1
|
Li H, Zhou Q, Chen Y, Hu H, Gao L, Takahata T. Three-dimensional topography of eye-specific domains in the lateral geniculate nucleus of pigmented and albino rats. Cereb Cortex 2023; 33:9599-9615. [PMID: 37415460 DOI: 10.1093/cercor/bhad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
We previously revealed the presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of pigmented rats. On the other hand, previous studies have shown that the ipsilateral-eye domains of the dorsal lateral geniculate nucleus (dLGN) are segregated into a handful of patches in pigmented rats. To investigate the three-dimensional (3D) topography of the eye-specific patches of the dLGN and its relationship with ODCs, we injected different tracers into the right and left eyes and examined strain difference, development, and plasticity of the patches. Furthermore, we applied the tissue clearing technique to reveal the 3D morphology of the LGN and were able to observe entire retinotopic map of the rat dLGN at a certain angle. Our results show that the ipsilateral domains of the dLGN appear mesh-like at any angle and are developed at around time of eye-opening. Their development was moderately affected by abnormal visual experience, but the patch formation was not disrupted. In albino Wistar rats, ipsilateral patches were observed in the dLGN, but they were much fewer, especially near the central visual field. These results provide insights into how ipsilateral patches of the dLGN arise, and how the geniculo-cortical arrangement is different between rodents and primates.
Collapse
Affiliation(s)
- Hangqi Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
| | - Qiuying Zhou
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
- Department of Neurology and Ophthalmology of the Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
| | - Yanlu Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Huijie Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Liang Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Toru Takahata
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
- Department of Neurology and Ophthalmology of the Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
| |
Collapse
|
2
|
Muscarinic Receptors in Developmental Axonal Competition at the Neuromuscular Junction. Mol Neurobiol 2023; 60:1580-1593. [PMID: 36526930 PMCID: PMC9899176 DOI: 10.1007/s12035-022-03154-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
In recent years, we have studied by immunohistochemistry, intracellular recording, and western blotting the role of the muscarinic acetylcholine receptors (mAChRs; M1, M2, and M4 subtypes) in the mammalian neuromuscular junction (NMJ) during development and in the adult. Here, we evaluate our published data to emphasize the mAChRs' relevance in developmental synaptic elimination and their crosstalk with other metabotropic receptors, downstream kinases, and voltage-gated calcium channels (VGCCs). The presence of mAChRs in the presynaptic membrane of motor nerve terminals allows an autocrine mechanism in which the secreted acetylcholine influences the cell itself in feedback. mAChR subtypes are coupled to different downstream pathways, so their feedback can move in a broad range between positive and negative. Moreover, mAChRs allow direct activity-dependent interaction through ACh release between the multiple competing axons during development. Additional regulation from pre- and postsynaptic sites (including neurotrophic retrograde control), the agonistic and antagonistic contributions of adenosine receptors (AR; A1 and A2A), and the tropomyosin-related kinase B receptor (TrkB) cooperate with mAChRs in the axonal competitive interactions which lead to supernumerary synapse elimination that achieves the optimized monoinnervation of musculoskeletal cells. The metabotropic receptor-driven balance between downstream PKA and PKC activities, coupled to developmentally regulated VGCC, explains much of how nerve terminals with different activities finally progress to their withdrawal or strengthening.
Collapse
|
3
|
Riquier AJ, Sollars SI. Terminal field volume of the glossopharyngeal nerve in adult rats reverts to prepruning size following microglia depletion with PLX5622. Dev Neurobiol 2022; 82:613-624. [PMID: 36308508 PMCID: PMC9790758 DOI: 10.1002/dneu.22904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/15/2022] [Accepted: 10/19/2022] [Indexed: 01/30/2023]
Abstract
Programmed reduction of synapses is a hallmark of the developing brain, with sensory systems emerging as useful models with which to study this pruning. The central projections (terminal field) of the gustatory glossopharyngeal nerve (GL) of the rat are a prime example of developmental pruning, undergoing an approximate 66% reduction in volume from postnatal day 15 (P15) to P25. Later in adulthood, developmental GL pruning can be experimentally reversed, expanding to preweaning volumes, suggesting mature volumes may be actively maintained throughout the life span. Microglia are central nervous system glia cells that perform pruning and maintenance functions in other sensory systems, including other gustatory nerves. To determine their role in GL pruning, we depleted microglia from Sprague-Dawley rat brains from P1 to P40 using daily intraperitoneal injections of the colony-stimulating factor 1 receptor inhibitor PLX5622. This prevented GL developmental pruning, resulting in preweaning terminal field volumes and innervation patterns persisting through P40, 2 weeks after pruning is normally completed. These findings show microglia are necessary for developmental GL pruning. Ceasing PLX5622 treatments at P40 allowed microglia repopulation, and within 4 weeks the GL terminal field had reduced to control volumes, indicating that pruning can occur outside of the typical developmental period. Conversely, when microglia were depleted in adult rats, GL terminal fields expanded, reverting to sizes comparable to the neonatal rat. These data indicate that microglia are required for GL pruning and may continue to maintain the GL terminal field at a reduced size into adulthood.
Collapse
Affiliation(s)
- Andrew J. Riquier
- Department of PsychologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| | | |
Collapse
|
4
|
Hetsch F, Wang D, Chen X, Zhang J, Aslam M, Kegel M, Tonner H, Grus F, von Engelhardt J. CKAMP44 controls synaptic function and strength of relay neurons during early development of the dLGN. J Physiol 2022; 600:3549-3565. [PMID: 35770953 DOI: 10.1113/jp283172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Expression of CKAMP44 starts early during development of the dLGN and remains stable in relay neurons and interneurons. Genetic deletion of CKAMP44 decreases synaptic strength and increases silent synapse number in dLGN relay neurons. Genetic deletion of CKAMP44 increases the rate of recovery from desensitisation of AMPA receptors in dLGN relay neurons. Genetic deletion of CKAMP44 reduces synaptic short-term depression in retinogeniculate synapses. The probability to induce plateau potentials is elevated in relay neurons of CKAMP44-/- mice. Eye-specific input segregation is unaffected in the dLGN of CKAMP44-/- mice. Deletion of CKAMP44 mildly affects dendritic arborisation of relay neurons in the dLGN. ABSTRACT Relay neurons of the dorsal lateral geniculate nucleus (dLGN) receive inputs from retinal ganglion cells via retinogeniculate synapses. These connections undergo pruning in the first two weeks after eye opening. The remaining connections are strengthened several-fold by the insertion of AMPA receptors (AMPARs) into weak or silent synapses. In this study, we found that the AMPAR auxiliary subunit CKAMP44 is required for receptor insertion and function of retinogeniculate synapses during development. Genetic deletion of CKAMP44 resulted in decreased synaptic strength and a higher number of silent synapses in young (P9-11) mice. Recovery from desensitisation of AMPA receptors was faster in CKAMP44 knockout (CKAMP44-/- ) than in wildtype mice. Moreover, loss of CKAMP44 increased the probability to induce plateau potentials, which are known to be important for eye-specific input segregation and retinogeniculate synapse maturation. The anatomy of relay neurons in the dLGN was changed in young CKAMP44-/- mice showing a transient increase in dendritic branching that normalised during later development (P26-33). Interestingly, input segregation in young CKAMP44-/- mice was not affected when compared to wildtype mice. These results demonstrate that CKAMP44 promotes maturation and modulates function of retinogeniculate synapses during early development of the visual system without affecting input segregation. Abstract figure legend AMPA receptor auxiliary subunit CKAMP44 influences synaptic function in retinogeniculate synapses of young mice. CKAMP44 unsilences synapses by recruiting AMPA receptors to the synapse. Furthermore, genetic deletion of CKAMP44 reduces short-term depression and increases the probability to elicit L-type Ca2+ channel-mediated plateau potentials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florian Hetsch
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Danni Wang
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Xufeng Chen
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Jiong Zhang
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Muhammad Aslam
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Marcel Kegel
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Henrik Tonner
- Experimental Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
5
|
Stacy AK, Van Hooser SD. Development of Functional Properties in the Early Visual System: New Appreciations of the Roles of Lateral Geniculate Nucleus. Curr Top Behav Neurosci 2022; 53:3-35. [PMID: 35112333 DOI: 10.1007/7854_2021_297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the years following Hubel and Wiesel's first reports on ocular dominance plasticity and amblyopia, much attention has been focused on understanding the role of cortical circuits in developmental and experience-dependent plasticity. Initial studies found few differences between retinal ganglion cells and neurons in the lateral geniculate nucleus and uncovered little evidence for an impact of altered visual experience on the functional properties of lateral geniculate nucleus neurons. In the last two decades, however, studies have revealed that the connectivity between the retina and lateral geniculate nucleus is much richer than was previously appreciated, even revealing visual plasticity - including ocular dominance plasticity - in lateral geniculate nucleus neurons. Here we review the development of the early visual system and the impact of experience with a distinct focus on recent discoveries about lateral geniculate nucleus, its connectivity, and evidence for its plasticity and rigidity during development.
Collapse
Affiliation(s)
- Andrea K Stacy
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | |
Collapse
|
6
|
Raiders S, Han T, Scott-Hewitt N, Kucenas S, Lew D, Logan MA, Singhvi A. Engulfed by Glia: Glial Pruning in Development, Function, and Injury across Species. J Neurosci 2021; 41:823-833. [PMID: 33468571 PMCID: PMC7880271 DOI: 10.1523/jneurosci.1660-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Phagocytic activity of glial cells is essential for proper nervous system sculpting, maintenance of circuitry, and long-term brain health. Glial engulfment of apoptotic cells and superfluous connections ensures that neuronal connections are appropriately refined, while clearance of damaged projections and neurotoxic proteins in the mature brain protects against inflammatory insults. Comparative work across species and cell types in recent years highlights the striking conservation of pathways that govern glial engulfment. Many signaling cascades used during developmental pruning are re-employed in the mature brain to "fine tune" synaptic architecture and even clear neuronal debris following traumatic events. Moreover, the neuron-glia signaling events required to trigger and perform phagocytic responses are impressively conserved between invertebrates and vertebrates. This review offers a compare-and-contrast portrayal of recent findings that underscore the value of investigating glial engulfment mechanisms in a wide range of species and contexts.
Collapse
Affiliation(s)
- Stephan Raiders
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington 98195
| | - Taeho Han
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158
| | - Nicole Scott-Hewitt
- F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Deborah Lew
- Department of Biological Sciences, Fordham University, Bronx, New York 10458
| | - Mary A Logan
- Jungers Center, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington 98195
| |
Collapse
|
7
|
Keck T. Microglia Tweak Retinogeniculate Pathways during Visual Circuit Refinement. Neuron 2020; 108:397-399. [PMID: 33181071 DOI: 10.1016/j.neuron.2020.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cheadle et al. reveal that microglia expressing TWEAK facilitate synapse elimination through a novel, non-phagocytic mechanism in the retinogeniculate pathway during visual circuit development. This mechanism is experience-dependent and occurs through the local binding of TWEAK to postsynaptic Fn14.
Collapse
Affiliation(s)
- Tara Keck
- Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University St., London WC1E 6DE, UK.
| |
Collapse
|
8
|
Scott‐Hewitt N, Perrucci F, Morini R, Erreni M, Mahoney M, Witkowska A, Carey A, Faggiani E, Schuetz LT, Mason S, Tamborini M, Bizzotto M, Passoni L, Filipello F, Jahn R, Stevens B, Matteoli M. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J 2020; 39:e105380. [PMID: 32657463 PMCID: PMC7429741 DOI: 10.15252/embj.2020105380] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal "eat-me" signal involved in microglial-mediated pruning. In hippocampal neuron and microglia co-cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS-labeled material by microglia occurs during established developmental periods of microglial-mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial-mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures.
Collapse
Affiliation(s)
- Nicole Scott‐Hewitt
- F.M. Kirby Center for NeurobiologyBoston Children's HospitalBostonMAUSA
- Stanley Center for Psychiatric ResearchThe Broad Institute of MIT and HarvardCambridgeMAUSA
| | - Fabio Perrucci
- Laboratory of Pharmacology and Brain PathologyNeurocenterHumanitas Clinical and Research Center ‐ IRCCSRozzano (MI)Italy
- Department of Biomedical SciencesHumanitas UniversityPieve Emanuele (MI)Italy
| | - Raffaella Morini
- Laboratory of Pharmacology and Brain PathologyNeurocenterHumanitas Clinical and Research Center ‐ IRCCSRozzano (MI)Italy
| | - Marco Erreni
- Unit of Advanced Optical MicroscopyHumanitas Clinical and Research Center ‐ IRCCSRozzano (MI)Italy
| | - Matthew Mahoney
- F.M. Kirby Center for NeurobiologyBoston Children's HospitalBostonMAUSA
| | - Agata Witkowska
- Laboratory of NeurobiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
- Department of Molecular Pharmacology and Cell BiologyLeibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Alanna Carey
- F.M. Kirby Center for NeurobiologyBoston Children's HospitalBostonMAUSA
| | - Elisa Faggiani
- Laboratory of Pharmacology and Brain PathologyNeurocenterHumanitas Clinical and Research Center ‐ IRCCSRozzano (MI)Italy
| | | | - Sydney Mason
- F.M. Kirby Center for NeurobiologyBoston Children's HospitalBostonMAUSA
| | - Matteo Tamborini
- Laboratory of Pharmacology and Brain PathologyNeurocenterHumanitas Clinical and Research Center ‐ IRCCSRozzano (MI)Italy
| | - Matteo Bizzotto
- Department of Biomedical SciencesHumanitas UniversityPieve Emanuele (MI)Italy
| | - Lorena Passoni
- Laboratory of Pharmacology and Brain PathologyNeurocenterHumanitas Clinical and Research Center ‐ IRCCSRozzano (MI)Italy
| | - Fabia Filipello
- Laboratory of Pharmacology and Brain PathologyNeurocenterHumanitas Clinical and Research Center ‐ IRCCSRozzano (MI)Italy
- Department of Biomedical SciencesHumanitas UniversityPieve Emanuele (MI)Italy
- Present address:
Department of NeurologyWashington UniversitySt. LouisMOUSA
| | - Reinhard Jahn
- Laboratory of NeurobiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
- University of GöttingenGöttingenGermany
| | - Beth Stevens
- F.M. Kirby Center for NeurobiologyBoston Children's HospitalBostonMAUSA
- Stanley Center for Psychiatric ResearchThe Broad Institute of MIT and HarvardCambridgeMAUSA
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMAUSA
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain PathologyNeurocenterHumanitas Clinical and Research Center ‐ IRCCSRozzano (MI)Italy
- CNR Institute of NeuroscienceMilanoItaly
| |
Collapse
|
9
|
Hartenstein V, Omoto JJ, Lovick JK. The role of cell lineage in the development of neuronal circuitry and function. Dev Biol 2020; 475:165-180. [PMID: 32017903 DOI: 10.1016/j.ydbio.2020.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Complex nervous systems have a modular architecture, whereby reiterative groups of neurons ("modules") that share certain structural and functional properties are integrated into large neural circuits. Neurons develop from proliferating progenitor cells that, based on their location and time of appearance, are defined by certain genetic programs. Given that genes expressed by a given progenitor play a fundamental role in determining the properties of its lineage (i.e., the neurons descended from that progenitor), one efficient developmental strategy would be to have lineages give rise to the structural modules of the mature nervous system. It is clear that this strategy plays an important role in neural development of many invertebrate animals, notably insects, where the availability of genetic techniques has made it possible to analyze the precise relationship between neuronal origin and differentiation since several decades. Similar techniques, developed more recently in the vertebrate field, reveal that functional modules of the mammalian cerebral cortex are also likely products of developmentally defined lineages. We will review studies that relate cell lineage to circuitry and function from a comparative developmental perspective, aiming at enhancing our understanding of neural progenitors and their lineages, and translating findings acquired in different model systems into a common conceptual framework.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
10
|
Pan Y, Monje M. Activity Shapes Neural Circuit Form and Function: A Historical Perspective. J Neurosci 2020; 40:944-954. [PMID: 31996470 PMCID: PMC6988998 DOI: 10.1523/jneurosci.0740-19.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
The brilliant and often prescient hypotheses of Ramon y Cajal have proven foundational for modern neuroscience, but his statement that "In adult centers the nerve paths are something fixed, ended, immutable … " is an exception that did not stand the test of empirical study. Mechanisms of cellular and circuit-level plasticity continue to shape and reshape many regions of the adult nervous system long after the neurodevelopmental period. Initially focused on neurons alone, the field has followed a meteoric trajectory in understanding of activity-regulated neurodevelopment and ongoing neuroplasticity with an arc toward appreciating neuron-glial interactions and the role that each neural cell type plays in shaping adaptable neural circuity. In this review, as part of a celebration of the 50th anniversary of Society for Neuroscience, we provide a historical perspective, following this arc of inquiry from neuronal to neuron-glial mechanisms by which activity and experience modulate circuit structure and function. The scope of this consideration is broad, and it will not be possible to cover the wealth of knowledge about all aspects of activity-dependent circuit development and plasticity in depth.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
11
|
Abstract
Functional neural circuits of mature animals are shaped during postnatal development by eliminating early-formed redundant synapses and strengthening of necessary connections. In the nervous system of newborn animals, redundant synapses are only transient features of the circuit. During subsequent postnatal development, some synapses are strengthened whereas other redundant connections are weakened and eventually eliminated. In this review, we introduce recent studies on the mechanisms of developmental remodeling of climbing fiber-to-Purkinje cell synapses in the cerebellum and synapses from the retina to neurons in the dorsal lateral geniculate nucleus of the visual thalamus (retinogeniculate synapses). These are the two representative models of developmental synapse remodeling in the brain and they share basic principles, including dependency on neural activity. However, recent studies have disclosed that, in several respects, the two models use different molecules and strategies to establish mature synaptic connectivity. We describe similarities and differences between the two models and discuss remaining issues to be tackled in the future in order to understand the general schemes of developmental synapse remodeling.
Collapse
Affiliation(s)
- Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
12
|
Nakamoto C, Durward E, Horie M, Nakamoto M. Nell2 regulates the contralateral-versus-ipsilateral visual projection as a domain-specific positional cue. Development 2019; 146:dev.170704. [PMID: 30745429 DOI: 10.1242/dev.170704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023]
Abstract
In mammals with binocular vision, retinal ganglion cell (RGC) axons from each eye project to eye-specific domains in the contralateral and ipsilateral dorsal lateral geniculate nucleus (dLGN), underpinning disparity-based stereopsis. Although domain-specific axon guidance cues that discriminate contralateral and ipsilateral RGC axons have long been postulated as a key mechanism for development of the eye-specific retinogeniculate projection, the molecular nature of such cues has remained elusive. Here, we show that the extracellular glycoprotein Nell2 (neural epidermal growth factor-like-like 2) is expressed in the dorsomedial region of the dLGN, which ipsilateral RGC axons terminate in and contralateral axons avoid. In Nell2 mutant mice, contralateral RGC axons abnormally invaded the ipsilateral domain of the dLGN, and ipsilateral axons terminated in partially fragmented patches, forming a mosaic pattern of contralateral and ipsilateral axon-termination zones. In vitro, Nell2 exerted inhibitory effects on contralateral, but not ipsilateral, RGC axons. These results provide evidence that Nell2 acts as a domain-specific positional label in the dLGN that discriminates contralateral and ipsilateral RGC axons, and that it plays essential roles in the establishment of the eye-specific retinogeniculate projection.
Collapse
Affiliation(s)
- Chizu Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Elaine Durward
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Masato Horie
- Department of CNS Research, Otsuka Pharmaceutical, 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masaru Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
13
|
Lieberman OJ, McGuirt AF, Tang G, Sulzer D. Roles for neuronal and glial autophagy in synaptic pruning during development. Neurobiol Dis 2018; 122:49-63. [PMID: 29709573 DOI: 10.1016/j.nbd.2018.04.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022] Open
Abstract
The dendritic protrusions known as spines represent the primary postsynaptic location for excitatory synapses. Dendritic spines are critical for many synaptic functions, and their formation, modification, and turnover are thought to be important for mechanisms of learning and memory. At many excitatory synapses, dendritic spines form during the early postnatal period, and while many spines are likely being formed and removed throughout life, the net number are often gradually "pruned" during adolescence to reach a stable level in the adult. In neurodevelopmental disorders, spine pruning is disrupted, emphasizing the importance of understanding its governing processes. Autophagy, a process through which cytosolic components and organelles are degraded, has recently been shown to control spine pruning in the mouse cortex, but the mechanisms through which autophagy acts remain obscure. Here, we draw on three widely studied prototypical synaptic pruning events to focus on two governing principles of spine pruning: 1) activity-dependent synaptic competition and 2) non-neuronal contributions. We briefly review what is known about autophagy in the central nervous system and its regulation by metabolic kinases. We propose a model in which autophagy in both neurons and non-neuronal cells contributes to spine pruning, and how other processes that regulate spine pruning could intersect with autophagy. We further outline future research directions to address outstanding questions on the role of autophagy in synaptic pruning.
Collapse
Affiliation(s)
- Ori J Lieberman
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States
| | - Avery F McGuirt
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States
| | - Guomei Tang
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States; Department of Neurology, Columbia University Medical Center, New York, NY 10032, United States; Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, United States; Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, United States.
| |
Collapse
|
14
|
Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat Rev Neurosci 2017; 18:658-670. [PMID: 28931944 DOI: 10.1038/nrn.2017.110] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The final stage of brain development is associated with the generation and maturation of neuronal synapses. However, the same period is also associated with a peak in synapse elimination - a process known as synaptic pruning - that has been proposed to be crucial for the maturation of remaining synaptic connections. Recent studies have pointed to a key role for glial cells in synaptic pruning in various parts of the nervous system and have identified a set of critical signalling pathways between glia and neurons. At the same time, brain imaging and post-mortem anatomical studies suggest that insufficient or excessive synaptic pruning may underlie several neurodevelopmental disorders, including autism, schizophrenia and epilepsy. Here, we review current data on the cellular, physiological and molecular mechanisms of glial-cell-dependent synaptic pruning and outline their potential contribution to neurodevelopmental disorders.
Collapse
|
15
|
Tomàs JM, Garcia N, Lanuza MA, Nadal L, Tomàs M, Hurtado E, Simó A, Cilleros V. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction. Front Mol Neurosci 2017; 10:255. [PMID: 28848391 PMCID: PMC5552667 DOI: 10.3389/fnmol.2017.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023] Open
Abstract
Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh) receptors (subtypes mAChR; M1, M2 and M4), adenosine receptors (AR; A1 and A2A) and the tropomyosin-related kinase B receptor (TrkB), among others, all cooperate in synapse elimination. Between these receptors there are several synergistic, antagonic and modulatory relations that clearly affect synapse elimination. Metabotropic receptors converge in a limited repertoire of intracellular effector kinases, particularly serine protein kinases A and C (PKA and PKC), to phosphorylate protein targets and bring about structural and functional changes leading to axon loss. In most cells A1, M1 and TrkB operate mainly by stimulating PKC whereas A2A, M2 and M4 inhibit PKA. We hypothesize that a membrane receptor-induced shifting in the protein kinases A and C activity (inhibition of PKA and/or stimulation of PKC) in some nerve endings may play an important role in promoting developmental synapse elimination at the neuromuscular junction (NMJ). This hypothesis is supported by: (i) the tonic effect (shown by using selective inhibitors) of several membrane receptors that accelerates axon loss between postnatal days P5-P9; (ii) the synergistic, antagonic and modulatory effects (shown by paired inhibition) of the receptors on axonal loss; (iii) the fact that the coupling of these receptors activates/inhibits the intracellular serine kinases; and (iv) the increase of the PKA activity, the reduction of the PKC activity or, in most cases, both situations simultaneously that presumably occurs in all the situations of singly and paired inhibition of the mAChR, AR and TrkB receptors. The use of transgenic animals and various combinations of selective and specific PKA and PKC inhibitors could help to elucidate the role of these kinases in synapse maturation.
Collapse
Affiliation(s)
- Josep M Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
16
|
Tomàs J, Garcia N, Lanuza MA, Santafé MM, Tomàs M, Nadal L, Hurtado E, Simó A, Cilleros V. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development. Front Mol Neurosci 2017; 10:132. [PMID: 28559796 PMCID: PMC5432534 DOI: 10.3389/fnmol.2017.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ) are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR), adenosine autoreceptors (AR) and trophic factor receptors (TFR, for neurotrophins and trophic cytokines) during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.
Collapse
Affiliation(s)
- Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Manel M Santafé
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
17
|
Kolodkin AL, Hiesinger PR. Wiring visual systems: common and divergent mechanisms and principles. Curr Opin Neurobiol 2017; 42:128-135. [PMID: 28064004 PMCID: PMC5316370 DOI: 10.1016/j.conb.2016.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
The study of visual systems has a rich history, leading to the discovery and understanding of basic principles underlying the elaboration of neuronal connectivity. Recent work in model organisms such as fly, fish and mouse has yielded a wealth of new insights into visual system wiring. Here, we consider how axonal and dendritic patterning in columns and laminae influence synaptic partner selection in these model organisms. We highlight similarities and differences among disparate visual systems with the goal of identifying common and divergent principles for visual system wiring.
Collapse
Affiliation(s)
- Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - P Robin Hiesinger
- Division of Neurobiology of the Institute for Biology, Free University Berlin, Germany.
| |
Collapse
|
18
|
The Metabotropic Glutamate Receptor Subtype 1 Mediates Experience-Dependent Maintenance of Mature Synaptic Connectivity in the Visual Thalamus. Neuron 2016; 91:1097-1109. [PMID: 27545713 DOI: 10.1016/j.neuron.2016.07.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 11/23/2022]
Abstract
Neural circuits formed during postnatal development have to be maintained stably thereafter, but their mechanisms remain largely unknown. Here we report that the metabotropic glutamate receptor subtype 1 (mGluR1) is essential for the maintenance of mature synaptic connectivity in the dorsal lateral geniculate nucleus (dLGN). In mGluR1 knockout (mGluR1-KO) mice, strengthening and elimination at retinogeniculate synapses occurred normally until around postnatal day 20 (P20). However, during the subsequent visual-experience-dependent maintenance phase, weak retinogeniculate synapses were newly recruited. These changes were similar to those of wild-type (WT) mice that underwent visual deprivation or inactivation of mGluR1 in the dLGN from P21. Importantly, visual deprivation was ineffective in mGluR1-KO mice, and the changes induced by visual deprivation in WT mice were rescued by pharmacological activation of mGluR1 in the dLGN. These results demonstrate that mGluR1 is crucial for the visual-experience-dependent maintenance of mature synaptic connectivity in the dLGN.
Collapse
|
19
|
Schafer DP, Heller CT, Gunner G, Heller M, Gordon C, Hammond T, Wolf Y, Jung S, Stevens B. Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. eLife 2016; 5. [PMID: 27458802 PMCID: PMC4961457 DOI: 10.7554/elife.15224] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022] Open
Abstract
Microglia, the resident CNS macrophages, have been implicated in the pathogenesis of Rett Syndrome (RTT), an X-linked neurodevelopmental disorder. However, the mechanism by which microglia contribute to the disorder is unclear and recent data suggest that microglia do not play a causative role. Here, we use the retinogeniculate system to determine if and how microglia contribute to pathogenesis in a RTT mouse model, the Mecp2 null mouse (Mecp2tm1.1Bird/y). We demonstrate that microglia contribute to pathogenesis by excessively engulfing, thereby eliminating, presynaptic inputs at end stages of disease (≥P56 Mecp2 null mice) concomitant with synapse loss. Furthermore, loss or gain of Mecp2 expression specifically in microglia (Cx3cr1CreER;Mecp2fl/yor Cx3cr1CreER; Mecp2LSL/y) had little effect on excessive engulfment, synapse loss, or phenotypic abnormalities. Taken together, our data suggest that microglia contribute to end stages of disease by dismantling neural circuits rendered vulnerable by loss of Mecp2 in other CNS cell types. DOI:http://dx.doi.org/10.7554/eLife.15224.001 Rett Syndrome is a neurodevelopmental disorder with symptoms that typically begin in girls between 6 and 18 months old. Those affected developmentally stagnate and regress – during which they lose some of their previously acquired skills and develop an array of physical impairments. Mutations in a gene called Mecp2 on the X chromosome cause most cases of Rett Syndrome. Mice that lack the Mecp2 gene develop symptoms similar to those seen in people with Rett Syndrome, and so such “Mecp2 null” mice are often used to study the disorder. Microglia, the resident immune cells of the central nervous system, have been implicated in the development of Rett Syndrome. Introducing microglia that carry the Mecp2 gene into Mecp2 null mice has been shown to reduce several disease-associated abnormalities. However, exactly how microglia contribute to these changes remains unknown. In addition, a more recent report failed to reproduce these findings, and instead obtained results suggesting that microglia do not affect the development of Rett syndrome. Schafer et al. now use the mouse visual system as a model to determine if and how microglia contribute to the development of Rett Syndrome. Like many other brain regions, the developing visual system initially has a surplus of connections between neurons, or synapses, which are subsequently pruned back. Schafer et al. previously showed in the developing visual system of early postnatal (5 days after birth) control mice (who express the Mecp2 gene) that microglia contribute to this pruning by engulfing and eliminating a subset of these excessive synaptic connections. The new experiments by Schafer et al. show that another wave of microglia-mediated synaptic pruning occurs in 40-day-old juvenile control mice. Because Mecp2 null mice begin to display features of Rett Syndrome when they’re about 40 days old, Schafer et al. tested whether the microglia of these animals inappropriately prune synaptic connections. While this process occurred normally in neonatal and juvenile Mecp2 null mice, microglia began to excessively engulf cells in Mecp2 null mice when they were around 56 days old. Unexpectedly, deleting or reintroducing the Mecp2 gene solely in the microglia of these mice had little effect on pruning activity of the microglia, and failed to affect Rett-syndrome-like symptoms in the mice. Taken together, the data presented by Schafer et al. suggest how microglia contribute to the final stages of Rett Syndrome: by dismantling circuits of neurons that are rendered vulnerable by the loss of the Mecp2 gene in other cell types. DOI:http://dx.doi.org/10.7554/eLife.15224.002
Collapse
Affiliation(s)
- Dorothy P Schafer
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Christopher T Heller
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Georgia Gunner
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Molly Heller
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Christopher Gordon
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Timothy Hammond
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Yochai Wolf
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Beth Stevens
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
20
|
Microglia Function in Central Nervous System Development and Plasticity. Cold Spring Harb Perspect Biol 2015; 7:a020545. [PMID: 26187728 DOI: 10.1101/cshperspect.a020545] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nervous system comprises a remarkably diverse and complex network of different cell types, which must communicate with one another with speed, reliability, and precision. Thus, the developmental patterning and maintenance of these cell populations and their connections with one another pose a rather formidable task. Emerging data implicate microglia, the resident myeloid-derived cells of the central nervous system (CNS), in the spatial patterning and synaptic wiring throughout the healthy, developing, and adult CNS. Importantly, new tools to specifically manipulate microglia function have revealed that these cellular functions translate, on a systems level, to effects on overall behavior. In this review, we give a historical perspective of work to identify microglia function in the healthy CNS and highlight exciting new work in the field that has identified roles for these cells in CNS development, maintenance, and plasticity.
Collapse
|
21
|
Refinement of the retinogeniculate synapse by bouton clustering. Neuron 2014; 84:332-9. [PMID: 25284005 DOI: 10.1016/j.neuron.2014.08.059] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2014] [Indexed: 11/22/2022]
Abstract
Mammalian sensory circuits become refined over development in an activity-dependent manner. Retinal ganglion cell (RGC) axons from each eye first map to their target in the geniculate and then segregate into eye-specific layers by the removal and addition of axon branches. Once segregation is complete, robust functional remodeling continues as the number of afferent inputs to each geniculate neuron decreases from many to a few. It is widely assumed that large-scale axon retraction underlies this later phase of circuit refinement. On the contrary, RGC axons remain stable during functional pruning. Instead, presynaptic boutons grow in size and cluster during this process. Moreover, they exhibit dynamic spatial reorganization in response to sensory experience. Surprisingly, axon complexity decreases only after the completion of the thalamic critical period. Therefore, dynamic bouton redistribution along a broad axon backbone represents an unappreciated form of plasticity underlying developmental wiring and rewiring in the CNS.
Collapse
|
22
|
Large-scale somatotopic refinement via functional synapse elimination in the sensory thalamus of developing mice. J Neurosci 2014; 34:1258-70. [PMID: 24453317 DOI: 10.1523/jneurosci.3865-13.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Functional synapse elimination and strengthening are crucial developmental processes in the formation of precise neuronal circuits in the somatosensory system, but the underlying alterations in topographical organization are not yet fully understood. To address this issue, we generated transgenic mice in which afferent fibers originating from the whisker-related brain region, called the maxillary principal trigeminal nucleus (PrV2), were selectively visualized with genetically expressed fluorescent protein. We found that functional synapse elimination drove and established large-scale somatotopic refinement even after the thalamic barreloid architecture was formed. Before functional synapse elimination, the whisker sensory thalamus was innervated by afferent fibers not only from the PrV2, but also from the brainstem nuclei representing other body parts. Most notably, only afferent fibers from PrV2 onto a whisker sensory thalamic neuron selectively survived and were strengthened, whereas other afferent fibers were preferentially eliminated via their functional synapse elimination. This large-scale somatotopic refinement was at least partially dependent on somatosensory experience. These novel results uncovered a previously unrecognized role of developmental synapse elimination in the large-scale, instead of the fine-scale, somatotopic refinement even after the initial segregation of the barreloid map.
Collapse
|
23
|
Kirkby LA, Sack GS, Firl A, Feller MB. A role for correlated spontaneous activity in the assembly of neural circuits. Neuron 2014; 80:1129-44. [PMID: 24314725 DOI: 10.1016/j.neuron.2013.10.030] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
Abstract
Before the onset of sensory transduction, developing neural circuits spontaneously generate correlated activity in distinct spatial and temporal patterns. During this period of patterned activity, sensory maps develop and initial coarse connections are refined, which are critical steps in the establishment of adult neural circuits. Over the last decade, there has been substantial evidence that altering the pattern of spontaneous activity disrupts refinement, but the mechanistic understanding of this process remains incomplete. In this review, we discuss recent experimental and theoretical progress toward the process of activity-dependent refinement, focusing on circuits in the visual, auditory, and motor systems. Although many outstanding questions remain, the combination of several novel approaches has brought us closer to a comprehensive understanding of how complex neural circuits are established by patterned spontaneous activity during development.
Collapse
Affiliation(s)
- Lowry A Kirkby
- Biophysics Graduate Group, UC Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
24
|
Schafer DP, Stevens B. Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr Opin Neurobiol 2013; 23:1034-40. [PMID: 24157239 DOI: 10.1016/j.conb.2013.09.012] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/21/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022]
Abstract
In the developing nervous system, synaptic connections are formed in excess and must remodel to achieve the precise synaptic connectivity characteristic of the mature organism. Synaptic pruning is a developmental process in which subsets of synapses are eliminated while the remaining synapses are preserved and strengthened. Recent findings have demonstrated unexpected roles for glial cells in this developmental process. These data demonstrate that phagocytic glia engulf synaptic and/or axonal elements in the developing nervous system and disruptions in this process result in sustained deficits in synaptic connectivity. These new findings highlight the importance of glia for nervous system development and function and may shed new light on mechanisms underlying nervous system disease.
Collapse
Affiliation(s)
- Dorothy P Schafer
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Laviolette M, Stewart BA. Early consolidation of development and physiology of an identified presynaptic nerve terminal. BMC Neurosci 2013; 14:124. [PMID: 24134061 PMCID: PMC4015271 DOI: 10.1186/1471-2202-14-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/04/2013] [Indexed: 12/02/2022] Open
Abstract
Background A central objective in the field of neurobiology is to understand the developmental plasticity of neurons. The pursuit of this objective has revealed the presence of critical periods in neural development. Here, critical periods are defined as developmental time windows during which neural remodeling can take place; outside of these times neural plasticity is reduced. We have taken advantage of transgenic technology at the Drosophila melanogaster neuromuscular junction (NMJ) to investigate developmental plasticity and critical period determination of an identifiable nerve terminal. Results Using temperature-dependent Gal80 control of transgene expression, we regulated the expression of dNSF2E/Q, a dominant-negative version of the Drosophila NSF2 gene, by shifting developing embryos and larvae between permissive and restrictive temperatures. dNSF2E/Q reduces synaptic strength and causes tremendous overgrowth of the neuromuscular junctions. We therefore measured synaptic transmission and synaptic morphology in two temperature-shift paradigms. Our data show that both physiological and morphological development is susceptible to dNSF2E/Q perturbation within the first two days. Conclusion Our data support the view that individual motor neurons in Drosophila larvae possess a critical window for synapse development in the first one to two days of life and that the time period for morphological and physiological plasticity are not identical. These studies open the door to further molecular genetic analysis of critical periods of synaptic development.
Collapse
Affiliation(s)
| | - Bryan A Stewart
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
26
|
Kivrak BG, Erzurumlu RS. Development of the principal nucleus trigeminal lemniscal projections in the mouse. J Comp Neurol 2013; 521:299-311. [PMID: 22791623 DOI: 10.1002/cne.23183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/24/2012] [Accepted: 07/06/2012] [Indexed: 12/30/2022]
Abstract
The principal sensory (PrV) nucleus-based trigeminal lemniscus conveys whisker-specific neural patterns to the ventroposteromedial (VPM) nucleus of the thalamus and subsequently to the primary somatosensory cortex. Here we examined the perinatal development of this pathway with carbocyanine dye labeling in embryonic and early postnatal mouse brains. We developed a novel preparation in which the embryonic hindbrain and the diencephalon are flattened out, allowing a birds-eye view of the PrV lemniscus in its entirety. For postnatal brains we used another novel approach by sectioning the brain along an empirically determined oblique horizontal angle, again preserving the trigeminothalamic pathway. PrV neurons are born along the hindbrain ventricular zone and migrate radially for a short distance to coalesce into a nucleus adjacent to the ascending trigeminal tract. During migration of the spindle-shaped cell bodies, slender axonal processes grow along the opposite direction towards the floor plate. As early as embryonic day (E) 11, pioneering axons tipped with large growth cones cross the ventral midline and immediately make a right angle turn. By E13 many PrV axons form fascicles crossing the midline and follow a rostral course. PrV axons reach the midbrain by E15 and the thalamus by E17. While the target recognition and invasion occurs prenatally, organization of PrV axon terminals into whisker-specific rows and patches takes place during the first 4 postnatal (P) days. Initially diffuse and exuberant projections in the VPM at P1 coalesce into row and whisker specific terminal zones by P4.
Collapse
Affiliation(s)
- Beril G Kivrak
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | | |
Collapse
|
27
|
Organotypic coculture preparation for the study of developmental synapse elimination in mammalian brain. J Neurosci 2012; 32:11657-70. [PMID: 22915109 DOI: 10.1523/jneurosci.1097-12.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We developed an organotypic coculture preparation allowing fast and efficient identification of molecules that regulate developmental synapse elimination in the mammalian brain. This coculture consists of a cerebellar slice obtained from rat or mouse at postnatal day 9 (P9) or P10 and a medullary explant containing the inferior olive dissected from rat at embryonic day 15. We verified that climbing fibers (CFs), the axons of inferior olivary neurons, formed functional synapses onto Purkinje cells (PCs) in the cerebellum of cocultures. PCs were initially reinnervated by multiple CFs with similar strengths. Surplus CFs were eliminated subsequently, and the remaining CFs became stronger. These changes are similar to those occurring in developing cerebellum in vivo. Importantly, the changes in CF innervations in cocultures involved the same molecules required for CF synapse elimination in vivo, including NMDA receptor, type 1 metabotropic glutamate receptor and glutamate receptor δ2 (GluRδ2). We demonstrate that gain- and loss-of-function analyses can be efficiently performed by lentiviral-mediated overexpression and RNAi-induced knockdown of GluRδ2. Using this approach, we identified neuroligin-2 as a novel molecule that promotes CF synapse elimination in postsynaptic PCs. Thus, our coculture preparation will greatly facilitate the elucidation of molecular mechanisms of synapse elimination.
Collapse
|
28
|
Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 2012; 35:369-89. [PMID: 22715882 DOI: 10.1146/annurev-neuro-061010-113810] [Citation(s) in RCA: 761] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An unexpected role for the classical complement cascade in the elimination of central nervous system (CNS) synapses has recently been discovered. Complement proteins are localized to developing CNS synapses during periods of active synapse elimination and are required for normal brain wiring. The function of complement proteins in the brain appears analogous to their function in the immune system: clearance of cellular material that has been tagged for elimination. Similarly, synapses tagged with complement proteins may be eliminated by microglial cells expressing complement receptors. In addition, developing astrocytes release signals that induce the expression of complement components in the CNS. In the mature brain, early synapse loss is a hallmark of several neurodegenerative diseases. Complement proteins are profoundly upregulated in many CNS diseases prior to signs of neuron loss, suggesting a reactivation of similar developmental mechanisms of complement-mediated synapse elimination potentially driving disease progression.
Collapse
Affiliation(s)
- Alexander H Stephan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA.
| | | | | |
Collapse
|
29
|
The expression patterns of MHC class I molecules in the developmental human visual system. Neurochem Res 2012; 38:273-81. [PMID: 23124394 DOI: 10.1007/s11064-012-0916-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/12/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
It has been considered that healthy neurons in central nervous system (CNS) do not express major histocompatibility complex (MHC) class I molecules. However, recent studies clearly demonstrated the expression of functional MHC class I in the mammalian embryonic, neonatal and adult brain. Until now, it is still unknown whether MHC I molecules are expressed in the development of human brain. We collected nine human brain tissues from fetuses aged from 21 to 31 gestational weeks (GW), one newborn of postnatal 55 days and one adult. The expression of MHC class I molecules was detected during the development of visual system in human brain by immunohistochemistry and immunofluorescence. MHC class I proteins were located at lateral geniculate nucleus (LGN) and the expression was gradually increased from 21 GW to 31 GW and reached high levels at 30-31 GW when fine-scale refinement phase was mediated by neural electric activity. However, there was no expression of MHC class I molecules in the visual cortical cortex during all the developmental stages examined. We also concluded that MHC class I molecules were mainly expressed in neurons but not in astrocytes at LGN. In the developing visual system, the expression of β2M protein on neurons was not found in our study.
Collapse
|
30
|
Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat. J Neurosci 2012; 32:10982-94. [PMID: 22875932 DOI: 10.1523/jneurosci.1322-12.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spontaneous activity in the developing brain contributes to its maturation, but how this activity is coordinated between distinct cortical regions and whether it might reflect developing sensory circuits is not well understood. Here, we address this question by imaging the spread and synchronization of cortical activity using voltage-sensitive dyes (VSDs) in the developing rat in vivo. In postnatal day 4-6 rats (n = 10), we collected spontaneous changes in VSD signal that reflect underlying membrane potential changes over a large craniotomy (50 mm2) that encompassed both the sensory and motor cortices of both hemispheres. Bursts of depolarization that occurred approximately once every 12 s were preceded by spontaneous twitches of the hindlimbs and/or tail. The close association with peripheral movements suggests that these bursts may represent a slow component of spindle bursts, a prominent form of activity in the developing somatosensory cortex. Twitch-associated cortical activity was synchronized between subregions of somatosensory cortex, which reflected the synchronized twitching of the limbs and tail. This activity also spread asymmetrically, toward the midline of the brain. We found that the spatial and temporal structure of such spontaneous cortical bursts closely matched that of sensory-evoked activity elicited via direct stimulation of the periphery. These data suggest that spontaneous cortical activity provides a recurring template of functional cortical circuits within the developing cortex and could contribute to the maturation of integrative connections between sensory and motor cortices.
Collapse
|
31
|
Schafer DP, Lehrman EK, Stevens B. The "quad-partite" synapse: microglia-synapse interactions in the developing and mature CNS. Glia 2012; 61:24-36. [PMID: 22829357 DOI: 10.1002/glia.22389] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/21/2012] [Indexed: 01/04/2023]
Abstract
Microglia are the resident immune cells and phagocytes of our central nervous system (CNS). While most work has focused on the rapid and robust responses of microglia during CNS disease and injury, emerging evidence suggests that these mysterious cells have important roles at CNS synapses in the healthy, intact CNS. Groundbreaking live imaging studies in the anesthetized, adult mouse demonstrated that microglia processes dynamically survey their environment and interact with other brain cells including neurons and astrocytes. More recent imaging studies have revealed that microglia dynamically interact with synapses where they appear to serve as "synaptic sensors," responding to changes in neural activity and neurotransmitter release. In the following review, we discuss the most recent work demonstrating that microglia play active roles at developing and mature synapses. We first discuss the important imaging studies that have led us to better understand the physical relationship between microglia and synapses in the healthy brain. Following this discussion, we review known molecular mechanisms and functional consequences of microglia-synapse interactions in the developing and mature CNS. Our current knowledge sheds new light on the critical functions of these mysterious cells in synapse development and function in the healthy CNS, but has also incited several new and interesting questions that remain to be explored. We discuss these open questions, and how the most recent findings in the healthy CNS may be related to pathologies associated with abnormal and/or loss of neural circuits.
Collapse
Affiliation(s)
- Dorothy P Schafer
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
32
|
Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans. Proc Natl Acad Sci U S A 2012; 109:11049-52. [PMID: 22711824 DOI: 10.1073/pnas.1203096109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although there is a great deal of knowledge regarding the phylo- and ontogenetic plasticity of the neocortex, the precise nature of environmental impact on the newborn human brain is still one of the most controversial issues of neuroscience. The leading model-system of experience-dependent brain development is binocular vision, also called stereopsis. Here, we show that extra postnatal visual experience in preterm human neonates leads to a change in the developmental timing of binocular vision. The onset age of binocular function, as measured by the visual evoked response to dynamic random dot correlograms (DRDC-VEP), appears to be at around the same time after birth in preterm (4.07 mo) and full-term (3.78 mo) infants. To assess the integrity of the visual pathway in the studied infants, we also measured the latency of the visual-evoked response to pattern reversal stimuli (PR-VEP). PR-VEP latency is not affected by premature birth, demonstrating that the maturation of the visual pathway follows a preprogrammed developmental course. Despite the immaturity of the visual pathway, clearly demonstrated by the PR-VEP latencies, our DRCD-VEP data show that the visual cortex is remarkably ready to accept environmental stimulation right after birth. This early plasticity makes full use of the available extra stimulation time in preterm human infants and results in an early onset of cortical binocularity. According to our data, the developmental processes preceding the onset of binocular function are not preprogrammed, and the mechanisms turning on stereopsis are extremely experience-dependent in humans.
Collapse
|
33
|
Furman M, Crair MC. Synapse maturation is enhanced in the binocular region of the retinocollicular map prior to eye opening. J Neurophysiol 2012; 107:3200-16. [PMID: 22402661 PMCID: PMC3774562 DOI: 10.1152/jn.00943.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/07/2012] [Indexed: 02/08/2023] Open
Abstract
In the developing visual system of mammals, retinal axons from the two eyes compete for postsynaptic partners. After eye opening, this process is regulated in part by homeostatically constrained competition for synaptic connectivity with target neurons. However, prior to eye opening, the functional and synaptic basis of binocular map development is unclear. To examine the role of binocular interactions during early stages of visual map development, we performed in vitro patch-clamp recordings from the superior colliculus (SC) of neonatal mice. Using newly designed slice preparations, we compared retinocollicular synapse development in the medial SC, which receives binocular input, and the lateral SC, which is predominantly monocular. Surprisingly, we found that at P6-7, when eye-specific segregation has just emerged, retinocollicular synapses were stronger and more mature and dendritic arbors were more elaborate in the medial than the lateral SC. Furthermore, monocular enucleation of the ipsilateral eye at P0 selectively reduced synaptic strength and dendritic branching in the medial SC and abolished the differences normally observed between the two slices at P6-7. This specifically implicates binocular interactions in the development of retinocollicular connectivity prior to eye opening. Our findings contrast with the predictions of a constrained-connectivity model of binocular map development and suggest instead that binocular competition prior to eye opening enhances retinocollicular synaptic strength and the morphological development of retino-recipient neurons.
Collapse
Affiliation(s)
- Moran Furman
- Dept. of Neurobiology, Yale Univ. School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
34
|
Markowitz J, Cao Y, Grossberg S. From retinal waves to activity-dependent retinogeniculate map development. PLoS One 2012; 7:e31553. [PMID: 22389669 PMCID: PMC3289626 DOI: 10.1371/journal.pone.0031553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/10/2012] [Indexed: 11/18/2022] Open
Abstract
A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+)-activated K(+) channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.
Collapse
Affiliation(s)
- Jeffrey Markowitz
- Center for Adaptive Systems, Department of Cognitive and Neural Systems, Boston University, Boston, Massachusetts, United States of America
- Center for Excellence for Learning in Education, Science and Technology Boston University, Boston, Massachusetts, United States of America
| | - Yongqiang Cao
- Center for Adaptive Systems, Department of Cognitive and Neural Systems, Boston University, Boston, Massachusetts, United States of America
- Center for Excellence for Learning in Education, Science and Technology Boston University, Boston, Massachusetts, United States of America
| | - Stephen Grossberg
- Center for Adaptive Systems, Department of Cognitive and Neural Systems, Boston University, Boston, Massachusetts, United States of America
- Center for Excellence for Learning in Education, Science and Technology Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
35
|
Chung WS, Barres BA. The role of glial cells in synapse elimination. Curr Opin Neurobiol 2011; 22:438-45. [PMID: 22036016 DOI: 10.1016/j.conb.2011.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/27/2011] [Accepted: 10/06/2011] [Indexed: 12/13/2022]
Abstract
Excessive synapses generated during early development are eliminated extensively to form functionally mature neural circuits. Synapses in juvenile and mature brains are highly dynamic, and undergo remodeling processes through constant formation and elimination of dendritic spines. Although neural activity has been implicated in initiating the synapse elimination process cell-autonomously, the cellular and molecular mechanisms that transduce changes in correlated neural activity into structural changes in synapses are largely unknown. Recently, however, new findings provide evidence that in different species, glial cells, non-neuronal cell types in the nervous system are crucial in eliminating neural debris and unwanted synapses through phagocytosis. Glial cells not only clear fragmented axons and synaptic debris produced during synapse elimination, but also engulf unwanted synapses thereby actively promoting synapse elimination non-cell autonomously. These new findings support the important role of glial cells in the formation and maintenance of functional neural circuits in development as well as in adult stages and neurodegenerative diseases.
Collapse
Affiliation(s)
- Won-Suk Chung
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
36
|
Developmental sculpting of dendritic morphology of layer 4 neurons in visual cortex: influence of retinal input. J Neurosci 2011; 31:7456-70. [PMID: 21593329 DOI: 10.1523/jneurosci.5222-10.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dendritic morphology determines the kinds of input a neuron receives, having a profound impact on neural information processing. In the mammalian cerebral cortex, excitatory neurons have been ascribed to one of two main dendritic morphologies, either pyramidal or stellate, which differ mainly on the extent of the apical dendrite. Developmental mechanisms regulating the emergence and refinement of dendritic morphologies have been studied for cortical pyramidal neurons, but little is known for spiny stellate neurons. Using biolistics to label single cells on acute brain slices of the ferret primary visual cortex, we show that neurons in layer 4 develop in a two-step process: initially, all neurons appear pyramidal, growing a prominent apical dendrite and few small basal dendrites. Later, a majority of these neurons show a change in the relative extent of basal and apical dendrites that results in a gradual sculpting into a stellate morphology. We also find that ∼ 22% of neurons maintain the proportionality of their dendritic arbors, remaining as pyramidal cells at maturity. When ferrets were deprived of retinal input at early stages of postnatal development by binocular enucleation, a significant proportion of layer 4 spiny neurons failed to remodel their apical dendrites, and ∼ 55% remained as pyramidal neurons. Our results demonstrate that cortical spiny stellate neurons emerge by differential sculpting of the dendritic arborizations of an initial pyramidal morphology and that sensory input plays a fundamental role in this process.
Collapse
|
37
|
Bleckert A, Wong ROL. Identifying roles for neurotransmission in circuit assembly: insights gained from multiple model systems and experimental approaches. Bioessays 2011; 33:61-72. [PMID: 21110347 DOI: 10.1002/bies.201000095] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the adult nervous system, chemical neurotransmission between neurons is essential for information processing. However, neurotransmission is also important for patterning circuits during development, but its precise roles have yet to be identified, and some remain highly debated. Here, we highlight viewpoints that have come to be widely accepted or still challenged. We discuss how distinct techniques and model systems employed to probe the developmental role of neurotransmission may reconcile disparate ideas. We underscore how the effects of perturbing neurotransmission during development vary with model systems, the stage of development when transmission is altered, the nature of the perturbation, and how connectivity is assessed. Based on findings in circuits with connectivity arranged in layers, we raise the possibility that there exist constraints in neuronal network design that limit the role of neurotransmission. We propose that activity-dependent mechanisms are effective in refining connectivity patterns only when inputs from different cells are close enough, spatially, to influence each other's outcome.
Collapse
Affiliation(s)
- Adam Bleckert
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
38
|
Abstract
Down syndrome (DS) is a developmental disorder caused by a third chromosome 21 in humans (Trisomy 21), leading to neurological deficits and cognitive impairment. Studies in mouse models of DS suggest that cognitive deficits in the adult are associated with deficits in synaptic learning and memory mechanisms, but it is unclear whether alterations in the early wiring and refinement of neuronal circuits contribute to these deficits. Here, we show that early developmental refinement of visual circuits is perturbed in mouse models of Down syndrome. Specifically, we find excessive eye-specific segregation of retinal axons in the dorsal lateral geniculate nucleus. Indeed, the degree of refinement scales with defects in the "Down syndrome critical region" (DSCR) in a dose-dependent manner. We further identify Dscam (Down syndrome cell adhesion molecule), a gene within the DSCR, as a regulator of eye-specific segregation of retinogeniculate projections. Although Dscam is not the sole gene in the DSCR contributing to enhanced refinement in trisomy, Dscam dosage clearly regulates cell spacing and dendritic fasciculation in a specific class of retinal ganglion cells. Thus, altered developmental refinement of visual circuits that occurs before sensory experience is likely to contribute to visual impairment in individuals with Down syndrome.
Collapse
|
39
|
Counotte DS, Smit AB, Pattij T, Spijker S. Development of the motivational system during adolescence, and its sensitivity to disruption by nicotine. Dev Cogn Neurosci 2011; 1:430-43. [PMID: 22436565 DOI: 10.1016/j.dcn.2011.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/18/2011] [Accepted: 05/29/2011] [Indexed: 12/18/2022] Open
Abstract
The brain continues to develop during adolescence, and exposure to exogenous substances such as nicotine can exert long-lasting adaptations during this vulnerable period. In order to fully understand how nicotine affects the adolescent brain it is important to understand normal adolescent brain development. This review summarizes human and animal data on brain development, with emphasis on the prefrontal cortex, for its important function in executive control over behavior. Moreover, we discuss how nicotine exposure during adolescence can disrupt brain development bearing long-term consequences on executive cognitive function in adulthood.
Collapse
Affiliation(s)
- Danielle S Counotte
- Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research (CNCR), VU University, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Li J, Erisir A, Cline H. In vivo time-lapse imaging and serial section electron microscopy reveal developmental synaptic rearrangements. Neuron 2011; 69:273-86. [PMID: 21262466 PMCID: PMC3052740 DOI: 10.1016/j.neuron.2010.12.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Dendrites, axons, and synapses are dynamic during circuit development; however, changes in microcircuit connections as branches stabilize have not been directly demonstrated. By combining in vivo time-lapse imaging of Xenopus tectal neurons with electron microscope reconstructions of imaged neurons, we report the distribution and ultrastructure of synapses on individual vertebrate neurons and relate these synaptic properties to dynamics in dendritic and axonal arbor structure over hours or days of imaging. Dynamic dendrites have a high density of immature synapses, whereas stable dendrites have sparser, mature synapses. Axons initiate contacts from multisynapse boutons on stable branches. Connections are refined by decreasing convergence from multiple inputs to postsynaptic dendrites and by decreasing divergence from multisynapse boutons to postsynaptic sites. Visual deprivation or NMDAR antagonists decreased synapse maturation and elimination, suggesting that coactive input activity promotes microcircuit development by concurrently regulating synapse elimination and maturation of remaining contacts.
Collapse
Affiliation(s)
- Jianli Li
- The Scripps Research Institute, La Jolla, CA 92037
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA 22904
| | - Hollis Cline
- The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
41
|
Fourgeaud L, Boulanger LM. Role of immune molecules in the establishment and plasticity of glutamatergic synapses. Eur J Neurosci 2011; 32:207-17. [PMID: 20946111 DOI: 10.1111/j.1460-9568.2010.07342.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An increasing number of studies support an unexpected role for immune molecules in regulating healthy brain functions during development and in adulthood. Here we review the roles of specific immune molecules (including cytokines, components of the complement cascade, and members of the major histocompatibility complex class I family and their receptors) in the formation and plasticity of glutamatergic synapses. These findings add a new dimension to our understanding of neural-immune interactions, and suggest novel molecular mechanisms that may underlie the modification of glutamatergic synapses in both normal and pathological states.
Collapse
Affiliation(s)
- Lawrence Fourgeaud
- Molecular Neurobiology Laboratories (MNL-L), The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | |
Collapse
|
42
|
Regulation of synaptic stability by AMPA receptor reverse signaling. Proc Natl Acad Sci U S A 2010; 108:367-72. [PMID: 21173224 DOI: 10.1073/pnas.1015163108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The establishment of neuronal circuits relies on the stabilization of functionally appropriate connections and the elimination of inappropriate ones. Here we report that postsynaptic AMPA receptors play a critical role in regulating the stability of glutamatergic synapses. Removal of surface AMPA receptors leads to a decrease in the number and stability of excitatory presynaptic inputs, whereas overexpression increases synapse number and stability. Furthermore, overexpression of AMPA receptors along with Neuroligin-1 in 293T cells is sufficient to stabilize presynaptic inputs from cortical neurons onto heterologous cells. The stabilization of presynaptic inputs by AMPA receptors is not dependent on receptor-mediated current and instead relies on structural interactions mediated by the N-terminal domain of the glutamate receptor 2 (GluR2) subunit. These observations indicate that transsynaptic signaling mediated by the extracellular domain of GluR2 regulates the stability of presynaptic terminals.
Collapse
|
43
|
Bourne JA. Unravelling the development of the visual cortex: implications for plasticity and repair. J Anat 2010; 217:449-68. [PMID: 20722872 DOI: 10.1111/j.1469-7580.2010.01275.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain.
Collapse
Affiliation(s)
- James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
44
|
Reese BE. Development of the retina and optic pathway. Vision Res 2010; 51:613-32. [PMID: 20647017 DOI: 10.1016/j.visres.2010.07.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/04/2010] [Accepted: 07/13/2010] [Indexed: 12/30/2022]
Abstract
Our understanding of the development of the retina and visual pathways has seen enormous advances during the past 25years. New imaging technologies, coupled with advances in molecular biology, have permitted a fuller appreciation of the histotypical events associated with proliferation, fate determination, migration, differentiation, pathway navigation, target innervation, synaptogenesis and cell death, and in many instances, in understanding the genetic, molecular, cellular and activity-dependent mechanisms underlying those developmental changes. The present review considers those advances associated with the lineal relationships between retinal nerve cells, the production of retinal nerve cell diversity, the migration, patterning and differentiation of different types of retinal nerve cells, the determinants of the decussation pattern at the optic chiasm, the formation of the retinotopic map, and the establishment of ocular domains within the thalamus.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA.
| |
Collapse
|
45
|
Zacharaki T, Sophou S, Giannakopoulou A, Dinopoulos A, Antonopoulos J, Parnavelas J, Dori I. Natural and lesion-induced apoptosis in the dorsal lateral geniculate nucleus during development. Brain Res 2010; 1344:62-76. [DOI: 10.1016/j.brainres.2010.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 05/05/2010] [Accepted: 05/05/2010] [Indexed: 12/29/2022]
|
46
|
Speer CM, Mikula S, Huberman AD, Chapman B. The developmental remodeling of eye-specific afferents in the ferret dorsal lateral geniculate nucleus. Anat Rec (Hoboken) 2010; 293:1-24. [PMID: 20039439 DOI: 10.1002/ar.21001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Eye-specific projections to the dorsal lateral geniculate nucleus (dLGN) serve as a model for exploring how precise patterns of circuitry form during development in the mammalian central nervous system. Using a combination of dual-label anterograde retinogeniculate tracing and Nissl-staining, we studied the patterns of eye-specific afferents and cellular laminae in the dLGN of the pigmented sable ferret at eight developmental timepoints between birth and adulthood. Each time point was investigated in the three standard orthogonal planes of section, allowing us to generate a complete anatomical map of eye-specific development in this species. We find that eye-specific retinal ganglion cell axon segregation varies according to location in the dLGN, with the principle contralateral (A) and ipsilateral layers (A1) maturing first, followed by the contralateral and ipsilateral C laminae. Cytoarchitectural lamination lags behind eye-specific segregation, except in the C laminae where underlying cellular layers never develop to accompany eye-specific afferent domains. The emergence of On/Off sublaminae occurs following eye-specific segregation in this species. On the basis of these findings, we constructed a three-dimensional map of eye-specific channels in the developing and mature ferret dLGN.
Collapse
Affiliation(s)
- Colenso M Speer
- Center for Neuroscience, University of California, Davis, Davis, California 95618, USA
| | | | | | | |
Collapse
|
47
|
A mechanism for the polarity formation of chemoreceptors at the growth cone membrane for gradient amplification during directional sensing. PLoS One 2010; 5:e9243. [PMID: 20179770 PMCID: PMC2825272 DOI: 10.1371/journal.pone.0009243] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 01/25/2010] [Indexed: 11/19/2022] Open
Abstract
Accurate response to external directional signals is essential for many physiological functions such as chemotaxis or axonal guidance. It relies on the detection and amplification of gradients of chemical cues, which, in eukaryotic cells, involves the asymmetric relocalization of signaling molecules. How molecular events coordinate to induce a polarity at the cell level remains however poorly understood, particularly for nerve chemotaxis. Here, we propose a model, inspired by single-molecule experiments, for the membrane dynamics of GABA chemoreceptors in nerve growth cones (GCs) during directional sensing. In our model, transient interactions between the receptors and the microtubules, coupled to GABA-induced signaling, provide a positive-feedback loop that leads to redistribution of the receptors towards the gradient source. Using numerical simulations with parameters derived from experiments, we find that the kinetics of polarization and the steady-state polarized distribution of GABA receptors are in remarkable agreement with experimental observations. Furthermore, we make predictions on the properties of the GC seen as a sensing, amplification and filtering module. In particular, the growth cone acts as a low-pass filter with a time constant ∼10 minutes determined by the Brownian diffusion of chemoreceptors in the membrane. This filtering makes the gradient amplification resistent to rapid fluctuations of the external signals, a beneficial feature to enhance the accuracy of neuronal wiring. Since the model is based on minimal assumptions on the receptor/cytoskeleton interactions, its validity extends to polarity formation beyond the case of GABA gradient sensing. Altogether, it constitutes an original positive-feedback mechanism by which cells can dynamically adapt their internal organization to external signals.
Collapse
|
48
|
Josten NJ, Huberman AD. Milestones and Mechanisms for Generating Specific Synaptic Connections between the Eyes and the Brain. Curr Top Dev Biol 2010; 93:229-59. [DOI: 10.1016/b978-0-12-385044-7.00008-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology 2010; 35:147-68. [PMID: 19794405 PMCID: PMC3055433 DOI: 10.1038/npp.2009.115] [Citation(s) in RCA: 859] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 01/05/2023]
Abstract
Spanning functions from the simplest reflex arc to complex cognitive processes, neural circuits have diverse functional roles. In the cerebral cortex, functional domains such as visual processing, attention, memory, and cognitive control rely on the development of distinct yet interconnected sets of anatomically distributed cortical and subcortical regions. The developmental organization of these circuits is a remarkably complex process that is influenced by genetic predispositions, environmental events, and neuroplastic responses to experiential demand that modulates connectivity and communication among neurons, within individual brain regions and circuits, and across neural pathways. Recent advances in neuroimaging and computational neurobiology, together with traditional investigational approaches such as histological studies and cellular and molecular biology, have been invaluable in improving our understanding of these developmental processes in humans in both health and illness. To contextualize the developmental origins of a wide array of neuropsychiatric illnesses, this review describes the development and maturation of neural circuits from the first synapse through critical periods of vulnerability and opportunity to the emergent capacity for cognitive and behavioral regulation, and finally the dynamic interplay across levels of circuit organization and developmental epochs.
Collapse
Affiliation(s)
- Gregory Z Tau
- Division of Child and Adolescent Psychiatry, Columbia University and the New York State Psychiatric Institute, New York, NY, USA.
| | | |
Collapse
|
50
|
Stafford BK, Sher A, Litke AM, Feldheim DA. Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections. Neuron 2009; 64:200-12. [PMID: 19874788 DOI: 10.1016/j.neuron.2009.09.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2009] [Indexed: 11/27/2022]
Abstract
During development, retinal axons project coarsely within their visual targets before refining to form organized synaptic connections. Spontaneous retinal activity, in the form of acetylcholine-driven retinal waves, is proposed to be necessary for establishing these projection patterns. In particular, both axonal terminations of retinal ganglion cells (RGCs) and the size of receptive fields of target neurons are larger in mice that lack the beta2 subunit of the nicotinic acetylcholine receptor (beta2KO). Here, using a large-scale, high-density multielectrode array to record activity from hundreds of RGCs simultaneously, we present analysis of early postnatal retinal activity from both wild-type (WT) and beta2KO retinas. We find that beta2KO retinas have correlated patterns of activity, but many aspects of these patterns differ from those of WT retina. Quantitative analysis suggests that wave directionality, coupled with short-range correlated bursting patterns of RGCs, work together to refine retinofugal projections.
Collapse
Affiliation(s)
- Ben K Stafford
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|