1
|
González YR, Kamkar F, Jafar-Nejad P, Wang S, Qu D, Alvarez LS, Hawari D, Sonnenfeld M, Slack RS, Albert PR, Park DS, Joselin A. PFTK1 kinase regulates axogenesis during development via RhoA activation. BMC Biol 2023; 21:240. [PMID: 37907898 PMCID: PMC10617079 DOI: 10.1186/s12915-023-01732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development. RESULTS Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity. CONCLUSIONS In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.
Collapse
Affiliation(s)
| | - Fatemeh Kamkar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Paymaan Jafar-Nejad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Present Address: Ionis Pharmaceuticals Inc., Carlsbad, CA, 92010, USA
| | - Suzi Wang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dianbo Qu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Leticia Sanchez Alvarez
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dina Hawari
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Margaret Sonnenfeld
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute and Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - David S Park
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Alvin Joselin
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
2
|
Smith CJ. Evolutionarily conserved concepts in glial cell biology. Curr Opin Neurobiol 2023; 78:102669. [PMID: 36577179 PMCID: PMC9845142 DOI: 10.1016/j.conb.2022.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022]
Abstract
The evolutionary conservation of glial cells has been appreciated since Ramon y Cajal and Del Rio Hortega first described the morphological features of cells in the nervous system. We now appreciate that glial cells have essential roles throughout life in most nervous systems. The field of glial cell biology has grown exponentially in the last ten years. This new wealth of knowledge has been aided by seminal findings in non-mammalian model systems. Ultimately, such concepts help us to understand glia in mammalian nervous systems. Rather than summarizing the field of glial biology, I will first briefly introduce glia in non-mammalian models systems. Then, highlight seminal findings across the glial field that utilized non-mammalian model systems to advance our understanding of the mammalian nervous system. Finally, I will call attention to some recent findings that introduce new questions about glial cell biology that will be investigated for years to come.
Collapse
Affiliation(s)
- Cody J Smith
- Department of Biological Sciences, IN, USA; The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
3
|
Bakhtiary N, Pezeshki-Modaress M, Najmoddin N. Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Reed CB, Feltri ML, Wilson ER. Peripheral glia diversity. J Anat 2022; 241:1219-1234. [PMID: 34131911 PMCID: PMC8671569 DOI: 10.1111/joa.13484] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen an evolving appreciation for the role of glial cells in the nervous system. As we move away from the typical neurocentric view of neuroscience, the complexity and variability of central nervous system glia is emerging, far beyond the three main subtypes: astrocytes, oligodendrocytes, and microglia. Yet the diversity of the glia found in the peripheral nervous system remains rarely discussed. In this review, we discuss the developmental origin, morphology, and function of the different populations of glia found in the peripheral nervous system, including: myelinating Schwann cells, Remak Schwann cells, repair Schwann cells, satellite glia, boundary cap-derived glia, perineurial glia, terminal Schwann cells, glia found in the skin, olfactory ensheathing cells, and enteric glia. The morphological and functional heterogeneity of glia found in the periphery reflects the diverse roles the nervous system performs throughout the body. Further, it highlights a complexity that should be appreciated and considered when it comes to a complete understanding of the peripheral nervous system in health and disease.
Collapse
Affiliation(s)
- Chelsey B. Reed
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - M. Laura Feltri
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - Emma R. Wilson
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
5
|
Mhatre SD, Iyer J, Petereit J, Dolling-Boreham RM, Tyryshkina A, Paul AM, Gilbert R, Jensen M, Woolsey RJ, Anand S, Sowa MB, Quilici DR, Costes SV, Girirajan S, Bhattacharya S. Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster. Cell Rep 2022; 40:111279. [PMID: 36070701 PMCID: PMC10503492 DOI: 10.1016/j.celrep.2022.111279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 02/03/2023] Open
Abstract
Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFμg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFμg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFμg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFμg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFμg brains, with pronounced phenotypes in SFμg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA; Universities Space Research Association, Mountain View, CA 94043, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA
| | - Roberta M Dolling-Boreham
- Department of Electrical and Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; Blue Marble Space Institute of Science, Seattle, WA 94035, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Universities Space Research Association, Mountain View, CA 94043, USA; Blue Marble Space Institute of Science, Seattle, WA 94035, USA; NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035, USA; Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL 32114, USA
| | - Rachel Gilbert
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew Jensen
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - David R Quilici
- Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Santhosh Girirajan
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Biological and Physical Sciences Division, NASA Headquarters, Washington DC 20024, USA.
| |
Collapse
|
6
|
Electrical Stimulation Increases Axonal Growth from Dorsal Root Ganglia Co-Cultured with Schwann Cells in Highly Aligned PLA-PPy-Au Microfiber Substrates. Int J Mol Sci 2022; 23:ijms23126362. [PMID: 35742806 PMCID: PMC9223746 DOI: 10.3390/ijms23126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Nerve regeneration is a slow process that needs to be guided for distances greater than 5 mm. For this reason, different strategies are being studied to guide axonal growth and accelerate the axonal growth rate. In this study, we employ an electroconductive fibrillar substrate that is able to topographically guide axonal growth while accelerating the axonal growth rate when subjected to an exogenous electric field. Dorsal root ganglia were seeded in co-culture with Schwann cells on a substrate of polylactic acid microfibers coated with the electroconductive polymer polypyrrole, adding gold microfibers to increase its electrical conductivity. The substrate is capable of guiding axonal growth in a highly aligned manner and, when subjected to an electrical stimulation, an improvement in axonal growth is observed. As a result, an increase in the maximum length of the axons of 19.2% and an increase in the area occupied by the axons of 40% were obtained. In addition, an upregulation of the genes related to axon guidance, axogenesis, Schwann cells, proliferation and neurotrophins was observed for the electrically stimulated group. Therefore, our device is a good candidate for nerve regeneration therapies.
Collapse
|
7
|
Gisbert Roca F, André FM, Más Estellés J, Monleón Pradas M, Mir LM, Martínez-Ramos C. BDNF-Gene Transfected Schwann Cell-Assisted Axonal Extension and Sprouting on New PLA-PPy Microfiber Substrates. Macromol Biosci 2021; 21:e2000391. [PMID: 33645917 DOI: 10.1002/mabi.202000391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 01/09/2023]
Abstract
The work here reported analyzes the effect of increased efficiency of brain-derived neurotrophic factor (BDNF) production by electroporated Schwann cells (SCs) on the axonal extension in a coculture system on a biomaterial platform that can be of interest for the treatment of injuries of the nervous system, both central and peripheral. Rat SCs are electrotransfected with a plasmid coding for the BDNF protein in order to achieve an increased expression and release of this protein into the culture medium of the cells, performing the best balance between the level of transfection and the number of living cells. Gene-transfected SCs show an about 100-fold increase in the release of BDNF into the culture medium, compared to nonelectroporated SCs. Cocultivation of electroporated SCs with rat dorsal root ganglia (DRG) is performed on highly aligned substrates of polylactic acid (PLA) microfibers coated with the electroconductive polymer polypyrrol (PPy). The coculture of DRG with electrotransfected SCs increase both the axonal extension and the axonal sprouting from DRG neurons compared to the coculture of DRG with nonelectroporated SCs. Therefore, the use of PLA-PPy highly aligned microfiber substrates preseeded with electrotransfected SCs with an increased BDNF secretion is capable of both guiding and accelerating axonal growth.
Collapse
Affiliation(s)
- Fernando Gisbert Roca
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Franck M André
- Metabolic and systemic aspects of oncogenesis (METSY), CNRS, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94805, France
| | - Jorge Más Estellés
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Manuel Monleón Pradas
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.,CIBER-BBN, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina, Madrid, 28029, Spain
| | - Lluis M Mir
- Metabolic and systemic aspects of oncogenesis (METSY), CNRS, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94805, France
| | - Cristina Martínez-Ramos
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.,Unitat predepartamental de Medicina, Universitat Jaume I, Avda/Sos Baynat, S/N, Castellón de la Plana, 12071, Spain
| |
Collapse
|
8
|
Gisbert Roca F, Más Estellés J, Monleón Pradas M, Martínez-Ramos C. Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic acid)-polypyrrole substrates obtained by two different techniques: Electrospun nanofibres and extruded microfibres. Int J Biol Macromol 2020; 163:1959-1969. [DOI: 10.1016/j.ijbiomac.2020.09.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
|
9
|
Ung K, Tepe B, Pekarek B, Arenkiel BR, Deneen B. Parallel astrocyte calcium signaling modulates olfactory bulb responses. J Neurosci Res 2020; 98:1605-1618. [PMID: 32426930 PMCID: PMC8147697 DOI: 10.1002/jnr.24634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
Astrocytes are the most abundant glial cell in the central nervous system. They modulate synaptic function through a variety of mechanisms, and yet remain relatively understudied with respect to overall neuronal circuit function. Exploiting the tractability of the mouse olfactory system, we manipulated astrocyte activity and examined how astrocytes modulate olfactory bulb responses. Toward this, we genetically targeted both astrocytes and neurons for in vivo widefield imaging of Ca2+ responses to odor stimuli. We found that astrocytes exhibited odor response maps that overlap with excitatory neuronal activity. By manipulating Ca2+ activity in astrocytes using chemical genetics we found that odor-evoked neuronal activity was reciprocally affected, suggesting that astrocyte activation inhibits neuronal odor responses. Subsequently, behavioral experiments revealed that astrocyte manipulations affect both odor detection threshold and discrimination, suggesting that astrocytes play an active role in olfactory sensory processing circuits. Together, these studies show that astrocyte calcium signaling contributes to olfactory behavior through modulation of sensory circuits.
Collapse
Affiliation(s)
- Kevin Ung
- Program in Developmental Biology, Houston, TX 77030, USA
| | - Burak Tepe
- Program in Developmental Biology, Houston, TX 77030, USA
| | - Brandon Pekarek
- Department of Molecular and Human Genetics, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Program in Developmental Biology, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Benjamin Deneen
- Program in Developmental Biology, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Kim T, Song B, Lee IS. Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E4859. [PMID: 32660023 PMCID: PMC7402321 DOI: 10.3390/ijms21144859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are key players in the proper formation and maintenance of the nervous system, thus contributing to neuronal health and disease in humans. However, little is known about the molecular pathways that govern glia-neuron communications in the diseased brain. Drosophila provides a useful in vivo model to explore the conserved molecular details of glial cell biology and their contributions to brain function and disease susceptibility. Herein, we review recent studies that explore glial functions in normal neuronal development, along with Drosophila models that seek to identify the pathological implications of glial defects in the context of various central nervous system disorders.
Collapse
Affiliation(s)
| | | | - Im-Soon Lee
- Department of Biological Sciences, Center for CHANS, Konkuk University, Seoul 05029, Korea; (T.K.); (B.S.)
| |
Collapse
|
11
|
Hakim-Mishnaevski K, Flint-Brodsly N, Shklyar B, Levy-Adam F, Kurant E. Glial Phagocytic Receptors Promote Neuronal Loss in Adult Drosophila Brain. Cell Rep 2019; 29:1438-1448.e3. [DOI: 10.1016/j.celrep.2019.09.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
|
12
|
Gonsior M, Ismat A. sli is required for proper morphology and migration of sensory neurons in the Drosophila PNS. Neural Dev 2019; 14:10. [PMID: 31651354 PMCID: PMC6813078 DOI: 10.1186/s13064-019-0135-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/17/2019] [Indexed: 11/12/2022] Open
Abstract
Neurons and glial cells coordinate with each other in many different aspects of nervous system development. Both types of cells are receiving multiple guidance cues to guide the neurons and glial cells to their proper final position. The lateral chordotonal organs (lch5) of the Drosophila peripheral nervous system (PNS) are composed of five sensory neurons surrounded by four different glial cells, scolopale cells, cap cells, attachment cells and ligament cells. During embryogenesis, the lch5 neurons go through a rotation and ventral migration to reach their final position in the lateral region of the abdomen. We show here that the extracellular ligand sli is required for the proper ventral migration and morphology of the lch5 neurons. We further show that mutations in the Sli receptors Robo and Robo2 also display similar defects as loss of sli, suggesting a role for Slit-Robo signaling in lch5 migration and positioning. Additionally, we demonstrate that the scolopale, cap and attachment cells follow the mis-migrated lch5 neurons in sli mutants, while the ventral stretching of the ligament cells seems to be independent of the lch5 neurons. This study sheds light on the role of Slit-Robo signaling in sensory neuron development.
Collapse
Affiliation(s)
- Madison Gonsior
- Department of Biology, University of St. Thomas, Saint Paul, MN, 55104, USA
| | - Afshan Ismat
- Department of Biology, University of St. Thomas, Saint Paul, MN, 55104, USA.
| |
Collapse
|
13
|
Jay TR, von Saucken VE, Muñoz B, Codocedo JF, Atwood BK, Lamb BT, Landreth GE. TREM2 is required for microglial instruction of astrocytic synaptic engulfment in neurodevelopment. Glia 2019; 67:1873-1892. [PMID: 31265185 DOI: 10.1002/glia.23664] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
Variants in the microglial receptor TREM2 confer risk for multiple neurodegenerative diseases. However, it remains unknown how this receptor functions on microglia to modulate these diverse neuropathologies. To understand the role of TREM2 on microglia more generally, we investigated changes in microglial function in Trem2-/- mice. We found that loss of TREM2 impairs normal neurodevelopment, resulting in reduced synapse number across the cortex and hippocampus in 1-month-old mice. This reduction in synapse number was not due directly to alterations in interactions between microglia and synapses. Rather, TREM2 was required for microglia to limit synaptic engulfment by astrocytes during development. While these changes were largely normalized later in adulthood, high fat diet administration was sufficient to reinitiate TREM2-dependent modulation of synapse loss. Together, this identifies a novel role for microglia in instructing synaptic pruning by astrocytes to broadly regulate appropriate synaptic refinement, and suggests novel candidate mechanisms for how TREM2 and microglia could influence synaptic loss in brain injury and disease.
Collapse
Affiliation(s)
- Taylor R Jay
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - Victoria E von Saucken
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Braulio Muñoz
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Juan F Codocedo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brady K Atwood
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
14
|
Two Pathways for the Activity-Dependent Growth and Differentiation of Synaptic Boutons in Drosophila. eNeuro 2019; 6:ENEURO.0060-19.2019. [PMID: 31387877 PMCID: PMC6709223 DOI: 10.1523/eneuro.0060-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
Synapse formation can be promoted by intense activity. At the Drosophila larval neuromuscular junction (NMJ), new synaptic boutons can grow acutely in response to patterned stimulation. We combined confocal imaging with electron microscopy and tomography to investigate the initial stages of growth and differentiation of new presynaptic boutons at the Drosophila NMJ. We found that the new boutons can form rapidly in intact larva in response to intense crawling activity, and we observed two different patterns of bouton formation and maturation. The first pathway involves the growth of filopodia followed by a formation of boutons that are initially devoid of synaptic vesicles (SVs) but filled with filamentous matrix. The second pathway involves rapid budding of synaptic boutons packed with SVs, and these more mature boutons are sometimes capable of exocytosis/endocytosis. We demonstrated that intense activity predominantly promotes the second pathway, i.e., budding of more mature boutons filled with SVs. We also showed that this pathway depends on synapsin (Syn), a neuronal protein which reversibly associates with SVs and mediates their clustering via a protein kinase A (PKA)-dependent mechanism. Finally, we took advantage of the temperature-sensitive mutant sei to demonstrate that seizure activity can promote very rapid budding of new boutons filled with SVs, and this process occurs at scale of minutes. Altogether, these results demonstrate that intense activity acutely and selectively promotes rapid budding of new relatively mature presynaptic boutons filled with SVs, and that this process is regulated via a PKA/Syn-dependent pathway.
Collapse
|
15
|
Zhu S, Liu W, Ding HF, Cui H, Yang L. BMP4 and Neuregulin regulate the direction of mouse neural crest cell differentiation. Exp Ther Med 2019; 17:3883-3890. [PMID: 31007733 PMCID: PMC6468403 DOI: 10.3892/etm.2019.7439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
The neural crest is a transient embryonic tissue that initially generates neural crest stem cells, which then migrate throughout the body to give rise to a variety of mature tissues. It was proposed that the fate of neural crest cells is gradually determined via environmental cues from the surrounding tissues. In the present study, neural crest cells were isolated and identified from mouse embryos. Bone morphogenetic protein 4 (BMP4) and Neuregulin (NRG) were employed to induce the differentiation of neural crest cells. Treatment with BMP4 revealed neuron-associated differentiation; cells treated with NRG exhibited differentiation into the Schwann cell lineage, a type of glia. Soft agar clonogenic and neurosphere formation assays were conducted to investigate the effects of N-Myc (MYCN) overexpression in neural crest cells; the number of colonies and neurospheres notably increased after 14 days. These findings demonstrated that the direction of cell differentiation may be affected by altering the factors present in the surrounding environment. In addition, MYCN may serve a key role in regulating neural crest cell differentiation.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, P.R. China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Han-Fei Ding
- Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
16
|
Marei HES, Lashen S, Farag A, Althani A, Afifi N, A AE, Rezk S, Pallini R, Casalbore P, Cenciarelli C. Human olfactory bulb neural stem cells mitigate movement disorders in a rat model of Parkinson's disease. J Cell Physiol 2015; 230:1614-29. [PMID: 25536543 DOI: 10.1002/jcp.24909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by the loss of midbrain dopaminergic (DA) neurons. Neural stem cells (NSCs) are multipotent stem cells that are capable of differentiating into different neuronal and glial elements. The production of DA neurons from NSCs could potentially alleviate behavioral deficits in Parkinsonian patients; timely intervention with NSCs might provide a therapeutic strategy for PD. We have isolated and generated highly enriched cultures of neural stem/progenitor cells from the human olfactory bulb (OB). If NSCs can be obtained from OB, it would alleviate ethical concerns associated with the use of embryonic tissue, and provide an easily accessible cell source that would preclude the need for invasive brain surgery. Following isolation and culture, olfactory bulb neural stem cells (OBNSCs) were genetically engineered to express hNGF and GFP. The hNFG-GFP-OBNSCs were transplanted into the striatum of 6-hydroxydopamin (6-OHDA) Parkinsonian rats. The grafted cells survived in the lesion environment for more than eight weeks after implantation with no tumor formation. The grafted cells differentiated in vivo into oligodendrocyte-like (25 ± 2.88%), neuron-like (52.63 ± 4.16%), and astrocyte -like (22.36 ± 1.56%) lineages, which we differentiated based on morphological and immunohistochemical criteria. Transplanted rats exhibited a significant partial correction in stepping and placing in non-pharmacological behavioral tests, pole and rotarod tests. Taken together, our data encourage further investigations of the possible use of OBNSCs as a promising cell-based therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Hany E S Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Drosophila model for studying phagocytosis following neuronal cell death. Methods Mol Biol 2014. [PMID: 25431078 DOI: 10.1007/978-1-4939-2152-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
During central nervous system (CNS ) development, a large number of neurons die by apoptosis and are efficiently removed through phagocytosis. Since apoptosis and apoptotic cell clearance are highly conserved in evolution, relatively simple and easily accessible Drosophila embryonic CNS provides a good model to study molecular and cellular mechanisms of these processes. Here, we describe how to assess neuronal apoptosis and glial phagocytosis of apoptotic neurons using immunohistochemistry of whole fixed embryos and live imaging of developing embryonic CNS. Combination of these different strategies allows a comprehensive analysis of neuronal cell death in vivo.
Collapse
|
19
|
Zwarts L, Van Eijs F, Callaerts P. Glia in Drosophila behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:879-93. [PMID: 25336160 DOI: 10.1007/s00359-014-0952-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 02/06/2023]
Abstract
Glial cells constitute about 10 % of the Drosophila nervous system. The development of genetic and molecular tools has helped greatly in defining different types of glia. Furthermore, considerable progress has been made in unraveling the mechanisms that control the development and differentiation of Drosophila glia. By contrast, the role of glia in adult Drosophila behavior is not well understood. We here summarize recent work describing the role of glia in normal behavior and in Drosophila models for neurological and behavioral disorders.
Collapse
Affiliation(s)
- L Zwarts
- Laboratory of Behavioral and Developmental Genetics VIB Center for the Biology of Disease, Center for Human Genetics, KULeuven, O&N IV Herestraat 49, Box 602, 3000, Louvain, Belgium
| | | | | |
Collapse
|
20
|
Developmental regulation of glial cell phagocytic function during Drosophila embryogenesis. Dev Biol 2014; 393:255-269. [DOI: 10.1016/j.ydbio.2014.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 11/24/2022]
|
21
|
Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials 2014; 35:4636-45. [PMID: 24631250 DOI: 10.1016/j.biomaterials.2014.02.039] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/21/2014] [Indexed: 12/14/2022]
Abstract
Biomaterial-supported culture methods, allowing for directed three-dimensional differentiation of stem cells are an alternative to canonical two-dimensional cell cultures. In this paper, we evaluate the suitability of alginate for three-dimensional cultures to enhance differentiation of mouse embryonic stem cells (mESCs) towards neural lineages. We tested whether encapsulation of mESCs within alginate beads could support and/or enhance neural differentiation with respect to two-dimensional cultures. We encapsulated cells in beads of alginate with or without modification by fibronectin (Fn) or hyaluronic acid (HA). Gene expression analysis showed that cells grown in alginate and alginate-HA present increased differentiation toward neural lineages with respect to the two-dimensional control and to Fn group. Immunocytochemistry analyses confirmed these results, further showing terminal differentiation of neurons as seen by the expression of synaptic markers and markers of different neuronal subtypes. Our data show that alginate, alone or modified, is a suitable biomaterial to promote in vitro differentiation of pluripotent cells toward neural fates.
Collapse
|
22
|
A murine model of variant late infantile ceroid lipofuscinosis recapitulates behavioral and pathological phenotypes of human disease. PLoS One 2013; 8:e78694. [PMID: 24223841 PMCID: PMC3815212 DOI: 10.1371/journal.pone.0078694] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 09/24/2013] [Indexed: 01/07/2023] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs; also known collectively as Batten Disease) are a family of autosomal recessive lysosomal storage disorders. Mutations in as many as 13 genes give rise to ∼10 variants of NCL, all with overlapping clinical symptomatology including visual impairment, motor and cognitive dysfunction, seizures, and premature death. Mutations in CLN6 result in both a variant late infantile onset neuronal ceroid lipofuscinosis (vLINCL) as well as an adult-onset form of the disease called Type A Kufs. CLN6 is a non-glycosylated membrane protein of unknown function localized to the endoplasmic reticulum (ER). In this study, we perform a detailed characterization of a naturally occurring Cln6 mutant (Cln6nclf) mouse line to validate its utility for translational research. We demonstrate that this Cln6nclf mutation leads to deficits in motor coordination, vision, memory, and learning. Pathologically, we demonstrate loss of neurons within specific subregions and lamina of the cortex that correlate to behavioral phenotypes. As in other NCL models, this model displays selective loss of GABAergic interneuron sub-populations in the cortex and the hippocampus with profound, early-onset glial activation. Finally, we demonstrate a novel deficit in memory and learning, including a dramatic reduction in dendritic spine density in the cerebral cortex, which suggests a reduction in synaptic strength following disruption in CLN6. Together, these findings highlight the behavioral and pathological similarities between the Cln6nclf mouse model and human NCL patients, validating this model as a reliable format for screening potential therapeutics.
Collapse
|
23
|
Czéh B, Di Benedetto B. Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol 2013; 23:171-85. [PMID: 22609317 DOI: 10.1016/j.euroneuro.2012.04.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/27/2012] [Indexed: 11/24/2022]
Abstract
Post-mortem histopathological studies report on reduced glial cell numbers in various frontolimbic areas of depressed patients implying that glial loss together with abnormal functioning could contribute to the pathophysiology of mood disorders. Astrocytes are regarded as the most abundant cell type in the brain and known for their housekeeping functions, but as recent developments suggest, they are also dynamic regulators of synaptogenesis, synaptic strength and stability and they control adult hippocampal neurogenesis. The primary aim of this review was to summarize the abundant experimental evidences demonstrating that antidepressant therapies have profound effect on astrocytes. Antidepressants modify astroglial physiology, morphology and by affecting gliogenesis they probably even regulate glial cell numbers. Antidepressants affect intracellular signaling pathways and gene expression of astrocytes, as well as the expression of receptors and the release of various trophic factors. We also assess the potential functional consequences of these changes on glutamate and glucose homeostasis and on synaptic communication between the neurons. We propose here a hypothesis that antidepressant treatment not only affects neurons, but also activates astrocytes, triggering them to carry out specific functions that result in the reactivation of cortical plasticity and can lead to the readjustment of abnormal neuronal networks. We argue here that these astrocyte specific changes are likely to contribute to the therapeutic effectiveness of the currently available antidepressant treatments and the better understanding of these cellular and molecular processes could help us to identify novel targets for the development of antidepressant drugs.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Max-Planck-Institute of Psychiatry, 80804 Munich, Germany.
| | | |
Collapse
|
24
|
Schafer DP, Lehrman EK, Stevens B. The "quad-partite" synapse: microglia-synapse interactions in the developing and mature CNS. Glia 2012; 61:24-36. [PMID: 22829357 DOI: 10.1002/glia.22389] [Citation(s) in RCA: 395] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/21/2012] [Indexed: 01/04/2023]
Abstract
Microglia are the resident immune cells and phagocytes of our central nervous system (CNS). While most work has focused on the rapid and robust responses of microglia during CNS disease and injury, emerging evidence suggests that these mysterious cells have important roles at CNS synapses in the healthy, intact CNS. Groundbreaking live imaging studies in the anesthetized, adult mouse demonstrated that microglia processes dynamically survey their environment and interact with other brain cells including neurons and astrocytes. More recent imaging studies have revealed that microglia dynamically interact with synapses where they appear to serve as "synaptic sensors," responding to changes in neural activity and neurotransmitter release. In the following review, we discuss the most recent work demonstrating that microglia play active roles at developing and mature synapses. We first discuss the important imaging studies that have led us to better understand the physical relationship between microglia and synapses in the healthy brain. Following this discussion, we review known molecular mechanisms and functional consequences of microglia-synapse interactions in the developing and mature CNS. Our current knowledge sheds new light on the critical functions of these mysterious cells in synapse development and function in the healthy CNS, but has also incited several new and interesting questions that remain to be explored. We discuss these open questions, and how the most recent findings in the healthy CNS may be related to pathologies associated with abnormal and/or loss of neural circuits.
Collapse
Affiliation(s)
- Dorothy P Schafer
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
25
|
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74:691-705. [PMID: 22632727 PMCID: PMC3528177 DOI: 10.1016/j.neuron.2012.03.026] [Citation(s) in RCA: 2730] [Impact Index Per Article: 227.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2012] [Indexed: 02/06/2023]
Abstract
Microglia are the resident CNS immune cells and active surveyors of the extracellular environment. While past work has focused on the role of these cells during disease, recent imaging studies reveal dynamic interactions between microglia and synaptic elements in the healthy brain. Despite these intriguing observations, the precise function of microglia at remodeling synapses and the mechanisms that underlie microglia-synapse interactions remain elusive. In the current study, we demonstrate a role for microglia in activity-dependent synaptic pruning in the postnatal retinogeniculate system. We show that microglia engulf presynaptic inputs during peak retinogeniculate pruning and that engulfment is dependent upon neural activity and the microglia-specific phagocytic signaling pathway, complement receptor 3(CR3)/C3. Furthermore, disrupting microglia-specific CR3/C3 signaling resulted in sustained deficits in synaptic connectivity. These results define a role for microglia during postnatal development and identify underlying mechanisms by which microglia engulf and remodel developing synapses.
Collapse
Affiliation(s)
- Dorothy P Schafer
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gibson NJ, Tolbert LP, Oland LA. Activation of glial FGFRs is essential in glial migration, proliferation, and survival and in glia-neuron signaling during olfactory system development. PLoS One 2012; 7:e33828. [PMID: 22493675 PMCID: PMC3320908 DOI: 10.1371/journal.pone.0033828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 02/22/2012] [Indexed: 11/18/2022] Open
Abstract
Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
27
|
Arenkiel BR, Hasegawa H, Yi JJ, Larsen RS, Wallace ML, Philpot BD, Wang F, Ehlers MD. Activity-induced remodeling of olfactory bulb microcircuits revealed by monosynaptic tracing. PLoS One 2011; 6:e29423. [PMID: 22216277 PMCID: PMC3247270 DOI: 10.1371/journal.pone.0029423] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/28/2011] [Indexed: 12/21/2022] Open
Abstract
The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits.
Collapse
Affiliation(s)
- Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (BRA); (MDE)
| | - Hiroshi Hasegawa
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Jason J. Yi
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Rylan S. Larsen
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael L. Wallace
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Benjamin D. Philpot
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Neurodevelopmental Disorders Research Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Fan Wang
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Michael D. Ehlers
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- * E-mail: (BRA); (MDE)
| |
Collapse
|
28
|
Lo FS, Zhao S, Erzurumlu RS. Astrocytes promote peripheral nerve injury-induced reactive synaptogenesis in the neonatal CNS. J Neurophysiol 2011; 106:2876-87. [PMID: 21900512 DOI: 10.1152/jn.00312.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neonatal damage to the trigeminal nerve leads to "reactive synaptogenesis" in the brain stem sensory trigeminal nuclei. In vitro models of brain injury-induced synaptogenesis have implicated an important role for astrocytes. In this study we tested the role of astrocyte function in reactive synaptogenesis in the trigeminal principal nucleus (PrV) of neonatal rats following unilateral transection of the infraorbital (IO) branch of the trigeminal nerve. We used electrophysiological multiple input index analysis (MII) to estimate the number of central trigeminal afferent fibers that converge onto single barrelette neurons. In the developing PrV, about 30% of afferent connections are eliminated within 2 postnatal weeks. After neonatal IO nerve damage, multiple trigeminal inputs (2.7 times that of the normal inputs) converge on single barrelette cells within 3-5 days; they remain stable up to the second postnatal week. Astrocyte proliferation and upregulation of astrocyte-specific proteins (GFAP and ALDH1L1) accompany reactive synaptogenesis in the IO nerve projection zone of the PrV. Pharmacological blockade of astrocyte function, purinergic receptors, and thrombospondins significantly reduced or eliminated reactive synaptogenesis without changing the MII in the intact PrV. GFAP immunohistochemistry further supported these electrophysiological results. We conclude that immature astrocytes, purinergic receptors, and thrombospondins play an important role in reactive synaptogenesis in the peripherally deafferented neonatal PrV.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
29
|
Drosophila MMP2 regulates the matrix molecule faulty attraction (Frac) to promote motor axon targeting in Drosophila. J Neurosci 2011; 31:5335-47. [PMID: 21471368 DOI: 10.1523/jneurosci.4811-10.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are widely hypothesized to regulate signaling events through processing of extracellular matrix (ECM) molecules. We previously demonstrated that membrane-associated Mmp2 is expressed in exit glia and contributes to motor axon targeting. To identify possible substrates, we undertook a yeast interaction screen for Mmp2-binding proteins and identified the novel ECM protein faulty attraction (Frac). Frac encodes a multidomain extracellular protein rich in epidermal growth factor (EGF) and calcium-binding EGF domains, related to the vertebrate Fibrillin and Fibulin gene families. It is expressed in mesodermal domains flanking Mmp2-positive glia. The juxtaposition of Mmp2 and Frac proteins raises the possibility that Frac is a proteolytic target of Mmp2. Consistent with this hypothesis, levels of full-length Frac are increased in Mmp2 loss-of-function (LOF) and decreased in Mmp2 gain-of-function (GOF) embryos, indicating that Frac cleavage is Mmp2 dependent. To test whether frac is necessary for axon targeting, we characterized guidance in frac LOF mutants. Motor axons in frac LOF embryos are loosely associated and project ectopically, a phenotype essentially equivalent to that of Mmp2 LOF. The phenotypic similarity between enzyme and substrate mutants argues that Mmp2 activates Frac. In addition, Mmp2 overexpression pathfinding phenotypes depend on frac activity, indicating that Mmp2 is genetically upstream of frac. Last, overexpression experiments suggest that Frac is unlikely to have intrinsic signaling activity, raising the possibility that an Mmp2-generated Frac fragment acts as a guidance cue cofactor. Indeed, we present genetic evidence that Frac regulates a non-canonical LIM kinase 1-dependent bone morphogenetic protein signaling pathway in motoneurons necessary for axon pathfinding during embryogenesis.
Collapse
|
30
|
Hanrieder J, Wicher G, Bergquist J, Andersson M, Fex-Svenningsen A. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue. Anal Bioanal Chem 2011; 401:135-47. [PMID: 21553124 DOI: 10.1007/s00216-011-5043-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/09/2011] [Accepted: 04/18/2011] [Indexed: 01/25/2023]
Abstract
The development of powerful analytical techniques for specific molecular characterization of neural cell types is of central relevance in neuroscience research for elucidating cellular functions in the central nervous system (CNS). This study examines the use of differential protein expression profiling of mammalian neural cells using direct analysis by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS analysis is rapid, sensitive, robust, and specific for large biomolecules in complex matrices. Here, we describe a newly developed and straightforward methodology for direct characterization of rodent CNS glial cells using MALDI-MS-based intact cell mass spectrometry (ICMS). This molecular phenotyping approach enables monitoring of cell growth stages, (stem) cell differentiation, as well as probing cellular responses towards different stimulations. Glial cells were separated into pure astroglial, microglial, and oligodendroglial cell cultures. The intact cell suspensions were then analyzed directly by MALDI-TOF-MS, resulting in characteristic mass spectra profiles that discriminated glial cell types using principal component analysis. Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination of different cell types with molecular specificity.
Collapse
Affiliation(s)
- Jörg Hanrieder
- Department of Pharmaceutical Bioscience, Drug Safety and Toxicology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
31
|
Adhesion and signaling between neurons and glial cells in Drosophila. Curr Opin Neurobiol 2011; 21:11-6. [DOI: 10.1016/j.conb.2010.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/03/2010] [Accepted: 08/15/2010] [Indexed: 12/21/2022]
|
32
|
Abstract
The human brain contains more than 100 trillion (10(14)) synaptic connections, which form all of its neural circuits. Neuroscientists have long been interested in how this complex synaptic web is weaved during development and remodelled during learning and disease. Recent studies have uncovered that glial cells are important regulators of synaptic connectivity. These cells are far more active than was previously thought and are powerful controllers of synapse formation, function, plasticity and elimination, both in health and disease. Understanding how signalling between glia and neurons regulates synaptic development will offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Cagla Eroglu
- Cell Biology Department, Box 3709, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
33
|
El-Sadik AO. Potential sources of stem cells as a regenerative therapy for Parkinson's disease. Stem Cells Cloning 2010; 3:183-91. [PMID: 24198524 PMCID: PMC3781753 DOI: 10.2147/sccaa.s14626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stem cells are believed to hold enormous promise as potential replacement therapy in the treatment of neurodegenerative diseases such as Parkinson's disease (PD). Stem cells were investigated to be the alternative therapeutic source capable of differentiating into dopamine (DA) neurons. Multiple important signaling factors were recorded for the induction of DA neuronal traits from mouse embryonic stem cells (ESCs) such as fibroblast growth factor 8, sonic hedgehog, and Wnt 1. Recent protocols were described for the differentiation of human ESCs into DA neurons, achieving high efficiency of DA neuronal derivation. Despite that, the use of human ESCs is still ethically controversial. The transcription factors necessary for DA neuron development from adult neural stem cells (NSCs), such as Pitx3, Nurr1, En-1, En-2, Lmx1a, Lmx1b, Msx1, and Ngn2, were investigated. In addition to replacement of lost DA neurons, adult NSCs were recorded to provide neuroprotective and neurogenic factors for the mesencephalon. In addition, induced pluripotent stem cells and bone marrow-derived mesenchymal stem cells represent reliable stem cell sources of DA neurons. Future studies are recommended to provide further insight into the regenerative capacity of stem cells needed for the treatment of PD.
Collapse
Affiliation(s)
- Abir Oueida El-Sadik
- Department of Anatomy and Embryology, Scientific Research Unit, Female Health Science College, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Kurant E. Keeping the CNS clear: Glial phagocytic functions in Drosophila. Glia 2010; 59:1304-11. [DOI: 10.1002/glia.21098] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/22/2010] [Indexed: 11/12/2022]
|
35
|
Oland LA, Tolbert LP. Roles of glial cells in neural circuit formation: insights from research in insects. Glia 2010; 59:1273-95. [PMID: 21732424 DOI: 10.1002/glia.21096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
Abstract
Investigators over the years have noted many striking similarities in the structural organization and function of neural circuits in higher invertebrates and vertebrates. In more recent years, the discovery of similarities in the cellular and molecular mechanisms that guide development of these circuits has driven a revolution in our understanding of neural development. Cellular mechanisms discovered to underlie axon pathfinding in grasshoppers have guided productive studies in mammals. Genes discovered to play key roles in the patterning of the fruitfly's central nervous system have subsequently been found to play key roles in mice. The diversity of invertebrate species offers to investigators numerous opportunities to conduct experiments that are harder or impossible to do in vertebrate species, but that are likely to shed light on mechanisms at play in developing vertebrate nervous systems. These experiments elucidate the broad suite of cellular and molecular interactions that have the potential to influence neural circuit formation across species. Here we focus on what is known about roles for glial cells in some of the important steps in neural circuit formation in experimentally advantageous insect species. These steps include axon pathfinding and matching to targets, dendritic patterning, and the sculpting of synaptic neuropils. A consistent theme is that glial cells interact with neurons in two-way, reciprocal interactions. We emphasize the impact of studies performed in insects and explore how insect nervous systems might best be exploited next as scientists seek to understand in yet deeper detail the full repertory of functions of glia in development.
Collapse
Affiliation(s)
- Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721-0077, USA.
| | | |
Collapse
|
36
|
Bare DJ, Becker-Catania SG, DeVries GH. Differential localization of neuregulin-1 type III in the central and peripheral nervous system. Brain Res 2010; 1369:10-20. [PMID: 21044615 DOI: 10.1016/j.brainres.2010.10.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 11/17/2022]
Abstract
In the developing PNS, axonal neuregulin-1 (NRG1) type III is the key determinant for myelination. However, the specific role for NRG1 (III) in the CNS has not been established. To address this issue, isotype-specific antibodies were generated, characterized, and used for the immunofluorescent localization of NRG1 (III) in the developing and adult CNS of rat. In contrast to adult peripheral nerve, which showed robust axonal staining, no immunoreactivity was observed in CNS myelinated tracts during the period of active myelination or in the adult CNS. Surprisingly, NRG1 (III) was prominently expressed on dendrites and soma in both the developing and adult CNS. These findings were corroborated through the subcellular fractionation of adult rat brain combined with an immunoblotting analysis. The immunolocalization of NRG1 (III) suggests that it plays a novel role in the myelination fate of CNS axons possibly through undetermined roles in neuronal maturation, or dendritic development and activation.
Collapse
Affiliation(s)
- Dan J Bare
- Department of Anatomy and Cell Biology, University of Illinois-Chicago, Chicago, IL 60612-7308, USA
| | | | | |
Collapse
|
37
|
Moore NH, Costa LG, Shaffer SA, Goodlett DR, Guizzetti M. Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. J Neurochem 2010. [DOI: 10.1111/j.0022-3042.2008.05836.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Mrkusich EM, Osman ZB, Bates KE, Marchingo JM, Duman-Scheel M, Whitington PM. Netrin-guided accessory cell morphogenesis dictates the dendrite orientation and migration of a Drosophila sensory neuron. Development 2010; 137:2227-35. [PMID: 20530550 PMCID: PMC2882139 DOI: 10.1242/dev.047795] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
Abstract
Accessory cells, which include glia and other cell types that develop in close association with neurons, have been shown to play key roles in regulating neuron development. However, the underlying molecular and cellular mechanisms remain poorly understood. A particularly intimate association between accessory cells and neurons is found in insect chordotonal organs. We have found that the cap cell, one of two accessory cells of v'ch1, a chordotonal organ in the Drosophila embryo, strongly influences the development of its associated neuron. As it projects a long dorsally directed cellular extension, the cap cell reorients the dendrite of the v'ch1 neuron and tows its cell body dorsally. Cap cell morphogenesis is regulated by Netrin-A, which is produced by epidermal cells at the destination of the cap cell process. In Netrin-A mutant embryos, the cap cell forms an aberrant, ventrally directed process. As the cap cell maintains a close physical connection with the tip of the dendrite, the latter is dragged into an abnormal position and orientation, and the neuron fails to undergo its normal dorsal migration. Misexpression of Netrin-A in oenocytes, secretory cells that lie ventral to the cap cell, leads to aberrant cap cell morphogenesis, suggesting that Netrin-A acts as an instructive cue to direct the growth of the cap cell process. The netrin receptor Frazzled is required for normal cap cell morphogenesis, and mutant rescue experiments indicate that it acts in a cell-autonomous fashion.
Collapse
Affiliation(s)
- Eli M. Mrkusich
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| | - Zalina B. Osman
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| | - Karen E. Bates
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
- Department of Zoology, University of Hawaii, Honolulu, HI 96822, USA
| | - Julia M. Marchingo
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend and Department of Biological Sciences, University of Notre Dame, Raclin-Carmichael Hall, 1234 Notre Dame Avenue, South Bend, IN 45517, USA
| | - Paul M. Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
39
|
Anker JJ, Carroll ME. Reinstatement of cocaine seeking induced by drugs, cues, and stress in adolescent and adult rats. Psychopharmacology (Berl) 2010; 208:211-22. [PMID: 19953228 PMCID: PMC3228249 DOI: 10.1007/s00213-009-1721-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 11/01/2009] [Indexed: 12/28/2022]
Abstract
RATIONALE In human and animal studies, adolescence marks a period of increased vulnerability to the initiation and subsequent abuse of drugs. Adolescents may be especially vulnerable to relapse, and a critical aspect of drug abuse is that it is a chronically relapsing disorder. However, little is known of how vulnerability factors such as adolescence are related to conditions that induce relapse, triggered by the drug itself, drug-associated cues, or stress. OBJECTIVE The purpose of this study was to compare adolescent and adult rats on drug-, cue-, and stress-induced reinstatement of cocaine-seeking behavior. METHODS On postnatal days 23 (adolescents) and 90 (adults), rats were implanted with intravenous catheters and trained to lever press for i.v. infusions of cocaine (0.4 mg/kg) during two daily 2-h sessions. The rats then self-administered i.v. cocaine for ten additional sessions. Subsequently, visual and auditory stimuli that signaled drug delivery were unplugged, and rats were allowed to extinguish lever pressing for 20 sessions. Rats were then tested on cocaine-, cue-, and yohimbine (stress)-induced cocaine seeking using a within-subject multicomponent reinstatement procedure. RESULTS Results indicated that adolescents had heightened cocaine seeking during maintenance and extinction compared to adults. During reinstatement, adolescents (vs adults) responded more following cocaine- and yohimbine injections, while adults (vs adolescents) showed greater responding following presentations of drug-associated cues. CONCLUSION These results demonstrated that adolescents and adults differed across several measures of drug-seeking behavior, and adolescents may be especially vulnerable to relapse precipitated by drugs and stress.
Collapse
|
40
|
Glial remodeling during metamorphosis influences the stabilization of motor neuron branches in Drosophila. Dev Biol 2010; 340:344-54. [PMID: 20079727 DOI: 10.1016/j.ydbio.2010.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 11/22/2022]
Abstract
Motor neurons that innervate the dorsal longitudinal (flight) muscles, DLMs, make multiple points of contact along the length of fibers. The stereotypy of the innervation lies in the number of contact points (CPs) made by each motor neuron and is established as a consequence of pruning that occurs during metamorphosis. Coincident with the onset of pruning is the arrival of glial processes that eventually ensheath persistent branches. To test a possible role for glia during pruning, the development of adult-specific glial ensheathment was disrupted using a targeted expression of dominant negative shibire. Such a manipulation resulted in fewer contact points at the DLM fibers. The development of innervation was examined during metamorphosis, specifically to test if the reduction was a consequence of increased pruning. We quantified the number of branches displaying discontinuities in their membrane, an indicator of the level of pruning. Disrupting the formation of glial ensheathment resulted in a two-fold increase in the discontinuities, indicating that pruning is enhanced. Thus glial-neuronal interactions, specifically during pruning are important for the patterning of adult innervation. Our studies also suggest that FasII plays a role in mediating this communication. At the end of the pruning phase, FasII localizes to glia, which envelops each of the stabilized contact points. When glial FasII levels are increased using the Gal4/UAS system of targeted expression, pruning of secondary branches is enhanced. Our results indicate that glia regulate pruning of secondary branches by influencing the balance between stabilization and pruning. This was confirmed by an observed rescue of the innervation phenotype of FasII hypomorphs by over expressing FasII in glia.
Collapse
|
41
|
Bolton MM, Eroglu C. Look who is weaving the neural web: glial control of synapse formation. Curr Opin Neurobiol 2009; 19:491-7. [PMID: 19879129 DOI: 10.1016/j.conb.2009.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
Historically, our understanding of synapse formation has been shaped by studies focusing on neurons. However, with advancements in live imaging techniques and molecular and genetic tools we are rapidly uncovering new roles for glia in synapse formation and function. Contact-mediated signals from glia instruct dendrites to become receptive to synaptic partners. Glia-secreted factors coordinate the assembly and apposition of pre-synaptic and post-synaptic specializations. Glial cells also provide cues that are required for synaptic maturation and remodeling of spines both during development and in the adult. As we continue to learn about glial contributions to synapse formation and maintenance, it is likely that glia-derived signals will emerge as potential therapeutic targets for diseases that involve aberrant circuit function such as autism, epilepsy and Alzheimer's Disease.
Collapse
Affiliation(s)
- M McLean Bolton
- Department of Cell Biology, Duke University Medical Center, 333A Nanaline Duke Bldg., Box 3709, Durham, NC 27710, United States
| | | |
Collapse
|
42
|
Pfrieger FW. Roles of glial cells in synapse development. Cell Mol Life Sci 2009; 66:2037-47. [PMID: 19308323 PMCID: PMC2705714 DOI: 10.1007/s00018-009-0005-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 01/20/2009] [Accepted: 02/10/2009] [Indexed: 11/29/2022]
Abstract
Brain function relies on communication among neurons via highly specialized contacts, the synapses, and synaptic dysfunction lies at the heart of age-, disease-, and injury-induced defects of the nervous system. For these reasons, the formation-and repair-of synaptic connections is a major focus of neuroscience research. In this review, I summarize recent evidence that synapse development is not a cell-autonomous process and that its distinct phases depend on assistance from the so-called glial cells. The results supporting this view concern synapses in the central nervous system as well as neuromuscular junctions and originate from experimental models ranging from cell cultures to living flies, worms, and mice. Peeking at the future, I will highlight recent technical advances that are likely to revolutionize our views on synapse-glia interactions in the developing, adult and diseased brain.
Collapse
Affiliation(s)
- Frank W Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, 5, rue Louis Pasteur, 67084, Strasbourg, France.
| |
Collapse
|
43
|
Shi Y, Noll M. Determination of cell fates in the R7 equivalence group of the Drosophila eye by the concerted regulation of D-Pax2 and TTK88. Dev Biol 2009; 331:68-77. [PMID: 19406115 DOI: 10.1016/j.ydbio.2009.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/06/2009] [Accepted: 04/22/2009] [Indexed: 11/30/2022]
Abstract
In the developing Drosophila eye, the precursors of the neuronal photoreceptor cells R1/R6/R7 and non-neuronal cone cells share the same developmental potential and constitute the R7 equivalence group. It is not clear how cells of this group elaborate their distinct fates. Here we show that both TTK88 and D-Pax2 play decisive roles in cone cell development and act in concert to transform developing R1/R6/R7 into cone cells: while TTK88 blocks neuronal development, D-Pax2 promotes cone cell specification. In addition, ectopic TTK88 in R cells induces apoptosis, which is suppressed by ectopic D-Pax2. We further demonstrate that Phyllopod (Phyl), previously shown to promote the neuronal fate in R1/R6/R7 by targeting TTK for degradation, also inhibits D-Pax2 transcription to prevent cone cell specification. Thus, the fates of R1/R6/R7 and cone cells are determined by a dual mechanism that coordinately activates one fate while inhibiting the other.
Collapse
Affiliation(s)
- Yandong Shi
- Institute for Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
44
|
Braun K, Antemano R, Helmeke C, Büchner M, Poeggel G. Juvenile separation stress induces rapid region- and layer-specific changes in S100ß- and glial fibrillary acidic protein–immunoreactivity in astrocytes of the rodent medial prefrontal cortex. Neuroscience 2009; 160:629-38. [DOI: 10.1016/j.neuroscience.2009.02.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
|
45
|
Oland LA, Biebelhausen JP, Tolbert LP. Glial investment of the adult and developing antennal lobe of Drosophila. J Comp Neurol 2009; 509:526-50. [PMID: 18537134 DOI: 10.1002/cne.21762] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent years the Drosophila olfactory system, with its unparalleled opportunities for genetic dissection of development and functional organization, has been used to study the development of central olfactory neurons and the molecular basis of olfactory coding. The results of these studies have been interpreted in the absence of a detailed understanding of the steps in maturation of glial cells in the antennal lobe. Here we present a high-resolution study of the glia associated with olfactory glomeruli in adult and developing antennal lobes. The study provides a basis for comparison of findings in Drosophila with those in the moth Manduca sexta that indicate a critical role for glia in antennal lobe development. Using flies expressing GFP under a Nervana2 driver to visualize glia for confocal microscopy, and probing at higher resolution with the electron microscope, we find that glial development in Drosophila differs markedly from that in moths: glial cell bodies remain in a rind around the glomerular neuropil; glial processes ensheathe axon bundles in the nerve layer but likely contribute little to axonal sorting; their processes insinuate between glomeruli only very late and then form only a sparse, open network around each glomerulus; and glial processes invade the synaptic neuropil. Taking our results in the context of previous studies, we conclude that glial cells in the developing Drosophila antennal lobe are unlikely to play a strong role in either axonal sorting or glomerulus stabilization and that in the adult, glial processes do not electrically isolate glomeruli from their neighbors.
Collapse
Affiliation(s)
- Lynne A Oland
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
46
|
Photoreceptor neurons find new synaptic targets when misdirected by overexpressing runt in Drosophila. J Neurosci 2009; 29:828-41. [PMID: 19158307 DOI: 10.1523/jneurosci.1022-08.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As a neuron differentiates, it adopts a suite of features specific to its particular type. Fly photoreceptors are of two types: R1-R6, which innervate the first optic neuropile, the lamina; and R7-R8, which innervate the second, the medulla. Photoreceptors R1-R6 normally have large light-absorbing rhabdomeres, express Rhodopsin1, and have synaptic terminals that innervate the lamina. In Drosophila melanogaster, we used the yeast GAL4/UAS system to drive exogenous expression of the transcription factor Runt in subsets of photoreceptors, resulting in aberrant axonal pathfinding and, ultimately, incorrect targeting of R1-R6 synaptic terminals to the medulla, normally occupied by terminals from R7 and R8. Even when subsets of their normal R1-R6 photoreceptor inputs penetrate the lamina, to terminate in the medulla, normal target cells within the lamina persist and maintain expression of cell-specific markers. Some R1-R6 photoreceptors form reciprocal synaptic inputs with their normal lamina targets, whereas supernumerary terminals targeted to the medulla also form synapses. At both sites, tetrad synapses form, with four postsynaptic elements at each release site, the usual number in the lamina. In addition, the terminals at both sites are invaginated by profiles of glia, at organelles called capitate projections, which in the lamina are photoreceptor sites of vesicle endocytosis. The size and shape of the capitate projection heads are identical at both lamina and medulla sites, although those in the medulla are ectopic and receive invaginations from foreign glia. This uniformity indicates the cell-autonomous determination of the architecture of its synaptic organelles by the presynaptic photoreceptor terminal.
Collapse
|
47
|
Tikhomirov АA, Andrievsky GV, Nedzvetsky VS. Disorders in the Cytoskeleton of Astroglia and Neurons in the Rat Brain Induced by Long-Lasting Exposure to Ethanol and Correction of These Shifts by Hydrated Fullerene С60. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9044-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Moore NH, Costa LG, Shaffer SA, Goodlett DR, Guizzetti M. Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. J Neurochem 2008; 108:891-908. [PMID: 19077055 DOI: 10.1111/j.1471-4159.2008.05836.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astrocytes play an important role in neuronal development through the release of soluble factors that affect neuronal maturation. Shotgun proteomics followed by gene ontology analysis was used in this study to identify proteins present in the conditioned medium of primary rat astrocytes. One hundred and thirty three secreted proteins were identified, the majority of which were never before reported to be produced by astrocytes. Extracellular proteins were classified based on their biological and molecular functions; most of the identified proteins were involved in neuronal development. Semi-quantitative proteomic analysis was carried out to identify changes in the levels of proteins released by astrocytes after stimulation with the cholinergic agonist carbachol, as we have previously reported that carbachol-treated astrocytes elicit neuritogenesis in hippocampal neurons through the release of soluble factors. Carbachol up-regulated secretion of 15 proteins and down-regulated the release of 17 proteins. Changes in the levels of four proteins involved in neuronal differentiation (thrombospondin-1, fibronectin, plasminogen activator inhibitor-1, and plasminogen activator urokinase) were verified by western blot or ELISA. In conclusion, this study identified a large number of proteins involved in neuronal development in the astrocyte secretome and implicated extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation.
Collapse
Affiliation(s)
- Nadia H Moore
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Glial cells rise to the forefront as key regulators that direct how neurons connect to one another when nervous system is built. A new article highlights the molecular and cellular mechanisms by which glia guide the exquisite architecture of the mammalian cerebellum.
Collapse
|
50
|
Ango F, Wu C, Van der Want JJ, Wu P, Schachner M, Huang ZJ. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites. PLoS Biol 2008; 6:e103. [PMID: 18447583 PMCID: PMC2689695 DOI: 10.1371/journal.pbio.0060103] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 03/12/2008] [Indexed: 01/20/2023] Open
Abstract
The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG) fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1) is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation. Large principal neurons in vertebrate neural circuits often consist of distinct anatomical and physiological compartments, which allow distributed and compartmentalized signaling and greatly increase the computational power of single neurons. Superimposed upon this intrinsic compartmental architecture is the subcellular organization of synaptic inputs, which exert local control over the biophysical properties and differentially regulate the input, integration, and output of principal neurons. In the cerebellar cortex, Purkinje neurons are innervated by GABA inhibitory synapses from the stellate and basket cells at dendrites and soma-axon initial (AIS) segments, respectively. Previous studies have shown that an L1 family immunoglobulin cell adhesion molecule (neurofascin186) is distributed as a subcellular gradient and directs basket cell axons to innervate Purkinje cell AIS. Here, we examine the mechanisms underlying the innervation of Purkinje cell dendrites by stellate axons. We found that stellate axons are organized into characteristic trajectories and guided towards Purkinje dendrites by an intermediate scaffold of astroglia—the Bergmann glial (BG) fibers. Another member of L1 family, Close Homologue of L1 (CHL1), is localized to BG fibers and stellate cells, and contributes to the organization of stellate axons along BG fibers and to the innervation of Purkinje cell dendrites. Subcellular synapse organization regulates the input, integration, and output of target neurons. An astroglial scaffold and an L1 family cell adhesion molecule contribute to dendritic innervation by GABA inhibitory synapses.
Collapse
Affiliation(s)
- Fabrice Ango
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- CNRS, UMR 5203, Institut de Génomique fonctionnelle, INSERM, U661, Montpellier, France
- Université Montpellier 1 and 2, Montpellier, France
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Johannes J. Van der Want
- Department of Cell Biology, Laboratory for Electron Microscopy, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Priscilla Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Melitta Schachner
- Zentrum fur Molekulare Neurobiologie, Universitat Hamburg, Hamburg, Germany
- Keck Center for Collaborative Neuroscience, Department of Cell Biology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Z. Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|