1
|
Chen Y, Sun J, Tao J, Sun T. Treatments and regulatory mechanisms of acoustic stimuli on mood disorders and neurological diseases. Front Neurosci 2024; 17:1322486. [PMID: 38249579 PMCID: PMC10796816 DOI: 10.3389/fnins.2023.1322486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Acoustic stimuli such as music or ambient noise can significantly affect physiological and psychological health in humans. We here summarize positive effects of music therapy in premature infant distress regulation, performance enhancement, sleep quality control, and treatment of mental disorders. Specifically, music therapy exhibits promising effects on treatment of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). We also highlight regulatory mechanisms by which auditory intervention affects an organism, encompassing modulation of immune responses, gene expression, neurotransmitter regulation and neural circuitry. As a safe, cost-effective and non-invasive intervention, music therapy offers substantial potential in treating a variety of neurological conditions.
Collapse
Affiliation(s)
- Yikai Chen
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Julianne Sun
- Xiamen Institute of Technology Attached School, Xiamen, China
| | - Junxian Tao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| |
Collapse
|
2
|
Mohammadi P, Nadri S, Abdanipour A, Mortazavi Y. Microchip encapsulation and microRNA-7 overexpression of trabecular meshwork mesenchymal stem/stromal cells improve motor function after spinal cord injury. J Biomed Mater Res A 2023; 111:1482-1494. [PMID: 37042544 DOI: 10.1002/jbm.a.37549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
Manipulation of stem cells and microencapsulation through microfluidic chips has shown more promising results in treating complex conditions, such as spinal cord injury (SCI), than traditional treatments. This study aimed to investigate the potency of neural differentiation and its therapeutic role in SCI animal model of trabecular meshwork mesenchymal stem/stromal cells (TMMSCs) via miR-7 overexpression and microchip-encapsulated. TMMSCs are transduced with miR-7 via a lentiviral vector (TMMSCs-miR-7[+]) and encapsulated in alginate-reduced graphene oxide (alginate-rGO) hydrogel via a microfluidic chip. Neuronal differentiation of transduced cells in hydrogel (3D) and tissue cultures plate (2D) was assessed by expressing specific mRNAs and proteins. Further evaluation is being carried out through 3D and 2D TMMSCs-miR-7(+ and -) transplantation into the rat contusion SCI model. TMMSCs-miR-7(+) encapsulated in the microfluidic chip (miR-7-3D) increased nestin, β-tubulin III, and MAP-2 expression compared with 2D culture. Moreover, miR-7-3D could improve locomotor behavior in contusion SCI rats, decrease cavity size, and increase myelination. Our results revealed that miR-7 and alginate-rGO hydrogel were involved in the neuronal differentiation of TMMSCs in a time-dependent manner. In addition, the microfluidic-encapsulated miR-7 overexpression TMMSCs represented a better survival and integration of the transplanted cells and the repair of SCI. Collectively, the combination of miR-7 overexpression and encapsulation of TMMSCs in hydrogels may represent a promising new treatment for SCI.
Collapse
Affiliation(s)
- Parvin Mohammadi
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Abdanipour
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
4
|
Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacol Ther 2022; 236:108215. [DOI: 10.1016/j.pharmthera.2022.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
5
|
Miguel-Hidalgo JJ. Astroglia in the Vulnerability and Maintenance of Alcohol Use Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:255-279. [PMID: 34888838 DOI: 10.1007/978-3-030-77375-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes induced in the morphology and the multiplicity of functional roles played by astrocytes in brain regions critical to the establishment and maintenance of alcohol abuse suggest that they make an important contribution to the vulnerability to alcohol use disorders. The understanding of the relevant mechanisms accounting for that contribution is complicated by the fact that alcohol itself acts directly on astrocytes altering their metabolism, gene expression, and plasticity, so that the ultimate result is a complex interaction of various cellular pathways, including intracellular calcium regulation, neuroimmune responses, and regulation of neurotransmitter and gliotransmitter release and uptake. The recent years have seen a steady increase in the characterization of several of the relevant mechanisms, but much remains to be done for a full understanding of the astrocytes' contribution to the vulnerability to alcohol dependence and abuse and for using that knowledge in designing effective therapies for AUDs.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
6
|
Ye Y, Hao J, Hong Z, Wu T, Ge X, Qian B, Chen X, Zhang F. Downregulation of MicroRNA-145-5p in Activated Microglial Exosomes Promotes Astrocyte Proliferation by Removal of Smad3 Inhibition. Neurochem Res 2021; 47:382-393. [PMID: 34623564 DOI: 10.1007/s11064-021-03446-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/04/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023]
Abstract
In spinal cord injury, microglial activation plays an important role during the inflammatory process. Specifically, the cellular and molecular interactions between microglia and astrocytes are of critical importance. Cells can communicate with each other through the substances carried by exosomes, and overproliferated astrocytes would create a physical and chemical barrier that prevents neurite regeneration, thereby interfering with functional recovery. On the other hand, Smad3 is an important factor in the proliferation, migration, and apoptosis of astrocytes. In this study, supernatant and purified exosomes were collected from LPS-treated microglia and co-cultured with astrocytes. The results showed that astrocytic proliferation was promoted with higher levels of Smad3. Furthermore, miRNA sequencing analysis was performed on microglial exosomes after inflammation. The results revealed a differential expression of miR-145-5p in the exosomes. The Dual-Luciferase assay showed that miR-145-5p could bind to Smad3 mRNA and regulate the levels of Smad3 protein at the post-transcriptional level. Subsequently, exosomes were transfected with miR-145-5p mimics, and astrocytes after mechanical injury were cultured with these exosomes for 24 h. The levels of Smad3 and phosphor-Smad3 proteins were analyzed by western blot and qRT-PCR. CCK8 and flow cytometry showed lower proliferation of astrocytes after co-culturing with the exosomes transfected with the miR-145-5p mimic. This study finds that miR-145-5p was found to be a negative regulator of astrocyte proliferation, and that its downregulation promotes smad3 activity and thus astrocyte proliferation.
Collapse
Affiliation(s)
- Yong Ye
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, China
| | - Zhou Hong
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Tong Wu
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Xingyu Ge
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Boyu Qian
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Xiaoqing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
7
|
Wu J, Yu H, Huang H, Shu P, Peng X. Functions of noncoding RNAs in glial development. Dev Neurobiol 2021; 81:877-891. [PMID: 34402590 DOI: 10.1002/dneu.22848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Glia are widely distributed in the central nervous system and are closely related to cell metabolism, signal transduction, support, cell migration, and other nervous system development processes and functions. Glial development is complex and essential, including the processes of proliferation, differentiation, and migration, and requires precise regulatory networks. Noncoding RNAs (ncRNAs) can be deeply involved in glial development through gene regulation. Here, we review the regulatory roles of ncRNAs in glial development. We briefly describe the classification and functions of noncoding RNAs and focus on microRNAs (miRNAs) and long ncRNAs (lncRNAs), which have been reported to participate extensively during glial formation. The highlight of this summary is that miRNAs and lncRNAs can participate in and regulate the signaling pathways of glial development. The review not only describes how noncoding RNAs participate in nervous system development but also explains the processes of glial development, providing a foundation for subsequent studies on glial development and new insights into the pathogeneses of related neurological diseases.
Collapse
Affiliation(s)
- Jiarui Wu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Pengcheng Shu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
8
|
Jiang X, You L, Zhang Z, Cui X, Zhong H, Sun X, Ji C, Chi X. Biological Properties of Milk-Derived Extracellular Vesicles and Their Physiological Functions in Infant. Front Cell Dev Biol 2021; 9:693534. [PMID: 34249944 PMCID: PMC8267587 DOI: 10.3389/fcell.2021.693534] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are released by all cells under pathological and physiological conditions. EVs harbor various biomolecules, including protein, lipid, non-coding RNA, messenger RNA, and DNA. In 2007, mRNA and microRNA (miRNA) carried by EVs were found to have regulatory functions in recipient cells. The biological function of EVs has since then increasingly drawn interest. Breast milk, as the most important nutritional source for infants, contains EVs in large quantities. An increasing number of studies have provided the basis for the hypothesis associated with information transmission between mothers and infants via breast milk-derived EVs. Most studies on milk-derived EVs currently focus on miRNAs. Milk-derived EVs contain diverse miRNAs, which remain stable both in vivo and in vitro; as such, they can be absorbed across different species. Further studies have confirmed that miRNAs derived from milk-derived EVs can resist the acidic environment and enzymatic hydrolysis of the digestive tract; moreover, they can be absorbed by intestinal cells in infants to perform physiological functions. miRNAs derived from milk EVs have been reported in the maturation of immune cells, regulation of immune response, formation of neuronal synapses, and development of metabolic diseases such as obesity and diabetes. This article reviews current status and advances in milk-derived EVs, including their history, biogenesis, molecular contents, and biological functions. The effects of milk-derived EVs on growth and development in both infants and adults were emphasized. Finally, the potential application and future challenges of milk-derived EVs were discussed, providing comprehensive understanding and new insight into milk-derived EVs.
Collapse
Affiliation(s)
- Xue Jiang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Lianghui You
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhenxing Zhang
- The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hong Zhong
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xingzhen Sun
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Chenbo Ji
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
9
|
Zhou S, Gao B, Sun C, Bai Y, Cheng D, Zhang Y, Li X, Zhao J, Xu D. Vascular Endothelial Cell-derived Exosomes Protect Neural Stem Cells Against Ischemia/reperfusion Injury. Neuroscience 2020; 441:184-196. [PMID: 32502570 DOI: 10.1016/j.neuroscience.2020.05.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Vascular endothelial cells were activated during acute ischemic brain injury, which could induce neural progenitor cell proliferation and migration. However, the mechanism was still unknown. In the current study, we explored whether vascular endothelial cells promoted neural progenitor cell proliferation and whether migration occurs via exosome communication. The acute middle cerebral artery occlusion (MCAO) model was prepared, and exosomes were isolated from bEnd.3 cells by ultracentrifugation. In the exosome injection (Exos) group and PBS injection (control) group, exosomes or PBS were injected intraventricularly into rats' brains 2 h after MCAO surgery, respectively. Sham group rats received the same surgical but did not cause middle cerebral artery occlusion. The infarct volume was reduced on day 21 after ischemic brain injury by MRI, and neurobehavioral outcomes were improved on day 7, 14, and 21 by exosome injection compared with the control (p < 0.05). On the 21st day after MCAO, the animals were euthanized, and the number of BrdU/nestin-positive cells was measured by immunofluorescence. BrdU/nestin-positive cells in Exos group rats were significantly increased (p < 0.05) in the peri infarct area, the ipsilateral DG zone of the hippocampus, and the ventral sub-regions of SVZ when compared with the rats in the control group. Further, in vitro study demonstrated that neural progenitor cell proliferation and migration were activated after exosomes treatment, and cell apoptosis was attenuated compared to the control (p < 0.05). Our study suggested that exosomes should be essential for the reconstruction of neuronal vascular units and brain protection in an acute ischemic injured brain.
Collapse
Affiliation(s)
- Shaoting Zhou
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China
| | - Beiyao Gao
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Chengcheng Sun
- Rehabilitation Center, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Yulong Bai
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Dandan Cheng
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Ye Zhang
- Rehabilitation Center, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Xutong Li
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China.
| | - Dongsheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Lin J, Jo SB, Kim TH, Kim HW, Chew SY. RNA interference in glial cells for nerve injury treatment. J Tissue Eng 2020; 11:2041731420939224. [PMID: 32670539 PMCID: PMC7338726 DOI: 10.1177/2041731420939224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Drivers of RNA interference are potent for manipulating gene and protein levels, which enable the restoration of dysregulated mRNA expression that is commonly associated with injuries and diseases. This review summarizes the potential of targeting neuroglial cells, using RNA interference, to treat nerve injuries sustained in the central nervous system. In addition, the various methods of delivering these RNA interference effectors will be discussed.
Collapse
Affiliation(s)
- Junquan Lin
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
| | - Seung Bin Jo
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Sing Yian Chew
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine,
Nanyang Technological University, Singapore
| |
Collapse
|
11
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Wei WJ, Shi B, Guan X, Ma JY, Wang YC, Liu J. Mapping theme trends and knowledge structures for human neural stem cells: a quantitative and co-word biclustering analysis for the 2013-2018 period. Neural Regen Res 2019; 14:1823-1832. [PMID: 31169201 PMCID: PMC6585554 DOI: 10.4103/1673-5374.257535] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/06/2019] [Indexed: 01/27/2023] Open
Abstract
Neural stem cells, which are capable of multi-potential differentiation and self-renewal, have recently been shown to have clinical potential for repairing central nervous system tissue damage. However, the theme trends and knowledge structures for human neural stem cells have not yet been studied bibliometrically. In this study, we retrieved 2742 articles from the PubMed database from 2013 to 2018 using "Neural Stem Cells" as the retrieval word. Co-word analysis was conducted to statistically quantify the characteristics and popular themes of human neural stem cell-related studies. Bibliographic data matrices were generated with the Bibliographic Item Co-Occurrence Matrix Builder. We identified 78 high-frequency Medical Subject Heading (MeSH) terms. A visual matrix was built with the repeated bisection method in gCLUTO software. A social network analysis network was generated with Ucinet 6.0 software and GraphPad Prism 5 software. The analyses demonstrated that in the 6-year period, hot topics were clustered into five categories. As suggested by the constructed strategic diagram, studies related to cytology and physiology were well-developed, whereas those related to neural stem cell applications, tissue engineering, metabolism and cell signaling, and neural stem cell pathology and virology remained immature. Neural stem cell therapy for stroke and Parkinson's disease, the genetics of microRNAs and brain neoplasms, as well as neuroprotective agents, Zika virus, Notch receptor, neural crest and embryonic stem cells were identified as emerging hot spots. These undeveloped themes and popular topics are potential points of focus for new studies on human neural stem cells.
Collapse
Affiliation(s)
- Wen-Juan Wei
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Bei Shi
- Department of Physiology, China Medical University, Shenyang, Liaoning Province, China
| | - Xin Guan
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing-Yun Ma
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ya-Chen Wang
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
13
|
Snijders C, de Nijs L, Baker DG, Hauger RL, van den Hove D, Kenis G, Nievergelt CM, Boks MP, Vermetten E, Gage FH, Rutten BPF. MicroRNAs in Post-traumatic Stress Disorder. Curr Top Behav Neurosci 2019; 38:23-46. [PMID: 29063484 DOI: 10.1007/7854_2017_32] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that can develop following exposure to or witnessing of a (potentially) threatening event. A critical issue is to pinpoint the (neuro)biological mechanisms underlying the susceptibility to stress-related disorder such as PTSD, which develops in the minority of ~15% of individuals exposed to trauma. Over the last few years, a first wave of epigenetic studies has been performed in an attempt to identify the molecular underpinnings of the long-lasting behavioral and mental effects of trauma exposure. The potential roles of non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) in moderating or mediating the impact of severe stress and trauma are increasingly gaining attention. To date, most studies focusing on the roles of miRNAs in PTSD have, however, been completed in animals, using cross-sectional study designs and focusing almost exclusively on subjects with susceptible phenotypes. Therefore, there is a strong need for new research comprising translational and cross-species approaches that use longitudinal designs for studying trajectories of change contrasting susceptible and resilient subjects. The present review offers a comprehensive overview of available studies of miRNAs in PTSD and discusses the current challenges, pitfalls, and future perspectives of this field.
Collapse
Affiliation(s)
- Clara Snijders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience, (EURON), Maastricht, 6200 MD, The Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience, (EURON), Maastricht, 6200 MD, The Netherlands
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92037, USA
- VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, 92037, USA
- VA San Diego Healthcare System, San Diego, La Jolla, CA, 92037, USA
| | - Richard L Hauger
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92037, USA
- VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, 92037, USA
- VA San Diego Healthcare System, San Diego, La Jolla, CA, 92037, USA
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience, (EURON), Maastricht, 6200 MD, The Netherlands
- Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, 97080, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience, (EURON), Maastricht, 6200 MD, The Netherlands
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92037, USA
- VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, 92037, USA
| | - Marco P Boks
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Eric Vermetten
- Military Mental Health Research Center, Ministry of Defense, P.O. Box 90000, Utrecht, 3509 AA, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Arq Psychotrauma Research Group, Diemen, 1112 XE, The Netherlands
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience, (EURON), Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
14
|
Gao Y, Li J, Zhang Z, Zhang R, Pollock A, Sun T. MicroRNA miR-7 and miR-17-92 in the Arcuate Nucleus of Mouse Hypothalamus Regulate Sex-Specific Diet-Induced Obesity. Mol Neurobiol 2019; 56:7508-7521. [DOI: 10.1007/s12035-019-1618-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
|
15
|
Caggiu E, Paulus K, Mameli G, Arru G, Sechi GP, Sechi LA. Differential expression of miRNA 155 and miRNA 146a in Parkinson's disease patients. eNeurologicalSci 2018; 13:1-4. [PMID: 30255159 PMCID: PMC6149197 DOI: 10.1016/j.ensci.2018.09.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disorder and its etiology is unknown, numerous studies show how different environmental factors can influence the development of disease. miRNAs are involved in several pathologies and their dysregulation contribute to different pathologies, also in neurodegenerative such as Parkinson's disease, Alzheimer's disease, Huntington's disease and Amyotrophic lateral sclerosis. In this study, we profiled the expression of different candidate miRNAs: miR-155, miR-26a, miR-146a, and miR132, in PBMCs of L-dopa treated Parkinson patients and unaffected controls (HCs).We investigated the expression of miRNAs by RT-real time PCR, the results were subjected to statistical analysis. miRNA-155-5p was generally up-regulated in PD patients compared to HCs whereas miRNA-146a-5p was down-regulated in PD patients in comparison to HCs. It is interesting to point out that the expression of miR-155-5p was modified by levodopa treatment, in fact a down-regulation of miR-155-5p in PD patients with the highest dosage was observed. In conclusion, miRNA 155 could not only be a promising target for the anti-inflammatory therapy in PD but also a good candidate as a disease progression biomarker. The role of levodopa in modulating the levels of miRNA 155 requires further studies.
Collapse
Affiliation(s)
- Elisa Caggiu
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| | - Kai Paulus
- UOC Neurologia, Azienda-Ospedaliero Universitaria di Sassari, Italy
| | - Giuseppe Mameli
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| | - Giannina Arru
- Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| | - Gian Pietro Sechi
- Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| |
Collapse
|
16
|
Stappert L, Klaus F, Brüstle O. MicroRNAs Engage in Complex Circuits Regulating Adult Neurogenesis. Front Neurosci 2018; 12:707. [PMID: 30455620 PMCID: PMC6230569 DOI: 10.3389/fnins.2018.00707] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
The finding that the adult mammalian brain is still capable of producing neurons has ignited a new field of research aiming to identify the molecular mechanisms regulating adult neurogenesis. An improved understanding of these mechanisms could lead to the development of novel approaches to delay cognitive decline and facilitate neuroregeneration in the adult human brain. Accumulating evidence suggest microRNAs (miRNAs), which represent a class of post-transcriptional gene expression regulators, as crucial part of the gene regulatory networks governing adult neurogenesis. This review attempts to illustrate how miRNAs modulate key processes in the adult neurogenic niche by interacting with each other and with transcriptional regulators. We discuss the function of miRNAs in adult neurogenesis following the life-journey of an adult-born neuron from the adult neural stem cell (NSCs) compartment to its final target site. We first survey how miRNAs control the initial step of adult neurogenesis, that is the transition of quiescent to activated proliferative adult NSCs, and then go on to discuss the role of miRNAs to regulate neuronal differentiation, survival, and functional integration of the newborn neurons. In this context, we highlight miRNAs that converge on functionally related targets or act within cross talking gene regulatory networks. The cooperative manner of miRNA action and the broad target repertoire of each individual miRNA could make the miRNA system a promising tool to gain control on adult NSCs in the context of therapeutic approaches.
Collapse
Affiliation(s)
- Laura Stappert
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Frederike Klaus
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
17
|
Upregulation of MicroRNA miR-9 Is Associated with Microcephaly and Zika Virus Infection in Mice. Mol Neurobiol 2018; 56:4072-4085. [DOI: 10.1007/s12035-018-1358-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
|
18
|
Zhang L, Mubarak T, Chen Y, Lee T, Pollock A, Sun T. Counter-Balance Between Gli3 and miR-7 Is Required for Proper Morphogenesis and Size Control of the Mouse Brain. Front Cell Neurosci 2018; 12:259. [PMID: 30210296 PMCID: PMC6121149 DOI: 10.3389/fncel.2018.00259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Brain morphogenesis requires precise regulation of multiple genes to control specification of distinct neural progenitors (NPs) and neuronal production. Dysregulation of these genes results in severe brain malformation such as macrocephaly and microcephaly. Despite studies of the effect of individual pathogenic genes, the counter-balance between multiple factors in controlling brain size remains unclear. Here we show that cortical deletion of Gli3 results in enlarged brain and folding structures in the cortical midline at the postnatal stage, which is mainly caused by the increased percentage of intermediate progenitors (IPs) and newborn neurons. In addition, dysregulation of neuronal migration also contributes to the folding defects in the cortical midline region. Knockdown of microRNA (miRNA) miR-7 can rescue abnormal brain morphology in Gli3 knockout mice by recovering progenitor specification, neuronal production and migration through a counter-balance of the Gli3 activity. Moreover, miR-7 likely exerts its function through silencing target gene Pax6. Our results indicate that proper brain morphogenesis is an outcome of interactive regulations of multiple molecules such as Gli3 and miR-7. Because miRNAs are easy to synthesize and deliver, miR-7 could be a potential therapeutic means to macrocephaly caused by Gli3-deficiency.
Collapse
Affiliation(s)
- Longbin Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Taufif Mubarak
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Yase Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Andrew Pollock
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
19
|
Navarro Quiroz E, Navarro Quiroz R, Ahmad M, Gomez Escorcia L, Villarreal JL, Fernandez Ponce C, Aroca Martinez G. Cell Signaling in Neuronal Stem Cells. Cells 2018; 7:E75. [PMID: 30011912 PMCID: PMC6070865 DOI: 10.3390/cells7070075] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/30/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The defining characteristic of neural stem cells (NSCs) is their ability to multiply through symmetric divisions and proliferation, and differentiation by asymmetric divisions, thus giving rise to different types of cells of the central nervous system (CNS). A strict temporal space control of the NSC differentiation is necessary, because its alterations are associated with neurological dysfunctions and, in some cases, death. This work reviews the current state of the molecular mechanisms that regulate the transcription in NSCs, organized according to whether the origin of the stimulus that triggers the molecular cascade in the CNS is internal (intrinsic factors) or whether it is the result of the microenvironment that surrounds the CNS (extrinsic factors).
Collapse
Affiliation(s)
- Elkin Navarro Quiroz
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- School of Medicine, Universidad Rafael Nuñez, Cartagena 130001, Colombia.
| | - Roberto Navarro Quiroz
- Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, Santa Marta 470002, Colombia.
| | - Mostapha Ahmad
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | - Lorena Gomez Escorcia
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | | | | | - Gustavo Aroca Martinez
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- Clinica de la Costa, Barranquilla 080002, Colombia.
| |
Collapse
|
20
|
Muralidharan B, D'Souza L, Tole S. An Efficient System for Gene Perturbation in Embryonic Hippocampal Progenitors Using Ex Vivo Electroporation Followed by In Vitro Dissociated Cell Culture. J Exp Neurosci 2018; 12:1179069518767404. [PMID: 29760561 PMCID: PMC5946340 DOI: 10.1177/1179069518767404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/07/2018] [Indexed: 11/16/2022] Open
Abstract
We established an efficient cell culture assay that permits combinatorial genetic perturbations in hippocampal progenitors to examine cell-autonomous mechanisms of fate specification. The procedure begins with ex vivo electroporation of isolated, intact embryonic brains, in a manner similar to in utero electroporation but with greatly improved access and targeting. The electroporated region is then dissected and transiently maintained in organotypic explant culture, followed by dissociation and plating of cells on coverslips for in vitro culture. This assay recapitulates data obtained in vivo with respect to the neuron-glia cell fate switch and can be effectively used to test intrinsic or extrinsic factors that regulate this process. The advantages of this ex vivo procedure over in utero electroporation include the fact that distinct combinations of perturbative reagents can be introduced in different embryos from a single litter, and issues related to embryonic lethality of transgenic animals can be circumvented.
Collapse
Affiliation(s)
- Bhavana Muralidharan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Leora D'Souza
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
21
|
Blandford SN, Galloway DA, Moore CS. The roles of extracellular vesicle microRNAs in the central nervous system. Glia 2018; 66:2267-2278. [PMID: 29726599 DOI: 10.1002/glia.23445] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are small, highly conserved non-coding RNA molecules that post-transcriptionally regulate protein expression and most biological processes. Mature miRNAs are recruited to the RNA-induced silencing complex (RISC) and target mRNAs via complementary base-pairing, thus resulting in translational inhibition and/or transcript degradation. Here, we present evidence implicating miRNAs within extracellular vesicles (EVs), including microvesicles and exosomes, as mediators of central nervous system (CNS) development, homeostasis, and injury. EVs are extracellular vesicles that are secreted by all cells and represent a novel method of intercellular communication. In glial cells, the transfer of miRNAs via EVs can alter the function of recipient cells and significantly impacts cellular mechanisms involved in both injury and repair. This review discusses the value of information to be gained by studying miRNAs within EVs in the context of CNS diseases and their potential use in the development of novel disease biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
| | - Dylan A Galloway
- Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Craig S Moore
- Memorial University of Newfoundland, St John's, Newfoundland, Canada
| |
Collapse
|
22
|
He H, Li W, Peng M, Qin J, Shi J, Li H, Tian M, Zhang X, Lv G, Jin G. MicroRNA expression profiles of neural stem cells following valproate inducement. J Cell Biochem 2018; 119:6204-6215. [PMID: 29575035 DOI: 10.1002/jcb.26831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/28/2018] [Indexed: 12/18/2022]
Abstract
Neural stem cells (NSCs) possess self-renewal and multilineage differentiation ability, thus are considered to be a potential source for cell replacement therapy of many nervous system diseases, such as neurodegenerative diseases. Valproate (VPA), a member of histone deacetylase inhibitor family, is an epigenetic regulator and can promote NSCs to differentiate into neurons, nevertheless, the underlying mechanisms of the process remain unclear. MicroRNAs (miRNAs) exert a crucial part in the posttranscriptional regulation of gene expression. Epigenetic mechanisms involve in the regulation of miRNAs expression. Therefore we speculated that miRNAs may be important factors during the promotion of neuronal differentiation by VPA. Here, after selecting appropriate concentration and treatment time of VPA, we conducted microRNA arrays at 24 h on the treatment of 1 mM VPA or vehicle. After validation, we obtained 5 significantly upregulated miRNAs (miR-29a-5p, miR-674-5p, miR-155-5p, miR-652-3p, and miR-210-3p) in VPA group compared with control. We predicted the target genes of these miRNAs on the website. Through gene ontology (GO) and pathway analyses, we obtained preliminary comprehension of the function of these genes. The bioinformatics analyses indicated the involvement of them during neurogenesis. In addition, we observed high expression of miR-210-3p, miR-29a-5p, and miR-674-5p in central nervous system, which suggested that they were likely to play crucial roles in neuronal differentiation. We then defined the upregulation of Map2 by transfecting mimic of miR-674-5p, which indicated the promotion of miR-674-5p on NSCs differentiation. The present study explored the miRNAs potentially mediated the function of VPA on promoting NSCs to differentiate into neurons.
Collapse
Affiliation(s)
- Hui He
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Wen Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Min Peng
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Jianbing Qin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Jinhong Shi
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Haoming Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Meiling Tian
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Xinhua Zhang
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Guangming Lv
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China.,Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China
| | - Guohua Jin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China.,Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China
| |
Collapse
|
23
|
Miguel-Hidalgo JJ. Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders. Front Mol Neurosci 2018; 11:78. [PMID: 29615864 PMCID: PMC5869926 DOI: 10.3389/fnmol.2018.00078] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Postmortem studies reveal structural and molecular alterations of astrocytes and oligodendrocytes in both the gray and white matter (GM and WM) of the prefrontal cortex (PFC) in human subjects with chronic alcohol abuse or dependence. These glial cellular changes appear to parallel and may largely explain structural and functional alterations detected using neuroimaging techniques in subjects with alcohol use disorders (AUDs). Moreover, due to the crucial roles of astrocytes and oligodendrocytes in neurotransmission and signal conduction, these cells are very likely major players in the molecular mechanisms underpinning alcoholism-related connectivity disturbances between the PFC and relevant interconnecting brain regions. The glia-mediated etiology of alcohol-related brain damage is likely multifactorial since metabolic, hormonal, hepatic and hemodynamic factors as well as direct actions of ethanol or its metabolites have the potential to disrupt distinct aspects of glial neurobiology. Studies in animal models of alcoholism and postmortem human brains have identified astrocyte markers altered in response to significant exposures to ethanol or during alcohol withdrawal, such as gap-junction proteins, glutamate transporters or enzymes related to glutamate and gamma-aminobutyric acid (GABA) metabolism. Changes in these proteins and their regulatory pathways would not only cause GM neuronal dysfunction, but also disturbances in the ability of WM axons to convey impulses. In addition, alcoholism alters the expression of astrocyte and myelin proteins and of oligodendrocyte transcription factors important for the maintenance and plasticity of myelin sheaths in WM and GM. These changes are concomitant with epigenetic DNA and histone modifications as well as alterations in regulatory microRNAs (miRNAs) that likely cause profound disturbances of gene expression and protein translation. Knowledge is also available about interactions between astrocytes and oligodendrocytes not only at the Nodes of Ranvier (NR), but also in gap junction-based astrocyte-oligodendrocyte contacts and other forms of cell-to-cell communication now understood to be critical for the maintenance and formation of myelin. Close interactions between astrocytes and oligodendrocytes also suggest that therapies for alcoholism based on a specific glial cell type pathology will require a better understanding of molecular interactions between different cell types, as well as considering the possibility of using combined molecular approaches for more effective therapies.
Collapse
Affiliation(s)
- José J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
24
|
Cao T, Zhen XC. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci Ther 2018. [PMID: 29529357 DOI: 10.1111/cns.12840] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although it is generally believed that genetic and developmental factors play critical roles in pathogenesis of schizophrenia, however, the precise etiological mechanism of schizophrenia remains largely unknown. Over past decades, miRNAs have emerged as an essential post-transcriptional regulator in gene expression regulation. The importance of miRNA in brain development and neuroplasticity has been well-established. Abnormal expression and dysfunction of miRNAs are known to involve in the pathophysiology of many neuropsychiatric diseases including schizophrenia. In this review, we summarized the recent findings in the schizophrenia-associated dysregulation of miRNA and functional roles in the development and pathogenesis of schizophrenia. We also discussed the potential therapeutic implications of miRNA regulation in the illness.
Collapse
Affiliation(s)
- Ting Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,The Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,The Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Sakamoto K, Crowley JJ. A comprehensive review of the genetic and biological evidence supports a role for MicroRNA-137 in the etiology of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2018; 177:242-256. [PMID: 29442441 PMCID: PMC5815396 DOI: 10.1002/ajmg.b.32554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/05/2017] [Indexed: 01/06/2023]
Abstract
Since it was first associated with schizophrenia (SCZ) in a 2011 genome-wide association study (GWAS), there have been over 100 publications focused on MIR137, the gene encoding microRNA-137. These studies have examined everything from its fundamental role in the development of mice, flies, and fish to the intriguing enrichment of its target gene network in SCZ. Indeed, much of the excitement surrounding MIR137 is due to the distinct possibility that it could regulate a gene network involved in SCZ etiology, a disease which we now recognize is highly polygenic. Here we comprehensively review, to the best of our ability, all published genetic and biological evidence that could support or refute a role for MIR137 in the etiology of SCZ. Through a careful consideration of the literature, we conclude that the data gathered to date continues to strongly support the involvement of MIR137 and its target gene network in neuropsychiatric traits, including SCZ risk. There remain, however, more unanswered than answered questions regarding the mechanisms linking MIR137 genetic variation with behavior. These questions need answers before we can determine whether there are opportunities for diagnostic or therapeutic interventions based on MIR137. We conclude with a number of suggestions for future research on MIR137 that could help to provide answers and hope for a greater understanding of this devastating disorder.
Collapse
Affiliation(s)
- Kensuke Sakamoto
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - James J. Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Lin28B promotes Müller glial cell de-differentiation and proliferation in the regenerative rat retinas. Oncotarget 2018; 7:49368-49383. [PMID: 27384999 PMCID: PMC5226514 DOI: 10.18632/oncotarget.10343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 01/21/2023] Open
Abstract
Retinal regeneration and repair are severely impeded in higher mammalian animals. Although Müller cells can be activated and show some characteristics of progenitor cells when injured or under pathological conditions, they quickly form gliosis scars. Unfortunately, the basic mechanisms that impede retinal regeneration remain unknown. We studied retinas from Royal College of Surgeon (RCS) rats and found that let-7 family molecules, let-7e and let-7i, were significantly overexpressed in Müller cells of degenerative retinas. It demonstrated that down-regulation of the RNA binding protein Lin28B was one of the key factors leading to the overexpression of let-7e and let-7i. Lin28B ectopic expression in the Müller cells suppressed overexpression of let-7e and let-7i, stimulated and mobilized Müller glia de-differentiation, proliferation, promoted neuronal commitment, and inhibited glial fate acquisition of de-differentiated Müller cells. ERG recordings revealed that the amplitudes of a-wave and b-wave were improved significantly after Lin28B was delivered into the subretinal space of RCS rats. In summary, down-regulation of Lin28B as well as up-regulation of let-7e and let-7i may be the main factors that impede Müller cell de-differentiation and proliferation in the retina of RCS rats.
Collapse
|
27
|
Zammit V, Baron B, Ayers D. MiRNA Influences in Neuroblast Modulation: An Introspective Analysis. Genes (Basel) 2018; 9:genes9010026. [PMID: 29315268 PMCID: PMC5793179 DOI: 10.3390/genes9010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common occurring solid paediatric cancer in children under the age of five years. Whether of familial or sporadic origin, chromosome abnormalities contribute to the development of NB and cause dysregulation of microRNAs (miRNAs). MiRNAs are small non-coding, single stranded RNAs that target messenger RNAs at the post-transcriptional levels by repressing translation within all facets of human physiology. Such gene 'silencing' activities by miRNAs allows the development of regulatory feedback loops affecting multiple functions within the cell, including the possible differentiation of neural stem cell (NSC) lineage selection. Neurogenesis includes stages of self-renewal and fate specification of NSCs, migration and maturation of young neurones, and functional integration of new neurones into the neural circuitry, all of which are regulated by miRNAs. The role of miRNAs and their interaction in cellular processes are recognised aspects of cancer genetics, and miRNAs are currently employed as biomarkers for prognosis and tumour characterisation in multiple cancer models. Consequently, thorough understanding of the mechanisms of how these miRNAs interplay at the transcriptomic level will definitely lead to the development of novel, bespoke and efficient therapeutic measures, with this review focusing on the influences of miRNAs on neuroblast modulations leading to neuroblastoma.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, PTA1010 G'Mangia, Malta.
- School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
28
|
Roese-Koerner B, Stappert L, Brüstle O. Notch/Hes signaling and miR-9 engage in complex feedback interactions controlling neural progenitor cell proliferation and differentiation. NEUROGENESIS 2017; 4:e1313647. [PMID: 28573150 PMCID: PMC5443189 DOI: 10.1080/23262133.2017.1313647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/27/2016] [Accepted: 01/18/2017] [Indexed: 02/04/2023]
Abstract
Canonical Notch signaling has diverse functions during nervous system development and is critical for neural progenitor self-renewal, timing of differentiation and specification of various cell fates. A key feature of Notch-mediated self-renewal is its fluctuating activity within the neural progenitor cell population and the oscillatory expression pattern of the Notch effector Hes1 and its target genes. A negative feedback loop between Hes1 and neurogenic microRNA miR-9 was found to be part of this oscillatory clock. In a recent study we discovered that miR-9 expression is further modulated by direct binding of the Notch intracellular domain/RBPj transcriptional complex to the miR-9_2 promoter. In turn, miR-9 not only targets Hes1 but also Notch2 to attenuate Notch signaling and promote neuronal differentiation. Here, we discuss how the two interwoven feedback loops may provide an additional fail-save mechanism to control proliferation and differentiation within the neural progenitor cell population. Furthermore, we explore potential implications of miR-9-mediated regulation of Notch/Hes1 signaling with regard to neural progenitor homeostasis, patterning, timing of differentiation and tumor formation.
Collapse
Affiliation(s)
- Beate Roese-Koerner
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| | - Laura Stappert
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| |
Collapse
|
29
|
Gao F, Zhang YF, Zhang ZP, Fu LA, Cao XL, Zhang YZ, Guo CJ, Yan XC, Yang QC, Hu YY, Zhao XH, Wang YZ, Wu SX, Ju G, Zheng MH, Han H. miR-342-5p Regulates Neural Stem Cell Proliferation and Differentiation Downstream to Notch Signaling in Mice. Stem Cell Reports 2017; 8:1032-1045. [PMID: 28344005 PMCID: PMC5390133 DOI: 10.1016/j.stemcr.2017.02.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is critically involved in neural development, but the downstream effectors remain incompletely understood. In this study, we cultured neurospheres from Nestin-Cre-mediated conditional Rbp-j knockout (Rbp-j cKO) and control embryos and compared their miRNA expression profiles using microarray. Among differentially expressed miRNAs, miR-342-5p showed upregulated expression as Notch signaling was genetically or pharmaceutically interrupted. Consistently, the promoter of the miR-342-5p host gene, the Ena-vasodilator stimulated phosphoprotein-like (Evl), was negatively regulated by Notch signaling, probably through HES5. Transfection of miR-342-5p promoted the differentiation of neural stem cells (NSCs) into intermediate neural progenitors (INPs) in vitro and reduced the stemness of NSCs in vivo. Furthermore, miR-342-5p inhibited the differentiation of neural stem/intermediate progenitor cells into astrocytes, likely mediated by targeting GFAP directly. Our results indicated that miR-342-5p could function as a downstream effector of Notch signaling to regulate the differentiation of NSCs into INPs and astrocytes commitment. miR-342-5p acts as a downstream effector of canonical Notch signaling Notch signal inhibits miR-342-5p expression by regulating its host gene Evl miR-342-5p promotes the transition of NSCs into INPs Astrocyte commitment was suppressed by miR-342-5p targeting GFAP
Collapse
Affiliation(s)
- Fang Gao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China; Institute of Neurosciences, Department of Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China
| | - Yu-Fei Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China
| | - Zheng-Ping Zhang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Luo-An Fu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiu-Li Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China
| | - Yi-Zhe Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China
| | - Chen-Jun Guo
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China
| | - Xian-Chun Yan
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China
| | - Qin-Chuan Yang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China; Institute of Neurosciences, Department of Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China
| | - Yi-Yang Hu
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China
| | - Xiang-Hui Zhao
- Institute of Neurosciences, Department of Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China
| | - Ya-Zhou Wang
- Institute of Neurosciences, Department of Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China
| | - Sheng-Xi Wu
- Institute of Neurosciences, Department of Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China
| | - Gong Ju
- Institute of Neurosciences, Department of Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China.
| | - Min-Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China.
| | - Hua Han
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, China.
| |
Collapse
|
30
|
Liao W, Jiang M, Li M, Jin C, Xiao S, Fan S, Fang W, Zheng Y, Liu J. Magnesium Elevation Promotes Neuronal Differentiation While Suppressing Glial Differentiation of Primary Cultured Adult Mouse Neural Progenitor Cells through ERK/CREB Activation. Front Neurosci 2017; 11:87. [PMID: 28280456 PMCID: PMC5322230 DOI: 10.3389/fnins.2017.00087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
This study aimed to explore the influence of magnesium elevation on fate determination of adult neural progenitor cells (aNPCs) and the underlying mechanism in vitro. Adult neurogenesis, which is the generation of functional neurons from neural precursors, occurs throughout life in restricted anatomical regions in mammals. Magnesium is the fourth most abundant ion in mammals, and its elevation in the brain has been shown to enhance memory and synaptic plasticity in vivo. However, the effects of magnesium on fate determination of aNPCs, which are vital processes in neurogenesis, remain unknown. NPCs isolated from the dentate gyrus of adult C57/BL6 mice were induced to differentiate in a medium with varying magnesium concentrations (0.6, 0.8, and 1.0 mM) and extracellular signal-regulated kinase (ERK) inhibitor PD0325901. The proportion of cells that differentiated into neurons and glial cells was evaluated using immunofluorescence. Quantitative real-time polymerase chain reaction and Western blot methods were used to determine the expression of β-III tubulin (Tuj1) and glial fibrillary acidic protein (GFAP). The activation of ERK and cAMP response element-binding protein (CREB) was examined by Western blot to reveal the underlying mechanism. Magnesium elevation increased the proportion of Tju1-positive cells and decreased the proportion of GFAP-positive cells. Also, the expression of Tuj1 was upregulated, whereas the expression of GFAP was downregulated. Moreover, magnesium elevation enhanced the activation of both ERK and CREB. Treatment with PD0325901 reversed these effects in a dose-dependent manner. Magnesium elevation promoted neural differentiation while suppressing glial cell differentiation, possibly via ERK-induced CREB activation.
Collapse
Affiliation(s)
- Wang Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Mujun Jiang
- Department of Neurology, Bengbu Medical College, The First Affiliated Hospital Bengbu, China
| | - Mei Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, China
| | - Congli Jin
- Department of Neurology, Affiliated Hospital of Guangdong Medical University Zhanjiang, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, China
| | - Shengnuo Fan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, China
| | - Wenli Fang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, China
| | - Yuqiu Zheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
31
|
Gao Y, Sun T. Molecular regulation of hypothalamic development and physiological functions. Mol Neurobiol 2016; 53:4275-85. [PMID: 26223804 PMCID: PMC4733441 DOI: 10.1007/s12035-015-9367-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Abstract
The hypothalamus is composed of many heterogeneous nuclei that control distinct physiological functions. Investigating molecular mechanisms that regulate the specification of these nuclei and specific neuronal subtypes, and their contribution to diverse hypothalamic functions, is an exciting research focus. Here, we begin by summarizing the hypothalamic functions of feeding regulation, sleep-wake cycles, stress responses, and circadian rhythm, and describing their anatomical bases. Next, we review the molecular regulation of formation of hypothalamic territories, specification of nuclei and subnuclei, and generation of specific neurons. Finally, we highlight physiological and behavioral consequences of altered hypothalamic development. Identifying molecules that regulate hypothalamic development and function will increase our understanding of hypothalamus-related disorders, such as obesity and diabetes, and aid in the development of therapies aimed specifically at their etiologies.
Collapse
Affiliation(s)
- Yanxia Gao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Tao Sun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY, 10065, USA.
| |
Collapse
|
32
|
Tsan YC, Morell MH, O'Shea KS. miR-410 controls adult SVZ neurogenesis by targeting neurogenic genes. Stem Cell Res 2016; 17:238-247. [PMID: 27591480 DOI: 10.1016/j.scr.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/14/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022] Open
Abstract
Over-expression of the early neural inducer, Noggin, in nestin positive subventricular zone (SVZ), neural stem cells (NSC) promotes proliferation and neuronal differentiation of neural progenitors and inhibits the expression of a CNS-enriched microRNA-410 (miR-410) (Morell et al., 2015). When expressed in neurospheres derived from the adult SVZ, miR-410 inhibits neuronal and oligodendrocyte differentiation, and promotes astrocyte differentiation. miR-410 also reverses the increase in neuronal differentiation and decreased astroglial differentiation caused by Noggin over-expression. Conversely, inhibition of miR-410 activity promotes neuronal and decreases astroglial differentiation of NSC. Using computer prediction algorithms and luciferase reporter assays we identified multiple neurogenic genes including Elavl4 as downstream targets of miR-410 via the canonical miRNA-3'UTR interaction. Over-expression of Elavl4 transcripts without the endogenous 3'UTR rescued the decrease in neuronal differentiation caused by miR-410 overexpression. Interestingly, we also observed that miR-410 affected neurite morphology; over-expression of miR-410 resulted in the formation of short, unbranched neurites. We conclude that miR-410 expression provides a new link between BMP signaling and the crucial lineage choice of adult neural stem cells via its ability to bind and control the expression of neurogenic gene transcripts.
Collapse
Affiliation(s)
- Yao-Chang Tsan
- Department of Cell and Developmental Biology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Maria H Morell
- Department of Cell and Developmental Biology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - K Sue O'Shea
- Department of Cell and Developmental Biology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
33
|
Cao DD, Li L, Chan WY. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. Int J Mol Sci 2016; 17:E842. [PMID: 27240359 PMCID: PMC4926376 DOI: 10.3390/ijms17060842] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Dan-Dan Cao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Lu Li
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Wai-Yee Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| |
Collapse
|
34
|
Bátiz LF, Castro MA, Burgos PV, Velásquez ZD, Muñoz RI, Lafourcade CA, Troncoso-Escudero P, Wyneken U. Exosomes as Novel Regulators of Adult Neurogenic Niches. Front Cell Neurosci 2016; 9:501. [PMID: 26834560 PMCID: PMC4717294 DOI: 10.3389/fncel.2015.00501] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Abstract
Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ newborn neurons are destined to the granular cell layer (GCL) of the DG, while new neurons from the SVZ neurons migrate rostrally into the olfactory bulb (OB). The process of adult neurogenesis persists throughout life and is supported by a pool of neural stem cells (NSCs), which reside in a unique and specialized microenvironment known as "neurogenic niche". Neurogenic niches are structured by a complex organization of different cell types, including the NSC-neuron lineage, glial cells and vascular cells. Thus, cell-to-cell communication plays a key role in the dynamic modulation of homeostasis and plasticity of the adult neurogenic process. Specific cell-cell contacts and extracellular signals originated locally provide the necessary support and regulate the balance between self-renewal and differentiation of NSCs. Furthermore, extracellular signals originated at distant locations, including other brain regions or systemic organs, may reach the niche through the cerebrospinal fluid (CSF) or the vasculature and influence its nature. The role of several secreted molecules, such as cytokines, growth factors, neurotransmitters, and hormones, in the biology of adult NSCs, has been systematically addressed. Interestingly, in addition to these well-recognized signals, a novel type of intercellular messengers has been identified recently: the extracellular vesicles (EVs). EVs, and particularly exosomes, are implicated in the transfer of mRNAs, microRNAs (miRNAs), proteins and lipids between cells and thus are able to modify the function of recipient cells. Exosomes appear to play a significant role in different stem cell niches such as the mesenchymal stem cell niche, cancer stem cell niche and pre-metastatic niche; however, their roles in adult neurogenic niches remain virtually unexplored. This review focuses on the current knowledge regarding the functional relationship between cellular and extracellular components of the adult SVZ and SGZ neurogenic niches, and the growing evidence that supports the potential role of exosomes in the physiology and pathology of adult neurogenesis.
Collapse
Affiliation(s)
- Luis Federico Bátiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Maite A Castro
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Patricia V Burgos
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Fisiología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Zahady D Velásquez
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Rosa I Muñoz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Carlos A Lafourcade
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| | - Paulina Troncoso-Escudero
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| |
Collapse
|
35
|
Heterochronic microRNAs in temporal specification of neural stem cells: application toward rejuvenation. NPJ Aging Mech Dis 2016; 2:15014. [PMID: 28721261 PMCID: PMC5514991 DOI: 10.1038/npjamd.2015.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022] Open
Abstract
Plasticity is a critical factor enabling stem cells to contribute to the development and regeneration of tissues. In the mammalian central nervous system (CNS), neural stem cells (NSCs) that are defined by their capability for self-renewal and differentiation into neurons and glia, are present in the ventricular neuroaxis throughout life. However, the differentiation potential of NSCs changes in a spatiotemporally regulated manner and these cells progressively lose plasticity during development. One of the major alterations in this process is the switch from neurogenesis to gliogenesis. NSCs initiate neurogenesis immediately after neural tube closure and then turn to gliogenesis from midgestation, which requires an irreversible competence transition that enforces a progressive reduction of neuropotency. A growing body of evidence indicates that the neurogenesis-to-gliogenesis transition is governed by multiple layers of regulatory networks consisting of multiple factors, including epigenetic regulators, transcription factors, and non-coding RNA (ncRNA). In this review, we focus on critical roles of microRNAs (miRNAs), a class of small ncRNA that regulate gene expression at the post-transcriptional level, in the regulation of the switch from neurogenesis to gliogenesis in NSCs in the developing CNS. Unraveling the regulatory interactions of miRNAs and target genes will provide insights into the regulation of plasticity of NSCs, and the development of new strategies for the regeneration of damaged CNS.
Collapse
|
36
|
Wohl SG, Reh TA. miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Müller glia. Glia 2016; 64:743-62. [PMID: 26732729 DOI: 10.1002/glia.22958] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/12/2015] [Accepted: 12/02/2015] [Indexed: 01/21/2023]
Abstract
The Müller glia of fish provide a source for neuronal regeneration after injury, but they do not do so in mammals. We previously showed that lentiviral gene transfer of the transcription factor Achaete-scute homolog 1 (Ascl1/Mash1) in murine Müller glia cultures resulted in partial reprogramming of the cells to retinal progenitors. The microRNAs (miRNAs) miR-124-9-9* facilitate neuronal reprogramming of fibroblasts, but their role in glia reprogramming has not been reported. The aim of this study was to test whether (1) lentiviral gene transfer of miR-124-9-9* can reprogram Müller glia into retinal neurons and (2) miR-124-9-9* can improve Ascl1-induced reprogramming. Primary Müller glia cultures were generated from postnatal day (P) 11/12 mice, transduced with lentiviral particles, i.e., miR-124-9-9*-RFP, nonsense-RFP, Ascl1-GFP, or GFP-control. Gene expression and immunofluorescence analyses were performed within 3 weeks after infection. 1. Overexpression of miR-124-9-9* induced the expression of the proneural factor Ascl1 and additional markers of neurons, including TUJ1 and MAP2. 2. When Ascl1 and miR-124-9-9* were combined, 50 to 60% of Müller glia underwent neuronal reprogramming, whereas Ascl1 alone results in a 30 to 35% reprogramming rate. 3. Analysis of the miR-124-9-9* treated glial cells showed a reduction in the level of Ctdsp1 and Ptbp1, indicating a critical role for the REST pathway in the repression of neuronal genes in Müller glia. Our data further suggest that miR-124-9-9* and the REST complex may play a role in regulating the reprogramming of Müller glia to progenitors that underlies retinal regeneration in zebrafish.
Collapse
Affiliation(s)
| | - Thomas Andrew Reh
- Department of Biological Structure, University of Washington, Seattle, Washington
| |
Collapse
|
37
|
Shimizu S, Tanaka T, Tohyama M, Miyata S. Yokukansan normalizes glucocorticoid receptor protein expression in oligodendrocytes of the corpus callosum by regulating microRNA-124a expression after stress exposure. Brain Res Bull 2015; 114:49-55. [PMID: 25857947 DOI: 10.1016/j.brainresbull.2015.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/29/2022]
Abstract
Stressful events are known to down-regulate expression levels of glucocorticoid receptors (GRs) in the brain. Recently, we reported that stressed mice with elevated plasma levels of corticosterone exhibit morphological changes in the oligodendrocytes of nerve fiber bundles, such as those in the corpus callosum. However, little is known about the molecular mechanism of GR expression regulation in oligodendrocytes after stress exposure. A previous report has suggested that GR protein levels might be regulated by microRNA (miR)-18 and/or -124a in the brain. In this study, we aimed to elucidate the GR regulation mechanism in oligodendrocytes and evaluate the effects of yokukansan (YKS), a Kampo medicine, on GR protein regulation. Acute exposure to stress increased plasma corticosterone levels, decreased GR protein expression, and increased miR-124a expression in the corpus callosum of adult male mice, though the GR mRNA and miR-18 expression levels were not significant changes. YKS normalized the stress-induced changes in the plasma corticosterone, GR protein, and miR124a expression levels. An oligodendrocyte primary culture study also showed that YKS down-regulated miR-124a, but not miR-18, expression levels in dexamethasone-treated cells. These results suggest that the down-regulation of miR124a expression might be involved in the normalization of stress-induced decreases in GR protein in oligodendrocytes by YKS. This effect may imply the molecular mechanisms underlying the ameliorative effects of YKS on psychological symptoms and stress-related behaviors.
Collapse
Affiliation(s)
- Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan
| | - Takashi Tanaka
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan; Osaka Prefectural Hospital Organization, Osaka 558-8558, Japan
| | - Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan.
| |
Collapse
|
38
|
Stappert L, Roese-Koerner B, Brüstle O. The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell Tissue Res 2015; 359:47-64. [PMID: 25172833 PMCID: PMC4284387 DOI: 10.1007/s00441-014-1981-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
The impressive neuronal diversity found within the nervous system emerges from a limited pool of neural progenitor cells that proceed through different gene expression programs to acquire distinct cell fates. Here, we review recent evidence indicating that microRNAs (miRNAs) are critically involved in conferring neural cell identities during neural induction, neuronal differentiation and subtype specification. Several studies have shown that miRNAs act in concert with other gene regulatory factors and genetic switches to regulate the spatial and temporal expression profiles of important cell fate determinants. So far, most studies addressing the role of miRNAs during neurogenesis were conducted using animal models. With the advent of human pluripotent stem cells and the possibility to differentiate these into neural stem cells, we now have the opportunity to study miRNAs in a human context. More insight into the impact of miRNA-based regulation during neural fate choice could in the end be exploited to develop new strategies for the generation of distinct human neuronal cell types.
Collapse
Affiliation(s)
- Laura Stappert
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| | - Beate Roese-Koerner
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| |
Collapse
|
39
|
The Emerging Role of MitomiRs in the Pathophysiology of Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 888:123-54. [DOI: 10.1007/978-3-319-22671-2_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Ikegame Y, Yamashita K, Nakashima S, Nomura Y, Yonezawa S, Asano Y, Shinoda J, Hara H, Iwama T. Fate of graft cells: what should be clarified for development of mesenchymal stem cell therapy for ischemic stroke? Front Cell Neurosci 2014; 8:322. [PMID: 25374506 PMCID: PMC4204523 DOI: 10.3389/fncel.2014.00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are believed to be promising for cell administration therapy after ischemic stroke. Because of their advantageous characteristics, such as ability of differentiation into neurovascular lineages, avoidance of immunological problems, and abundance of graft cells in mesodermal tissues, studies regarding MSC therapy have increased recently. However, several controversies are yet to be resolved before a worldwide consensus regarding a standard protocol is obtained. In particular, the neuroprotective effects, the rate of cell migration to the lesion, and differentiation direction differ depending on preclinical observations. Analyses of these differences and application of recent developments in stem cell biology or engineering in imaging modality may contribute to identification of criteria for optimal stem cell therapy in which reliable protocols, which control cell quality and include safe administration procedures, are defined for each recovery phase after cerebral ischemia. In this mini review, we examine controversies regarding the fate of grafts and the prospects for advanced therapy that could be obtained through recent developments in stem cell research as direct conversion to neural cells.
Collapse
Affiliation(s)
- Yuka Ikegame
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Kentaro Yamashita
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Neurosurgery, Murakami Memorial Hospital, Asahi University Gifu, Japan
| | - Shigeru Nakashima
- Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Yuichi Nomura
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Shingo Yonezawa
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Yoshitaka Asano
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Jun Shinoda
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan
| |
Collapse
|
41
|
Wang CY, Yang SH, Tzeng SF. MicroRNA-145 as one negative regulator of astrogliosis. Glia 2014; 63:194-205. [PMID: 25139829 DOI: 10.1002/glia.22743] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/01/2014] [Indexed: 11/09/2022]
Abstract
Astrogliosis occurs at the lesion site within days to weeks after spinal cord injury (SCI) and involves the proliferation and hypertrophy of astrocytes, leading to glia scar formation. Changes in gene expression by deregulated microRNAs (miRNAs) are involved in the process of central nervous system neurodegeneration. Here, we report that mir-145, a miRNA enriched in rat spinal neurons and astrocytes, was downregulated at 1 week and 1 month after SCI. Our in vitro studies using astrocytes prepared from neonatal spinal cord tissues indicated that potent inflammagen lipopolysaccharide downregulated mir-145 expression in astrocytes, suggesting that SCI-triggered inflammatory signaling pathways could play the inhibitory role in astrocytic mir-145 expression. To induce overexpression of mir-145 in astrocytes at the spinal cord lesion site, we developed a lentivirus-mediated pre-miRNA delivery system using the promoter of glial fibrillary acidic protein (GFAP), an astrocyte-specific intermediate filament. The results indicated that astrocyte-specific overexpression of mir-145 reduced astrocytic cell density at the lesion border of the injured spinal cord. In parallel, overexpression of mir-145 reduced the size of astrocytes and the number of related cell processes, as well as cell proliferation and migration. Through a luciferase reporter system, we found that GFAP and c-myc were the two potential targets of mir-145 in astrocytes. Together, the findings demonstrate the novel role of mir-145 in the regulation of astrocytic dynamics, and reveal that the downregulation of mir-145 in astrocytes is a critical factor inducing astrogliosis after SCI. GLIA 2015;63:194-205.
Collapse
Affiliation(s)
- Chih-Yen Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
42
|
Rehfeld F, Rohde AM, Nguyen DTT, Wulczyn FG. Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis. Cell Tissue Res 2014; 359:145-60. [PMID: 24825413 DOI: 10.1007/s00441-014-1872-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/11/2014] [Indexed: 11/25/2022]
Abstract
Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including the mammalian brain. In this review, we describe molecular interactions between Lin28 and let-7 and the biological role that each plays in implementing stem cell programs that either maintain stem cell self-renewal and plasticity or drive lineage commitment and differentiation. For Lin28, considerable progress has been made in defining let-7-dependent and let-7-independent functions in the maintenance of pluripotency, somatic cell reprogramming, tissue regeneration, and neural stem cell plasticity. For the pro-differentiation activity of let-7, we focus on emerging roles in mammalian neurogenesis and neuronal function. Specific targets and pathways for let-7 have been identified in embryonic and adult neurogenesis, including corticogenesis, retinal specification, and adult neurogenic niches. Special emphasis is given to examples of feedback and feedforward regulation, in particular within the miRNA biogenesis pathway.
Collapse
Affiliation(s)
- Frederick Rehfeld
- Institute for Cell and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
43
|
Sun T, Hevner RF. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci 2014; 15:217-32. [PMID: 24646670 DOI: 10.1038/nrn3707] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The size and extent of folding of the mammalian cerebral cortex are important factors that influence a species' cognitive abilities and sensorimotor skills. Studies in various animal models and in humans have provided insight into the mechanisms that regulate cortical growth and folding. Both protein-coding genes and microRNAs control cortical size, and recent progress in characterizing basal progenitor cells and the genes that regulate their proliferation has contributed to our understanding of cortical folding. Neurological disorders linked to disruptions in cortical growth and folding have been associated with novel neurogenetic mechanisms and aberrant signalling pathways, and these findings have changed concepts of brain evolution and may lead to new medical treatments for certain disorders.
Collapse
Affiliation(s)
- Tao Sun
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, BOX 60, New York, New York 10065, USA
| | - Robert F Hevner
- Department of Neurological Surgery and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, USA
| |
Collapse
|
44
|
Paridaen JTML, Huttner WB. Neurogenesis during development of the vertebrate central nervous system. EMBO Rep 2014; 15:351-64. [PMID: 24639559 DOI: 10.1002/embr.201438447] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During vertebrate development, a wide variety of cell types and tissues emerge from a single fertilized oocyte. One of these tissues, the central nervous system, contains many types of neurons and glial cells that were born during the period of embryonic and post-natal neuro- and gliogenesis. As to neurogenesis, neural progenitors initially divide symmetrically to expand their pool and switch to asymmetric neurogenic divisions at the onset of neurogenesis. This process involves various mechanisms involving intrinsic as well as extrinsic factors. Here, we discuss the recent advances and insights into regulation of neurogenesis in the developing vertebrate central nervous system. Topics include mechanisms of (a)symmetric cell division, transcriptional and epigenetic regulation, and signaling pathways, using mostly examples from the developing mammalian neocortex.
Collapse
|