1
|
Falconieri A. Interplay of force and local mechanisms in axonal plasticity and beyond. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119874. [PMID: 39515663 DOI: 10.1016/j.bbamcr.2024.119874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The interactions between mechanical forces and neuronal dynamics have long intrigued researchers. Several studies revealed that force plays a pivotal role in shaping axonal outgrowth. However, the molecular mechanisms underpinning force-driven axonal plasticity remain not completely elucidated. This review explores the relationship between force and axonal plasticity, with a focus on local mechanisms, including local translation and axonal transport, and the emerging concept of force-driven cross-talk, a dialogue in which local dynamics are tightly regulated. Recent experimental evidence suggests that microtubules may serve as key mediators of this cross-talk, orchestrating the coordination between local mechanisms and facilitating mass addition.
Collapse
Affiliation(s)
- A Falconieri
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK; Department of Biology, Universiy of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Koppers M, Özkan N, Nguyen HH, Jurriens D, McCaughey J, Nguyen DTM, Li CH, Stucchi R, Altelaar M, MacGillavry HD, Kapitein LC, Hoogenraad CC, Farías GG. Axonal endoplasmic reticulum tubules control local translation via P180/RRBP1-mediated ribosome interactions. Dev Cell 2024; 59:2053-2068.e9. [PMID: 38815583 PMCID: PMC11338522 DOI: 10.1016/j.devcel.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Local mRNA translation in axons is critical for the spatiotemporal regulation of the axonal proteome. A wide variety of mRNAs are localized and translated in axons; however, how protein synthesis is regulated at specific subcellular sites in axons remains unclear. Here, we establish that the axonal endoplasmic reticulum (ER) supports axonal translation in developing rat hippocampal cultured neurons. Axonal ER tubule disruption impairs local translation and ribosome distribution. Using nanoscale resolution imaging, we find that ribosomes make frequent contacts with axonal ER tubules in a translation-dependent manner and are influenced by specific extrinsic cues. We identify P180/RRBP1 as an axonally distributed ribosome receptor that regulates local translation and binds to mRNAs enriched for axonal membrane proteins. Importantly, the impairment of axonal ER-ribosome interactions causes defects in axon morphology. Our results establish a role for the axonal ER in dynamically localizing mRNA translation, which is important for proper neuron development.
Collapse
Affiliation(s)
- Max Koppers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Nazmiye Özkan
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Ha H Nguyen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Daphne Jurriens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Janine McCaughey
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Dan T M Nguyen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Chun Hei Li
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Ginny G Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
3
|
van Tartwijk FW, Wunderlich LCS, Mela I, Makarchuk S, Jakobs MAH, Qamar S, Franze K, Kaminski Schierle GS, St George-Hyslop PH, Lin JQ, Holt CE, Kaminski CF. Mutation of the ALS-/FTD-Associated RNA-Binding Protein FUS Affects Axonal Development. J Neurosci 2024; 44:e2148232024. [PMID: 38692734 PMCID: PMC7616130 DOI: 10.1523/jneurosci.2148-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/23/2024] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Aberrant condensation and localization of the RNA-binding protein (RBP) fused in sarcoma (FUS) occur in variants of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Changes in RBP function are commonly associated with changes in axonal cytoskeletal organization and branching in neurodevelopmental disorders. Here, we asked whether branching defects also occur in vivo in a model of FUS-associated disease. We use two reported Xenopus models of ALS/FTD (of either sex), the ALS-associated mutant FUS(P525L) and a mimic of hypomethylated FUS, FUS(16R). Both mutants strongly reduced axonal complexity in vivo. We also observed an axon looping defect for FUS(P525L) in the target area, which presumably arises due to errors in stop cue signaling. To assess whether the loss of axon complexity also had a cue-independent component, we assessed axonal cytoskeletal integrity in vitro. Using a novel combination of fluorescence and atomic force microscopy, we found that mutant FUS reduced actin density in the growth cone, altering its mechanical properties. Therefore, FUS mutants may induce defects during early axonal development.
Collapse
Affiliation(s)
- Francesca W van Tartwijk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Lucia C S Wunderlich
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Stanislaw Makarchuk
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 OAH, United Kingdom
| | - Maximilian A H Jakobs
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Seema Qamar
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Kristian Franze
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Peter H St George-Hyslop
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Department of Medicine, University of Toronto and University Health Network and Tanz Centre for Research in Neurodegenerative Diseases University of Toronto, Toronto, Ontario M5T 0S8, Canada
- Department of Neurology, Taub Institute For Research on Alzheimer's Disease and the Aging Brain, Columbia University Irvine Medical Center, New York, New York 10032
| | - Julie Qiaojin Lin
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 OAH, United Kingdom
- UK Dementia Research Institute Centre and Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9NU, United Kingdom
| | - Christine E Holt
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
4
|
Yoshizumi K, Nishi M, Igeta M, Nakamori M, Inoue K, Matsumura T, Fujimura H, Jinnai K, Kimura T. Analysis of splicing abnormalities in the white matter of myotonic dystrophy type 1 brain using RNA sequencing. Neurosci Res 2024; 200:48-56. [PMID: 37806497 DOI: 10.1016/j.neures.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by the genomic expansion of CTG repeats, in which RNA-binding proteins, such as muscleblind-like protein, are sequestered in the nucleus, and abnormal splicing is observed in various genes. Although abnormal splicing occurs in the brains of patients with DM1, its relation to central nervous system symptoms is unknown. Several imaging studies have indicated substantial white matter defects in patients with DM1. Here, we performed RNA sequencing and analysis of CTG repeat lengths in the frontal lobe of patients with DM1, separating the gray matter and white matter, to investigate splicing abnormalities in the DM1 brain, especially in the white matter. Several genes showed similar levels of splicing abnormalities in both gray and white matter, with an observable trend toward an increased number of repeats in the gray matter. These findings suggest that white matter defects in DM1 stem from aberrant RNA splicing in both gray and white matter. Notably, several of the genes displaying abnormal splicing are recognized as being dominantly expressed in astrocytes and oligodendrocytes, leading us to hypothesize that splicing defects in the white matter may be attributed to abnormal RNA splicing in glial cells.
Collapse
Affiliation(s)
- Kazuki Yoshizumi
- Department of Neurology, Hyogo Medical University, Nishinomiya, 663-8501 Hyogo, Japan
| | - Masamitsu Nishi
- Department of Neurology, Hyogo Medical University, Nishinomiya, 663-8501 Hyogo, Japan
| | - Masataka Igeta
- Department of Biostatistics, Hyogo Medical University, Nishinomiya, 663-8501 Hyogo, Japan
| | - Masayuki Nakamori
- Department of Neurology, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505 Yamaguchi, Japan
| | - Kimiko Inoue
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, 560-8552 Osaka, Japan
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, 560-8552 Osaka, Japan
| | - Harutoshi Fujimura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, 560-8552 Osaka, Japan
| | - Kenji Jinnai
- Department of Neurology, National Hospital Organization Hyogo-Chuo Hospital, Sanda, 669-1515 Hyogo, Japan
| | - Takashi Kimura
- Department of Neurology, Hyogo Medical University, Nishinomiya, 663-8501 Hyogo, Japan.
| |
Collapse
|
5
|
Oliveira MM, Mohamed M, Elder MK, Banegas-Morales K, Mamcarz M, Lu EH, Golhan EAN, Navrange N, Chatterjee S, Abel T, Klann E. The integrated stress response effector GADD34 is repurposed by neurons to promote stimulus-induced translation. Cell Rep 2024; 43:113670. [PMID: 38219147 PMCID: PMC10964249 DOI: 10.1016/j.celrep.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Neuronal protein synthesis is required for long-lasting plasticity and long-term memory consolidation. Dephosphorylation of eukaryotic initiation factor 2α is one of the key translational control events that is required to increase de novo protein synthesis that underlies long-lasting plasticity and memory consolidation. Here, we interrogate the molecular pathways of translational control that are triggered by neuronal stimulation with brain-derived neurotrophic factor (BDNF), which results in eukaryotic initiation factor 2α (eIF2α) dephosphorylation and increases in de novo protein synthesis. Primary rodent neurons exposed to BDNF display elevated translation of GADD34, which facilitates eIF2α dephosphorylation and subsequent de novo protein synthesis. Furthermore, GADD34 requires G-actin generated by cofilin to dephosphorylate eIF2α and enhance protein synthesis. Finally, GADD34 is required for BDNF-induced translation of synaptic plasticity-related proteins. Overall, we provide evidence that neurons repurpose GADD34, an effector of the integrated stress response, as an orchestrator of rapid increases in eIF2-dependent translation in response to plasticity-inducing stimuli.
Collapse
Affiliation(s)
| | - Muhaned Mohamed
- Center for Neural Science, New York University, New York, NY, USA
| | - Megan K Elder
- Center for Neural Science, New York University, New York, NY, USA
| | | | - Maggie Mamcarz
- Center for Neural Science, New York University, New York, NY, USA
| | - Emily H Lu
- Center for Neural Science, New York University, New York, NY, USA
| | - Ela A N Golhan
- Center for Neural Science, New York University, New York, NY, USA
| | - Nishika Navrange
- Center for Neural Science, New York University, New York, NY, USA
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA; NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Ament SA, Poulopoulos A. The brain's dark transcriptome: Sequencing RNA in distal compartments of neurons and glia. Curr Opin Neurobiol 2023; 81:102725. [PMID: 37196598 PMCID: PMC10524153 DOI: 10.1016/j.conb.2023.102725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 05/19/2023]
Abstract
Transcriptomic approaches are powerful strategies to map the molecular diversity of cells in the brain. Single-cell genomic atlases have now been compiled for entire mammalian brains. However, complementary techniques are only just beginning to map the subcellular transcriptomes from distal cellular compartments. We review single-cell datasets alongside subtranscriptome data from the mammalian brain to explore the development of cellular and subcellular diversity. We discuss how single-cell RNA-seq misses transcripts localized away from cell bodies, which form the 'dark transcriptome' of the brain: a collection of subtranscriptomes in dendrites, axons, growth cones, synapses, and endfeet with important roles in brain development and function. Recent advances in subcellular transcriptome sequencing are beginning to reveal these elusive pools of RNA. We outline the success stories to date in uncovering the constituent subtranscriptomes of neurons and glia, as well as present the emerging toolkit that is accelerating the pace of subtranscriptome discovery.
Collapse
Affiliation(s)
- Seth A Ament
- Department of Psychiatry, UM-MIND, and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexandros Poulopoulos
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Titlow JS, Kiourlappou M, Palanca A, Lee JY, Gala DS, Ennis D, Yu JJ, Young FL, Susano Pinto DM, Garforth S, Francis HS, Strivens F, Mulvey H, Dallman-Porter A, Thornton S, Arman D, Millard MJ, Järvelin AI, Thompson MK, Sargent M, Kounatidis I, Parton RM, Taylor S, Davis I. Systematic analysis of YFP traps reveals common mRNA/protein discordance in neural tissues. J Cell Biol 2023; 222:e202205129. [PMID: 37145332 PMCID: PMC10165541 DOI: 10.1083/jcb.202205129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 05/06/2023] Open
Abstract
While post-transcriptional control is thought to be required at the periphery of neurons and glia, its extent is unclear. Here, we investigate systematically the spatial distribution and expression of mRNA at single molecule sensitivity and their corresponding proteins of 200 YFP trap lines across the intact Drosophila nervous system. 97.5% of the genes studied showed discordance between the distribution of mRNA and the proteins they encode in at least one region of the nervous system. These data suggest that post-transcriptional regulation is very common, helping to explain the complexity of the nervous system. We also discovered that 68.5% of these genes have transcripts present at the periphery of neurons, with 9.5% at the glial periphery. Peripheral transcripts include many potential new regulators of neurons, glia, and their interactions. Our approach is applicable to most genes and tissues and includes powerful novel data annotation and visualization tools for post-transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Ana Palanca
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jeffrey Y. Lee
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dalia S. Gala
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Darragh Ennis
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Joyce J.S. Yu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Sam Garforth
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Finn Strivens
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Hugh Mulvey
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Staci Thornton
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Diana Arman
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | - Martin Sargent
- Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | - Stephen Taylor
- Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Schuhmacher JS, Tom Dieck S, Christoforidis S, Landerer C, Davila Gallesio J, Hersemann L, Seifert S, Schäfer R, Giner A, Toth-Petroczy A, Kalaidzidis Y, Bohnsack KE, Bohnsack MT, Schuman EM, Zerial M. The Rab5 effector FERRY links early endosomes with mRNA localization. Mol Cell 2023; 83:1839-1855.e13. [PMID: 37267905 DOI: 10.1016/j.molcel.2023.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 05/08/2023] [Indexed: 06/04/2023]
Abstract
Localized translation is vital to polarized cells and requires precise and robust distribution of different mRNAs and ribosomes across the cell. However, the underlying molecular mechanisms are poorly understood and important players are lacking. Here, we discovered a Rab5 effector, the five-subunit endosomal Rab5 and RNA/ribosome intermediary (FERRY) complex, that recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction. FERRY displays preferential binding to certain groups of transcripts, including mRNAs encoding mitochondrial proteins. Deletion of FERRY subunits reduces the endosomal localization of transcripts in cells and has a significant impact on mRNA levels. Clinical studies show that genetic disruption of FERRY causes severe brain damage. We found that, in neurons, FERRY co-localizes with mRNA on early endosomes, and mRNA loaded FERRY-positive endosomes are in close proximity of mitochondria. FERRY thus transforms endosomes into mRNA carriers and plays a key role in regulating mRNA distribution and transport.
Collapse
Affiliation(s)
- Jan S Schuhmacher
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Susanne Tom Dieck
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Savvas Christoforidis
- Biomedical Research Institute, Foundation for Research and Technology, 45110 Ioannina, Greece; Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ramona Schäfer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Angelika Giner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Göttingen Centre for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
10
|
Bauer KE, de Queiroz BR, Kiebler MA, Besse F. RNA granules in neuronal plasticity and disease. Trends Neurosci 2023:S0166-2236(23)00104-2. [PMID: 37202301 DOI: 10.1016/j.tins.2023.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/20/2023]
Abstract
RNA granules are dynamic entities controlling the spatiotemporal distribution and translation of RNA molecules. In neurons, a variety of RNA granules exist both in the soma and in cellular processes. They contain transcripts encoding signaling and synaptic proteins as well as RNA-binding proteins causally linked to several neurological disorders. In this review, we highlight that neuronal RNA granules exhibit properties of biomolecular condensates that are regulated upon maturation and physiological aging and how they are reversibly remodeled in response to neuronal activity to control local protein synthesis and ultimately synaptic plasticity. Moreover, we propose a framework of how neuronal RNA granules mature over time in healthy conditions and how they transition into pathological inclusions in the context of late-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Karl E Bauer
- Biomedical Center (BMC), Department of Anatomy and Cell Biology, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Bruna R de Queiroz
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Michael A Kiebler
- Biomedical Center (BMC), Department of Anatomy and Cell Biology, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
11
|
Xu G, Xu S, Gong W, Dong S, Yu H. Low Trend for VZV-Associated Disease Patients to Visit Neurologists. J Multidiscip Healthc 2023; 16:1379-1392. [PMID: 37215749 PMCID: PMC10199679 DOI: 10.2147/jmdh.s412398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Background Herpes zoster (HZ) is a skin disease that can also cause virus-infectious peripheral neuropathies. Despite this, there is limited information on patient preferences for seeking medical attention for HZ and zoster-associated pain (ZAP). Our study aimed to evaluate how frequently patients with ZAP choose to visit neurologists for their symptoms. Methods This study conducted a retrospective review of electronic health records in three general hospitals from January 2017 to June 2022. Using association rule mining, the study analyzed referral behaviors. Results We identified 33,633 patients with 111,488 outpatient visits over 5.5 years. The study found that the majority of patients (74.77-91.22%) visited dermatologists during their first outpatient visit, while only a small percentage (0.86-1.47%) preferred to consult a neurologist. The proportion of patients referred to a specialist during their medical visit varied significantly between different specialties within the same hospital (p <0.05) and even within the same specialty (p<0.05). There was a weak association (Lift:1.00-1.17) of referral behaviors between dermatology and neurology. Across the three hospitals, the average number of visits to a neurologist for ZAP was 1.42-2.49, with an average electronic health record duration of 11-15 days per patient. After consulting with a neurologist, some patients were referred to other specialists. Conclusion It was observed that patients with HZ and ZAP tended to visit a variety of specialists, with only a small number seeking the assistance of neurologists. However, from the perspective of neuroprotection, it is the duty of neurologists to provide more means.
Collapse
Affiliation(s)
- Gang Xu
- Department of Rehabilitation Medicine, Affiliated Tenth People’s Hospital of Tongji University, Shanghai Tenth People’s Hospital, Shanghai, 20072, People’s Republic of China
- Department of Rehabilitation Medicine, Tongji University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Site Xu
- Division of Information and Statistics, Affiliated Ruijin Hospital of Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Weiwei Gong
- Department of Rehabilitation Medicine, Tongji University School of Medicine, Shanghai, 200092, People’s Republic of China
- Department of Rehabilitation Medicine, Shanghai First Rehabilitation Hospital, Shanghai, 200090, People’s Republic of China
| | - Shihong Dong
- Department of Rehabilitation Medicine, Tongji University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Hecheng Yu
- Department of Rehabilitation Medicine, Affiliated Tenth People’s Hospital of Tongji University, Shanghai Tenth People’s Hospital, Shanghai, 20072, People’s Republic of China
| |
Collapse
|
12
|
Raffa V. Force: A messenger of axon outgrowth. Semin Cell Dev Biol 2023; 140:3-12. [PMID: 35817654 DOI: 10.1016/j.semcdb.2022.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
The axon is a sophisticated macromolecular machine composed of interrelated parts that transmit signals like spur gears transfer motion between parallel shafts. The growth cone is a fine sensor that integrates mechanical and chemical cues and transduces these signals through the generation of a traction force that pushes the tip and pulls the axon shaft forward. The axon shaft, in turn, senses this pulling force and transduces this signal in an orchestrated response, coordinating cytoskeleton remodeling and intercalated mass addition to sustain and support the advancing of the tip. Extensive research suggests that the direct application of active force is per se a powerful inducer of axon growth, potentially bypassing the contribution of the growth cone. This review provides a critical perspective on current knowledge of how the force is a messenger of axon growth and its mode of action for controlling navigation, including aspects that remain unclear. It also focuses on novel approaches and tools designed to mechanically manipulate axons, and discusses their implications in terms of potential novel therapies for re-wiring the nervous system.
Collapse
Affiliation(s)
- Vittoria Raffa
- Department of Biology, University of Pisa, SS12 Abetone e Brennero, 4, 56127 Pisa, Italy.
| |
Collapse
|
13
|
Fukuda N, Fukuda T, Percipalle P, Oda K, Takei N, Czaplinski K, Touhara K, Yoshihara Y, Sasaoka T. Axonal mRNA binding of hnRNP A/B is crucial for axon targeting and maturation of olfactory sensory neurons. Cell Rep 2023; 42:112398. [PMID: 37083330 DOI: 10.1016/j.celrep.2023.112398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Spatiotemporal control of gene expression is important for neural development and function. Here, we show that heterogeneous nuclear ribonucleoprotein (hnRNP) A/B is highly expressed in developing olfactory sensory neurons (OSNs), and its knockout results in reduction in mature OSNs and aberrant targeting of OSN axons to the olfactory bulb. RNA immunoprecipitation analysis reveals that hnRNP A/B binds to a group of mRNAs that are highly related to axon projections and synapse assembly. Approximately 11% of the identified hnRNP A/B targets, including Pcdha and Ncam2, encode cell adhesion molecules. In Hnrnpab knockout mice, PCDHA and NCAM2 levels are significantly reduced at the axon terminals of OSNs. Furthermore, deletion of the hnRNP A/B-recognition motif in the 3' UTR of Pcdha leads to impaired PCDHA expression at the OSN axon terminals. Therefore, we propose that hnRNP A/B facilitates OSN maturation and axon projection by regulating the local expression of its target genes at axon terminals.
Collapse
Affiliation(s)
- Nanaho Fukuda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Tomoyuki Fukuda
- Niigata University Graduate School of Medical and Dental Science, Niigata 951-8510, Japan
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, UAE; Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Kanako Oda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Nobuyuki Takei
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Kazushige Touhara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Toshikuni Sasaoka
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
14
|
Anadolu MN, Sun J, Kailasam S, Chalkiadaki K, Krimbacher K, Li JTY, Markova T, Jafarnejad SM, Lefebvre F, Ortega J, Gkogkas CG, Sossin WS. Ribosomes in RNA Granules Are Stalled on mRNA Sequences That Are Consensus Sites for FMRP Association. J Neurosci 2023; 43:2440-2459. [PMID: 36849416 PMCID: PMC10082463 DOI: 10.1523/jneurosci.1002-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Local translation in neurons is partly mediated by the reactivation of stalled polysomes. Stalled polysomes may be enriched within the granule fraction, defined as the pellet of sucrose gradients used to separate polysomes from monosomes. The mechanism of how elongating ribosomes are reversibly stalled and unstalled on mRNAs is still unclear. In the present study, we characterize the ribosomes in the granule fraction using immunoblotting, cryogenic electron microscopy (cryo-EM), and ribosome profiling. We find that this fraction, isolated from 5-d-old rat brains of both sexes, is enriched in proteins implicated in stalled polysome function, such as the fragile X mental retardation protein (FMRP) and Up-frameshift mutation 1 homologue. Cryo-EM analysis of ribosomes in this fraction indicates they are stalled, mainly in the hybrid state. Ribosome profiling of this fraction reveals (1) an enrichment for footprint reads of mRNAs that interact with FMRPs and are associated with stalled polysomes, (2) an abundance of footprint reads derived from mRNAs of cytoskeletal proteins implicated in neuronal development, and (3) increased ribosome occupancy on mRNAs encoding RNA binding proteins. Compared with those usually found in ribosome profiling studies, the footprint reads were longer and were mapped to reproducible peaks in the mRNAs. These peaks were enriched in motifs previously associated with mRNAs cross-linked to FMRP in vivo, independently linking the ribosomes in the granule fraction to the ribosomes associated with FMRP in the cell. The data supports a model in which specific sequences in mRNAs act to stall ribosomes during translation elongation in neurons.SIGNIFICANCE STATEMENT Neurons send mRNAs to synapses in RNA granules, where they are not translated until an appropriate stimulus is given. Here, we characterize a granule fraction obtained from sucrose gradients and show that polysomes in this fraction are stalled on consensus sequences in a specific state of translational arrest with extended ribosome-protected fragments. This finding greatly increases our understanding of how neurons use specialized mechanisms to regulate translation and suggests that many studies on neuronal translation may need to be re-evaluated to include the large fraction of neuronal polysomes found in the pellet of sucrose gradients used to isolate polysomes.
Collapse
Affiliation(s)
- Mina N Anadolu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jingyu Sun
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Senthilkumar Kailasam
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Konstanze Krimbacher
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck Austria Division of Biomedical Research, A-6020 Innsbruck, Austria
| | - Jewel T-Y Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Teodora Markova
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Seyed M Jafarnejad
- Patrick G, Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
15
|
Gould R, Brady S. Identifying mRNAs Residing in Myelinating Oligodendrocyte Processes as a Basis for Understanding Internode Autonomy. Life (Basel) 2023; 13:945. [PMID: 37109474 PMCID: PMC10142070 DOI: 10.3390/life13040945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
In elaborating and maintaining myelin sheaths on multiple axons/segments, oligodendrocytes distribute translation of some proteins, including myelin basic protein (MBP), to sites of myelin sheath assembly, or MSAS. As mRNAs located at these sites are selectively trapped in myelin vesicles during tissue homogenization, we performed a screen to identify some of these mRNAs. To confirm locations, we used real-time quantitative polymerase chain reaction (RT-qPCR), to measure mRNA levels in myelin (M) and 'non-myelin' pellet (P) fractions, and found that five (LPAR1, TRP53INP2, TRAK2, TPPP, and SH3GL3) of thirteen mRNAs were highly enriched in myelin (M/P), suggesting residences in MSAS. Because expression by other cell-types will increase p-values, some MSAS mRNAs might be missed. To identify non-oligodendrocyte expression, we turned to several on-line resources. Although neurons express TRP53INP2, TRAK2 and TPPP mRNAs, these expressions did not invalidate recognitions as MSAS mRNAs. However, neuronal expression likely prevented recognition of KIF1A and MAPK8IP1 mRNAs as MSAS residents and ependymal cell expression likely prevented APOD mRNA assignment to MSAS. Complementary in situ hybridization (ISH) is recommended to confirm residences of mRNAs in MSAS. As both proteins and lipids are synthesized in MSAS, understanding myelination should not only include efforts to identify proteins synthesized in MSAS, but also the lipids.
Collapse
Affiliation(s)
- Robert Gould
- Whitman Research Center, Marine Biology Laboratory, Woods Hole, MA 02543, USA
| | - Scott Brady
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
16
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
17
|
Lekk I, Cabrera-Cabrera F, Turconi G, Tuvikene J, Esvald EE, Rähni A, Casserly L, Garton DR, Andressoo JO, Timmusk T, Koppel I. Untranslated regions of brain-derived neurotrophic factor mRNA control its translatability and subcellular localization. J Biol Chem 2023; 299:102897. [PMID: 36639028 PMCID: PMC9943900 DOI: 10.1016/j.jbc.2023.102897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival and growth during development. In the adult nervous system, BDNF is important for synaptic function in several biological processes such as memory formation and food intake. In addition, BDNF has been implicated in development and maintenance of the cardiovascular system. The Bdnf gene comprises several alternative untranslated 5' exons and two variants of 3' UTRs. The effects of these entire alternative UTRs on translatability have not been established. Using reporter and translating ribosome affinity purification analyses, we show that prevalent Bdnf 5' UTRs, but not 3' UTRs, exert a repressive effect on translation. However, contrary to previous reports, we do not detect a significant effect of neuronal activity on BDNF translation. In vivo analysis via knock-in conditional replacement of Bdnf 3' UTR by bovine growth hormone 3' UTR reveals that Bdnf 3' UTR is required for efficient Bdnf mRNA and BDNF protein production in the brain, but acts in an inhibitory manner in lung and heart. Finally, we show that Bdnf mRNA is enriched in rat brain synaptoneurosomes, with higher enrichment detected for exon I-containing transcripts. In conclusion, these results uncover two novel aspects in understanding the function of Bdnf UTRs. First, the long Bdnf 3' UTR does not repress BDNF expression in the brain. Second, exon I-derived 5' UTR has a distinct role in subcellular targeting of Bdnf mRNA.
Collapse
Affiliation(s)
- Ingrid Lekk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Giorgio Turconi
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Eli-Eelika Esvald
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Annika Rähni
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Laoise Casserly
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Daniel R. Garton
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios Llc, Tallinn, Estonia.
| | - Indrek Koppel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
18
|
Li X, Jin DS, Eadara S, Caterina MJ, Meffert MK. Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100119. [PMID: 36798094 PMCID: PMC9926024 DOI: 10.1016/j.ynpai.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation. Levels of noncoding RNAs (ncRNAs) are commonly impacted by peripheral nerve injury leading to persistent pain. NcRNAs exert spatiotemporal regulation of local proteomes and affect signaling cascades supporting altered sensory responses that contribute to hyperalgesia. This review discusses ncRNAs found in the peripheral nervous system (PNS) that are dysregulated following nerve injury and the current understanding of their roles in pathophysiological pain-related responses including neuroimmune interactions, neuronal survival and axon regeneration, Schwann cell dedifferentiation and proliferation, intercellular communication, and the generation of ectopic action potentials in primary afferents. We review progress in the field beyond cataloging, with a focus on the relevant target transcripts and mechanisms underlying pain modulation by ncRNAs.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Daniel S. Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Michael J. Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Department of Neurosurgery and Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
19
|
Marfull-Oromí P, Onishi K, Han X, Yates JR, Zou Y. The Fragile X Messenger Ribonucleoprotein 1 Participates in Axon Guidance Mediated by the Wnt/Planar Cell Polarity Pathway. Neuroscience 2023; 508:76-86. [PMID: 36191829 DOI: 10.1016/j.neuroscience.2022.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 01/20/2023]
Abstract
The Planar cell polarity (PCP) pathway is known to mediate the function of the Wnt proteins in growth cone guidance. Here, we show that the PCP pathway may directly influence local protein synthesis within the growth cones. We found that Fragile X Messenger Ribonucleoprotein 1 (FMRP) interacts with Fzd3. This interaction is negatively regulated by Wnt5a, which induces FMRP phosphorylation. Knocking down FMRP via electroporating shRNAs into the dorsal spinal cord lead to a randomization of anterior-posterior turning of post-crossing commissural axons, which could be rescued by a FMRP rescue construct. Using RNAscope, we found that some of the FMRP target mRNAs encoding PCP components, PRICKLE2 and Celsr2, as well as regulators of cytoskeletal dynamics and components of cytoskeleton, APC, Cfl1, Map1b, Tubb3 and Actb, are present in the commissural neuron growth cones. Our results suggest that PCP signaling may regulate growth cone guidance, at least in part, by regulating local protein synthesis in the growth cones through via an interaction between Frizzled3 and FMRP.
Collapse
Affiliation(s)
- Pau Marfull-Oromí
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Keisuke Onishi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Xuemei Han
- Department of Chemical Physiology, TheScripps Research Institute, La Jolla, CA 92037, United States
| | - John R Yates
- Department of Chemical Physiology, TheScripps Research Institute, La Jolla, CA 92037, United States
| | - Yimin Zou
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
20
|
Cohen LD, Ziv T, Ziv NE. Synapse integrity and function: Dependence on protein synthesis and identification of potential failure points. Front Mol Neurosci 2022; 15:1038614. [PMID: 36583084 PMCID: PMC9792512 DOI: 10.3389/fnmol.2022.1038614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic integrity and function depend on myriad proteins - labile molecules with finite lifetimes that need to be continually replaced with freshly synthesized copies. Here we describe experiments designed to expose synaptic (and neuronal) properties and functions that are particularly sensitive to disruptions in protein supply, identify proteins lost early upon such disruptions, and uncover potential, yet currently underappreciated failure points. We report here that acute suppressions of protein synthesis are followed within hours by reductions in spontaneous network activity levels, impaired oxidative phosphorylation and mitochondrial function, and, importantly, destabilization and loss of both excitatory and inhibitory postsynaptic specializations. Conversely, gross impairments in presynaptic vesicle recycling occur over longer time scales (days), as does overt cell death. Proteomic analysis identified groups of potentially essential 'early-lost' proteins including regulators of synapse stability, proteins related to bioenergetics, fatty acid and lipid metabolism, and, unexpectedly, numerous proteins involved in Alzheimer's disease pathology and amyloid beta processing. Collectively, these findings point to neuronal excitability, energy supply and synaptic stability as early-occurring failure points under conditions of compromised supply of newly synthesized protein copies.
Collapse
Affiliation(s)
- Laurie D. Cohen
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion, Haifa, Israel
| | - Noam E. Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel,*Correspondence: Noam E. Ziv,
| |
Collapse
|
21
|
Gao J, Luo Y, Lu Y, Wu X, Chen P, Zhang X, Han L, Qiu M, Shen W. Epigenetic regulation of GABAergic differentiation in the developing brain. Front Cell Neurosci 2022; 16:988732. [PMID: 36212693 PMCID: PMC9539098 DOI: 10.3389/fncel.2022.988732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
In the vertebrate brain, GABAergic cell development and neurotransmission are important for the establishment of neural circuits. Various intrinsic and extrinsic factors have been identified to affect GABAergic neurogenesis. However, little is known about the epigenetic control of GABAergic differentiation in the developing brain. Here, we report that the number of GABAergic neurons dynamically changes during the early tectal development in the Xenopus brain. The percentage of GABAergic neurons is relatively unchanged during the early stages from stage 40 to 46 but significantly decreased from stage 46 to 48 tadpoles. Interestingly, the histone acetylation of H3K9 is developmentally decreased from stage 42 to 48 (about 3.5 days). Chronic application of valproate acid (VPA), a broad-spectrum histone deacetylase (HDAC) inhibitor, at stage 46 for 48 h increases the acetylation of H3K9 and the number of GABAergic cells in the optic tectum. VPA treatment also reduces apoptotic cells. Electrophysiological recordings show that a VPA induces an increase in the frequency of mIPSCs and no changes in the amplitude. Behavioral studies reveal that VPA decreases swimming activity and visually guided avoidance behavior. These findings extend our understanding of histone modification in the GABAergic differentiation and neurotransmission during early brain development.
Collapse
Affiliation(s)
- Juanmei Gao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yufang Lu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Wu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peiyao Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xinyu Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lu Han
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengsheng Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Mengsheng Qiu,
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Wanhua Shen,
| |
Collapse
|
22
|
Deliu LP, Turingan M, Jadir D, Lee B, Ghosh A, Grewal SS. Serotonergic neuron ribosomal proteins regulate the neuroendocrine control of Drosophila development. PLoS Genet 2022; 18:e1010371. [PMID: 36048889 PMCID: PMC9473637 DOI: 10.1371/journal.pgen.1010371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/14/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
The regulation of ribosome function is a conserved mechanism of growth control. While studies in single cell systems have defined how ribosomes contribute to cell growth, the mechanisms that link ribosome function to organismal growth are less clear. Here we explore this issue using Drosophila Minutes, a class of heterozygous mutants for ribosomal proteins. These animals exhibit a delay in larval development caused by decreased production of the steroid hormone ecdysone, the main regulator of larval maturation. We found that this developmental delay is not caused by decreases in either global ribosome numbers or translation rates. Instead, we show that they are due in part to loss of Rp function specifically in a subset of serotonin (5-HT) neurons that innervate the prothoracic gland to control ecdysone production. We find that these effects do not occur due to altered protein synthesis or proteostasis, but that Minute animals have reduced expression of synaptotagmin, a synaptic vesicle protein, and that the Minute developmental delay can be partially reversed by overexpression of synaptic vesicle proteins in 5-HTergic cells. These results identify a 5-HT cell-specific role for ribosomal function in the neuroendocrine control of animal growth and development.
Collapse
Affiliation(s)
- Lisa Patricia Deliu
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Michael Turingan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Deeshpaul Jadir
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Abhishek Ghosh
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Savraj Singh Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| |
Collapse
|
23
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|
24
|
Zhdanov AV, Golubeva AV, Yordanova MM, Andreev DE, Ventura-Silva AP, Schellekens H, Baranov PV, Cryan JF, Papkovsky DB. Ghrelin rapidly elevates protein synthesis in vitro by employing the rpS6K-eEF2K-eEF2 signalling axis. Cell Mol Life Sci 2022; 79:426. [PMID: 35841486 PMCID: PMC9288388 DOI: 10.1007/s00018-022-04446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Activated ghrelin receptor GHS-R1α triggers cell signalling pathways that modulate energy homeostasis and biosynthetic processes. However, the effects of ghrelin on mRNA translation are unknown. Using various reporter assays, here we demonstrate a rapid elevation of protein synthesis in cells within 15–30 min upon stimulation of GHS-R1α by ghrelin. We further show that ghrelin-induced activation of translation is mediated, at least in part, through the de-phosphorylation (de-suppression) of elongation factor 2 (eEF2). The levels of eEF2 phosphorylation at Thr56 decrease due to the reduced activity of eEF2 kinase, which is inhibited via Ser366 phosphorylation by rpS6 kinases. Being stress-susceptible, the ghrelin-mediated decrease in eEF2 phosphorylation can be abolished by glucose deprivation and mitochondrial uncoupling. We believe that the observed burst of translation benefits rapid restocking of neuropeptides, which are released upon GHS-R1α activation, and represents the most time- and energy-efficient way of prompt recharging the orexigenic neuronal circuitry.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland.
| | - Anna V Golubeva
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Martina M Yordanova
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| | - Dmitry E Andreev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ana Paula Ventura-Silva
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Harriet Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| |
Collapse
|
25
|
Nedozralova H, Basnet N, Ibiricu I, Bodakuntla S, Biertümpfel C, Mizuno N. In situ cryo-electron tomography reveals local cellular machineries for axon branch development. J Biophys Biochem Cytol 2022; 221:213057. [PMID: 35262630 PMCID: PMC8916118 DOI: 10.1083/jcb.202106086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
Neurons are highly polarized cells forming an intricate network of dendrites and axons. They are shaped by the dynamic reorganization of cytoskeleton components and cellular organelles. Axon branching allows the formation of new paths and increases circuit complexity. However, our understanding of branch formation is sparse due to the lack of direct in-depth observations. Using in situ cellular cryo-electron tomography on primary mouse neurons, we directly visualized the remodeling of organelles and cytoskeleton structures at axon branches. Strikingly, branched areas functioned as hotspots concentrating organelles to support dynamic activities. Unaligned actin filaments assembled at the base of premature branches accompanied by filopodia-like protrusions. Microtubules and ER comigrated into preformed branches to support outgrowth together with accumulating compact, ∼500-nm mitochondria and locally clustered ribosomes. We obtained a roadmap of events supporting the hypothesis of local protein synthesis selectively taking place at axon branches, allowing them to serve as unique control hubs for axon development and downstream neural network formation.
Collapse
Affiliation(s)
- Hana Nedozralova
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.,Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nirakar Basnet
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Iosune Ibiricu
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Satish Bodakuntla
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
26
|
Shang J, He L, Wang J, Tong A, Xiang Y. In Situ Visualizing Nascent RNA by Exploring DNA-Templated Oxidative Amination of 4-Thiouridine. Bioconjug Chem 2022; 33:164-171. [PMID: 34910465 DOI: 10.1021/acs.bioconjchem.1c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tracking and mapping the nascent RNA molecules in cells is essential for deciphering embryonic development and neuronal differentiation. Here, we utilized 4-thiouridine (s4U) as a metabolic tag to label nascent RNA and developed a fluorescence imaging method based on the DNA-templated oxidative amination (DTOA) reaction of s4U. The DTOA reaction occurred between amine-modified DNA and s4U-containing RNA with high sequence specificity and chemical selectivity. Target nascent mRNAs in HeLa cells, including those encoding green fluorescent proteins (GFPs) and endogenous BAG-1, were thus lit up selectively by DTOA-based fluorescence in situ hybridization (DTOA FISH). We believe the DTOA conjugation chemistry shown in this study could be generally applied to investigate the spatial distribution of nascent transcription dynamics in cellular processes.
Collapse
Affiliation(s)
- Jiachen Shang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Luo He
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jingyi Wang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Koppers M, Holt CE. Receptor-Ribosome Coupling: A Link Between Extrinsic Signals and mRNA Translation in Neuronal Compartments. Annu Rev Neurosci 2022; 45:41-61. [DOI: 10.1146/annurev-neuro-083021-110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axons receive extracellular signals that help to guide growth and synapse formation during development and to maintain neuronal function and survival during maturity. These signals relay information via cell surface receptors that can initiate local intracellular signaling at the site of binding, including local messenger RNA (mRNA) translation. Direct coupling of translational machinery to receptors provides an attractive way to activate this local mRNA translation and change the local proteome with high spatiotemporal resolution. Here, we first discuss the increasing evidence that different external stimuli trigger translation of specific subsets of mRNAs in axons via receptors and thus play a prominent role in various processes in both developing and mature neurons. We then discuss the receptor-mediated molecular mechanisms that regulate local mRNA translational with a focus on direct receptor-ribosome coupling. We advance the idea that receptor-ribosome coupling provides several advantages over other translational regulation mechanisms and is a common mechanism in cell communication. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Max Koppers
- Department of Biology, Division of Cell Biology, Neurobiology and Biophysics, Utrecht University, Utrecht, The Netherlands
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Shalev I, Somekh J, Eran A. Multimodal bioinformatic analyses of the neurodegenerative disease-associated TECPR2 gene reveal its diverse roles. J Med Genet 2021; 59:1002-1009. [PMID: 34933910 DOI: 10.1136/jmedgenet-2021-108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Loss of tectonin β-propeller repeat-containing 2 (TECPR2) function has been implicated in an array of neurodegenerative disorders, yet its physiological function remains largely unknown. Understanding TECPR2 function is essential for developing much needed precision therapeutics for TECPR2-related diseases. METHODS We leveraged considerable amounts of functional data to obtain a comprehensive perspective of the role of TECPR2 in health and disease. We integrated expression patterns, population variation, phylogenetic profiling, protein-protein interactions and regulatory network data for a minimally biased multimodal functional analysis. Genes and proteins linked to TECPR2 via multiple lines of evidence were subject to functional enrichment analyses to identify molecular mechanisms involving TECPR2. RESULTS TECPR2 was found to be part of a tight neurodevelopmental gene expression programme that includes KIF1A, ATXN1, TOM1L2 and FA2H, all implicated in neurological diseases. Functional enrichment analyses of TECPR2-related genes converged on a role in late autophagy and ribosomal processes. Large-scale population variation data demonstrated that this role is non-redundant. CONCLUSIONS TECPR2 might serve as an indicator for the energy balance between protein synthesis and autophagy, and a marker for diseases associated with their imbalance, such as Alzheimer's disease and Huntington's disease. Specifically, we speculate that TECPR2 plays an important role as a proteostasis regulator during synaptogenesis, highlighting its importance in developing neurons. By advancing our understanding of TECPR2 function, this work provides an essential stepping stone towards the development of precision diagnostics and targeted treatment options for TECPR2-related disorders.
Collapse
Affiliation(s)
- Ido Shalev
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowsky Center for Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Judith Somekh
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Alal Eran
- Zlotowsky Center for Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel .,Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Landínez-Macías M, Urwyler O. The Fine Art of Writing a Message: RNA Metabolism in the Shaping and Remodeling of the Nervous System. Front Mol Neurosci 2021; 14:755686. [PMID: 34916907 PMCID: PMC8670310 DOI: 10.3389/fnmol.2021.755686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023] Open
Abstract
Neuronal morphogenesis, integration into circuits, and remodeling of synaptic connections occur in temporally and spatially defined steps. Accordingly, the expression of proteins and specific protein isoforms that contribute to these processes must be controlled quantitatively in time and space. A wide variety of post-transcriptional regulatory mechanisms, which act on pre-mRNA and mRNA molecules contribute to this control. They are thereby critically involved in physiological and pathophysiological nervous system development, function, and maintenance. Here, we review recent findings on how mRNA metabolism contributes to neuronal development, from neural stem cell maintenance to synapse specification, with a particular focus on axon growth, guidance, branching, and synapse formation. We emphasize the role of RNA-binding proteins, and highlight their emerging roles in the poorly understood molecular processes of RNA editing, alternative polyadenylation, and temporal control of splicing, while also discussing alternative splicing, RNA localization, and local translation. We illustrate with the example of the evolutionary conserved Musashi protein family how individual RNA-binding proteins are, on the one hand, acting in different processes of RNA metabolism, and, on the other hand, impacting multiple steps in neuronal development and circuit formation. Finally, we provide links to diseases that have been associated with the malfunction of RNA-binding proteins and disrupted post-transcriptional regulation.
Collapse
Affiliation(s)
- María Landínez-Macías
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Olivier Urwyler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Li L, Yu J, Ji SJ. Axonal mRNA localization and translation: local events with broad roles. Cell Mol Life Sci 2021; 78:7379-7395. [PMID: 34698881 PMCID: PMC11072051 DOI: 10.1007/s00018-021-03995-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Messenger RNA (mRNA) can be transported and targeted to different subcellular compartments and locally translated. Local translation is an evolutionally conserved mechanism that in mammals, provides an important tool to exquisitely regulate the subcellular proteome in different cell types, including neurons. Local translation in axons is involved in processes such as neuronal development, function, plasticity, and diseases. Here, we summarize the current progress on axonal mRNA transport and translation. We focus on the regulatory mechanisms governing how mRNAs are transported to axons and how they are locally translated in axons. We discuss the roles of axonally synthesized proteins, which either function locally in axons, or are retrogradely trafficked back to soma to achieve neuron-wide gene regulation. We also examine local translation in neurological diseases. Finally, we give a critical perspective on the remaining questions that could be answered to uncover the fundamental rules governing local translation, and discuss how this could lead to new therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Lichao Li
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Jun Yu
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Sheng-Jian Ji
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
31
|
Mesquita-Ribeiro R, Fort RS, Rathbone A, Farias J, Lucci C, James V, Sotelo-Silveira J, Duhagon MA, Dajas-Bailador F. Distinct small non-coding RNA landscape in the axons and released extracellular vesicles of developing primary cortical neurons and the axoplasm of adult nerves. RNA Biol 2021; 18:832-855. [PMID: 34882524 PMCID: PMC8782166 DOI: 10.1080/15476286.2021.2000792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurons have highlighted the needs for decentralized gene expression and specific RNA function in somato-dendritic and axonal compartments, as well as in intercellular communication via extracellular vesicles (EVs). Despite advances in miRNA biology, the identity and regulatory capacity of other small non-coding RNAs (sncRNAs) in neuronal models and local subdomains has been largely unexplored.We identified a highly complex and differentially localized content of sncRNAs in axons and EVs during early neuronal development of cortical primary neurons and in adult axons in vivo. This content goes far beyond miRNAs and includes most known sncRNAs and precisely processed fragments from tRNAs, sno/snRNAs, Y RNAs and vtRNAs. Although miRNAs are the major sncRNA biotype in whole-cell samples, their relative abundance is significantly decreased in axons and neuronal EVs, where specific tRNA fragments (tRFs and tRHs/tiRNAs) mainly derived from tRNAs Gly-GCC, Val-CAC and Val-AAC predominate. Notably, although 5'-tRHs compose the great majority of tRNA-derived fragments observed in vitro, a shift to 3'-tRNAs is observed in mature axons in vivo.The existence of these complex sncRNA populations that are specific to distinct neuronal subdomains and selectively incorporated into EVs, equip neurons with key molecular tools for spatiotemporal functional control and cell-to-cell communication.
Collapse
Affiliation(s)
| | - Rafael Sebastián Fort
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Alex Rathbone
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Joaquina Farias
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.,Polo de Desarrollo Universitario "Espacio de Biología Vegetal del Noreste", Centro Universitario Regional Noreste, UdelaR, Uruguay
| | - Cristiano Lucci
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Jose Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Maria Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
32
|
Șelaru A, Costache M, Dinescu S. Epitranscriptomic signatures in stem cell differentiation to the neuronal lineage. RNA Biol 2021; 18:51-60. [PMID: 34582322 PMCID: PMC8677044 DOI: 10.1080/15476286.2021.1985348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Considered to be a field that is continuously growing, epitranscriptomics analyzes the modifications that occur in RNA transcripts and their downstream effects. As epigenetic modifications found in DNA and histones exhibit specific roles on various biological processes, also epitranscriptomic marks control gene expression patterns that are crucial for proper cell proliferation, differentiation and tissue development. Thus, various epitranscriptomic signatures have been identified to play specific roles during stem cell differentiation towards the neuronal and glial lineages, axonal guidance, synaptic plasticity, thus leading to the development of the mature brain tissue. Here we describe in-depth molecular mechanism underlying the most important RNA modifications with emerging roles in the nervous system.
Collapse
Affiliation(s)
- Aida Șelaru
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
33
|
The RNA-binding protein Musashi controls axon compartment-specific synaptic connectivity through ptp69D mRNA poly(A)-tailing. Cell Rep 2021; 36:109713. [PMID: 34525368 DOI: 10.1016/j.celrep.2021.109713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/24/2021] [Indexed: 10/20/2022] Open
Abstract
Synaptic targeting with subcellular specificity is essential for neural circuit assembly. Developing neurons use mechanisms to curb promiscuous synaptic connections and to direct synapse formation to defined subcellular compartments. How this selectivity is achieved molecularly remains enigmatic. Here, we discover a link between mRNA poly(A)-tailing and axon collateral branch-specific synaptic connectivity within the CNS. We reveal that the RNA-binding protein Musashi binds to the mRNA encoding the receptor protein tyrosine phosphatase Ptp69D, thereby increasing poly(A) tail length and Ptp69D protein levels. This regulation specifically promotes synaptic connectivity in one axon collateral characterized by a high degree of arborization and strong synaptogenic potential. In a different compartment of the same axon, Musashi prevents ectopic synaptogenesis, revealing antagonistic, compartment-specific functions. Moreover, Musashi-dependent Ptp69D regulation controls synaptic connectivity in the olfactory circuit. Thus, Musashi differentially shapes synaptic connectivity at the level of individual subcellular compartments and within different developmental and neuron type-specific contexts.
Collapse
|
34
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
35
|
Agrawal M, Welshhans K. Local Translation Across Neural Development: A Focus on Radial Glial Cells, Axons, and Synaptogenesis. Front Mol Neurosci 2021; 14:717170. [PMID: 34434089 PMCID: PMC8380849 DOI: 10.3389/fnmol.2021.717170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
In the past two decades, significant progress has been made in our understanding of mRNA localization and translation at distal sites in axons and dendrites. The existing literature shows that local translation is regulated in a temporally and spatially restricted manner and is critical throughout embryonic and post-embryonic life. Here, recent key findings about mRNA localization and local translation across the various stages of neural development, including neurogenesis, axon development, and synaptogenesis, are reviewed. In the early stages of development, mRNAs are localized and locally translated in the endfeet of radial glial cells, but much is still unexplored about their functional significance. Recent in vitro and in vivo studies have provided new information about the specific mechanisms regulating local translation during axon development, including growth cone guidance and axon branching. Later in development, localization and translation of mRNAs help mediate the major structural and functional changes that occur in the axon during synaptogenesis. Clinically, changes in local translation across all stages of neural development have important implications for understanding the etiology of several neurological disorders. Herein, local translation and mechanisms regulating this process across developmental stages are compared and discussed in the context of function and dysfunction.
Collapse
Affiliation(s)
- Manasi Agrawal
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Kristy Welshhans
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
36
|
Pinheiro H, Pimentel MR, Sequeira C, Oliveira LM, Pezzarossa A, Roman W, Gomes ER. mRNA distribution in skeletal muscle is associated with mRNA size. J Cell Sci 2021; 134:jcs256388. [PMID: 34297126 PMCID: PMC7611476 DOI: 10.1242/jcs.256388] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle myofibers are large and elongated cells with multiple and evenly distributed nuclei. Nuclear distribution suggests that each nucleus influences a specific compartment within the myofiber and implies a functional role for nuclear positioning. Compartmentalization of specific mRNAs and proteins has been reported at the neuromuscular and myotendinous junctions, but mRNA distribution in non-specialized regions of the myofibers remains largely unexplored. We report that the bulk of mRNAs are enriched around the nucleus of origin and that this perinuclear accumulation depends on recently transcribed mRNAs. Surprisingly, mRNAs encoding large proteins - giant mRNAs - are spread throughout the cell and do not exhibit perinuclear accumulation. Furthermore, by expressing exogenous transcripts with different sizes we found that size contributes to mRNA spreading independently of mRNA sequence. Both these mRNA distribution patterns depend on microtubules and are independent of nuclear dispersion, mRNA expression level and stability, and the characteristics of the encoded protein. Thus, we propose that mRNA distribution in non-specialized regions of skeletal muscle is size selective to ensure cellular compartmentalization and simultaneous long-range distribution of giant mRNAs.
Collapse
Affiliation(s)
- Helena Pinheiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mafalda Ramos Pimentel
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Catarina Sequeira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Luís Manuel Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - William Roman
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Edgar R. Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
37
|
Das S, Vera M, Gandin V, Singer RH, Tutucci E. Intracellular mRNA transport and localized translation. Nat Rev Mol Cell Biol 2021; 22:483-504. [PMID: 33837370 PMCID: PMC9346928 DOI: 10.1038/s41580-021-00356-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Fine-tuning cellular physiology in response to intracellular and environmental cues requires precise temporal and spatial control of gene expression. High-resolution imaging technologies to detect mRNAs and their translation state have revealed that all living organisms localize mRNAs in subcellular compartments and create translation hotspots, enabling cells to tune gene expression locally. Therefore, mRNA localization is a conserved and integral part of gene expression regulation from prokaryotic to eukaryotic cells. In this Review, we discuss the mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution. We also discuss the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA transport and local protein synthesis. Finally, we summarize the technological developments that allow us to study mRNA localization and local translation through the simultaneous detection of mRNAs and proteins in single cells, mRNA and nascent protein single-molecule imaging, and bulk RNA and protein detection methods.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA.
- Janelia Research Campus of the HHMI, Ashburn, VA, USA.
| | - Evelina Tutucci
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
RHOA signaling defects result in impaired axon guidance in iPSC-derived neurons from patients with tuberous sclerosis complex. Nat Commun 2021; 12:2589. [PMID: 33972524 PMCID: PMC8110792 DOI: 10.1038/s41467-021-22770-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
Patients with Tuberous Sclerosis Complex (TSC) show aberrant wiring of neuronal connections formed during development which may contribute to symptoms of TSC, such as intellectual disabilities, autism, and epilepsy. Yet models examining the molecular basis for axonal guidance defects in developing human neurons have not been developed. Here, we generate human induced pluripotent stem cell (hiPSC) lines from a patient with TSC and genetically engineer counterparts and isogenic controls. By differentiating hiPSCs, we show that control neurons respond to canonical guidance cues as predicted. Conversely, neurons with heterozygous loss of TSC2 exhibit reduced responses to several repulsive cues and defective axon guidance. While TSC2 is a known key negative regulator of MTOR-dependent protein synthesis, we find that TSC2 signaled through MTOR-independent RHOA in growth cones. Our results suggest that neural network connectivity defects in patients with TSC may result from defects in RHOA-mediated regulation of cytoskeletal dynamics during neuronal development. Patients with Tuberous Sclerosis Complex (TSC) show aberrant wiring of neuronal connections. Here, the authors generate iPSC-derived neurons from patients with TSC. TSC2 +/− neurons show impaired mTOR-independent RhoA signaling-mediated axon guidance.
Collapse
|
39
|
Ji S, Yang Z, Gozali L, Kenney T, Kocabas A, Jinsook Park C, Hynes M. Distinct expression of select and transcriptome-wide isolated 3'UTRs suggests critical roles in development and transition states. PLoS One 2021; 16:e0250669. [PMID: 33951080 PMCID: PMC8099112 DOI: 10.1371/journal.pone.0250669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/08/2021] [Indexed: 01/06/2023] Open
Abstract
Mature mRNA molecules are expected to be comprised of a 5'UTR, a 3'UTR and a coding region (CDS). Unexpectedly, however, there have been multiple recent reports of widespread differential expression of mRNA 3'UTRs and their cognate coding regions (CDS), reflecting the expression of isolated 3'UTRs (i3'UTRs); these i3'UTRs can be highly expressed, often in reciprocal patterns to their cognate CDS. As with other long non-coding (lncRNAs), isolated 3'UTRs are likely to play an important role in gene regulation, but little is known about the contexts in which they are deployed. To illuminate the functions of i3'UTRs, here we carry out in vitro, in vivo and in silico analyses of differential 3'UTR/CDS mRNA ratio usage across tissues, development and cell state changes both for a select list of developmentally important genes as well as by unbiased transcriptome-wide analyses. Across two developmental paradigms we find a distinct switch from high i3'UTR expression for stem cell related genes in proliferating cells to high CDS for these genes in newly differentiated cells. Unbiased transcriptome analysis across multiple gene sets shows that regardless of tissue, genes with high 3'UTR to CDS ratios belong predominantly to gene ontology categories related to cell-type specific functions. In contrast, the gene ontology categories of genes with low 3'UTR to CDS ratios are similar across tissues and relate to common cellular functions. We further show that, at least for some genes, traditional transcriptional start site genomic elements correspond to identified RNAseq 3'UTR peak regions, suggesting that some i3'UTRs may be generated by de novo transcription. Our results provide critical information from which detailed hypotheses for individual i3'UTRs can be tested, with a common theme that i3'UTRs appear poised to regulate cell-specific gene expression and state.
Collapse
Affiliation(s)
- Shaoyi Ji
- Dept. of Biology, Stanford University, Stanford, CA, United States of America
| | - Ze Yang
- Dept. of Biology, Stanford University, Stanford, CA, United States of America
| | - Leonardi Gozali
- Dept. of Biology, Stanford University, Stanford, CA, United States of America
| | - Thomas Kenney
- Dept. of Biology, Stanford University, Stanford, CA, United States of America
| | - Arif Kocabas
- Rockefeller University, New York, NY, United States of America
| | | | - Mary Hynes
- Dept. of Biology, Stanford University, Stanford, CA, United States of America
- Rockefeller University, New York, NY, United States of America
| |
Collapse
|
40
|
Axon-enriched lincRNA ALAE is required for axon elongation via regulation of local mRNA translation. Cell Rep 2021; 35:109053. [PMID: 33951423 DOI: 10.1016/j.celrep.2021.109053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 04/07/2021] [Indexed: 11/23/2022] Open
Abstract
Long intergenic noncoding RNAs (lincRNAs) are critical regulators involved in diverse biological processes. However, the roles and related mechanisms of lincRNAs in axon development are largely unknown. Here we report an axon-enriched lincRNA regulating axon elongation, referred to as ALAE. Profiling of highly expressed lincRNAs detected abundant and enriched ALAE in the axons of dorsal root ganglion (DRG) neurons, where it locally promoted axon elongation. Mechanically, ALAE directly interacted with the KH3-4 domains of KH-type splicing regulatory protein (KHSRP) and impeded its association with growth-associated protein 43 (Gap43) mRNA. Knockdown of ALAE reduced the protein but not the mRNA level of GAP43 in the axons of DRG neurons. Furthermore, local disruption of the interaction between ALAE and KHSRP in the axon significantly inhibited Gap43 mRNA translation, impairing axon elongation. This study implies crucial roles of axon-enriched lincRNAs in spatiotemporal regulation of local translation during axon development.
Collapse
|
41
|
Perrone-Capano C, Volpicelli F, Penna E, Chun JT, Crispino M. Presynaptic protein synthesis and brain plasticity: From physiology to neuropathology. Prog Neurobiol 2021; 202:102051. [PMID: 33845165 DOI: 10.1016/j.pneurobio.2021.102051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
To form and maintain extremely intricate and functional neural circuitry, mammalian neurons are typically endowed with highly arborized dendrites and a long axon. The synapses that link neurons to neurons or to other cells are numerous and often too remote for the cell body to make and deliver new proteins to the right place in time. Moreover, synapses undergo continuous activity-dependent changes in their number and strength, establishing the basis of neural plasticity. The innate dilemma is then how a highly complex neuron provides new proteins for its cytoplasmic periphery and individual synapses to support synaptic plasticity. Here, we review a growing body of evidence that local protein synthesis in discrete sites of the axon and presynaptic terminals plays crucial roles in synaptic plasticity, and that deregulation of this local translation system is implicated in various pathologies of the nervous system.
Collapse
Affiliation(s)
- Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy.
| | | | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
42
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
43
|
Theisen U, Ernst AU, Heyne RLS, Ring TP, Thorn-Seshold O, Köster RW. Microtubules and motor proteins support zebrafish neuronal migration by directing cargo. J Cell Biol 2021; 219:151951. [PMID: 32668451 PMCID: PMC7659711 DOI: 10.1083/jcb.201908040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/08/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Neuronal migration during development is necessary to form an ordered and functional brain. Postmitotic neurons require microtubules and dynein to move, but the mechanisms by which they contribute to migration are not fully characterized. Using tegmental hindbrain nuclei neurons in zebrafish embryos together with subcellular imaging, optogenetics, and photopharmacology, we show that, in vivo, the centrosome's position relative to the nucleus is not linked to greatest motility in this cell type. Nevertheless, microtubules, dynein, and kinesin-1 are essential for migration, and we find that interference with endosome formation or the Golgi apparatus impairs migration to a similar extent as disrupting microtubules. In addition, an imbalance in the traffic of the model cargo Cadherin-2 also reduces neuronal migration. These results lead us to propose that microtubules act as cargo carriers to control spatiotemporal protein distribution, which in turn controls motility. This adds crucial insights into the variety of ways that microtubules can support successful neuronal migration in vivo.
Collapse
Affiliation(s)
- Ulrike Theisen
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| | - Alexander U Ernst
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany.,University of Bern, Institute of Anatomy, Bern, Switzerland
| | - Ronja L S Heyne
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany.,Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
| | - Tobias P Ring
- Technical University of Braunschweig, Institute for Acoustics, Braunschweig, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Reinhard W Köster
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| |
Collapse
|
44
|
Jähne S, Mikulasch F, Heuer HGH, Truckenbrodt S, Agüi-Gonzalez P, Grewe K, Vogts A, Rizzoli SO, Priesemann V. Presynaptic activity and protein turnover are correlated at the single-synapse level. Cell Rep 2021; 34:108841. [PMID: 33730575 DOI: 10.1016/j.celrep.2021.108841] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 11/15/2022] Open
Abstract
Synaptic transmission relies on the continual exocytosis and recycling of synaptic vesicles. Aged vesicle proteins are prevented from recycling and are eventually degraded. This implies that active synapses would lose vesicles and vesicle-associated proteins over time, unless the supply correlates to activity, to balance the losses. To test this hypothesis, we first model the quantitative relation between presynaptic spike rate and vesicle turnover. The model predicts that the vesicle supply needs to increase with the spike rate. To follow up this prediction, we measure protein turnover in individual synapses of cultured hippocampal neurons by combining nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence microscopy. We find that turnover correlates with activity at the single-synapse level, but not with other parameters such as the abundance of synaptic vesicles or postsynaptic density proteins. We therefore suggest that the supply of newly synthesized proteins to synapses is closely connected to synaptic activity.
Collapse
Affiliation(s)
- Sebastian Jähne
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Fabian Mikulasch
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Helge G H Heuer
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany; Faculty of Physics, Georg-August-University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sven Truckenbrodt
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), von Siebold Str. 3a, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073 Göttingen, Germany
| | - Katharina Grewe
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), von Siebold Str. 3a, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073 Göttingen, Germany
| | - Angela Vogts
- NanoSIMS lab, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestraße 15, 18119 Rostock, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), von Siebold Str. 3a, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073 Göttingen, Germany.
| | - Viola Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany; Faculty of Physics, Georg-August-University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany; Bernstein-Center for Computational Neuroscience, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany.
| |
Collapse
|
45
|
Dalla Costa I, Buchanan CN, Zdradzinski MD, Sahoo PK, Smith TP, Thames E, Kar AN, Twiss JL. The functional organization of axonal mRNA transport and translation. Nat Rev Neurosci 2021; 22:77-91. [PMID: 33288912 PMCID: PMC8161363 DOI: 10.1038/s41583-020-00407-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Axons extend for tremendously long distances from the neuronal soma and make use of localized mRNA translation to rapidly respond to different extracellular stimuli and physiological states. The locally synthesized proteins support many different functions in both developing and mature axons, raising questions about the mechanisms by which local translation is organized to ensure the appropriate responses to specific stimuli. Publications over the past few years have uncovered new mechanisms for regulating the axonal transport and localized translation of mRNAs, with several of these pathways converging on the regulation of cohorts of functionally related mRNAs - known as RNA regulons - that drive axon growth, axon guidance, injury responses, axon survival and even axonal mitochondrial function. Recent advances point to these different regulatory pathways as organizing platforms that allow the axon's proteome to be modulated to meet its physiological needs.
Collapse
Affiliation(s)
- Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
46
|
Dorskind JM, Kolodkin AL. Revisiting and refining roles of neural guidance cues in circuit assembly. Curr Opin Neurobiol 2021; 66:10-21. [PMID: 32823181 PMCID: PMC10725571 DOI: 10.1016/j.conb.2020.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Neural guidance mechanisms ensure the precise targeting and synaptogenesis events essential for normal circuit function. Neuronal growth cones encounter numerous attractive and repulsive cues as they navigate toward their intermediate and final targets; temporal and spatial regulation of these responses are critical for circuit assembly. Recent work highlights the complexity of these events throughout neural development and the multifaceted functions of a wide range of guidance cues. Here, we discuss recent studies that leverage advances in genetics, single cell tracing, transcriptomics and proteomics to further our understanding of the molecular mechanisms underlying neural guidance and overall circuit organization.
Collapse
Affiliation(s)
- Joelle M Dorskind
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
47
|
Minehart JA, Speer CM. A Picture Worth a Thousand Molecules-Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Front Synaptic Neurosci 2021; 12:615059. [PMID: 33469427 PMCID: PMC7813761 DOI: 10.3389/fnsyn.2020.615059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.
Collapse
Affiliation(s)
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
48
|
Koppers M, Özkan N, Farías GG. Complex Interactions Between Membrane-Bound Organelles, Biomolecular Condensates and the Cytoskeleton. Front Cell Dev Biol 2020; 8:618733. [PMID: 33409284 PMCID: PMC7779554 DOI: 10.3389/fcell.2020.618733] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane-bound and membraneless organelles/biomolecular condensates ensure compartmentalization into functionally distinct units enabling proper organization of cellular processes. Membrane-bound organelles form dynamic contacts with each other to enable the exchange of molecules and to regulate organelle division and positioning in coordination with the cytoskeleton. Crosstalk between the cytoskeleton and dynamic membrane-bound organelles has more recently also been found to regulate cytoskeletal organization. Interestingly, recent work has revealed that, in addition, the cytoskeleton and membrane-bound organelles interact with cytoplasmic biomolecular condensates. The extent and relevance of these complex interactions are just beginning to emerge but may be important for cytoskeletal organization and organelle transport and remodeling. In this review, we highlight these emerging functions and emphasize the complex interplay of the cytoskeleton with these organelles. The crosstalk between membrane-bound organelles, biomolecular condensates and the cytoskeleton in highly polarized cells such as neurons could play essential roles in neuronal development, function and maintenance.
Collapse
Affiliation(s)
| | | | - Ginny G. Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
49
|
Virtanen MA, Uvarov P, Hübner CA, Kaila K. NKCC1, an Elusive Molecular Target in Brain Development: Making Sense of the Existing Data. Cells 2020; 9:cells9122607. [PMID: 33291778 PMCID: PMC7761970 DOI: 10.3390/cells9122607] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Ionotropic GABA transmission is mediated by anion (mainly Cl−)-permeable GABAA receptors (GABAARs). In immature neurons, GABA exerts depolarizing and sometimes functionally excitatory actions, based on active uptake of Cl− by the Na-K-2Cl cotransporter NKCC1. While functional evidence firmly shows NKCC1-mediated ion transport in immature and diseased neurons, molecular detection of NKCC1 in the brain has turned out to be extremely difficult. In this review, we describe the highly inconsistent data that are available on the cell type-specific expression patterns of the NKCC1 mRNA and protein in the CNS. We discuss the major technical caveats, including a lack of knock-out-controlled immunohistochemistry in the forebrain, possible effects of alternative splicing on the binding of antibodies and RNA probes, and the wide expression of NKCC1 in different cell types, which make whole-tissue analyses of NKCC1 useless for studying its neuronal expression. We also review novel single-cell RNAseq data showing that most of the NKCC1 in the adult CNS may, in fact, be expressed in non-neuronal cells, especially in glia. As future directions, we suggest single-cell NKCC1 mRNA and protein analyses and the use of genetically tagged endogenous proteins or systematically designed novel antibodies, together with proper knock-out controls, for the visualization of endogenous NKCC1 in distinct brain cell types and their subcellular compartments.
Collapse
Affiliation(s)
- Mari A. Virtanen
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany;
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-407256759
| |
Collapse
|
50
|
Cserép C, Pósfai B, Dénes Á. Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions. Neuron 2020; 109:222-240. [PMID: 33271068 DOI: 10.1016/j.neuron.2020.11.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The functional contribution of microglia to normal brain development, healthy brain function, and neurological disorders is increasingly recognized. However, until recently, the nature of intercellular interactions mediating these effects remained largely unclear. Recent findings show microglia establishing direct contact with different compartments of neurons. Although communication between microglia and neurons involves intermediate cells and soluble factors, direct membrane contacts enable a more precisely regulated, dynamic, and highly effective form of interaction for fine-tuning neuronal responses and fate. Here, we summarize the known ultrastructural, molecular, and functional features of direct microglia-neuron interactions and their roles in brain disease.
Collapse
Affiliation(s)
- Csaba Cserép
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Balázs Pósfai
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary; Szentágothai János Doctoral School of Neurosciences, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary.
| |
Collapse
|