag+ by proteins of the incubation media in the presence of Cu2+ were the main mechanisms of the synergy. In summary, CuO and Ag NP combinations allowed increasing the antibacterial effect up to 6 times. Thus, using CuO and Ag NP combinations enables to retain excellent antibacterial effects due to Ag and synergy and enhances beneficial effects, since Cu is a vital microelement for human cells. Thus, we suggest using combinations of Ag and CuO NPs in antibacterial materials, such as wound care products, to increase the antibacterial effect of Ag, improve safety and prevent and cure topical bacterial infections.
Collapse
Affiliation(s)
- Grigory Vasiliev
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
- Nanordica Medical OÜ, Vana-Lõuna tn 39a-7, 10134, Tallinn, Harjumaa, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Anna-Liisa Kubo
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
- Nanordica Medical OÜ, Vana-Lõuna tn 39a-7, 10134, Tallinn, Harjumaa, Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| | - Denys Bondar
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Olesja Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
- Nanordica Medical OÜ, Vana-Lõuna tn 39a-7, 10134, Tallinn, Harjumaa, Estonia.
| |
Collapse
|
13
|
Beus M, Pongrac IM, Capjak I, Ilić K, Vrček E, Ćurlin M, Milić M, Čermak AMM, Pavičić I. Particle surface functionalization affects mechanism of endocytosis and adverse effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol 2023; 43:416-430. [PMID: 36065485 DOI: 10.1002/jat.4392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022]
Abstract
Silver nanoparticles (AgNPs) show a plethora of possible applications due to their antimicrobial properties. Different coatings of AgNPs are used in order to increase stability, availability, and activity. However, the question about the toxicity after prolonged exposure still remains. Here, we show that different surface coatings affect in vitro toxicity and internalization of AgNPs in porcine kidney (PK15) cells. AgNPs coated with cetyltrimethylammonium bromide (CTAB), poly(vinylpyrrolidone) (PVP), sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), poly-L-lysine (PLL), and bovine serum albumin (BSA) were toxic at the concentration of 10 mg Ag/L and higher. The toxicity increased in the following manner: PVP-AgNPs < CTAB-AgNPs < PLL-AgNPs < AOT-AgNPs < BSA-AgNPs. All types of AgNPs were internalized by the PK15 cells in a dose-dependent manner with greater internalization of AgNPs bearing positive surface charge. Transmission electron microscopy (TEM) experiments showed that AgNPs were located in the lysosomal compartments, while the co-treatment with known inhibitors of endocytosis pathways suggested macropinocytosis as the preferred internalization pathway. When inside the cell, all types of AgNPs induced the formation of reactive oxygen species while decreasing the concentration of the cell's endogenous antioxidant glutathione. The comet assay indicated possible genotoxicity of tested AgNPs starting at the concentration of 2 mg Ag/L or higher, depending on the surface functionalization. This study demonstrates the toxicity of AgNPs pointing to the importance of biosafety evaluation when developing novel AgNPs-containing materials.
Collapse
Affiliation(s)
- Maja Beus
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Igor M Pongrac
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivona Capjak
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ena Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Ćurlin
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
14
|
Kubo AL, Rausalu K, Savest N, Žusinaite E, Vasiliev G, Viirsalu M, Plamus T, Krumme A, Merits A, Bondarenko O. Antibacterial and Antiviral Effects of Ag, Cu and Zn Metals, Respective Nanoparticles and Filter Materials Thereof against Coronavirus SARS-CoV-2 and Influenza A Virus. Pharmaceutics 2022; 14:2549. [PMID: 36559043 PMCID: PMC9785359 DOI: 10.3390/pharmaceutics14122549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Due to the high prevalence of infectious diseases and their concurrent outbreaks, there is a high interest in developing novel materials with antimicrobial properties. Antibacterial and antiviral properties of a range of metal-based nanoparticles (NPs) are a promising means to fight airborne diseases caused by viruses and bacteria. The aim of this study was to test antimicrobial metals and metal-based nanoparticles efficacy against three viruses, namely influenza A virus (H1N1; A/WSN/1933) and coronaviruses TGEV and SARS-CoV-2; and two bacteria, Escherichia coli and Staphylococcus aureus. The efficacy of ZnO, CuO, and Ag NPs and their respective metal salts, i.e., ZnSO4, CuSO4, and AgNO3, was evaluated in suspensions, and the compounds with the highest antiviral efficacy were chosen for incorporation into fibers of cellulose acetate (CA), using electrospinning to produce filter materials for face masks. Among the tested compounds, CuSO4 demonstrated the highest efficacy against influenza A virus and SARS-CoV-2 (1 h IC50 1.395 mg/L and 0.45 mg/L, respectively), followed by Zn salt and Ag salt. Therefore, Cu compounds were selected for incorporation into CA fibers to produce antiviral and antibacterial filter materials for face masks. CA fibers comprising CuSO4 decreased SARS-CoV-2 titer by 0.38 logarithms and influenza A virus titer by 1.08 logarithms after 5 min of contact; after 1 h of contact, SARS-COV-2 virus was completely inactivated. Developed CuO- and CuSO4-based filter materials also efficiently inactivated the bacteria Escherichia coli and Staphylococcus aureus. The metal NPs and respective metal salts were potent antibacterial and antiviral compounds that were successfully incorporated into the filter materials of face masks. New antibacterial and antiviral materials developed and characterized in this study are crucial in the context of the ongoing SARS-CoV-2 pandemic and beyond.
Collapse
Affiliation(s)
- Anna-Liisa Kubo
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Nanordica Medical OÜ, Vana-Lõuna 39a-7, 10134 Tallinn, Estonia
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Natalja Savest
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Eva Žusinaite
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Grigory Vasiliev
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Nanordica Medical OÜ, Vana-Lõuna 39a-7, 10134 Tallinn, Estonia
| | - Mihkel Viirsalu
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Tiia Plamus
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Andres Krumme
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Olesja Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Nanordica Medical OÜ, Vana-Lõuna 39a-7, 10134 Tallinn, Estonia
| |
Collapse
|
15
|
Begum S, Jena S, Chand PK. Silver Nanocrystals Bio-Fabricated Using Rhizobium rhizogenes-Transformed In Vitro Root Extracts Demonstrate Health Proactive Properties. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Truu M, Ligi T, Nõlvak H, Peeb A, Tiirik K, Devarajan AK, Oopkaup K, Kasemets K, Kõiv-Vainik M, Kasak K, Truu J. Impact of synthetic silver nanoparticles on the biofilm microbial communities and wastewater treatment efficiency in experimental hybrid filter system treating municipal wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129721. [PMID: 35963093 DOI: 10.1016/j.jhazmat.2022.129721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Silver nanoparticles (AgNPs) threaten human and ecosystem health, and are among the most widely used engineered nanomaterials that reach wastewater during production, usage, and disposal phases. This study evaluated the effect of a 100-fold increase in collargol (protein-coated AgNP) and Ag+ ions concentrations in municipal wastewater on the microbial community composition of the filter material biofilms (FMB) and the purification efficiency of the hybrid treatment system consisting of vertical (VF) and horizontal (HF) subsurface flow filters. We found that increased amounts of collargol and AgNO3 in wastewater had a modest effect on the prokaryotic community composition in FMB and did not significantly affect the performance of the studied system. Regardless of how Ag was introduced, 99.9% of it was removed by the system. AgNPs and AgNO3 concentrations did not significantly affect the purification efficiency of the system. AgNO3 induced a higher increase in the genetic potential of certain Ag resistance mechanisms in VFs than collargol; however, the increase in Ag resistance potential was similar for both substances in HF. Hence, the microbial community composition in biofilms of vertical and horizontal flow filters is largely resistant, resilient, or functionally redundant in response to AgNPs addition in the form of collargol.
Collapse
Affiliation(s)
- Marika Truu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Teele Ligi
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Hiie Nõlvak
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Angela Peeb
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kertu Tiirik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Arun Kumar Devarajan
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kristjan Oopkaup
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Margit Kõiv-Vainik
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia.
| | - Kuno Kasak
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia.
| | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
17
|
Plasma-induced nanostructured metallic silver surfaces: study of bacteriophobic effect to avoid bacterial adhesion on medical devices. Heliyon 2022; 8:e10842. [PMID: 36217459 PMCID: PMC9547212 DOI: 10.1016/j.heliyon.2022.e10842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 12/17/2022] Open
Abstract
Biofilm formation in medical devices represents one of the major problems for the healthcare system, especially those that occur on implantable silicone-based devices. To provide a general solution to avoid biofilm formation in the first stages of development, this work studied how nanostructured metallic silver coatings hinder bacteria-surface interaction by preventing bacteria adhesion. The three studied silver nanostructures (“Sharp blades”, “Thick blades” and “Leaves”) combined superhydrophobic behavior with a physical impediment of the coating nanostructure that produced a bacteriophobic effect avoiding the adhesion mechanism of different bacterial strains. These silver nanostructures are immobilized on stretchable substrates through a polymeric thin film of plasma–polymerized penta-fluorophenyl methacrylate. The control over the nanostructures and therefore its bacteriophobic—bactericidal effect depends on the plasma polymerization conditions of the polymer. The characterization of this bacteriophobic effect through FE-SEM microscopy, live/dead cell staining, and direct bacterial adhesion counts, provided a complete mapping of how bacteria interact with the surface in each scenario. Results revealed that the bacterial adhesion was reduced by up to six orders of magnitude in comparison with uncoated surfaces thereby constituting an effective strategy to avoid the formation of biofilm on medical materials.
Collapse
|
18
|
Kraskouski A, Hileuskaya K, Ladutska A, Kabanava V, Liubimau A, Novik G, Nhi TTY, Agabekov V. Multifunctional biocompatible films based on
pectin‐Ag
nanocomposites and
PVA
: Design, characterization and antimicrobial potential. J Appl Polym Sci 2022. [DOI: 10.1002/app.53023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| | - Kseniya Hileuskaya
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| | - Alena Ladutska
- Microbial Collection Laboratory Institute of Microbiology of NAS of Belarus Minsk Belarus
| | - Volha Kabanava
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
- Department of Higher Mathematics and Mathematical Physics Belarusian State University Minsk Belarus
| | - Aliaksandr Liubimau
- Department of Polymer Composite Materials Belarusian State Technological University Minsk Belarus
| | - Galina Novik
- Microbial Collection Laboratory Institute of Microbiology of NAS of Belarus Minsk Belarus
| | - Tran Thi Y. Nhi
- Laboratory of Natural Polymer Institute of Chemistry of Vietnamese Academy of Science and Technology Hanoi Vietnam
| | - Vladimir Agabekov
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| |
Collapse
|
19
|
Synthesis Monitoring, Characterization and Cleanup of Ag-Polydopamine Nanoparticles Used as Antibacterial Agents with Field-Flow Fractionation. Antibiotics (Basel) 2022; 11:antibiotics11030358. [PMID: 35326821 PMCID: PMC8944547 DOI: 10.3390/antibiotics11030358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Advances in nanotechnology have opened up new horizons in nanomedicine through the synthesis of new composite nanomaterials able to tackle the growing drug resistance in bacterial strains. Among these, nanosilver antimicrobials sow promise for use in the treatment of bacterial infections. The use of polydopamine (PDA) as a biocompatible carrier for nanosilver is appealing; however, the synthesis and functionalization steps used to obtain Ag-PDA nanoparticles (NPs) are complex and require time-consuming cleanup processes. Post-synthesis treatment can also hinder the stability and applicability of the material, and dry, offline characterization is time-consuming and unrepresentative of real conditions. The optimization of Ag-PDA preparation and purification together with well-defined characterization are fundamental goals for the safe development of these new nanomaterials. In this paper, we show the use of field-flow fractionation with multi-angle light scattering and spectrophotometric detection to improve the synthesis and quality control of the production of Ag-PDA NPs. An ad hoc method was able to monitor particle growth in a TLC-like fashion; characterize the species obtained; and provide purified, isolated Ag-PDA nanoparticles, which proved to be biologically active as antibacterial agents, while achieving a short analysis time and being based on the use of green, cost-effective carriers such as water.
Collapse
|
20
|
Zhang L, Li QX, Li X, Yoza B, Zhou L. Toxicity of Nanoparticles of AgO, La₂O₃, CuO, AgO-Fe₃O₄, Ag-Graphene, and GO-Cu-AgO to the Fungus Moniliella wahieum Y12 T Isolated from Degraded Biodiesel and the Bacterium Escherichia coli. J Biomed Nanotechnol 2022; 18:928-938. [PMID: 35715899 DOI: 10.1166/jbn.2022.3299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Moniliella wahieum Y12T (M. wahieum Y12T), a fungal isolated from biodiesel caused serious biodiesel contamination and resulting in biofouling and corrosion, especially during storage. Nanoparticles (NPs) composed of silver, copper, iron, and graphene or their binary mixtures were examined as environmental inhibitors against the fungus Moniliella wahieum Y12T, a biodiesel contaminant. Exposure of M. wahieum Y12T and Escherichia coli (E. coli) to low concentrations of Ag-based nanoparticles (from 0.01 to 0.05 mg mL-1) resulted in excellent growth inhibition. The half-maximal inhibitory concentration (IC50) of M. wahieum Y12T by La₂O₃ NPs was 138 times greater when compared with silver (AgO). The median effective concentration (EC50) of La₂O₃ NPs on E. coli was 379 times more than M. wahieum Y12T. At this same concentration, E. coli was uninhibited after exposure to the NPs. However, a fluorescein diacetate analysis showed the Ag-based NPs (including AgO, AgO-Fe₃O₄ and GO-Cu-AgO) significantly reduced the metabolic activity for both of the compared organisms. Compared with other metal oxide NPs, AgO and AgO-Fe₃O₄ NPs display strong bactericidal effect with higher stability and dispersibility, with the zeta potential of -22.27 mV and poly-dispersity index (PDI) values of 0.36. These results demonstrate the broad-spectrum biological inhibition that occurs with both Ag-based bimetallic and graphene oxide nanoparticles and the combined utilization of Ag-based NPs paves a new way for inhibits the biodegradation of biodiesel.
Collapse
Affiliation(s)
- Lin Zhang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Xiaotong Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Brandon Yoza
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, 1680 East West Rd., Honolulu, HI, 96822, USA
| | - Lingyan Zhou
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| |
Collapse
|
21
|
Biosynthesis and applications of iron oxide nanocomposites synthesized by recombinant Escherichia coli. Appl Microbiol Biotechnol 2022; 106:1127-1137. [DOI: 10.1007/s00253-022-11779-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/31/2022]
|
22
|
Ershov V, Tarasova N, Abkhalimov E, Safonov A, Sorokin V, Ershov B. Photochemical Synthesis of Silver Hydrosol Stabilized by Carbonate Ions and Study of Its Bactericidal Impact on Escherichia coli: Direct and Indirect Effects. Int J Mol Sci 2022; 23:949. [PMID: 35055135 PMCID: PMC8780126 DOI: 10.3390/ijms23020949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
The great attention paid to silver nanoparticles is largely related to their antibacterial and antiviral effects and their possible use as efficient biocidal agents. Silver nanoparticles are being widely introduced into various areas of life, including industry, medicine, and agriculture. This leads to their spreading and entering the environment, which generates the potential risk of toxic effect on humans and other biological organisms. Proposed paper describes the preparation of silver hydrosols containing spherical metal nanoparticles by photochemical reduction of Ag+ ions with oxalate ions. In deaerated solutions, this gives ~10 nm particles, while in aerated solutions, ~20 nm particles with inclusion of the oxide Ag2O are obtained. Nanoparticles inhibit the bacterium Escherichia coli and suppress the cell growth at concentrations of ~1 × 10-6-1 × 10-4 mol L-1. Silver particles cause the loss of pili and deformation and destruction of cell membranes. A mechanism of antibacterial action was proposed, taking into account indirect suppressing action of Ag+ ions released upon the oxidative metal dissolution and direct (contact) action of nanoparticles on bacterial cells, resulting in a change in the shape and destruction of the bacteria.
Collapse
Affiliation(s)
- Vadim Ershov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (V.E.); (E.A.); (A.S.)
| | - Natalia Tarasova
- Institute of Chemistry and Problems of Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Evgeny Abkhalimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (V.E.); (E.A.); (A.S.)
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (V.E.); (E.A.); (A.S.)
| | - Vladimir Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Boris Ershov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (V.E.); (E.A.); (A.S.)
| |
Collapse
|
23
|
Metryka O, Wasilkowski D, Mrozik A. Insight into the Antibacterial Activity of Selected Metal Nanoparticles and Alterations within the Antioxidant Defence System in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int J Mol Sci 2021; 22:11811. [PMID: 34769242 PMCID: PMC8583997 DOI: 10.3390/ijms222111811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
The antimicrobial activity of nanoparticles (NPs) is a desirable feature of various products but can become problematic when NPs are released into different ecosystems, potentially endangering living microorganisms. Although there is an abundance of advanced studies on the toxicity and biological activity of NPs on microorganisms, the information regarding their detailed interactions with microbial cells and the induction of oxidative stress remains incomplete. Therefore, this work aimed to develop accurate oxidation stress profiles of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis strains treated with commercial Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs. The methodology used included the following determinations: toxicological parameters, reactive oxygen species (ROS), antioxidant enzymes and dehydrogenases, reduced glutathione, oxidatively modified proteins and lipid peroxidation. The toxicological studies revealed that E. coli was most sensitive to NPs than B. cereus and S. epidermidis. Moreover, NPs induced the generation of specific ROS in bacterial cells, causing an increase in their concentration, which further resulted in alterations in the activity of the antioxidant defence system and protein oxidation. Significant changes in dehydrogenases activity and elevated lipid peroxidation indicated a negative effect of NPs on bacterial outer layers and respiratory activity. In general, NPs were characterised by very specific nano-bio effects, depending on their physicochemical properties and the species of microorganism.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| |
Collapse
|
24
|
Ćurlin M, Barbir R, Dabelić S, Ljubojević M, Goessler W, Micek V, Žuntar I, Pavić M, Božičević L, Pavičić I, Vinković Vrček I. Sex affects the response of Wistar rats to polyvinyl pyrrolidone (PVP)-coated silver nanoparticles in an oral 28 days repeated dose toxicity study. Part Fibre Toxicol 2021; 18:38. [PMID: 34663357 PMCID: PMC8522010 DOI: 10.1186/s12989-021-00425-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/26/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are widely used in biomedicine due to their strong antimicrobial, antifungal, and antiviral activities. Concerns about their possible negative impacts on human and environmental health directed many researchers towards the assessment of the safety and toxicity of AgNPs in both in vitro and in vivo settings. A growing body of scientific information confirms that the biodistribution of AgNPs and their toxic effects vary depending on the particle size, coating, and dose as well as on the route of administration and duration of exposure. This study aimed to clarify the sex-related differences in the outcomes of oral 28 days repeated dose exposure to AgNPs. METHODS Wistar rats of both sexes were gavaged daily using low doses (0.1 and 1 mg Ag/kg b.w.) of polyvinylpyrrolidone (PVP)-coated small-sized (10 nm) AgNPs. After exposure, blood and organs of all rats were analysed through biodistribution and accumulation of Ag, whereas the state of the liver and kidneys was evaluated by the levels of reactive oxygen species (ROS) and glutathione (GSH), catalase (CAT) activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), expression of metallothionein (Mt) genes and levels of Mt proteins. RESULTS In all animals, changes in oxidative stress markers and blood parameters were observed indicating the toxicity of AgNPs applied orally even at low doses. Sex-related differences were noticed in all assessed parameters. While female rats eliminated AgNPs from the liver and kidneys more efficiently than males when treated with low doses, the opposite was observed for animals treated with higher doses of AgNPs. Female Wistar rats exposed to 1 mg PVP-coated AgNPs/kg b.w. accumulated two to three times more silver in the blood, liver, kidney and hearth than males, while the accumulation in most organs of digestive tract was more than ten times higher compared to males. Oxidative stress responses in the organs of males, except the liver of males treated with high doses, were less intense than in the organs of females. However, both Mt genes and Mt protein expression were significantly reduced after treatment in the liver and kidneys of males, while they remained unchanged in females. CONCLUSIONS Observed toxicity effects of AgNPs in Wistar rats revealed sex-related differences in response to an oral 28 days repeated exposure.
Collapse
Affiliation(s)
- Marija Ćurlin
- School of Medicine, University of Zagreb, Šalata 3, 10 000, Zagreb, Croatia.
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000, Zagreb, Croatia
| | - Sanja Dabelić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10 000, Zagreb, Croatia
| | - Marija Ljubojević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000, Zagreb, Croatia
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitätsplatz 1/1, 8 010, Graz, Austria
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000, Zagreb, Croatia
| | - Irena Žuntar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10 000, Zagreb, Croatia
| | - Mirela Pavić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - Lucija Božičević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000, Zagreb, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000, Zagreb, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000, Zagreb, Croatia.
| |
Collapse
|
25
|
Ribeiro LK, Assis M, Lima LR, Coelho D, Gonçalves MO, Paiva RS, Moraes LN, Almeida LF, Lipsky F, San-Miguel MA, Mascaro LH, Grotto RMT, Sousa CP, Rosa ILV, Cruz SA, Andrés J, Longo E. Bioactive Ag 3PO 4/Polypropylene Composites for Inactivation of SARS-CoV-2 and Other Important Public Health Pathogens. J Phys Chem B 2021; 125:10866-10875. [PMID: 34546760 PMCID: PMC8482321 DOI: 10.1021/acs.jpcb.1c05225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/08/2021] [Indexed: 01/08/2023]
Abstract
The current unprecedented coronavirus pandemic (COVID-19) is increasingly demanding advanced materials and new technologies to protect us and inactivate SARS-CoV-2. In this research work, we report the manufacture of Ag3PO4 (AP)/polypropylene (PP) composites using a simple method and also reveal their long-term anti-SARS-CoV-2 activity. This composite shows superior antibacterial (against Staphylococcus aureus and Escherichia coli) and antifungal activity (against Candida albicans), thus having potential for a variety of technological applications. The as-manufactured materials were characterized by XRD, Raman spectroscopy, FTIR spectroscopy, AFM, UV-vis spectroscopy, rheology, SEM, and contact angle to confirm their structural integrity. Based on the results of first-principles calculations at the density functional level, a plausible reaction mechanism for the initial events associated with the generation of both hydroxyl radical •OH and superoxide radical anion •O2- in the most reactive (110) surface of AP was proposed. AP/PP composites proved to be an attractive avenue to provide human beings with a broad spectrum of biocide activity.
Collapse
Affiliation(s)
- Lara K. Ribeiro
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Marcelo Assis
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
| | - Lais R. Lima
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Dyovani Coelho
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Mariana O. Gonçalves
- Biomolecules
and Microbiology Laboratory (LaMiB), Biotechnology Graduation Program, Federal University of São Carlos (UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Robert S. Paiva
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Leonardo N. Moraes
- School
of Agriculture; São Paulo State University
(Unesp), Botucatu, São Paulo 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School; São Paulo State University (Unesp), Botucatu, São Paulo 18618-687, Brazil
| | - Lauana F. Almeida
- School
of Agriculture; São Paulo State University
(Unesp), Botucatu, São Paulo 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School; São Paulo State University (Unesp), Botucatu, São Paulo 18618-687, Brazil
| | - Felipe Lipsky
- Institute
of Chemistry, State University of Campinas
(Unicamp), Campinas, São Paulo 13083-970, Brazil
| | - Miguel A. San-Miguel
- Institute
of Chemistry, State University of Campinas
(Unicamp), Campinas, São Paulo 13083-970, Brazil
| | - Lúcia H. Mascaro
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Rejane M. T. Grotto
- School
of Agriculture; São Paulo State University
(Unesp), Botucatu, São Paulo 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School; São Paulo State University (Unesp), Botucatu, São Paulo 18618-687, Brazil
| | - Cristina P. Sousa
- Biomolecules
and Microbiology Laboratory (LaMiB), Biotechnology Graduation Program, Federal University of São Carlos (UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Ieda L. V. Rosa
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Sandra A. Cruz
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Juan Andrés
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
| | - Elson Longo
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| |
Collapse
|
26
|
Vuković B, Cvetić Ž, Bendelja K, Barbir R, Milić M, Dobrošević B, Šerić V, Vinković Vrček I. In vitro study on the immunomodulatory effects of differently functionalized silver nanoparticles on human peripheral blood mononuclear cells. J Biol Inorg Chem 2021; 26:817-831. [PMID: 34476609 PMCID: PMC8412400 DOI: 10.1007/s00775-021-01898-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/28/2021] [Indexed: 11/27/2022]
Abstract
The interaction of silver nanoparticles (AgNPs) with the immune system has not yet been sufficiently elucidated even though they belong to the most investigated and exploited group of nanomaterials. This study aimed to evaluate immunomodulatory effect of four different AgNPs on human peripheral blood mononuclear cells (hPBMCs). Fresh hPBMCs were exposed to the small sized (~ 10 nm) AgNPs immediately after isolation from the whole blood of healthy volunteers. The study considered coating-, time- and dose-dependent response of hPBMSc and stimulation of both early and intermediate activation of lymphocytes and monocytes using flow cytometry. The AgNPs differed in surface charge and were stabilised with polyvinyl pyrrolidone (PVP), poly-L-lysine (PLL), bis(2-ethylhexyl) sulfosuccinate sodium (AOT) or blood serum albumin (BSA). Response of hPBMCs to coating agents and ionic Ag form was evaluated to distinguish their effect from the AgNPs action as they may be released from the nanosurface. There was no significant effect of any tested AgNPs on relative count of hPBMCs subpopulations. The T-cells and monocytes were not activated after treatment with AgNPs, but the highest concentration of PLL- and BSA-AgNPs decreased density of CD4 and CD8 markers on T-helper and T-cytotoxic cells, respectively. The same AgNPs activated B- and NK-cells. Ionic Ag activated T-, B- and NK-cells, but at very higher concentration, whereas only PLL exhibited immunomodulatory activity. This study evidenced immunomodulatory activity of AgNPs that may be fine-tuned by the design of their surface functionalization.
Collapse
Affiliation(s)
- Barbara Vuković
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Željko Cvetić
- Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, Zagreb, Croatia
| | - Krešo Bendelja
- Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marija Milić
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Blaženka Dobrošević
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
27
|
Response of platelets to silver nanoparticles designed with different surface functionalization. J Inorg Biochem 2021; 224:111565. [PMID: 34411938 DOI: 10.1016/j.jinorgbio.2021.111565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
Despite increasing use of silver nanoparticles (AgNPs) in different medicinal products, knowledge about their effects on hemostasis and platelets functionality is still scarce. Published scientific reports provide neither data on oxidative stress response of platelets to AgNPs nor information about the effects of AgNPs physicochemical properties on functionality and activation of platelets. This study aimed to explore the role of AgNPs surface functionalization on cell viability, particle uptake, oxidative stress response, and activation of platelets. Small sized, spherical AgNPs were surface functionalized by negatively charged sodium bis(2-ethylhexyl) sulphosuccinate (AOT), neutral polymer polyvinylpyrrolidone (PVP), positively charged polymer poly-l-lysine (PLL) and bovine serum albumin (BSA). Platelet viability, activation and particle uptake were evaluated by flow cytometry. Oxidative stress response was evaluated by measuring the levels of intracellular glutathione (GSH), peroxy and superoxide radicals using assays based on fluorescence dies. Cytotoxicity and uptake of AgNPs to platelets were found to be dose-dependent in a following order PLL-AgNP >> > BSA-AgNP > AOT-AgNP > PVP-AgNP. Particle internalization was further confirmed by transmission electron microscopy. Treatment of platelets with AgNPs induced superoxide radical formation, depletion of GSH and hyperpolarization of the mitochondrial membrane. Small, but statistically significant increase of P-selectin expression in cells treated with all AgNPs compared to non-treated controls evidenced AgNPs-induced activation of platelets. Increased PAC-1 expression was found only in platelets treated with PLL-AgNPs. Obtained results demonstrate that different surface decoration of AgNPs determines their biological effects on platelets highlighting the importance of careful design of AgNPs-based medicinal products regarding their biocompatibility and functionality.
Collapse
|
28
|
A Superhydrophobic, Antibacterial, and Durable Surface of Poplar Wood. NANOMATERIALS 2021; 11:nano11081885. [PMID: 34443716 PMCID: PMC8400133 DOI: 10.3390/nano11081885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.
Collapse
|
29
|
Pem B, Ćurlin M, Domazet Jurašin D, Vrček V, Barbir R, Micek V, Fratila RM, de la Fuente JM, Vinković Vrček I. Fate and transformation of silver nanoparticles in different biological conditions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:665-679. [PMID: 34327112 PMCID: PMC8275868 DOI: 10.3762/bjnano.12.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/23/2021] [Indexed: 05/05/2023]
Abstract
The exploitation of silver nanoparticles (AgNPs) in biomedicine represents more than one third of their overall application. Despite their wide use and significant amount of scientific data on their effects on biological systems, detailed insight into their in vivo fate is still lacking. This study aimed to elucidate the biotransformation patterns of AgNPs following oral administration. Colloidal stability, biochemical transformation, dissolution, and degradation behaviour of different types of AgNPs were evaluated in systems modelled to represent biological environments relevant for oral administration, as well as in cell culture media and tissue compartments obtained from animal models. A multimethod approach was employed by implementing light scattering (dynamic and electrophoretic) techniques, spectroscopy (UV-vis, atomic absorption, nuclear magnetic resonance) and transmission electron microscopy. The obtained results demonstrated that AgNPs may transform very quickly during their journey through different biological conditions. They are able to degrade to an ionic form and again reconstruct to a nanoparticulate form, depending on the biological environment determined by specific body compartments. As suggested for other inorganic nanoparticles by other research groups, AgNPs fail to preserve their specific integrity in in vivo settings.
Collapse
Affiliation(s)
- Barbara Pem
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Marija Ćurlin
- University of Zagreb, School of Medicine, Šalata 12, 10 000 Zagreb, Croatia
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Valerije Vrček
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10 000 Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Jesus M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| |
Collapse
|
30
|
Kukushkina EA, Hossain SI, Sportelli MC, Ditaranto N, Picca RA, Cioffi N. Ag-Based Synergistic Antimicrobial Composites. A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1687. [PMID: 34199123 PMCID: PMC8306300 DOI: 10.3390/nano11071687] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
The emerging problem of the antibiotic resistance development and the consequences that the health, food and other sectors face stimulate researchers to find safe and effective alternative methods to fight antimicrobial resistance (AMR) and biofilm formation. One of the most promising and efficient groups of materials known for robust antimicrobial performance is noble metal nanoparticles. Notably, silver nanoparticles (AgNPs) have been already widely investigated and applied as antimicrobial agents. However, it has been proposed to create synergistic composites, because pathogens can find their way to develop resistance against metal nanophases; therefore, it could be important to strengthen and secure their antipathogen potency. These complex materials are comprised of individual components with intrinsic antimicrobial action against a wide range of pathogens. One part consists of inorganic AgNPs, and the other, of active organic molecules with pronounced germicidal effects: both phases complement each other, and the effect might just be the sum of the individual effects, or it can be reinforced by the simultaneous application. Many organic molecules have been proposed as potential candidates and successfully united with inorganic counterparts: polysaccharides, with chitosan being the most used component; phenols and organic acids; and peptides and other agents of animal and synthetic origin. In this review, we overview the available literature and critically discuss the findings, including the mechanisms of action, efficacy and application of the silver-based synergistic antimicrobial composites. Hence, we provide a structured summary of the current state of the research direction and give an opinion on perspectives on the development of hybrid Ag-based nanoantimicrobials (NAMs).
Collapse
Affiliation(s)
- Ekaterina A. Kukushkina
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Syed Imdadul Hossain
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
31
|
Pormohammad A, Monych NK, Ghosh S, Turner DL, Turner RJ. Nanomaterials in Wound Healing and Infection Control. Antibiotics (Basel) 2021; 10:antibiotics10050473. [PMID: 33919072 PMCID: PMC8143158 DOI: 10.3390/antibiotics10050473] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/05/2023] Open
Abstract
Wounds continue to be a serious medical concern due to their increasing incidence from injuries, surgery, burns and chronic diseases such as diabetes. Delays in the healing process are influenced by infectious microbes, especially when they are in the biofilm form, which leads to a persistent infection. Biofilms are well known for their increased antibiotic resistance. Therefore, the development of novel wound dressing drug formulations and materials with combined antibacterial, antibiofilm and wound healing properties are required. Nanomaterials (NM) have unique properties due to their size and very large surface area that leads to a wide range of applications. Several NMs have antimicrobial activity combined with wound regeneration features thus give them promising applicability to a variety of wound types. The idea of NM-based antibiotics has been around for a decade at least and there are many recent reviews of the use of nanomaterials as antimicrobials. However, far less attention has been given to exploring if these NMs actually improve wound healing outcomes. In this review, we present an overview of different types of nanomaterials explored specifically for wound healing properties combined with infection control.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; (A.P.); (N.K.M.)
| | - Nadia K. Monych
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; (A.P.); (N.K.M.)
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot 360020, India;
| | - Diana L. Turner
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; (A.P.); (N.K.M.)
- Correspondence: ; Tel.: +1-403-220-4308
| |
Collapse
|
32
|
Juncker RB, Lazazzera BA, Billi F. The use of functionalized nanoparticles to treat Staphylococcus aureus-based surgical-site infections: a systematic review. J Appl Microbiol 2021; 131:2659-2668. [PMID: 33735514 DOI: 10.1111/jam.15075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023]
Abstract
Staphylococcus aureus-based surgical site infections have become the leading cause of failure for total joint arthroplasty operations and remain a major issue across surgical specialties. Moreover, S. aureus-based infections are becoming drastically more difficult to treat due to the development of antibiotic resistant strains and due to the bacteria's propensity to produce biofilms. The emergence of highly resistant S. aureus infections has created the need for a novel antimicrobial treatment. Functionalized nanoparticles have recently been suggested as being a viable option to fill this void due to their strong antimicrobial and antibiofilm properties. However, said research remains a novel and developing field. The presented systematic review aimed to synthesize the best and most recent evidence available to accurately direct new research towards a viable treatment mechanism. In doing so, the authors performed a comprehensive literature search as directed by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The results showed that nanoparticles-particularly those including an iron-oxide component or acidic capping agent-are a viable treatment for S. aureus infections both in vivo and in vitro, and show even greater efficacy when combined with exposure to a magnetic field and irradiation.
Collapse
Affiliation(s)
- R B Juncker
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - B A Lazazzera
- UCLA Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - F Billi
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
33
|
Vihodceva S, Šutka A, Sihtmäe M, Rosenberg M, Otsus M, Kurvet I, Smits K, Bikse L, Kahru A, Kasemets K. Antibacterial Activity of Positively and Negatively Charged Hematite ( α-Fe 2O 3) Nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:652. [PMID: 33800165 PMCID: PMC7999532 DOI: 10.3390/nano11030652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
In the current study, the antibacterial activity of positively and negatively charged spherical hematite (α-Fe2O3) nanoparticles (NPs) with primary size of 45 and 70 nm was evaluated against clinically relevant bacteria Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) as well as against naturally bioluminescent bacteria Vibrio fischeri (an ecotoxicological model organism). α-Fe2O3 NPs were synthesized using a simple green hydrothermal method and the surface charge was altered via citrate coating. To minimize the interference of testing environment with NP's physic-chemical properties, E. coli and S. aureus were exposed to NPs in deionized water for 30 min and 24 h, covering concentrations from 1 to 1000 mg/L. The growth inhibition was evaluated following the postexposure colony-forming ability of bacteria on toxicant-free agar plates. The positively charged α-Fe2O3 at concentrations from 100 mg/L upwards showed inhibitory activity towards E. coli already after 30 min of contact. Extending the exposure to 24 h caused total inhibition of growth at 100 mg/L. Bactericidal activity of positively charged hematite NPs against S. aureus was not observed up to 1000 mg/L. Differently from positively charged hematite NPs, negatively charged citrate-coated α-Fe2O3 NPs did not exhibit any antibacterial activity against E. coli and S. aureus even at 1000 mg/L. Confocal laser scanning microscopy and flow cytometer analysis showed that bacteria were more tightly associated with positively charged α-Fe2O3 NPs than with negatively charged citrate-coated α-Fe2O3 NPs. Moreover, the observed associations were more evident in the case of E. coli than S. aureus, being coherent with the toxicity results. Vibrio fischeri bioluminescence inhibition assays (exposure medium 2% NaCl) and colony forming ability on agar plates showed no (eco)toxicity of α-Fe2O3 (EC50 and MBC > 1000 mg/L).
Collapse
Affiliation(s)
- Svetlana Vihodceva
- Research Laboratory of Functional Materials Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia;
| | - Andris Šutka
- Research Laboratory of Functional Materials Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia;
| | - Mariliis Sihtmäe
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Merilin Rosenberg
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Maarja Otsus
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Krisjanis Smits
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; (K.S.); (L.B.)
| | - Liga Bikse
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; (K.S.); (L.B.)
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| |
Collapse
|
34
|
Gouyau J, Duval RE, Boudier A, Lamouroux E. Investigation of Nanoparticle Metallic Core Antibacterial Activity: Gold and Silver Nanoparticles against Escherichia coli and Staphylococcus aureus. Int J Mol Sci 2021; 22:1905. [PMID: 33672995 PMCID: PMC7918116 DOI: 10.3390/ijms22041905] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria constitute a global health issue. Over the past ten years, interest in nanoparticles, particularly metallic ones, has grown as potential antibacterial candidates. However, as there is no consensus about the procedure to characterize the metallic nanoparticles (MNPs; i.e., metallic aggregates) and evaluate their antibacterial activity, it is impossible to conclude about their real effectiveness as a new antibacterial agent. To give part of the answer to this question, 12 nm gold and silver nanoparticles have been prepared by a chemical approach. After their characterization by transmission electronic microscopy (TEM), Dynamic Light Scattering (DLS), and UltraViolet-visible (UV-vis) spectroscopy, their surface accessibility was tested through the catalytic reduction of the 4-nitrophenol, and their stability in bacterial culture medium was studied. Finally, the antibacterial activities of 12 nm gold and silver nanoparticles facing Staphylococcus aureus and Escherichia coli have been evaluated using the broth microdilution method. The results show that gold nanoparticles have a weak antibacterial activity (i.e., slight inhibition of bacterial growth) against the two bacteria tested. In contrast, silver nanoparticles have no activity on S. aureus but demonstrate a high antibacterial activity against Escherichia coli, with a minimum inhibitory concentration of 128 µmol/L. This high antibacterial activity is also maintained against two MDR-E. coli strains.
Collapse
Affiliation(s)
- Jimmy Gouyau
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
- ABC Platform, F-54505 Vandœuvre-lès-Nancy, France
| | - Ariane Boudier
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France;
| | | |
Collapse
|
35
|
Interaction of silver nanoparticles with plasma transport proteins: A systematic study on impacts of particle size, shape and surface functionalization. Chem Biol Interact 2020; 335:109364. [PMID: 33359597 DOI: 10.1016/j.cbi.2020.109364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Metallic nanoparticles are an important and widely used materials in development of nano-enabled medicine. For that reason, their interaction with biological molecules has to be systematically examined, as use of nanoparticles can lead to altered biological functions. In this study, we evaluated the interaction between silver nanoparticles (AgNPs) and two important plasma transport proteins - albumin and α-1-acid glycoprotein. To investigate comprehensively how different physico-chemical properties impact interaction of proteins with nanosurface, AgNPs of different size, shape and surface coating was prepared. The study was conducted using UV-Vis absorption, fluorescence, inductively coupled plasma mass spectrometry, circular dichroism spectroscopy, transmission electron microscopy, dynamic and electrophoretic light scattering techniques. The results showed significant complexities of the nano-bio interface and binding affinities of proteins onto surface of different AgNPs, which were affected by both AgNPs and protein properties. The most significant role on AgNPs-protein interaction had the coating agents used for AgNPs surface stabilization. Our findings should improve safe-by-design approach to development of the metallic nanomaterials for medical use.
Collapse
|
36
|
Dash SS, Samanta S, Dey S, Giri B, Dash SK. Rapid Green Synthesis of Biogenic Silver Nanoparticles Using Cinnamomum tamala Leaf Extract and its Potential Antimicrobial Application Against Clinically Isolated Multidrug-Resistant Bacterial Strains. Biol Trace Elem Res 2020; 198:681-696. [PMID: 32180127 DOI: 10.1007/s12011-020-02107-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Cinnamomum tamala is Indian bay leaves also known as Tej patta commonly used in the preparation of delicious food for its sweet aroma and tremendous medicinal values. In this study, the significant concentration-dependent free radical scavenging and antioxidant efficacy of the aqueous extracts of bay leaves has been determined using DPPH (2, 2-diphenyl-l-picrylhydrazyl) radical scavenging, ferric ion-reducing power assay, and hydrogen peroxide radical scavenging assay. The leaf extract has also been utilized in the rapid synthesis of silver nanoparticles (AgNPs) under mild conditions (30 min reaction time at 70 °C) without the addition of extra stabilizing or capping agents. Mostly spherical shaped particles were formed with diameter ranging from 10 to 12 nm as evident by HRTEM imaging. The silver nanoparticles were also characterized using FTIR, XRD, and UV-visible spectroscopic techniques. The antibacterial effect of the synthesized AgNPs was studied against three clinically isolated multidrug-resistant bacterial strains (Escherichia coli (EC-1), Klebsiella pneumonia (KP-1), and Staphylococcus aureus (SA-1)). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNPs against EC-1 were 12.5 and 15 μg/mL and in SA-1 were 10 and 50 μg/mL, and in the case of KP-1, both values were 12.5 μg/mL. It was also noted that 8 h treatment duration using AgNPs was sufficient to eliminate all types of bacterial growth as evidenced by time-dependent killing kinetic assays. The biocompatibilities of AgNPs were also tested against human health RBCs, and it was observed that it did not show any significant toxicity up to 50 μg/mL concentration.
Collapse
Affiliation(s)
- Shib Shankar Dash
- Department of Chemistry, Government General Degree College, Salboni , Paschim Medinipur, West Bengal, 721516, India.
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Sananda Dey
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| |
Collapse
|
37
|
Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An Updated Review on Silver Nanoparticles in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2318. [PMID: 33238486 PMCID: PMC7700255 DOI: 10.3390/nano10112318] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) represent one of the most explored categories of nanomaterials for new and improved biomaterials and biotechnologies, with impressive use in the pharmaceutical and cosmetic industry, anti-infective therapy and wound care, food and the textile industry. Their extensive and versatile applicability relies on the genuine and easy-tunable properties of nanosilver, including remarkable physicochemical behavior, exceptional antimicrobial efficiency, anti-inflammatory action and antitumor activity. Besides commercially available and clinically safe AgNPs-based products, a substantial number of recent studies assessed the applicability of nanosilver as therapeutic agents in augmented and alternative strategies for cancer therapy, sensing and diagnosis platforms, restorative and regenerative biomaterials. Given the beneficial interactions of AgNPs with living structures and their nontoxic effects on healthy human cells, they represent an accurate candidate for various biomedical products. In the present review, the most important and recent applications of AgNPs in biomedical products and biomedicine are considered.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|
38
|
Vazquez-Muñoz R, Bogdanchikova N, Huerta-Saquero A. Beyond the Nanomaterials Approach: Influence of Culture Conditions on the Stability and Antimicrobial Activity of Silver Nanoparticles. ACS OMEGA 2020; 5:28441-28451. [PMID: 33195894 PMCID: PMC7658933 DOI: 10.1021/acsomega.0c02007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/17/2020] [Indexed: 05/08/2023]
Abstract
Silver nanoparticles (AgNPs) as antimicrobial agents have been extensively studied. It is generally assumed that their inhibitory activity heavily depends on their physicochemical features. Yet, other parameters may affect the AgNP traits and activity, such as culture medium composition, pH, and temperature, among others. In this work, we evaluated the effect of the culture medium physicochemical traits on both the stability and antibacterial activity of AgNPs. We found that culture media impact the physicochemical traits of AgNPs, such as hydrodynamic size, surface charge, aggregation, and the availability of ionic silver release rate. As a consequence, culture media play a major role in AgNP stability and antimicrobial potency. The AgNP minimal inhibitory concentration (MIC) values changed up to 2 orders of magnitude by the influence of culture media alone when single-stock AgNPs were tested on the same strain of Escherichia coli. Furthermore, a meta-analysis of the AgNP MIC values confirms that the "chemical complexity" of culture media influences the AgNP activity. Studies that address only the antimicrobial activities of nanoparticles on common bacterial models should be performed by standardized susceptibility assays, thus generating replicable, comparable reports regarding the antimicrobial potency of nanomaterials.
Collapse
Affiliation(s)
- Roberto Vazquez-Muñoz
- Department
of Biology and The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, Unites
States
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860 Ensenada, Baja California, México
| | - Nina Bogdanchikova
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860 Ensenada, Baja California, México
| | - Alejandro Huerta-Saquero
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860 Ensenada, Baja California, México
| |
Collapse
|
39
|
Skіba M, Vorobyova V, Kovalenko I, Shakun A. Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial. CHEMISTRY & CHEMICAL TECHNOLOGY 2020. [DOI: 10.23939/chcht14.03.297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Niyonshuti II, Krishnamurthi VR, Okyere D, Song L, Benamara M, Tong X, Wang Y, Chen J. Polydopamine Surface Coating Synergizes the Antimicrobial Activity of Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40067-40077. [PMID: 32794690 DOI: 10.1021/acsami.0c10517] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal nanoparticles, especially silver nanoparticles (AgNPs), have drawn increasing attention for antimicrobial applications. Most studies have emphasized on the correlations between the antibacterial potency of AgNPs and the kinetics of metallic to ionic Ag conversion, while other antimicrobial mechanisms have been underestimated. In this work, we focused on the surface effects of polydopamine (PDA) coating on the antimicrobial activity of AgNPs. A method of fast deposition of PDA was used to synthesize the PDA-AgNPs with controllable coating thickness ranging from 3 to 25 nm. The antimicrobial activities of the PDA-AgNPs were analyzed by fluorescence-based growth curve assays on Escherichia coli. The results indicated that the PDA-AgNPs exhibited significantly higher antibacterial activities than poly(vinylpyrrolidone)-passivated AgNPs (PVP-AgNPs) and PDA themselves. It was found that the PDA coating synergized with the AgNPs to prominently enhance the potency of the PDA-AgNPs against bacteria. The analysis of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy elucidated that the synergistic effects could be originated from the interaction/coordination between Ag and catechol group on the PDA coating. The synergistic effects led to increased generation of reactive oxygen species and the consequent bacterial damage. These findings demonstrated the importance of the surface effects on the antimicrobial properties of AgNPs. The underlying molecular mechanisms have shined light on the future development of more potent metal nanoparticle-based antimicrobial agents.
Collapse
Affiliation(s)
- Isabelle I Niyonshuti
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | - Deborah Okyere
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Liang Song
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mourad Benamara
- Institute of Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
41
|
Cai T, Shen X, Huang E, Yan Y, Shen X, Wang F, Wang Z, Sun Q. Ag nanoparticles supported on MgAl-LDH decorated wood veneer with enhanced flame retardancy, water repellency and antimicrobial activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Galić E, Ilić K, Hartl S, Tetyczka C, Kasemets K, Kurvet I, Milić M, Barbir R, Pem B, Erceg I, Dutour Sikirić M, Pavičić I, Roblegg E, Kahru A, Vinković Vrček I. Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry. Food Chem Toxicol 2020; 144:111621. [PMID: 32738372 DOI: 10.1016/j.fct.2020.111621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 11/18/2022]
Abstract
Selenium nanoparticles (SeNPs) were first designed as nutritional supplements, but they are attractive also for use in diagnostic and therapeutic systems owing to their biocompatibility and protective effects. This study aimed to examine if different SeNPs stabilization strategies affect their (i) antimicrobial activity against bacteria Escherichia coli and Staphylococcus aureus and yeast Saccharomyces cerevisiae and (ii) toxicity to human cells of different biological barriers i.e., skin, oral and intestinal mucosa. For surface stabilization, polyvinylpyrrolidone (PVP), poly-L-lysine (PLL) and polyacrylic acid (PAA) were used rendering neutral, positively and negatively charged SeNPs, respectively. The SeNPs (primary size ~80 nm) showed toxic effects in human cells in vitro and in bacteria S. aureus, but not in E. coli and yeast S. cerevisiae. Toxicity of SeNPs (24 h IC50) ranged from 1.4 to >100 mg Se/L, depending on surface functionalization (PLL > PAA > PVP) and was not caused by ionic Se. At subtoxic concentrations, all SeNPs were taken up by all human cell types, induced oxidative stress response and demonstrated genotoxicity. As the safety profile of SeNPs was dependent not only on target cells (mammalian cells, bacteria, yeast), but also on surface functionalization, these aspects should be considered during development of novel SeNPs-based biomedical products.
Collapse
Affiliation(s)
- Emerik Galić
- University J.J. Strossmayer in Osijek, Faculty of Agrobiotechnical Sciences Osijek, Croatia
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Sonja Hartl
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Graz, Austria
| | - Carolin Tetyczka
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Graz, Austria
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ina Erceg
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Dutour Sikirić
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Eva Roblegg
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Graz, Austria
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn, Estonia.
| | | |
Collapse
|
43
|
Vuković B, Milić M, Dobrošević B, Milić M, Ilić K, Pavičić I, Šerić V, Vrček IV. Surface Stabilization Affects Toxicity of Silver Nanoparticles in Human Peripheral Blood Mononuclear Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1390. [PMID: 32708883 PMCID: PMC7407574 DOI: 10.3390/nano10071390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Silver nanoparticles (AgNPs) are one of the most investigated metal-based nanomaterials. Their biocidal activity boosted their application in both diagnostic and therapeutic medical systems. It is therefore crucial to provide sound evidences for human-related safety of AgNPs. This study aimed to enhance scientific knowledge with regard to biomedical safety of AgNPs by investigating how their different surface properties affect human immune system. METHODS preparation, characterization and stability evaluation was performed for four differently coated AgNPs encompassing neutral, positive and negative agents used for their surface stabilization. Safety aspects were evaluated by testing interaction of AgNPs with fresh human peripheral blood mononuclear cells (hPBMC) by means of particle cellular uptake and their ability to trigger cell death, apoptosis and DNA damages through induction of oxidative stress and damages of mitochondrial membrane. RESULTS all tested AgNPs altered morphology of freshly isolated hPBMC inducing apoptosis and cell death in a dose- and time-dependent manner. Highest toxicity was observed for positively-charged and protein-coated AgNPs. Cellular uptake of AgNPs was also dose-dependently increased and highest for positively charged AgNPs. Intracellularly, AgNPs induced production of reactive oxygen species (ROS) and damaged mitochondrial membrane. Depending on the dose, all AgNPs exhibited genotoxic potential. CONCLUSIONS this study provides systematic and comprehensive data showing how differently functionalized AgNPs may affect the human immune system. Presented results are a valuable scientific contribution to safety assessment of nanosilver-based blood-contacting medical products.
Collapse
Affiliation(s)
- Barbara Vuković
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Marija Milić
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Blaženka Dobrošević
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| |
Collapse
|
44
|
Milić M, Vuković B, Barbir R, Pem B, Milić M, Šerić V, Frőhlich E, Vinković Vrček I. Effect of differently coated silver nanoparticles on hemostasis. Platelets 2020; 32:651-661. [PMID: 32668997 DOI: 10.1080/09537104.2020.1792432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
With the emergence of nano-enabled medical devices (MDs) for the use in human medicine, ensuring their safety becomes of crucial importance. Hemocompatibility is one of the major criteria for approval of all MDs in contact with blood (e.g. vascular grafts, stents, or valves). Silver nanoparticles (AgNPs) are among the most used nanomaterials for MDs due to their biocidal activity; however, detailed knowledge on their hemostatic effects is still lacking.This study aimed to evaluate comprehensively AgNPs effects on hemostasis in human blood by exploiting combination of affordable and clinically relevant techniques.Differently stabilized AgNPs were prepared using sodium bis(2-ethylhexyl)sulphosuccinate (AOT), polyvinylpyrrolidone (PVP), poly-L-lysine (PLL), and bovine serum albumin (BSA) as coating agents. They were tested for hemolytic activity, induction of platelet aggregation, plasmatic coagulation, thrombin generation, and hemostasis in whole blood.All AgNPs were found to cause dose-dependent hemolysis. The BSA-, AOT-, and PVP-coated AgNPs delayed plasmatic coagulation, while only PLL-AgNPs inhibited plasmatic coagulation, induced platelet activation, and interfered with hemostasis by delaying clotting time and decreasing clot firmness in whole blood.Obtained results demonstrate that a combination of different techniques should be used for reliable assessment of AgNPs hemostatic effects highlighting the need for a standardized approach in sampling and experimental protocols.
Collapse
Affiliation(s)
- Marija Milić
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Barbara Vuković
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | | |
Collapse
|
45
|
Vrandečić K, Ćosić J, Ilić J, Ravnjak B, Selmani A, Galić E, Pem B, Barbir R, Vinković Vrček I, Vinković T. Antifungal activities of silver and selenium nanoparticles stabilized with different surface coating agents. PEST MANAGEMENT SCIENCE 2020; 76:2021-2029. [PMID: 31943745 DOI: 10.1002/ps.5735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/19/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Extensive and growing use of different chemical pesticides that affect both the environment and human health raises a need for new and more suitable methods to deal with plant pathogens. Nanotechnology has enabled the use of materials at the nanoscale with exceptional functionality in different economic domains including agricultural production. This study aimed to evaluate antifungal potential of selenium nanoparticles (SeNPs) and silver nanoparticles (AgNPs) stabilized with different surface coatings and characterized by different surface charge on plant pathogenic fungi Macrophomina phaseolina, Sclerotinia sclerotiorum and Diaporthe longicolla. RESULTS AgNPs were coated with three different stabilizing agents: mono citrate (MC-AgNPs), cetyltrimethyl ammonium bromide (CTAB-AgNPs) and polyvinylpyrrolidon (PVP-AgNPs). SeNPs were coated with poly-l-lysine (PLL-SeNPs), polyacrylic acid (PAA-SeNPs), and polyvinylpyrrolidon (PVP-SeNPs). Seven different concentrations (0.1, 0.5, 1, 5, 10, 50 and 100 mg L-1 ) of nanoparticles were applied. All AgNPs and SeNPs significantly inhibited the growth of the tested fungi. Among the tested NPs, PVP-AgNPs showed the best inhibitory effect on the tested plant pathogenic fungi, especially against S. sclerotiorum. The similar inhibition of the sclerotia formation was observed for S. sclerotiorum treated with PLL-SeNPs. CONCLUSION Obtained results provides new insights on fungicide effect of AgNPs and SeNPs stabilized with different coating agents on different plant pathogens. Further work should focus on detailed risk/benefit ratio assessment of using SeNPs or AgNPs in agriculture taking into account whole agroecosystem. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Karolina Vrandečić
- Faculty of Agrobiotechnical Sciences Osijek, University of Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Jasenka Ćosić
- Faculty of Agrobiotechnical Sciences Osijek, University of Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Jelena Ilić
- Faculty of Agrobiotechnical Sciences Osijek, University of Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Boris Ravnjak
- Faculty of Agrobiotechnical Sciences Osijek, University of Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | | | - Emerik Galić
- Faculty of Agrobiotechnical Sciences Osijek, University of Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Tomislav Vinković
- Faculty of Agrobiotechnical Sciences Osijek, University of Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| |
Collapse
|
46
|
Krce L, Šprung M, Rončević T, Maravić A, Čikeš Čulić V, Blažeka D, Krstulović N, Aviani I. Probing the Mode of Antibacterial Action of Silver Nanoparticles Synthesized by Laser Ablation in Water: What Fluorescence and AFM Data Tell Us. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1040. [PMID: 32485869 PMCID: PMC7352602 DOI: 10.3390/nano10061040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
We aim to elucidate the mode of antibacterial action of the laser-synthesized silver colloid against Escherichia coli. Membrane integrity was studied by flow cytometry, while the strain viability of the treated culture was determined by plating. The spectrofluorometry was used to obtain the time development of the reactive oxygen species (ROS) inside the nanoparticle-treated bacterial cells. An integrated atomic force and bright-field/fluorescence microscopy system enabled the study of the cell morphology, Young modulus, viability, and integrity before and during the treatment. Upon lethal treatment, not all bacterial cells were shown to be permeabilized and have mostly kept their morphology with an indication of cell lysis. Young modulus of untreated cells was shown to be distinctly bimodal, with randomly distributed softer parts, while treated cells exhibited exponential softening of the stiffer parts in time. Silver nanoparticles and bacteria have shown a masking effect on the raw fluorescence signal through absorbance and scattering. The contribution of cellular ROS in the total fluorescence signal was resolved and it was proven that the ROS level inside the lethally treated cells is not significant. It was found that the laser-synthesized silver nanoparticles mode of antibacterial action includes reduction of the cell's Young modulus in time and subsequently the cell leakage.
Collapse
Affiliation(s)
- Lucija Krce
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| | - Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (T.R.); (A.M.)
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (T.R.); (A.M.)
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, Šoltanska ulica 2, 21000 Split, Croatia;
| | - Damjan Blažeka
- Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia; (D.B.); (N.K.)
| | - Nikša Krstulović
- Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia; (D.B.); (N.K.)
| | - Ivica Aviani
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| |
Collapse
|
47
|
Kubo AL, Vasiliev G, Vija H, Krishtal J, Tõugu V, Visnapuu M, Kisand V, Kahru A, Bondarenko OM. Surface carboxylation or PEGylation decreases CuO nanoparticles' cytotoxicity to human cells in vitro without compromising their antibacterial properties. Arch Toxicol 2020; 94:1561-1573. [PMID: 32253467 PMCID: PMC7261733 DOI: 10.1007/s00204-020-02720-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/26/2020] [Indexed: 11/28/2022]
Abstract
Clinical use of CuO nanoparticles (NPs) as antibacterials can be hampered by their toxicity to human cells. We hypothesized that certain surface functionalizations of CuO NPs may render NPs toxic to bacteria, but still be relatively harmless to human cells. To control this hypothesis, the toxicity of differently functionalized CuO NPs to bacteria Escherichia coli vs human cells (THP-1 macrophages and HACAT keratinocytes) was compared using similar conditions and end points. CuO NPs functionalized with polyethylene glycol (CuO-PEG), carboxyl (CuO-COOH, anionic), ammonium (CuO-NH4+, cationic) and unfunctionalized CuO NPs and CuSO4 (controls) were tested. In general, the toxicity of Cu compounds decreased in the following order: CuO-NH4+ > unfunctionalized CuO > CuSO4 > CuO-COOH > CuO-PEG. Positively charged unfunctionalized CuO and especially CuO-NH4+ proved most toxic (24-h EC50 = 21.7-47 mg/l) and had comparable toxicity to bacterial and mammalian cells. The multivariate analysis revealed that toxicity of these NPs was mostly attributed to their positive zeta potential, small hydrodynamic size, high Cu dissolution, and induction of reactive oxygen species (ROS) and TNF-α. In contrast, CuO-COOH and CuO-PEG NPs had lower toxicity to human cells compared to bacteria despite efficient uptake of these NPs by human cells. In addition, these NPs did not induce TNF-α and ROS. Thus, by varying the NP functionalization and Cu form (soluble salt vs NPs), it was possible to "target" the toxicity of Cu compounds, whereas carboxylation and PEGylation rendered CuO NPs that were more toxic to bacteria than to human cells envisaging their use in medical antibacterial products.
Collapse
Affiliation(s)
- Anna-Liisa Kubo
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia
| | - Grigory Vasiliev
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, TalTech, Akadeemia tee 15, Tallinn, Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia
| | - Jekaterina Krishtal
- Department of Chemistry and Biotechnology, School of Science, TalTech, Akadeemia tee 15, Tallinn, Estonia
| | - Vello Tõugu
- Department of Chemistry and Biotechnology, School of Science, TalTech, Akadeemia tee 15, Tallinn, Estonia
| | - Meeri Visnapuu
- Institute of Physics, University of Tartu, W. Ostwaldi 1, Tartu, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwaldi 1, Tartu, Estonia
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia.
- Estonian Academy of Sciences, Kohtu 6, Tallinn, Estonia.
| | - Olesja M Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia.
| |
Collapse
|
48
|
Ribeiro AI, Modic M, Cvelbar U, Dinescu G, Mitu B, Nikiforov A, Leys C, Kuchakova I, De Vrieze M, Felgueiras HP, Souto AP, Zille A. Effect of Dispersion Solvent on the Deposition of PVP-Silver Nanoparticles onto DBD PlasmaTreated Polyamide 6,6 Fabric and Its Antimicrobial Efficiency. NANOMATERIALS 2020; 10:nano10040607. [PMID: 32224934 PMCID: PMC7221693 DOI: 10.3390/nano10040607] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/02/2023]
Abstract
Polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) dispersed in ethanol, water and water/alginate were used to functionalize untreated and dielectric barrier discharge (DBD) plasma-treated polyamide 6,6 fabric (PA66). The PVP-AgNPs dispersions were deposited onto PA66 by spray and exhaustion methods. The exhaustion method showed a higher amount of deposited AgNPs. Water and water-alginate dispersions presented similar results. Ethanol amphiphilic character showed more affinity to AgNPs and PA66 fabric, allowing better uniform surface distribution of nanoparticles. Antimicrobial effect in E. coli showed good results in all the samples obtained by exhaustion method but using spray method only the DBD plasma treated samples displayed antimicrobial activity (log reduction of 5). Despite the better distribution achieved using ethanol as a solvent, water dispersion samples with DBD plasma treatment displayed better antimicrobial activity against S. aureus bacteria in both exhaustion (log reduction of 1.9) and spray (methods log reduction of 1.6) due to the different oxidation states of PA66 surface interacting with PVP-AgNPs, as demonstrated by X-ray Photoelectron Spectroscopy (XPS) analysis. Spray method using the water-suspended PVP-AgNPs onto DBD plasma-treated samples is much faster, less agglomerating and uses 10 times less PVP-AgNPs dispersion than the exhaustion method to obtain an antimicrobial effect in both S. aureus and E. coli.
Collapse
Affiliation(s)
- Ana I. Ribeiro
- 2C2T - Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.I.R.); (H.P.F.); (A.P.S.)
| | - Martina Modic
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.); (U.C.)
| | - Uros Cvelbar
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.); (U.C.)
| | - Gheorghe Dinescu
- National Institute for Lasers, Plasma and Radiation Physics, Strada Atomiștilor 409, 077125 Măgurele, Romania; (G.D.); (B.M.)
| | - Bogdana Mitu
- National Institute for Lasers, Plasma and Radiation Physics, Strada Atomiștilor 409, 077125 Măgurele, Romania; (G.D.); (B.M.)
| | - Anton Nikiforov
- Centexbel Ghent, Technologie Park 7, 9052 Ghent, Belgium; (A.N.); (C.L.); (I.K.); (M.D.V.)
| | - Christophe Leys
- Centexbel Ghent, Technologie Park 7, 9052 Ghent, Belgium; (A.N.); (C.L.); (I.K.); (M.D.V.)
| | - Iryna Kuchakova
- Centexbel Ghent, Technologie Park 7, 9052 Ghent, Belgium; (A.N.); (C.L.); (I.K.); (M.D.V.)
| | - Mike De Vrieze
- Centexbel Ghent, Technologie Park 7, 9052 Ghent, Belgium; (A.N.); (C.L.); (I.K.); (M.D.V.)
| | - Helena P. Felgueiras
- 2C2T - Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.I.R.); (H.P.F.); (A.P.S.)
| | - António P. Souto
- 2C2T - Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.I.R.); (H.P.F.); (A.P.S.)
| | - Andrea Zille
- 2C2T - Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.I.R.); (H.P.F.); (A.P.S.)
- Correspondence:
| |
Collapse
|
49
|
Jia H, Draz MS, Ruan Z. Functional Nanomaterials for the Detection and Control of Bacterial Infections. Curr Top Med Chem 2020; 19:2449-2475. [PMID: 31642781 DOI: 10.2174/1568026619666191023123407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/11/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Infections with multidrug-resistant bacteria that are difficult to treat with commonly used antibiotics have spread globally, raising serious public health concerns. Conventional bacterial detection techniques are time-consuming, which may delay treatment for critically ill patients past the optimal time. There is an urgent need for rapid and sensitive diagnosis and effective treatments for multidrug-resistant pathogenic bacterial infections. Advances in nanotechnology have made it possible to design and build nanomaterials with therapeutic and diagnostic capabilities. Functional nanomaterials that can specifically interact with bacteria offer additional options for the diagnosis and treatment of infections due to their unique physical and chemical properties. Here, we summarize the recent advances related to the preparation of nanomaterials and their applications for the detection and treatment of bacterial infection. We pay particular attention to the toxicity of therapeutic nanoparticles based on both in vitro and in vivo assays. In addition, the major challenges that require further research and future perspectives are briefly discussed.
Collapse
Affiliation(s)
- Huiqiong Jia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Neurotoxicity of silver nanoparticles stabilized with different coating agents: In vitro response of neuronal precursor cells. Food Chem Toxicol 2020; 136:110935. [DOI: 10.1016/j.fct.2019.110935] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022]
|