1
|
Riccardi N, Zhao X, den Ouden DB, Fridriksson J, Desai RH, Wang Y. Network-based statistics distinguish anomic and Broca's aphasia. Brain Struct Funct 2024; 229:2237-2253. [PMID: 38160205 DOI: 10.1007/s00429-023-02738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Aphasia is a speech-language impairment commonly caused by damage to the left hemisphere. The neural mechanisms that underpin different types of aphasia and their symptoms are still not fully understood. This study aims to identify differences in resting-state functional connectivity between anomic and Broca's aphasia measured through resting-state functional magnetic resonance imaging (rs-fMRI). METHODS We used the network-based statistic (NBS) method, as well as voxel- and connectome-based lesion symptom mapping (V-, CLSM), to identify distinct neural correlates of the anomic and Broca's groups. To control for lesion effect, we included lesion volume as a covariate in both the NBS method and LSM. RESULTS NBS identified a subnetwork located in the dorsal language stream bilaterally, including supramarginal gyrus, primary sensory, motor, and auditory cortices, and insula. The connections in the subnetwork were weaker in the Broca's group than the anomic group. The properties of the subnetwork were examined through complex network measures, which indicated that regions in right inferior frontal sulcus, right paracentral lobule, and bilateral superior temporal gyrus exhibit intensive interaction. Left superior temporal gyrus, right postcentral gyrus, and left supramarginal gyrus play an important role in information flow and overall communication efficiency. Disruption of this network underlies the constellation of symptoms associated with Broca's aphasia. Whole-brain CLSM did not detect any significant connections, suggesting an advantage of NBS when thousands of connections are considered. However, CLSM identified connections that differentiated Broca's from anomic aphasia when analysis was restricted to a hypothesized network of interest. DISCUSSION We identified novel signatures of resting-state brain network differences between groups of individuals with anomic and Broca's aphasia. We identified a subnetwork of connections that statistically differentiated the resting-state brain networks of the two groups, in comparison with standard CLSM results that yielded isolated connections. Network-level analyses are useful tools for the investigation of the neural correlates of language deficits post-stroke.
Collapse
Affiliation(s)
- Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Xingpei Zhao
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Yuan Wang
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
2
|
Wang B, Audette NJ, Schneider DM, Aljadeff J. Desegregation of neuronal predictive processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606684. [PMID: 39149380 PMCID: PMC11326200 DOI: 10.1101/2024.08.05.606684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Neural circuits construct internal 'world-models' to guide behavior. The predictive processing framework posits that neural activity signaling sensory predictions and concurrently computing prediction-errors is a signature of those internal models. Here, to understand how the brain generates predictions for complex sensorimotor signals, we investigate the emergence of high-dimensional, multi-modal predictive representations in recurrent networks. We find that robust predictive processing arises in a network with loose excitatory/inhibitory balance. Contrary to previous proposals of functionally specialized cell-types, the network exhibits desegregation of stimulus and prediction-error representations. We confirmed these model predictions by experimentally probing predictive-coding circuits using a rich stimulus-set to violate learned expectations. When constrained by data, our model further reveals and makes concrete testable experimental predictions for the distinct functional roles of excitatory and inhibitory neurons, and of neurons in different layers along a laminar hierarchy, in computing multi-modal predictions. These results together imply that in natural conditions, neural representations of internal models are highly distributed, yet structured to allow flexible readout of behaviorally-relevant information. The generality of our model advances the understanding of computation of internal models across species, by incorporating different types of predictive computations into a unified framework.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - David M Schneider
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Johnatan Aljadeff
- Department of Neurobiology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
3
|
Federman N, Romano SA, Amigo-Duran M, Salomon L, Marin-Burgin A. Acquisition of non-olfactory encoding improves odour discrimination in olfactory cortex. Nat Commun 2024; 15:5572. [PMID: 38956072 PMCID: PMC11220071 DOI: 10.1038/s41467-024-49897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Olfaction is influenced by contextual factors, past experiences, and the animal's internal state. Whether this information is integrated at the initial stages of cortical odour processing is not known, nor how these signals may influence odour encoding. Here we revealed multiple and diverse non-olfactory responses in the primary olfactory (piriform) cortex (PCx), which dynamically enhance PCx odour discrimination according to behavioural demands. We performed recordings of PCx neurons from mice trained in a virtual reality task to associate odours with visual contexts to obtain a reward. We found that learning shifts PCx activity from encoding solely odours to a regime in which positional, contextual, and associative responses emerge on odour-responsive neurons that become mixed-selective. The modulation of PCx activity by these non-olfactory signals was dynamic, improving odour decoding during task engagement and in rewarded contexts. This improvement relied on the acquired mixed-selectivity, demonstrating how integrating extra-sensory inputs in sensory cortices can enhance sensory processing while encoding the behavioural relevance of stimuli.
Collapse
Grants
- 108878 Canadian International Development Agency (Agence Canadienne de Développement International)
- PICT2018-0880 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2020-0360 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2020-1536 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2016-2758 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2017-4023 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PIP2787 Ministerio de Ciencia, Tecnología e Innovación Productiva (Ministry of Science, Technology and Productive Innovation, Argentina)
- SPIRIT 216044 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- Fondo para la convergencia estructural del Mercosur–FOCEM grant cOF 03/11
Collapse
Affiliation(s)
- Noel Federman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina.
| | - Sebastián A Romano
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina.
| | - Macarena Amigo-Duran
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, PhD Program, Buenos Aires, Argentina
| | - Lucca Salomon
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, PhD Program, Buenos Aires, Argentina
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Piet A, Ponvert N, Ollerenshaw D, Garrett M, Groblewski PA, Olsen S, Koch C, Arkhipov A. Behavioral strategy shapes activation of the Vip-Sst disinhibitory circuit in visual cortex. Neuron 2024; 112:1876-1890.e4. [PMID: 38447579 PMCID: PMC11156560 DOI: 10.1016/j.neuron.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024]
Abstract
In complex environments, animals can adopt diverse strategies to find rewards. How distinct strategies differentially engage brain circuits is not well understood. Here, we investigate this question, focusing on the cortical Vip-Sst disinhibitory circuit between vasoactive intestinal peptide-postive (Vip) interneurons and somatostatin-positive (Sst) interneurons. We characterize the behavioral strategies used by mice during a visual change detection task. Using a dynamic logistic regression model, we find that individual mice use mixtures of a visual comparison strategy and a statistical timing strategy. Separately, mice also have periods of task engagement and disengagement. Two-photon calcium imaging shows large strategy-dependent differences in neural activity in excitatory, Sst inhibitory, and Vip inhibitory cells in response to both image changes and image omissions. In contrast, task engagement has limited effects on neural population activity. We find that the diversity of neural correlates of strategy can be understood parsimoniously as the increased activation of the Vip-Sst disinhibitory circuit during the visual comparison strategy, which facilitates task-appropriate responses.
Collapse
Affiliation(s)
- Alex Piet
- Allen Institute, Mindscope Program, Seattle, WA, USA.
| | - Nick Ponvert
- Allen Institute, Mindscope Program, Seattle, WA, USA
| | | | | | | | - Shawn Olsen
- Allen Institute, Mindscope Program, Seattle, WA, USA
| | - Christof Koch
- Allen Institute, Mindscope Program, Seattle, WA, USA
| | | |
Collapse
|
5
|
Gartside SE, Olthof BM, Rees A. Motor, somatosensory, and executive cortical areas elicit monosynaptic and polysynaptic neuronal activity in the auditory midbrain. Hear Res 2024; 447:109009. [PMID: 38670009 DOI: 10.1016/j.heares.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
We recently reported that the central nucleus of the inferior colliculus (the auditory midbrain) is innervated by glutamatergic pyramidal cells originating not only in auditory cortex (AC), but also in multiple 'non-auditory' regions of the cerebral cortex. Here, in anaesthetised rats, we used optogenetics and electrical stimulation, combined with recording in the inferior colliculus to determine the functional influence of these descending connections. Specifically, we determined the extent of monosynaptic excitation and the influence of these descending connections on spontaneous activity in the inferior colliculus. A retrograde virus encoding both green fluorescent protein (GFP) and channelrhodopsin (ChR2) injected into the central nucleus of the inferior colliculus (ICc) resulted in GFP expression in discrete groups of cells in multiple areas of the cerebral cortex. Light stimulation of AC and primary motor cortex (M1) caused local activation of cortical neurones and increased the firing rate of neurones in ICc indicating a direct excitatory input from AC and M1 to ICc with a restricted distribution. In naïve animals, electrical stimulation at multiple different sites within M1, secondary motor, somatosensory, and prefrontal cortices increased firing rate in ICc. However, it was notable that stimulation at some adjacent sites failed to influence firing at the recording site in ICc. Responses in ICc comprised singular spikes of constant shape and size which occurred with a short, and fixed latency (∼ 5 ms) consistent with monosynaptic excitation of individual ICc units. Increasing the stimulus current decreased the latency of these spikes, suggesting more rapid depolarization of cortical neurones, and increased the number of (usually adjacent) channels on which a monosynaptic spike was seen, suggesting recruitment of increasing numbers of cortical neurons. Electrical stimulation of cortical regions also evoked longer latency, longer duration increases in firing activity, comprising multiple units with spikes occurring with significant temporal jitter, consistent with polysynaptic excitation. Increasing the stimulus current increased the number of spikes in these polysynaptic responses and increased the number of channels on which the responses were observed, although the magnitude of the responses always diminished away from the most activated channels. Together our findings indicate descending connections from motor, somatosensory and executive cortical regions directly activate small numbers of ICc neurones and that this in turn leads to extensive polysynaptic activation of local circuits within the ICc.
Collapse
Affiliation(s)
- Sarah E Gartside
- Centre for Transformative Neuroscience and Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | - Bas Mj Olthof
- Centre for Transformative Neuroscience and Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Adrian Rees
- Centre for Transformative Neuroscience and Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
6
|
A Dehaqani A, Michelon F, Patella P, Petrucco L, Piasini E, Iurilli G. A mechanosensory feedback that uncouples external and self-generated sensory responses in the olfactory cortex. Cell Rep 2024; 43:114013. [PMID: 38551962 DOI: 10.1016/j.celrep.2024.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Sampling behaviors have sensory consequences that can hinder perceptual stability. In olfaction, sniffing affects early odor encoding, mimicking a sudden change in odor concentration. We examined how the inhalation speed affects the representation of odor concentration in the main olfactory cortex. Neurons combine the odor input with a global top-down signal preceding the sniff and a mechanosensory feedback generated by the air passage through the nose during inhalation. Still, the population representation of concentration is remarkably sniff invariant. This is because the mechanosensory and olfactory responses are uncorrelated within and across neurons. Thus, faster odor inhalation and an increase in concentration change the cortical activity pattern in distinct ways. This encoding strategy affords tolerance to potential concentration fluctuations caused by varying inhalation speeds. Since mechanosensory reafferences are widespread across sensory systems, the coding scheme described here may be a canonical strategy to mitigate the sensory ambiguities caused by movements.
Collapse
Affiliation(s)
- Alireza A Dehaqani
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy; CIMeC, University of Trento, 38068 Rovereto, Italy
| | - Filippo Michelon
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy; CIMeC, University of Trento, 38068 Rovereto, Italy
| | - Paola Patella
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Luigi Petrucco
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Eugenio Piasini
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Giuliano Iurilli
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy.
| |
Collapse
|
7
|
Morandell K, Yin A, Triana Del Rio R, Schneider DM. Movement-Related Modulation in Mouse Auditory Cortex Is Widespread Yet Locally Diverse. J Neurosci 2024; 44:e1227232024. [PMID: 38286628 PMCID: PMC10941236 DOI: 10.1523/jneurosci.1227-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Neurons in the mouse auditory cortex are strongly influenced by behavior, including both suppression and enhancement of sound-evoked responses during movement. The mouse auditory cortex comprises multiple fields with different roles in sound processing and distinct connectivity to movement-related centers of the brain. Here, we asked whether movement-related modulation in male mice might differ across auditory cortical fields, thereby contributing to the heterogeneity of movement-related modulation at the single-cell level. We used wide-field calcium imaging to identify distinct cortical fields and cellular-resolution two-photon calcium imaging to visualize the activity of layer 2/3 excitatory neurons within each field. We measured each neuron's responses to three sound categories (pure tones, chirps, and amplitude-modulated white noise) as mice rested and ran on a non-motorized treadmill. We found that individual neurons in each cortical field typically respond to just one sound category. Some neurons are only active during rest and others during locomotion, and those that are responsive across conditions retain their sound-category tuning. The effects of locomotion on sound-evoked responses vary at the single-cell level, with both suppression and enhancement of neural responses, and the net modulatory effect of locomotion is largely conserved across cortical fields. Movement-related modulation in auditory cortex also reflects more complex behavioral patterns, including instantaneous running speed and nonlocomotor movements such as grooming and postural adjustments, with similar patterns seen across all auditory cortical fields. Our findings underscore the complexity of movement-related modulation throughout the mouse auditory cortex and indicate that movement-related modulation is a widespread phenomenon.
Collapse
Affiliation(s)
- Karin Morandell
- Center for Neural Science, New York University, New York, New York 10012
| | - Audrey Yin
- Center for Neural Science, New York University, New York, New York 10012
| | | | - David M Schneider
- Center for Neural Science, New York University, New York, New York 10012
| |
Collapse
|
8
|
Slagter HA. Perceptual learning in humans: An active, top-down-guided process. Behav Brain Sci 2023; 46:e406. [PMID: 38054288 DOI: 10.1017/s0140525x23001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Deep neural network (DNN) models of human-like vision are typically built by feeding blank slate DNN visual images as training data. However, the literature on human perception and perceptual learning suggests that developing DNNs that truly model human vision requires a shift in approach in which perception is not treated as a largely bottom-up process, but as an active, top-down-guided process.
Collapse
Affiliation(s)
- Heleen A Slagter
- Department of Cognitive Psychology, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands ://research.vu.nl/en/persons/heleen-slagter
| |
Collapse
|
9
|
Audette NJ, Schneider DM. Stimulus-Specific Prediction Error Neurons in Mouse Auditory Cortex. J Neurosci 2023; 43:7119-7129. [PMID: 37699716 PMCID: PMC10601367 DOI: 10.1523/jneurosci.0512-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Comparing expectation with experience is an important neural computation performed throughout the brain and is a hallmark of predictive processing. Experiments that alter the sensory outcome of an animal's behavior reveal enhanced neural responses to unexpected self-generated stimuli, indicating that populations of neurons in sensory cortex may reflect prediction errors (PEs), mismatches between expectation and experience. However, enhanced neural responses to self-generated stimuli could also arise through nonpredictive mechanisms, such as the movement-based facilitation of a neuron's inherent sound responses. If sensory prediction error neurons exist in sensory cortex, it is unknown whether they manifest as general error responses, or respond with specificity to errors in distinct stimulus dimensions. To answer these questions, we trained mice of either sex to expect the outcome of a simple sound-generating behavior and recorded auditory cortex activity as mice heard either the expected sound or sounds that deviated from expectation in one of multiple distinct dimensions. Our data reveal that the auditory cortex learns to suppress responses to self-generated sounds along multiple acoustic dimensions simultaneously. We identify a distinct population of auditory cortex neurons that are not responsive to passive sounds or to the expected sound but that encode prediction errors. These prediction error neurons are abundant only in animals with a learned motor-sensory expectation, and encode one or two specific violations rather than a generic error signal. Together, these findings reveal that cortical predictions about self-generated sounds have specificity in multiple simultaneous dimensions and that cortical prediction error neurons encode specific violations from expectation.SIGNIFICANCE STATEMENT Audette et. al record neural activity in the auditory cortex while mice perform a sound-generating forelimb movement and measure neural responses to sounds that violate an animal's expectation in different ways. They find that predictions about self-generated sounds are highly specific across multiple stimulus dimensions and that a population of typically nonsound-responsive neurons respond to sounds that violate an animal's expectation in a specific way. These results identify specific prediction error (PE) signals in the mouse auditory cortex and suggest that errors may be calculated early in sensory processing.
Collapse
Affiliation(s)
- Nicholas J Audette
- Center for Neural Science, New York University, New York, New York 10003
| | - David M Schneider
- Center for Neural Science, New York University, New York, New York 10003
| |
Collapse
|
10
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed representations of sound and action in the auditory midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558449. [PMID: 37786676 PMCID: PMC10541616 DOI: 10.1101/2023.09.19.558449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Linking sensory input and its consequences is a fundamental brain operation. Accordingly, neural activity of neo-cortical and limbic systems often reflects dynamic combinations of sensory and behaviorally relevant variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur in brain regions upstream of the forebrain is less clear. Here, we conduct cellular-resolution 2-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues and mice's actions, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus in behaving animals, auditory midbrain neurons transmit a population code that reflects a joint representation of sound and action.
Collapse
Affiliation(s)
- GL Quass
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - MM Rogalla
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - AN Ford
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - PF Apostolides
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Zhou X, Li Y, Tian Y, Masen MA, Li Y, Jin Z. Friction and neuroimaging of active and passive tactile touch. Sci Rep 2023; 13:13077. [PMID: 37567970 PMCID: PMC10421888 DOI: 10.1038/s41598-023-40326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
Two types of exploratory touch including active sliding and passive sliding are usually encountered in the daily life. The friction behavior of the human finger against the surface of objects is important in tactile perception. The neural mechanisms correlating to tribological behavior are not fully understood. This study investigated the tactile response of active and passive finger friction characterized with functional near-infrared spectroscopy (fNIRS). The friction test and fNIRS test were performed simultaneously using the tactile stimulus of polytetrafluoroethylene (PTFE) specimens. Results showed that the sliding modes did not obviously influence the friction property of skin. While three cortex regions were activated in the prefrontal cortex (PFC), showing a higher activation level of passive sliding. This revealed that the tribological performance was not a simple parameter to affect tactile perception, and the difference in cortical hemodynamic activity of active and passive touch was also recognised. The movement-related blood flow changes revealed the role of PFC in integrating tactile sensation although there was no estimation task on roughness perception.
Collapse
Affiliation(s)
- Xue Zhou
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Tribology Research Institute, Southwest Jiaotong University, Chengdu, Sichuan, 610031, People's Republic of China
| | - Yiyuan Li
- School of Economics and Management, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Yu Tian
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Marc A Masen
- Tribology Group, Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yuanzhe Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhongmin Jin
- Tribology Research Institute, Southwest Jiaotong University, Chengdu, Sichuan, 610031, People's Republic of China.
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
12
|
Mimica B, Tombaz T, Battistin C, Fuglstad JG, Dunn BA, Whitlock JR. Behavioral decomposition reveals rich encoding structure employed across neocortex in rats. Nat Commun 2023; 14:3947. [PMID: 37402724 PMCID: PMC10319800 DOI: 10.1038/s41467-023-39520-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
The cortical population code is pervaded by activity patterns evoked by movement, but it remains largely unknown how such signals relate to natural behavior or how they might support processing in sensory cortices where they have been observed. To address this we compared high-density neural recordings across four cortical regions (visual, auditory, somatosensory, motor) in relation to sensory modulation, posture, movement, and ethograms of freely foraging male rats. Momentary actions, such as rearing or turning, were represented ubiquitously and could be decoded from all sampled structures. However, more elementary and continuous features, such as pose and movement, followed region-specific organization, with neurons in visual and auditory cortices preferentially encoding mutually distinct head-orienting features in world-referenced coordinates, and somatosensory and motor cortices principally encoding the trunk and head in egocentric coordinates. The tuning properties of synaptically coupled cells also exhibited connection patterns suggestive of area-specific uses of pose and movement signals, particularly in visual and auditory regions. Together, our results indicate that ongoing behavior is encoded at multiple levels throughout the dorsal cortex, and that low-level features are differentially utilized by different regions to serve locally relevant computations.
Collapse
Affiliation(s)
- Bartul Mimica
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, 100190, NJ, USA.
| | - Tuçe Tombaz
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
| | - Claudia Battistin
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jingyi Guo Fuglstad
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
| | - Benjamin A Dunn
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jonathan R Whitlock
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway.
| |
Collapse
|
13
|
Morandell K, Yin A, Del Rio RT, Schneider DM. Movement-related modulation in mouse auditory cortex is widespread yet locally diverse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547560. [PMID: 37461568 PMCID: PMC10349927 DOI: 10.1101/2023.07.03.547560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Neurons in the mouse auditory cortex are strongly influenced by behavior, including both suppression and enhancement of sound-evoked responses during movement. The mouse auditory cortex comprises multiple fields with different roles in sound processing and distinct connectivity to movement-related centers of the brain. Here, we asked whether movement-related modulation might differ across auditory cortical fields, thereby contributing to the heterogeneity of movement-related modulation at the single-cell level. We used wide-field calcium imaging to identify distinct cortical fields followed by cellular-resolution two-photon calcium imaging to visualize the activity of layer 2/3 excitatory neurons within each field. We measured each neuron's responses to three sound categories (pure tones, chirps, and amplitude modulated white noise) as mice rested and ran on a non-motorized treadmill. We found that individual neurons in each cortical field typically respond to just one sound category. Some neurons are only active during rest and others during locomotion, and those that are responsive across conditions retain their sound-category tuning. The effects of locomotion on sound-evoked responses vary at the single-cell level, with both suppression and enhancement of neural responses, and the net modulatory effect of locomotion is largely conserved across cortical fields. Movement-related modulation in auditory cortex also reflects more complex behavioral patterns, including instantaneous running speed and non-locomotor movements such as grooming and postural adjustments, with similar patterns seen across all auditory cortical fields. Our findings underscore the complexity of movement-related modulation throughout the mouse auditory cortex and indicate that movement-related modulation is a widespread phenomenon.
Collapse
Affiliation(s)
- Karin Morandell
- Center for Neural Science, New York University, New York, NY 10012
| | - Audrey Yin
- Center for Neural Science, New York University, New York, NY 10012
| | | | | |
Collapse
|
14
|
Inayat S, McAllister BB, Whishaw IQ, Mohajerani MH. Hippocampal conjunctive and complementary CA1 populations relate sensory events to movement. iScience 2023; 26:106481. [PMID: 37096033 PMCID: PMC10121467 DOI: 10.1016/j.isci.2023.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/27/2023] [Accepted: 03/18/2023] [Indexed: 04/26/2023] Open
Abstract
Hippocampal CA1 neurons respond to sensory stimuli during enforced immobility, movement, and their transitions in a new conveyor belt task. Head-fixed mice were exposed to light flashes or air streams while at rest, spontaneously moving, or running a fixed distance. Two-photon calcium imaging of CA1 neurons revealed that 62% of 3341 imaged cells were active during one or more of 20 sensorimotor events. Of these active cells, 17% were active for any given sensorimotor event, with a higher proportion during locomotion. The study found two types of cells: Conjunctive cells that were active across multiple events, and complementary cells that were active only during individual events, encoding novel sensorimotor events or their delayed repetitions. The configuration of these cells across changing sensorimotor events may signify the role of hippocampus in functional networks integrating sensory information with ongoing movement making it suitable for movement guidance.
Collapse
Affiliation(s)
- Samsoon Inayat
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Brendan B McAllister
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
15
|
West SL, Gerhart ML, Ebner TJ. Wide-field calcium imaging of cortical activation and functional connectivity in externally- and internally-driven locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536261. [PMID: 37090567 PMCID: PMC10120686 DOI: 10.1101/2023.04.10.536261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The neural dynamics underlying self-initiated versus sensory driven movements is central to understanding volitional action. Upstream motor cortices are associated with the generation of internally-driven movements over externally-driven. Here we directly compare cortical dynamics during internally- versus externally-driven locomotion using wide-field Ca2+ imaging. We find that secondary motor cortex (M2) plays a larger role in internally-driven spontaneous locomotion transitions, with increased M2 functional connectivity during starting and stopping than in the externally-driven, motorized treadmill locomotion. This is not the case in steady-state walk. In addition, motorized treadmill and spontaneous locomotion are characterized by markedly different patterns of cortical activation and functional connectivity at the different behavior periods. Furthermore, the patterns of fluorescence activation and connectivity are uncorrelated. These experiments reveal widespread and striking differences in the cortical control of internally- and externally-driven locomotion, with M2 playing a major role in the preparation and execution of the self-initiated state.
Collapse
Affiliation(s)
- Sarah L. West
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Morgan L. Gerhart
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Press C, Thomas ER, Yon D. Cancelling cancellation? Sensorimotor control, agency, and prediction. Neurosci Biobehav Rev 2023; 145:105012. [PMID: 36565943 DOI: 10.1016/j.neubiorev.2022.105012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
For decades, classic theories of action control and action awareness have been built around the idea that the brain predictively 'cancels' expected action outcomes from perception. However, recent research casts doubt over this basic premise. What do these new findings mean for classic accounts of action? Should we now 'cancel' old data, theories and approaches generated under this idea? In this paper, we argue 'No'. While doubts about predictive cancellation may urge us to fundamentally rethink how predictions shape perception, the wider pyramid using these ideas to explain action control and agentic experiences can remain largely intact. Some adaptive functions assigned to predictive cancellation can be achieved through quasi-predictive processes, that influence perception without actively tracking the probabilistic structure of the environment. Other functions may rely upon truly predictive processes, but not require that these predictions cancel perception. Appreciating the role of these processes may help us to move forward in explaining how agents optimise their interactions with the external world, even if predictive cancellation is cancelled from theory.
Collapse
Affiliation(s)
- Clare Press
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square, London WC1N 3AR, UK.
| | - Emily R Thomas
- Neuroscience Institute, New York University School of Medicine, 550 1st Ave, New York, NY 10016, USA
| | - Daniel Yon
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
17
|
Nietz AK, Popa LS, Streng ML, Carter RE, Kodandaramaiah SB, Ebner TJ. Wide-Field Calcium Imaging of Neuronal Network Dynamics In Vivo. BIOLOGY 2022; 11:1601. [PMID: 36358302 PMCID: PMC9687960 DOI: 10.3390/biology11111601] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A central tenet of neuroscience is that sensory, motor, and cognitive behaviors are generated by the communications and interactions among neurons, distributed within and across anatomically and functionally distinct brain regions. Therefore, to decipher how the brain plans, learns, and executes behaviors requires characterizing neuronal activity at multiple spatial and temporal scales. This includes simultaneously recording neuronal dynamics at the mesoscale level to understand the interactions among brain regions during different behavioral and brain states. Wide-field Ca2+ imaging, which uses single photon excitation and improved genetically encoded Ca2+ indicators, allows for simultaneous recordings of large brain areas and is proving to be a powerful tool to study neuronal activity at the mesoscopic scale in behaving animals. This review details the techniques used for wide-field Ca2+ imaging and the various approaches employed for the analyses of the rich neuronal-behavioral data sets obtained. Also discussed is how wide-field Ca2+ imaging is providing novel insights into both normal and altered neural processing in disease. Finally, we examine the limitations of the approach and new developments in wide-field Ca2+ imaging that are bringing new capabilities to this important technique for investigating large-scale neuronal dynamics.
Collapse
Affiliation(s)
- Angela K. Nietz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S. Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martha L. Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E. Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Machado TA, Kauvar IV, Deisseroth K. Multiregion neuronal activity: the forest and the trees. Nat Rev Neurosci 2022; 23:683-704. [PMID: 36192596 PMCID: PMC10327445 DOI: 10.1038/s41583-022-00634-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed remarkable advances in the simultaneous measurement of neuronal activity across many brain regions, enabling fundamentally new explorations of the brain-spanning cellular dynamics that underlie sensation, cognition and action. These recently developed multiregion recording techniques have provided many experimental opportunities, but thoughtful consideration of methodological trade-offs is necessary, especially regarding field of view, temporal acquisition rate and ability to guarantee cellular resolution. When applied in concert with modern optogenetic and computational tools, multiregion recording has already made possible fundamental biological discoveries - in part via the unprecedented ability to perform unbiased neural activity screens for principles of brain function, spanning dozens of brain areas and from local to global scales.
Collapse
Affiliation(s)
- Timothy A Machado
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Franke K, Willeke KF, Ponder K, Galdamez M, Zhou N, Muhammad T, Patel S, Froudarakis E, Reimer J, Sinz FH, Tolias AS. State-dependent pupil dilation rapidly shifts visual feature selectivity. Nature 2022; 610:128-134. [PMID: 36171291 PMCID: PMC10635574 DOI: 10.1038/s41586-022-05270-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
To increase computational flexibility, the processing of sensory inputs changes with behavioural context. In the visual system, active behavioural states characterized by motor activity and pupil dilation1,2 enhance sensory responses, but typically leave the preferred stimuli of neurons unchanged2-9. Here we find that behavioural state also modulates stimulus selectivity in the mouse visual cortex in the context of coloured natural scenes. Using population imaging in behaving mice, pharmacology and deep neural network modelling, we identified a rapid shift in colour selectivity towards ultraviolet stimuli during an active behavioural state. This was exclusively caused by state-dependent pupil dilation, which resulted in a dynamic switch from rod to cone photoreceptors, thereby extending their role beyond night and day vision. The change in tuning facilitated the decoding of ethological stimuli, such as aerial predators against the twilight sky10. For decades, studies in neuroscience and cognitive science have used pupil dilation as an indirect measure of brain state. Our data suggest that, in addition, state-dependent pupil dilation itself tunes visual representations to behavioural demands by differentially recruiting rods and cones on fast timescales.
Collapse
Affiliation(s)
- Katrin Franke
- Institute for Ophthalmic Research, Tübingen University, Tübingen, Germany.
- Center for Integrative Neuroscience, Tübingen University, Tübingen, Germany.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
| | - Konstantin F Willeke
- Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany
- Department of Computer Science, Göttingen University, Göttingen, Germany
| | - Kayla Ponder
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Mario Galdamez
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Na Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Taliah Muhammad
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Saumil Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Fabian H Sinz
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany
- Department of Computer Science, Göttingen University, Göttingen, Germany
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
20
|
Paraskevoudi N, SanMiguel I. Sensory suppression and increased neuromodulation during actions disrupt memory encoding of unpredictable self-initiated stimuli. Psychophysiology 2022; 60:e14156. [PMID: 35918912 PMCID: PMC10078310 DOI: 10.1111/psyp.14156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
Actions modulate sensory processing by attenuating responses to self- compared to externally generated inputs, which is traditionally attributed to stimulus-specific motor predictions. Yet, suppression has been also found for stimuli merely coinciding with actions, pointing to unspecific processes that may be driven by neuromodulatory systems. Meanwhile, the differential processing for self-generated stimuli raises the possibility of producing effects also on memory for these stimuli; however, evidence remains mixed as to the direction of the effects. Here, we assessed the effects of actions on sensory processing and memory encoding of concomitant, but unpredictable sounds, using a combination of self-generation and memory recognition task concurrently with EEG and pupil recordings. At encoding, subjects performed button presses that half of the time generated a sound (motor-auditory; MA) and listened to passively presented sounds (auditory-only; A). At retrieval, two sounds were presented and participants had to respond which one was present before. We measured memory bias and memory performance by having sequences where either both or only one of the test sounds were presented at encoding, respectively. Results showed worse memory performance - but no differences in memory bias -, attenuated responses, and larger pupil diameter for MA compared to A sounds. Critically, the larger the sensory attenuation and pupil diameter, the worse the memory performance for MA sounds. Nevertheless, sensory attenuation did not correlate with pupil dilation. Collectively, our findings suggest that sensory attenuation and neuromodulatory processes coexist during actions, and both relate to disrupted memory for concurrent, albeit unpredictable sounds.
Collapse
Affiliation(s)
- Nadia Paraskevoudi
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Brainlab-Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, University of Barcelona, Barcelona, Spain
| | - Iria SanMiguel
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Brainlab-Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, University of Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
21
|
West SL, Aronson JD, Popa LS, Feller KD, Carter RE, Chiesl WM, Gerhart ML, Shekhar AC, Ghanbari L, Kodandaramaiah SB, Ebner TJ. Wide-Field Calcium Imaging of Dynamic Cortical Networks during Locomotion. Cereb Cortex 2022; 32:2668-2687. [PMID: 34689209 PMCID: PMC9201596 DOI: 10.1093/cercor/bhab373] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Motor behavior results in complex exchanges of motor and sensory information across cortical regions. Therefore, fully understanding the cerebral cortex's role in motor behavior requires a mesoscopic-level description of the cortical regions engaged, their functional interactions, and how these functional interactions change with behavioral state. Mesoscopic Ca2+ imaging through transparent polymer skulls in mice reveals elevated activation of the dorsal cerebral cortex during locomotion. Using the correlations between the time series of Ca2+ fluorescence from 28 regions (nodes) obtained using spatial independent component analysis (sICA), we examined the changes in functional connectivity of the cortex from rest to locomotion with a goal of understanding the changes to the cortical functional state that facilitate locomotion. Both the transitions from rest to locomotion and from locomotion to rest show marked increases in correlation among most nodes. However, once a steady state of continued locomotion is reached, many nodes, including primary motor and somatosensory nodes, show decreases in correlations, while retrosplenial and the most anterior nodes of the secondary motor cortex show increases. These results highlight the changes in functional connectivity in the cerebral cortex, representing a series of changes in the cortical state from rest to locomotion and on return to rest.
Collapse
Affiliation(s)
- Sarah L West
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathryn D Feller
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Union College Biological Sciences Department, Schenectady, NY 12308, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - William M Chiesl
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Morgan L Gerhart
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aditya C Shekhar
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Leila Ghanbari
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Suhasa B Kodandaramaiah
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Riedl J, Fieseler C, Zimmer M. Tyraminergic corollary discharge filters reafferent perception in a chemosensory neuron. Curr Biol 2022; 32:3048-3058.e6. [PMID: 35690069 DOI: 10.1016/j.cub.2022.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022]
Abstract
Interpreting sensory information requires its integration with the current behavior of the animal. However, how motor-related circuits influence sensory information processing is incompletely understood. Here, we report that current locomotor state directly modulates the activity of BAG CO2 sensory neurons in Caenorhabditis elegans. By recording neuronal activity in animals freely navigating CO2 landscapes, we found that during reverse crawling states, BAG activity is suppressed by tyraminergic corollary discharge signaling. We provide genetic evidence that tyramine released from the RIM reversal interneurons extrasynaptically activates the inhibitory chloride channel LGC-55 in BAG. Disrupting this pathway genetically leads to excessive behavioral responses to CO2 stimuli. Moreover, we find that LGC-55 signaling cancels out perception of self-produced CO2 and O2 stimuli when animals reverse into their own gas plume in ethologically relevant aqueous environments. Our results show that sensorimotor integration involves corollary discharge signals directly modulating chemosensory neurons.
Collapse
Affiliation(s)
- Julia Riedl
- Department of Neuroscience and Developmental Biology, Vienna BioCenter (VBC), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Charles Fieseler
- Department of Neuroscience and Developmental Biology, Vienna BioCenter (VBC), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, Vienna BioCenter (VBC), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
23
|
Solyga M, Barkat TR. Emergence and function of cortical offset responses in sound termination detection. eLife 2021; 10:e72240. [PMID: 34910627 PMCID: PMC8673837 DOI: 10.7554/elife.72240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022] Open
Abstract
Offset responses in auditory processing appear after a sound terminates. They arise in neuronal circuits within the peripheral auditory system, but their role in the central auditory system remains unknown. Here, we ask what the behavioral relevance of cortical offset responses is and what circuit mechanisms drive them. At the perceptual level, our results reveal that experimentally minimizing auditory cortical offset responses decreases the mouse performance to detect sound termination, assigning a behavioral role to offset responses. By combining in vivo electrophysiology in the auditory cortex and thalamus of awake mice, we also demonstrate that cortical offset responses are not only inherited from the periphery but also amplified and generated de novo. Finally, we show that offset responses code more than silence, including relevant changes in sound trajectories. Together, our results reveal the importance of cortical offset responses in encoding sound termination and detecting changes within temporally discontinuous sounds crucial for speech and vocalization.
Collapse
|
24
|
Bucci-Mansilla G, Vicencio-Jimenez S, Concha-Miranda M, Loyola-Navarro R. Challenging Paradigms Through Ecological Neuroscience: Lessons From Visual Models. Front Neurosci 2021; 15:758388. [PMID: 34858130 PMCID: PMC8631428 DOI: 10.3389/fnins.2021.758388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Giuliana Bucci-Mansilla
- Neurosystems Laboratory, Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Ecological Cognitive Neuroscience Group, Santiago, Chile
| | - Sergio Vicencio-Jimenez
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rocio Loyola-Navarro
- Neuroscience, Cognition and Educational Lab, Center for Advanced Research in Education, Institute of Education, Universidad de Chile, Santiago, Chile.,Departamento de Educación Diferencial, Facultad de Filosofía y Educación, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
25
|
Slagter HA, van Moorselaar D. Attention and distraction in the predictive brain. VISUAL COGNITION 2021; 29:631-636. [PMID: 34720654 PMCID: PMC8547734 DOI: 10.1080/13506285.2021.1936733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Whether it is possible to ignore a physically salient distractor has been a topic of active debate over the past 25 years, with empirical evidence for and against each of the theoretical stances. We put forward that predictive processing may provide a unified theoretical perspective that can account reasonably well for the empirical literature on attentional capture. In this perspective, capture is a logical consequence of the overall imperative of the brain to predict what sensory signals provide precise information to achieve goal-directed behaviour.
Collapse
Affiliation(s)
- Heleen A Slagter
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dirk van Moorselaar
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Abstract
Whether it is possible to ignore a physically salient distractor has been a topic of active debate over the past 25 years, with empirical evidence for and against each of the theoretical stances. We put forward that predictive processing may provide a unified theoretical perspective that can account reasonably well for the empirical literature on attentional capture. In this perspective, capture is a logical consequence of the overall imperative of the brain to predict what sensory signals provide precise information to achieve goal-directed behaviour.
Collapse
Affiliation(s)
- Heleen A Slagter
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dirk van Moorselaar
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Pezzulo G, Zorzi M, Corbetta M. The secret life of predictive brains: what's spontaneous activity for? Trends Cogn Sci 2021; 25:730-743. [PMID: 34144895 PMCID: PMC8363551 DOI: 10.1016/j.tics.2021.05.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023]
Abstract
Brains at rest generate dynamical activity that is highly structured in space and time. We suggest that spontaneous activity, as in rest or dreaming, underlies top-down dynamics of generative models. During active tasks, generative models provide top-down predictive signals for perception, cognition, and action. When the brain is at rest and stimuli are weak or absent, top-down dynamics optimize the generative models for future interactions by maximizing the entropy of explanations and minimizing model complexity. Spontaneous fluctuations of correlated activity within and across brain regions may reflect transitions between 'generic priors' of the generative model: low dimensional latent variables and connectivity patterns of the most common perceptual, motor, cognitive, and interoceptive states. Even at rest, brains are proactive and predictive.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Roma, Italy.
| | - Marco Zorzi
- Department of General Psychology and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), Fondazione Biomedica, Padova, Italy
| |
Collapse
|
28
|
Visuo-Motor Feedback Modulates Neural Activities in the Medulla of the Honeybee, Apis mellifera. J Neurosci 2021; 41:3192-3203. [PMID: 33608383 DOI: 10.1523/jneurosci.1824-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
Behavioral and internal-state modulation of sensory processing has been described in several organisms. In insects, visual neurons in the optic lobe are modulated by locomotion, but the degree to which visual-motor feedback modulates these neurons remains unclear. Moreover, it also remains unknown whether self-generated and externally generated visual motion are processed differently. Here, we implemented a virtual reality system that allowed fine-scale control over visual stimulation in relation to animal motion, in combination with multichannel recording of neural activity in the medulla of a female honeybee (Apis mellifera). We found that this activity was modulated by locomotion, although, in most cases, only when the bee had behavioral control over the visual stimulus (i.e., in a closed-loop system). Moreover, closed-loop control modulated a third of the recorded neurons, and the application of octopamine (OA) evoked similar changes in neural responses that were observed in a closed loop. Additionally, in a subset of modulated neurons, fixation on a visual stimulus was preceded by an increase in firing rate. To further explore the relationship between neuromodulation and adaptive control of the visual environment of the bee, we modified motor gain sensitivity while locally injecting an OA receptor antagonist into the medulla. Whereas female honeybees were tuned to a motor gain of -2 to 2 (between the heading of the bee and its visual feedback), local disruption of the OA pathway in the medulla abolished this tuning, resulting in similar low levels of response across levels of motor gain. Our results show that behavioral control modulates neural activity in the medulla and ultimately impacts behavior.SIGNIFICANCE STATEMENT When moving, an animal generates the motion of the visual scene over its retina. We asked whether self-generated and externally generated optic flow are processed differently in the insect medulla. Our results show that closed-loop control of the visual stimulus modulates neural activity as early as the medulla and ultimately impacts behavior. Moreover, blocking octopaminergic modulation further disrupted object-tracking responses. Our results suggest that the medulla is an important site for context-dependent processing of visual information and that placing the animal in a closed-loop environment may be essential to understanding its visual cognition and processing.
Collapse
|
29
|
Henschke JU, Price AT, Pakan JMP. Enhanced modulation of cell-type specific neuronal responses in mouse dorsal auditory field during locomotion. Cell Calcium 2021; 96:102390. [PMID: 33744780 DOI: 10.1016/j.ceca.2021.102390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
As we move through the environment we experience constantly changing sensory input that must be merged with our ongoing motor behaviors - creating dynamic interactions between our sensory and motor systems. Active behaviors such as locomotion generally increase the sensory-evoked neuronal activity in visual and somatosensory cortices, but evidence suggests that locomotion largely suppresses neuronal responses in the auditory cortex. However, whether this effect is ubiquitous across different anatomical regions of the auditory cortex is largely unknown. In mice, auditory association fields such as the dorsal auditory cortex (AuD), have been shown to have different physiological response properties, protein expression patterns, and cortical as well as subcortical connections, in comparison to primary auditory regions (A1) - suggesting there may be important functional differences. Here we examined locomotion-related modulation of neuronal activity in cortical layers ⅔ of AuD and A1 using two-photon Ca2+ imaging in head-fixed behaving mice that are able to freely run on a spherical treadmill. We determined the proportion of neurons in these two auditory regions that show enhanced and suppressed sensory-evoked responses during locomotion and quantified the depth of modulation. We found that A1 shows more suppression and AuD more enhanced responses during locomotion periods. We further revealed differences in the circuitry between these auditory regions and motor cortex, and found that AuD is more highly connected to motor cortical regions. Finally, we compared the cell-type specific locomotion-evoked modulation of responses in AuD and found that, while subpopulations of PV-expressing interneurons showed heterogeneous responses, the population in general was largely suppressed during locomotion, while excitatory population responses were generally enhanced in AuD. Therefore, neurons in primary and dorsal auditory fields have distinct response properties, with dorsal regions exhibiting enhanced activity in response to movement. This functional distinction may be important for auditory processing during navigation and acoustically guided behavior.
Collapse
Affiliation(s)
- Julia U Henschke
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany; German Centre for Neurodegenerative Diseases, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Alan T Price
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany; German Centre for Neurodegenerative Diseases, Leipziger Str. 44, 39120, Magdeburg, Germany; Cognitive Neurophysiology group, Leibniz Institute for Neurobiology (LIN), 39118, Magdeburg, Germany
| | - Janelle M P Pakan
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany; German Centre for Neurodegenerative Diseases, Leipziger Str. 44, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany.
| |
Collapse
|
30
|
Feldman D, Scott K. Editorial overview: Systems neuroscience. Curr Opin Neurobiol 2020; 64:iii. [PMID: 33189188 DOI: 10.1016/j.conb.2020.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Dan Feldman
- University of California, Berkeley, United States.
| | | |
Collapse
|
31
|
Abstract
At various stages of the visual system, visual responses are modulated by arousal. Here, we find that in mice this modulation operates as early as in the first synapse from the retina and even in retinal axons. To measure retinal activity in the awake, intact brain, we imaged the synaptic boutons of retinal axons in the superior colliculus. Their activity depended not only on vision but also on running speed and pupil size, regardless of retinal illumination. Arousal typically reduced their visual responses and selectivity for direction and orientation. Recordings from retinal axons in the optic tract revealed that arousal modulates the firing of some retinal ganglion cells. Arousal had similar effects postsynaptically in colliculus neurons, independent of activity in the other main source of visual inputs to the colliculus, the primary visual cortex. These results indicate that arousal modulates activity at every stage of the mouse visual system.
Collapse
|
32
|
Kinematic and Somatosensory Gains in Infants with Cerebral Palsy After a Multi-Component Upper-Extremity Intervention: A Randomized Controlled Trial. Brain Topogr 2020; 33:751-766. [DOI: 10.1007/s10548-020-00790-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
|